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Abstract. Understanding how high-level concepts are represented with-
in artificial neural networks is a fundamental challenge in the field of arti-
ficial intelligence. While existing literature in explainable AI emphasizes
the importance of labeling neurons with concepts to understand their
functioning, they mostly focus on identifying what stimulus activates a
neuron in most cases; this corresponds to the notion of recall in informa-
tion retrieval. We argue that this is only the first-part of a two-part job;
it is imperative to also investigate neuron responses to other stimuli, i.e.,
their precision. We call this the neuron label’s error margin.
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1 Introduction

Various explainability AI (XAI) techniques in Deep Learning applications have
garnered a lot of traction recently. One of the techniques which has proven its
efficacy in explainability is associating high-level human understandable con-
cepts with hidden layer neuron activations [7,19,6,13,10]. It is common in the
concept-based XAI literature to hand-pick candidate concepts/labels, like the
most frequent 20K English words. Previously, we have shown that Concept In-
duction can be used to assign meaningful labels to neuron activation from a very
large knowledge base of candidate concepts used as background knowledge [7]1

in a scene recognition on images scenario.
Statistical analysis in [7] showed that stimuli (network inputs) corresponding

to the labels indeed activate the such-labelled neurons with high probability, i.e.,
the neuron shows high recall (in an information retrieval sense) with respect to
its ”target label”. However, the neuron may also activate on many inputs that
do not correspond to the neuron’s label (e.g., on other neurons’ labels, called
”non-target labels”), which in information retrieval terms could be understood
as low precision of the neuron activation, with respect to the assigned label, or
in other words, a high false-positives rate, if neuron labels are taken naively at
face value.

This is of course not at all unexpected: It is entirely reasonable to assume
that any information conveyed by hidden neuron activations be distributed, i.e.,
neurons naturally react to various stimuli, while specific information is indicated

1 This is under review at NeSy 2024.
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by simultaneous activation of neuron groups. However, in order for neuron la-
belling as in [7] to be practically useful, one would like to use hidden neuron
activations to ”read off” what the network has detected wrt. a stimulus, i.e. a
high false-positive rate is problematic in this scenario.

Herein, we address this issue as follows. We show that the analysis in [7]
makes it possible to assign error margins to neuron target labels. If a neuron is
activated by a stimulus, then the error margin indicates the likelihood that the
stimulus indeed falls under the neuron’s target label, and this likelihood can be
conveyed to the user. We statistically validate error margins by means of data
obtained from a user experiment conducted on Amazon Mechanical Turk.

2 Method

In this section, we outline our technical approach for assessing neuron-label asso-
ciations through error-margin analysis (Non-target Label Activation Percentage,
or Non-TLA). Non-TLA represents the percentage of images not falling under

the target label that activate a neuron that carries the target label as per the
prior analysis. Similarly, Target Label Activation Percentage, TLA, represents
the percentage of images falling under the target label that activate the neuron
that carries the target label.

To obtain error margins, we calculate activation percentages for both target
labels and non-target labels per neuron based on Google Images retrieved from
the labels as search terms, and we also take into account activation patterns
of neuron groups for semantically related labels, analyzing TLA and Non-TLA
across different cutoff values. We then use images from the ADE20K dataset [33],
with annotations improved thorugh Amazon Mechanical Turk, to statistically
validate the error-margins obtained earlier. The experimental setting is the same
as [7] which we briefly outline below.

Background Premise The primary objective of [7] is to provide insights into
the contributions of hidden layer neurons within a Convolutional Neural Net-
work (CNN) in classification tasks. We explore the task of Scene classification
using ResNet50V2 on the ADE20K dataset. After training, we examine the acti-
vation patterns of the last hidden layer neurons and assign high-level concepts to
each neuron, by making use of OWL-reasoning-based Concept Induction over a
background knowledge base derived from Wikipedia, comprising approximately
2 million classes, e.g., neuron 1 gets assigned ”cross walk” as label. A statisti-
cal analysis in [7] shows that each neuron that gets a label assigned (called the
neuron’s target label) indeed activates particularly on network inputs that fall
under this label (e.g., images showing a cross walk, for neuron 1): The neuron as
an indicator of the target label concept has high recall. However, as the data in
[7] also indicates, neurons also tend to activate for many other inputs, i.e. they
tend to have relatively low precision.

