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Abstract. Advances in endoscopy use in surgeries face challenges like
inadequate lighting. Deep learning, notably the Denoising Diffusion Prob-
abilistic Model (DDPM), holds promise for low-light image enhancement
in the medical field. However, DDPMs are computationally demanding
and slow, limiting their practical medical applications. To bridge this
gap, we propose a lightweight DDPM, dubbed LighTDiff. It adopts a
T-shape model architecture to capture global structural information us-
ing low-resolution images and gradually recover the details in subsequent
denoising steps. We further prone the model to significantly reduce the
model size while retaining performance. While discarding certain down-
sampling operations to save parameters leads to instability and low effi-
ciency in convergence during the training, we introduce a Temporal Light
Unit (TLU), a plug-and-play module, for more stable training and better
performance. TLU associates time steps with denoised image features,
establishing temporal dependencies of the denoising steps and improving
denoising outcomes. Moreover, while recovering images using the diffu-
sion model, potential spectral shifts were noted. We further introduce
a Chroma Balancer (CB) to mitigate this issue. Our LighTDiff outper-
forms many competitive LLIE methods with exceptional computational
efficiency. Our code is available at github.com/DavisMeee/LighTDiff.

Keywords: Surgical · Endoscopic · Low Light Image Enhancement

1 Introduction

Minimally invasive surgery (MIS), now a standard for various procedures [7],
offers advantages such as reduced trauma, faster recovery, and shorter hospi-
tal stays [27]. Endoscopes, equipped with high-definition cameras and flexible
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Fig. 1. Image comparison for normal lighting (a), low lighting (b), and LighTDiff re-
construction (c); Model comparison in performance and efficiency (d), and comparison
of training costs (i.e., training hours for the same number of total iterations) (e).

maneuvering, provide surgeons with a clear field of vision for precise proce-
dures [4, 29]. However, low-light conditions, as seen in (Fig. 1 (b)), can compli-
cate surgery due to poor illumination and contrast. Insufficient brightness affects
detail recognition, making it challenging for surgeons to observe tissue structures
or pathological areas. This complicates lesion localization, hampers fine manip-
ulation, prevents effective guidance, and increases the risk of errors. An effective
and efficient low-light image enhancement (LLIE) framework is essential to aid
physicians in endoscopy-assisted MIS.

Conventional methods using hand-crafted image features [13,20,23] for low-
light imaging are often constrained by stringent assumptions, hampering their
applicability. In contrast, recent advancements in deep learning [30, 35] allow
models to automatically learn complex image features, enabling them to handle
diverse lighting conditions and offer accurate enhancements. Advanced LLIE
methods for medical endoscopy have emerged, such as Gomez et al. [10] using a
convolutional neural network trained on synthetic data for laryngoscope LLIE,
Ma et al. [25] proposing a Generative Adversarial Network (GAN) model for
low-light enhancement via unpaired training, and Bai et al. [3] presenting a
method using reverse diffusion for endoscopy image enhancement. Despite these
efforts, efficiency and performance limitations persist, restricting their practical
application in real-world endoscopy scenarios.

Recently, denoising diffusion probabilistic model (DDPM) [15] has demon-
strated strong capabilities in various generation tasks [26,36]. Although existing
works using DDPM for LLIE tasks [17,33,39] have shown promising performance,
applying DDPM to enhance endoscopic images in low-light environments faces
challenges. Firstly, existing diffusion models incur high computational costs, re-
quiring significant computational resources and time, which is impractical for
real-time applications such as endoscopy. Secondly, the endoscopic devices them-
selves have limited hardware capacity to deploy complex models.

To overcome these limitations, we propose LighTDiff, a lightweight diffusion
architecture utilizing less than 50% of the parameters of the original DDPM [15],
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making it suitable for consumer-grade hardware without compromising diffu-
sion model performance. Our contributions are summarized as follows: First, we
adopt an inconstant resolution diffusion structure [39], enabling efficient DDPM
with iterative processes at varying resolution levels. Notably, we further optimize
our model by strategically pruning certain downsampling components, resulting
in a substantial reduction in size while maintaining performance. Second, to
address potential instability issues introduced by model pruning and improve
performance, we introduce the Temporal Light Unit (TLU), a plug-and-play
module, and employ it as the building block of the U-net backbone. TLU, con-
ducting lay normalization, injects the time step into the image features of the
current denoise stage. This temporal injection facilitates better contextual un-
derstanding, allowing the model to discern temporal dependencies of the denois-
ing steps for improvement. Third, we introduce the Chroma Balancer (CB), a
corrective measure designed to adjust image channel bias distribution at each
diffusion step, ensuring accurate diffusion outcomes. Fourth, our extensive exper-
iments conducted on two public datasets and a real-world dataset demonstrate
promising performance and exceptional efficiency of our LighTDiff (Fig. 1 (d)).