Computation of Non-TLA Concept Induction in fact generates a number of
concept labels for each neuron unit, ranked by some accuracy measure. Herein,
we consider the Top-3 labels (ranked by coverage score) for each of the 64 neurons
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Table 1: Selective representation of Non-TLA for Google Image dataset(full ver-
sion can be found in Appendix 4): The table showcases a refined selection, inclu-
sive of concepts with TLA > 80. Non-t: percentage of non-target label images
that activate the neuron(s) associated with the concept being analyzed across
various activation thresholds.

Concepts Neuron targ %>0 Non-target % for different threshold values

non-t >0 non-t > 20% non-t > 40% non-t > 60%

buffet 62 83.607 32.714 12.374 3.708 0.825
building 0 89.024 72.328 39.552 12.040 2.276
building 0, 63 80.164 43.375 12.314 2.276 0.182
building and dome 0 90.400 78.185 45.133 14.643 2.639
central reservation 43 95.541 84.973 57.993 19.734 2.913

tap and shower screen 36 86.250 72.584 32.574 7.836 0.860
teapot and saucepan 30 81.481 47.984 18.577 4.367 0.845
wardrobe and air conditioning 19 89.091 65.034 31.795 6.958 1.145
skyscraper 22 99.359 54.893 21.914 0.977 0.977
skyscraper 54 98.718 70.432 26.851 7.050 0.941

skyscraper 63 94.393 51.612 20.618 5.775 1.143
skyscraper 22, 54 97.165 47.422 7.910 0.465 0.000
skyscraper 22, 63 96.947 36.408 5.521 0.449 0.008

skyscraper 54, 63 96.074 37.149 5.594 0.615 0.046
skyscraper 22, 54, 63 95.420 29.090 3.023 0.234 0.000
skyscraper 26, 54, 63 81.134 16.823 1.975 0.350 0.023
skyscraper 22, 26, 54, 63 80.589 13.093 0.872 0.015 0.000

in the dense layer. Using the Target-Label image dataset (each image falls under
the target label), the TLA is calculated, and, using a Non-target Label image
dataset (none of the images contain the target label), the Non-TLA is calculated,
for each neuron at specified activation value thresholds, namely > 0, > 20%,
> 40%, and > 60% of the max activation value that was recorded for each
neuron. E.g., (see Table 1), neuron 43 activates at > 40% of its max activation
value in about 19.7% of images not showing a central reservation.

Neuron Ensembles for Concept Associations The distribution of input in-
formation across simultaneously activated neurons necessitates the investigation
of neuron ensemble activations at different cut-off activation values. However, an
exhaustive analysis of all neuron ensembles does not scale as even just 64 neurons
give rise to 264 possible neuron ensembles. We deal with this by considering only
ensembles of neurons that activate for semantically related labels. For example,
the concept building activates both neurons 0 and 63 (see Table 1); we evaluate
all images from Non-target Label image dataset as well as Target Label image
dataset separately, activating neurons 0 and 63 at the specified cut-off activation
values, to calculate TLA and Non-TLA. In scenarios where a concept activates
more than two neurons, our analysis encompasses all possible combinations of
pairs, triples, etc., of neurons (see skyscraper in Table 1). We then narrow our
focus to a list of highly associated concepts corresponding to the neurons (see
the Concepts column in Table 1), that demonstrate TLA exceeding 80%, i.e.,
those neurons with high recall.

Annotations of ADE20K Dataset The analysis just described yields error-
margins associated with each concept, for each of the chosen activation thresh-
olds listed in Table 1. For example, the concept buffet has an error-margin of
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Table 2: Selective representation of Non-TLA for ADE20K and Google Image
dataset (for full version see Appendix 5): Non-t: percentage of non-target label
images that activate the neuron(s) associated with the concept being analyzed
across various activation thresholds.

Concepts non-t >0 non-t >20% non-t >40% non-t >60%

Google ADE20K Google ADE20K Google ADE20K Google ADE20K

buffet 32.714 40.135 12.374 25.817 3.708 9.470 0.825 1.804
building 43.375 11.458 12.314 5.208 2.276 1.458 0.182 0.000
building and dome 78.185 26.170 45.133 5.893 14.643 0.867 2.639 0.000
central reservation 84.973 44.893 57.993 34.343 19.734 14.927 2.913 3.816
clamp lamp and clamp 59.504 27.273 29.229 19.170 9.000 8.300 1.652 1.976
closet and air conditioning 71.054 30.168 38.491 15.620 10.135 5.513 1.267 1.378
cross walk 28.241 21.474 6.800 16.391 1.524 9.784 0.521 2.922
edifice and skyscraper 48.761 24.187 21.786 8.453 8.379 1.300 2.229 0.260
faucet and flusher 78.562 56.967 37.862 30.580 12.104 11.097 1.873 1.850

12.374 for the Non-TLA of > 20%: Our analysis suggests the hypothesis that
at most 12.374% of non-buffet images activate the neuron unit 62 at 20% of its
max activation value. In other words, the error-margin at Non-TLA of > 20%
for the concept buffet is 12.374%. If this hypothesis can be substantiated, then
upon presentation of a new input to the network, activation of neuron 62 of at
least 20% of its max activation value means that a buffet has been detected, and
that this detection is wrong in at most about 12.374% of cases.

In order to substantiate our hypotheses, we analyse neuron activation values
for new inputs, more precisely for images taken from the ADE20K dataset that
was also used in [7]. We take advantage of the fact that ADE20K images already
carry rich object annotations, however we have observed that they are still too
incomplete for our purpuses. Therefore we made use of Amazon Mechanical
Turk via the Cloud Research platform, to add missing annotations from a list of
concepts derived from Table1 to 1050 randomly chosen ADE20K images. Details
of the study are in Appendix A.2.

Validating Neuron-Concept AssociationsTo assess the validity of the error-
margins retrieved from the Google Image dataset for all concepts in Table 1, we
look at activations yielded by ADE20K images, and hypothesize that they are
similar or lower (i.e., not higher), for non-target images. Non-TLA are computed
across the predefined cut-off activation thresholds. Selected values can be found
in Table 2.For example, the central reservation neuron 43 mentioned above
activates above its 40% max activation threshold for about 14.9% of ADE20K
non-target images (not showing central reservations), while it activates for about
19.7% of Google non-target images. Both single-neuron and neuron ensemble ac-
tivations are considered and shown in Table 2.

3 Statistical Evaluation and Results

For a statistical evaluation of our error margin values, we treat each row, repre-
senting a concept-error pair at each threshold level, from Table 2, as an individual
hypothesis. For example, the error-margin (Non-TLA) for the concept ”central
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Table 3: Selective representation of Statistical Evaluation for confirmed concepts
- getting p-value <0.05 for MWU (full version can be found at Appendix 6: G:
activations for Google Image dataset; A: activations for ADE20K dataset; Non-
t: percentage of non-target images activating the associated neuron(s) analyzed
across various activation thresholds.

Concepts G A p

non-t >0

building 43.4 11.5 <0.05
building and dome 78.2 26.2 <0.05
central reservation 84.9 44.8 <0.05

Wilcoxon signed rank test (non-t >0) <0.05

non-t >20 %

building 12.3 5.2 <0.05
building and dome 45.2 5.8 <0.05
clamp lamp and clamp 29.3 19.2 <0.05
closet and air conditioning 38.5 15.6 <0.05

Wilcoxon signed rank test (non-t > 20%) <0.05

Concepts G A p

non-t >40 %

building 2.3 1.4 <0.05
building and dome 14.6 0.8 <0.05
central reservation 19.7 14.9 <0.05
clamp lamp and clamp 9.1 8.3 <0.05

Wilcoxon signed rank test (non-t > 40%) <0.05

non-t >60 %

building 0.1 0.0 <0.05
building and dome 2.6 0.0 <0.05
central reservation 2.9 3.8 <0.05

Wilcoxon signed rank test (non-t > 60%) <0.05

reservation” under the > 40 threshold constitutes one hypothesis. This way, we
get 33× 4 = 132 hypotheses to test.

We conduct Mann-Whitney U tests (MWU) [16] with the null hypothesis
(H0) stating that there is no difference in Non-TLA across both datasets, while
the alternative hypothesis (H1) posits that Non-TLA in Google Images is greater
than in the ADE20K dataset. We choose the MWU test for its robustness with
non-parametric data and its aptitude for comparing distributions of independent
samples. As our Non-TLA data may not adhere to normality and we’re compar-
ing distinct datasets (Google Images and ADE20K), the MWU test provides a
reliable means to analyze differences in Non-TLA.