2 Methodology

2.1 Preliminaries

Denoising Diffusion Probabilistic Model (DDPM) [15, 28] can be concep-
tualized as a forward adding noise and reverse denoising procedure.

This design enables the transformation of data from an observed space to a
latent space characterized by Gaussian noise, followed by reconstruction to the
original space, thus facilitating robust generative modeling. The diffusion model
starts with a given data distribution y0 ∈ q(y0) then gradually adds Gaussian
Noise (ζ) to it. Set the max time step as T . The step sizes are controlled by a

variance schedule {βt ∈ (0, 1)}Tt=1. We define γt = 1 − βt and γ̂t =
t∏

i=1

γi. The

whole stage of the diffusion model can be formulated as:
q(yt|yt−1) = N (yt,

√
γtyt−1, βtζ)

p(yt−1|yt) = N (yt−1;

√
γ̂t−1βt

1− γ̂t
fθ(yt) +

√
γt(1− γ̂t−1)

1− γ̂t
yt,

1− γ̂t−1

1− γ̂t
βtζ)

(1)

where fθ(yt) is an output ỹ0 that is estimated from denoising part ζθ(yt).

2.2 Proposed Methodology

LighT Architecture During the diffusion process, high-quality images are
gradually transformed into low-quality images, which are then reconstructed in
the reverse process. We find that when the noise is added to a certain extent, per-
forming a resolution reduction and continuing to add noise at smaller scales will
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Fig. 2. The overview of our proposed LighTDiff. Panel a) illustrates the entire process,
where the original image y0 undergoes noise diffusion to generate yt, and the model
learns to reconstruct the original image from different time steps. The denoised output
ỹ0 is further adapted by the Chroma Balancer (CB) to approach a natural distribution,
resulting in ỹ′

0. Panel (b) is LighTDiff architecture. Panel (c) illustrates the Temporal
Light Block, with the details of Temporal Light Unit (TLU) in Panel (d). The network
structure of CB is given in Panel (e).

not significantly affect the quality of image recovery. Therefore, we designed our
LighT architecture. The overview of our framework can be found in (Fig. 2(a)).
In this architecture, we reduce the resolution of the input after the quarter-
journey. Due to the inconsistent resolution inputs, the general DDPM formula
no longer fits in this case. The forward step has been adjusted as follows:

q(yt|yt−1) = N (yt;
√
γt(yt−1 ↓ rt−1

rt

), βtζ), (2)

and the Reverse Process can be expressed as:

p(yt−1|yt) =


N (yt−1;

√
γ̂t−1(yt ↑ rt

rt−1

), (1− γ̂t)ζ), when rt < rt−1; else

N (yt−1;

√
γ̂t−1βt

1− γ̂t
fθ(yt) +

√
γt(1− γ̂t−1)

1− γ̂t
yt,

1− γ̂t−1

1− γ̂t
βtζ).

(3)

Here rt represents the image resolution at time step t. ↑ rt
rt−1

and ↓ rt
rt−1

represent

up and down sampling adjustments based on resolution changes. It is noted that
excessive downsampling may cause a loss of high-frequency information when
doing the upsampling recovery [22]. To address this, we ensure that the model
is downsampled at most twice in the denoising process, leading to a different
diffusion schedule from [39], contributing also to an overall lightweight model.
Although pruning will significantly help speed up, it also causes an unstable
training procedure, as shown by the purple curve in (Fig 1(e)).