Table 3 presents a comparison of Non-TLA between the Google Images and
ADE20K datasets for all concepts. Each row represents a concept, with columns
displaying the percentage of non-target label images activating associated neu-
ron(s) in both datasets. The p-values from the MWU test indicate the signif-
icance of differences in Non-TLA between the datasets. The analysis reveals a
consistent trend of decreased Non-TLA in the ADE20K dataset compared to
Google Images across various threshold categories. Among the 33 hypotheses
tested for the category of Non-TLA > 0, 13 were rejected at a significance level
of p < 0.05. Similarly, for Non-TLA > 20%, 15 hypotheses were rejected at the
same significance level. In the case of Non-TLA > 40%, 21 hypotheses were re-
jected, while for Non-TLA > 60%, 23 hypotheses were rejected, all at a p-value
< 0.05. Concepts with p-value < 0.05 are deemed statistically significant and are
identified as confirmed concepts, subject to further scrutiny for their reliability
and potential implications.

After confirming concepts using the MWU, we proceed to validate them
further using Wilcoxon signed-rank tests. To calculate the Wilcoxon test, we used
an online website calculator available at 2. We employ the Wilcoxon test, with the
hypothesis that the difference between Non-TLA of ADE20K and Google Image

2 http://www.statskingdom.com/170median_mann_whitney.html

http://www.statskingdom.com/170median_mann_whitney.html
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dataset would be less than or equal to zero (H0), while the alternative hypothesis
(H1) suggested a decrease in Non-TLA in the ADE20K dataset compared to the
Google image dataset. Each threshold serves as an individual hypothesis for the
Wilcoxon test, with Non-TLA of the confirmed concepts for Google and ADE20K
datasets grouped accordingly. For instance, all confirmed Non-TLA > 0 for both
datasets constitute one hypothesis, while those > 20% form another. The p-
values, denoting the significance of the test results, are displayed at the bottom
of the table. Remarkably, the obtained p-values for each threshold suggest the
rejection of the null hypothesis, indicating statistically significant differences in
Non-TLA between the datasets when considered separately. A p-value < 0.05
from this test would indicate a statistically significant decrease in Non-TLA in
the ADE20K dataset compared to the Google dataset, further strengthening our
findings and highlighting that the error estimates from the Google image data
hold, or are even bettered by, the ADE20K images.

We also examine all confirmed concepts from all thresholds together in the
Wilcoxon test with the same alternative hypothesis ((H1) suggested a decrease
in Non-TLA in the ADE20K dataset compared to the Google image dataset),
which provides a comprehensive overview of the differences in Non-TLA between
the Google and ADE20K datasets across various levels of activation thresholds.
This approach aggregates the results from individual thresholds, offering a more
consolidated perspective on the overall significance of the differences observed. In
our analysis, obtaining a p-value of 5.633e-7, which is less than 0.05, implies the
rejection of the null hypothesis. This indicates a statistically significant decrease
in Non-TLA in the ADE20K dataset compared to the Google Image dataset
when considering all thresholds collectively.

4 Conclusion

In this study, we addressed the challenge of understanding high-level concepts
within neural networks by proposing a methodology to label neurons with con-
cepts, thereby enhancing model interpretability in explainable AI. Our approach
goes beyond identifying activating stimuli for neurons by examining their re-
sponses to both intended and unintended concepts. Through systematic analysis
and empirical validation using datasets like Google Images and ADE20K, we
have demonstrated the effectiveness and generalizability of our method. Statis-
tical evaluation confirms the reliability of error margins obtained from Google
Images. Notably, we observed consistent trends indicating decreased non-target
activations in the ADE20K dataset, highlighting its potential for robust image
analysis tasks. Our contributions include insights into assigning reliable labels
to hidden neuron responses, offering a systematic approach to analyze neuron
responses to target and non-target concepts, and enhancing the transparency
and reliability of concept-based explainable AI systems.

Acknowledgement. The authors acknowledge partial funding under National Sci-
ence Foundation grant 2119753.
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A Appendices

A.1 Related work

Efforts to demystify deep learning [12,2,17] are ongoing. Methods for explain-
ability can be categorized based on their approach to understanding input data,
such as feature summarization [24,21], or the model’s internal representation, like
node summarization [32,4]. These methods further classify into model-specific [24]
or model-agnostic [21] approaches. Some methods rely on human interpretation
of explanatory data, such as posing counterfactual questions [29].

Model-agnostic techniques for feature attribution, such as LIME [21] and
SHAP [15], aim to elucidate model predictions by assessing the influence of
individual features. However, they encounter challenges like explanation insta-
bility [3] and susceptibility to biased classifiers [27]. On the other hand, pixel
attribution endeavors to comprehend predictions by assigning significance to in-
dividual pixels [26,23,28]. Nonetheless, it faces notable limitations, particularly
with ReLU activation [25] and adversarial perturbations [14], leading to incon-
sistencies in interpretability.

Explanations developed by [13,6] employ supervised learning and curated
concepts. These methods utilize classifiers on target concepts, with weights rep-
resenting Concept Activation Vectors (CAVs). Another approach by [10] utilizes
image segmentation and clustering for concept selection, albeit potentially losing
information and only applicable to visible concepts. [31] proposed enhancements
using Non-negative Matrix Factorization to mitigate information loss. Individ-
ual Conditional Expectation (ICE) plots [11] and Partial Dependency Plots [9]
provide insights into prediction-feature relationships from both local and global
perspectives but may struggle with intricate feature interactions.

Previous studies suggest that hidden neurons may represent high-level con-
cepts [32,4], but these methods often require semantic segmentation [30] (resource-
intensive) or explicit concept annotations [13]. Some research have utilized Se-
mantic Web data for explaining deep learning models [5,8], and Concept Induc-
tion for providing explanations [22,20]. However, their focus was on analyzing
input-output behavior, generating explanations for the overall system.

CLIP-Dissect [19] represents work similar to ours, employing a different ap-
proach. They utilize the CLIP pre-trained model, employing zero-shot learning
to associate images with labels. Label-Free Concept Bottleneck Models [18],
building upon CLIP-Dissect, use GPT-4 [1] for concept set generation. How-
ever, CLIP-Dissect has limitations that may be challenging to overcome without
significant changes to the approach. These include limited accuracy in predict-
ing output labels based on concepts in the last hidden layer and difficulty in
transferring to other modalities or domain-specific applications. The Label-Free
approach inherits these limitations and may compromise explainability, as it uses
a concept derivation method that is not inherently explainable.
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A.2 Details of AMT user-study

Using a subset of randomly chosen 1050 ADE20K images, we conducted a user
study through Amazon Mechanical Turk using the Cloud Research platform, to
annotate images based on a list of concepts derived from Table4.

The study protocol was reviewed and approved by the Institutional Review
Board (IRB) at Kansas State University and was deemed exempt under the
criteria outlined in the Federal Policy for the Protection of Human Subjects,
45 CFR §104(d), category: Exempt Category 2 Subsection ii. The study was
conducted in 35 batches (each batch containing 30 images), with 5 participants
per study compensated with $5 for completing the task. The task was estimated
to take approximately 40 minutes, equivalent to $7.50 per hour.

For each image, users were presented with a list of concepts (a concise form of
concepts from Table 4) to choose from, including buffet, building, building and
dome, central reservation, clamp lamp and clamp, closet and air-conditioning,
cross walk, edifice and skyscraper, faucet and flusher, field, flusher and soap dish,
footboard and chain, hedgerow and hedge, lid and soap dispenser, mountain,
mountain and bushes, night table, open fireplace and coffee table, pillow, potty
and flusher, road, road and automobile, road and car, route, route and car,
shower stall and cistern, Shower stall and screen door, skyscraper, slope, tap
and crapper, tap and shower screen, teapot and saucepan, wardrobe and air-
conditioning.

Users were allowed to select multiple concepts for each image, indicating all
concepts that applied to the given image. These selected concepts were consid-
ered annotations for the respective image.