LighTDiff: Endoscopic Image Low-Light Enhancement 5

Temporal Light Block Temporal Light Block (TLB) is the core component
of our denoising model, comprising a ResBlcok and Temporal Light Unit (TLU),
as illustrated in (Fig. 2 (c)). It is contrastive to the Attention ResBlock (Res-
Block with a separate Self-Attention Block) employed as the building blocks
of the vanilla DDPM. This latter focuses on the features of the current step
for denoising and demands significant computing resources. Compared with the
self-attention block, TLU is a lightweight plug-and-play block. It injects the time
step t into the image features F of the current denoise stage, enhancing contex-
tual understanding and enabling the model to discern temporal dependencies of
the denoising steps. The detail of TLU is shown in (Fig. 2 (d)). The normal-
ization layer ensures stability throughout training, followed by a ‘channel-level
activation’ to enhance feature extraction.

The TLU is formulated as:

TLU(F , t) = c−1(σ(c(norm(F + t))) +F , (4)

where c(·) and c−1(·) represent convolution and deconvolution operations, re-
spectively, while σ(·) denotes non-linear activation. This design circumvents
the computationally costly self-attention while maintaining good performance.
Moreover, the time injection provides temporal context for better denoising.

Chroma Balancer In the later stages, random sampling and inaccurate de-
noising may introduce color bias and exposure shifts, leading to color distribu-
tion distortion [5, 21]. While Zhouet al. [39] employed a global corrector using
time embedding and scaling adaption to address this issue, their performance is
limited due to the neglect of channel connections. To overcome this limitation,
we introduce a Chroma Balancer (CB) module to rectify the bias distribution
toward a natural distribution, as illustrated on the right in (Fig.2 (e)).

In contrast to the global corrector in [39], our approach incorporates channel
attention. This allows focused emphasis on key dimensions while suppressing
irrelevant distractions. As a result, CB substantially improves performance with
minimal additional computational overhead.

Overall Structure An overview of our framework can be found in (Fig. 2 (e)).
Our LighTDiff contains a denoising component constructed by Temporal Light
Blocks (TLB) (including ResBlock and TLU) and a Chroma Balancer (CB).
We use the SmoothL1 loss [9] to optimize denoising and CB with no additional
optimization objectives. The ε is set to 1 empirically.

LsmoothL1 =

{
0.5(y0 − ỹ0)

2/ε if |y0 − ỹ0| < ε

|y0 − ỹ0| − 0.5ε otherwise
(5)
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3 Experiments

3.1 Dataset

Given the challenge of obtaining real paired endoscopic low-light and normal-
light images, we synthesize low-light images based on the normal light images in
the EndoVis17 [2] and the EndoVis18 [1] datasets to obtain corresponding low-
light and normal-light pairs and further applied our model to enhance images in
a real-world low-light endoscopic submucosal dissection (ESD) surgery dataset.

EndoVis17 [2] and EndoVis18 [1] are two publicly accessible datasets for
surgical instrument segmentation. EndoVis18 and EndoVis17 contain 2,400 and
2,235 images selected from 10 and 14 videos, respectively. EndoVis17 and En-
doVis18 dataset is split into 1800 and 1639 training images and 1200 and 596
test images following [11]. We resized them into 256×256 resolution. To synthe-
size low-light images, we adopted random Gamma and illumination reduction
following [3, 19,24].

Real-world dataset is an in-house LLIE dataset collected from 20 ESD
surgery videos on pigs (Approval No. DWLL-2021-021) [8]. We manually col-
lected 61 low-light images with segmentation labels of the instruments and the
backgrounds. All tags are hand-labeled and corrected by doctors. Due to the
anonymous policy, the animal study ethical approval is temporarily concealed.

3.2 Comparison Methods and Evaluation Metrics

We benchmark our approach against traditional methods like LIME [13] and
DUAL [37], typical CNN and RCNN-based methods such as Zero-DCE [12],
SNR-Aware [32], MIRNet [34], and MIRNetv2 [35], and GAN-based ones like En-
lightenGAN [18] and StillGan [25]. We also compare with DDPM-based models
like LLCaps [3], DiffLL [17], CLEDiffusion [33], ControlNet [36], and PyDiff [39].

For evaluation, we use common image quality assessment metrics, including
Peak Signal-to-Noise Ratio (PSNR) [16], Structural Similarity Index (SSIM) [31]
and Learned Perceptual Image Patch Similarity (LPIPS) [38]. Additionally, we
assess the impact of image enhancement on downstream segmentation tasks
using both the synthetic EndoVis17 dataset and our real low-light image dataset.
The segmentation model, utilizing a pre-trained ResNet-101 [14] as the backbone
and DeeplabV2 [6] as the decoder, was trained on the EndoVis17 training set for
200 epochs. It was directly applied to the enhanced images in the real low-light
dataset without fine-tuning. The segmentation results are evaluated using mean
Intersection over Union (mIoU) and Dice similarity coefficient (Dice).

3.3 Results

Image Enhancement Table 1 quantitatively compares LighTDiff’s perfor-
mance with existing methods. Conventional approaches like LIME [13] and
DUAL [37] yield unsatisfactory results due to strict assumptions. ControlNet [36],
reliant on extensive training data, struggles with limited training samples and
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Table 1. Performance comparison by image qualities and downstream segmentation
tasks. The image quality metrics are only reported for the synthetic data as the real-
world data lack ground truth. The segmentation performance on the real-world dataset
is obtained by directly applying a segmentation model trained on the EndoVis17 train-
ing set without any finetuning.

Models
Efficiency EndoVis17 EndoVis18 EndoVis17 Seg Real-world Seg
FPS↑ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Dice ↑ mIoU↑ Dice ↑ mIoU ↑

LIME [13] 1.54 11.56 24.20 0.3973 11.69 29.91 0.3848 33.39 24.90 48.79 35.29
DUAL [37] 1.31 11.50 27.29 0.4067 11.52 36.38 0.3966 39.70 27.39 54.62 40.45

Zero-DCE [12] 14.96 11.23 31.34 0.4980 10.90 37.27 0.5128 21.32 13.29 22.92 14.17
EnlightenGAN [18] 20.69 24.97 83.55 0.1210 22.79 81.71 0.1604 71.71 58.84 49.14 35.62

MIRNet [34] 3.15 31.69 93.03 0.0673 29.08 92.81 0.0785 78.84 66.66 57.99 42.98
MIRNetv2 [35] 5.38 31.94 93.48 0.0671 28.96 92.63 0.0799 82.87 72.27 58.12 43.64
SNR-Aware [32] 12.32 27.37 90.57 0.1149 26.57 89.79 0.1335 75.72 63.33 58.87 44.35
StillGan [25] 4.90 28.39 90.28 0.0920 26.78 88.27 0.1221 82.57 71.61 59.14 44.30
LLCaps [3] 1.87 31.88 93.53 0.0589 25.18 90.16 0.1110 83.49 73.07 57.34 42.90
DiffLL [17] 4.98 30.57 92.99 0.0763 28.07 91.82 0.0962 83.39 72.99 56.61 41.73
CLEDiff [33] 0.37 31.12 94.54 0.0418 29.66 82.38 0.0865 82.44 71.49 56.62 41.91

ControlNet [36] 0.30 21.97 64.82 0.2179 22.15 68.68 0.2565 75.20 62.62 55.34 40.23
PyDiff [39] 10.74 31.02 94.50 0.0510 29.37 93.82 0.0711 84.81 74.85 52.66 37.64

LighTDiff (Ours) 14.19 34.28 95.72 0.0325 31.99 94.91 0.0531 86.65 75.97 59.55 44.57

MIRNetDiffLL CLEDiffusionOurs PyDiff StillGAN Zero-DCE DUALControlNet

Low-LightGround Truth SNR-Aware LLCaps EnlightenGAN MIRNetv2 LIME

Fig. 3. The quantitative results for LighTDiff compared with SOTA approaches on
EndoVis17 [2]. The first row shows the enhanced images for different LLIE baselines,
and the second row shows the reconstruction error heat maps. Blue to red indicates
the error from small to large. Zoom to see the details.

achieves suboptimal image restoration. In comparison to other state-of-the-art
diffusion-based methods, LighTDiff demonstrates superior performance. Specif-
ically, it outperforms two closer competitors CLEDiffusion [33] by 3.16 dB on
EndoVis17 and 2.33 dB on EndoVis18, and PyDiff [39] by 3.26 dB on EndoVis17
and 2.62 dB on EndoVis18, respectively, in PSNR. The SSIM of LighTDiff im-
proves to 95.72% in EndoVis17 and 94.91% in EndoVis18. Our method’s en-
hanced temporal context through TLU and adoption of CB contribute to supe-
rior image restoration quality. Qualitative results, along with error heatmaps,
are visualized in Fig. 3 on the EndoVis17 dataset.
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Table 2. Ablation experiments of our LighTDiff on the EndoVis17 Dataset [2]. To
observe the performance changes, we (i) remove the LighT Architecture, (ii) degenerate
the Chroma Balancer, (iii) remove the Temporal Light Unit, and (iv) discard time
embedding from TLU.

LighT
Architecture

Chroma
Balancer

Temporal
Light Unit

Time
Embedding

Param(M)↓ FPS↑ PSNR ↑ SSIM ↑ LPIPS ↓

% % % - 98.43 10.74 31.12 94.50 0.0510

! % % - 14.09 15.18 29.341 94.03 0.0490

% ! % - 98.42 10.81 33.39 95.35 0.0433

% % ! ! 127.06 7.27 32.69 95.34 0.0409

! ! % - 14.08 15.33 31.97 95.21 0.0407

! % ! ! 18.59 13.83 33.46 95.55 0.0361

% ! ! ! 127.05 8.15 33.19 95.65 0.0382

! ! ! % 18.40 14.18 32.54 95.58 0.0345

! ! ! ! 18.58 14.16 34.28 95.72 0.0325

Downstream Tasks Furthermore, our LighTDiff is evaluated by downstream
segmentation tasks to investigate the potential utility of the restored images. As
depicted in Table 1, LighTDiff outperforms competitors in instrument segmen-
tation, underscoring its superior efficacy in segmenting instrumental objects. It
consistently surpasses all SOTA approaches in comparison in terms of mIoU and
Dice scores on both synthetic and real-world datasets, highlighting its superior
capability in low-light image restoration and edge preservation.

Computational Efficiency To assess computational efficiency, we report the
frames per second (FPS) in the first column of Table 1. Our method achieves
significantly higher FPS compared to other high-performing methods, except for
EnlightenGAN [18]. However, EnlightenGAN’s performance (PSNR 24.97/22.79
on EndoVis17/EndoVis18) is notably inferior to ours (34.28/31.99). Addition-
ally, we present a visual comparison in (Fig 1 (c)), illustrating the comprehen-
sive efficiency and performance metrics of our LighTDiff in comparison to other
diffusion-based models and StillGAN [25]. Our model is positioned at the top-
right corner with smaller diameters, indicating higher PSNR, FPS, and fewer
parameters. Specifically, compared with PyDiff [39], our model is 85.6% lighter
on parameters, 32% faster on FPS, and the training cost (i.e., training time for
the same number of total iterations) is nearly halved (Fig 1 (d)).

Ablation Study Our ablation study on the EndoVis17 dataset highlights the
strategic improvements introduced by our approach. Table 2 evaluates both
model parameters and performance, with the first row representing a baseline
model like PyDiff. The LighT architecture significantly reduces model param-
eters to 14.08M parameters and increases speed to 15.27 FPS. However, this
improvement is accompanied by a slight performance drop and an unstable
training procedure as shown by the purple curve in (Fig 1 (d)). Introducing
TLU enhances (PSNR/SSIM) from (29.34/94.03) to (33.46/95.55) with a minor
parameter increase. Our CB module maintains similar parameter sizes to the
baseline, slightly increases speed, and significantly enhances PSNR/SSIM from
(29.34/94.03) to (31.97/95.21). Integrating these three components, our com-
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plete LighTDiff achieves the best image quality while being significantly more
efficient than the baseline. Additionally, removing the time embedding in our
TLU results in a drop in PSNR/SSIM from (34.78/95.72) to (32.54/95.58), jus-
tifying the necessity of time injection.

4 Conclusion

In this study, we introduce LighTDiff, a lightweight endoscopy LLIE diffusion
model. LighTDiff incorporates the Temporal Light Block (TLB) for improved
denoising and training stability, the Chroma Balancer (CB) to address chroma
bias, and the LighT Architecture ensuring swift inference without compromis-
ing restoration quality. Comparative studies demonstrate superior performance
in image quality and speed, indicating its suitability for consumer-grade hard-
ware. Future plans involve adapting the model for various medical applications,
including real-time augmentation and surgical navigation.
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