A.3 Detailed result of Non-TLA and Statistical Evaluation

The detailed results of Non-target Label Activation Percentages (Non-TLA) for
the Google dataset are meticulously outlined in Table 4. This table presents
a carefully curated selection, focusing on concepts and neuron ensembles with
Target Label Activation (TLA) exceeding 80%. It offers valuable insights into
the percentage of Non-Target Label images activating the neuron(s) associated
with the concept under scrutiny across a spectrum of activation thresholds.

Furthermore, Table 5 compares the Non-TLA between the ADE20K and
Google Image datasets, highlighting variations in activation across different thresh-
olds and providing a comprehensive view of dataset-specific nuances.

Lastly, the statistical evaluation for confirmed concepts, outlined in Table
6, underscores concepts where statistical significance (with a p-value less than
0.05 for the MWU test) has been established. This table offers insights into the
percentage of non-target label images activating the associated neuron(s) across
diverse activation thresholds, providing valuable information on the robustness
of the identified concepts across both the Google and ADE20K datasets.
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Table 4: Non-target Label Activation Percentages (Non-TLA) for Google
dataset: The table showcases a refined selection, inclusive of concepts and neu-
ron ensembles with targ(et) activation > 80%. Non-t: percentage of non-target
images that activate the neuron(s) associated with the concept being analyzed
across various activation thresholds.

Concepts Neuron targ %>0 Non-target % for different threshold values

non-t >0 non-t > 20% non-t > 40% non-t > 60%

buffet 62 83.607 32.714 12.374 3.708 0.825
building 0 89.024 72.328 39.552 12.040 2.276
building 0, 63 80.164 43.375 12.314 2.276 0.182
building and dome 0 90.400 78.185 45.133 14.643 2.639
central reservation 43 95.541 84.973 57.993 19.734 2.913

clamp lamp and clamp 7 95.139 59.504 29.229 9.000 1.652
closet and air conditioning 19 86.891 71.054 38.491 10.135 1.267
cross walk 1 88.770 28.241 6.800 1.524 0.521
edifice and skyscraper 63 92.135 48.761 21.786 8.379 2.229
faucet and flusher 29 95.695 78.562 37.862 12.104 1.873

field 18 91.824 65.333 30.207 8.183 1.656
flusher and soap dish 56 90.094 63.552 29.901 7.695 1.148
footboard and chain 49 88.889 66.702 40.399 17.064 4.399
hedgerow and hedge 54 91.165 68.527 30.421 7.685 1.352
lid and soap dispenser 29 99.237 78.571 34.989 9.052 1.485

mountain and bushes 16 87.037 24.969 10.424 4.666 1.937
mountain and bush 16 87.037 24.969 10.424 4.666 1.937
mountain 43 99.367 88.516 64.169 23.112 4.326
night table 3 90.446 56.714 27.691 7.691 1.137
open fireplace and coffee table 41 88.525 16.381 4.325 0.812 0.088

pillow 3 98.214 61.250 28.228 7.249 1.001
pillow 50 99.405 66.834 24.242 4.101 0.530
pillow 3, 50 97.605 46.492 9.634 0.988 0.049
potty and flusher 29 88.525 76.830 36.537 10.755 1.932
road and car 51 98.810 48.571 25.373 8.399 3.261

road and automobile 51 92.560 41.466 16.055 3.301 0.701
road 48 100.000 76.789 47.897 18.843 3.803
road 48, 51 97.099 44.592 17.727 3.471 0.702
route 48 100.000 80.834 51.873 21.034 4.979
route and car 51 92.628 47.408 18.871 4.081 1.416

route 48, 51 94.334 45.089 18.937 4.809 1.169
shower stall and cistern 8 100.000 53.186 24.788 8.485 1.372
Shower stall and screen door 57 98.496 31.747 12.876 4.121 1.026
slope 18 92.143 64.503 29.976 6.894 1.200
tap and crapper 36 89.130 70.606 36.839 13.696 2.511

tap and shower screen 36 86.250 72.584 32.574 7.836 0.860
teapot and saucepan 30 81.481 47.984 18.577 4.367 0.845
wardrobe and air conditioning 19 89.091 65.034 31.795 6.958 1.145
skyscraper 22 99.359 54.893 21.914 0.977 0.977
skyscraper 54 98.718 70.432 26.851 7.050 0.941

skyscraper 63 94.393 51.612 20.618 5.775 1.143
skyscraper 22, 26 82.116 22.274 3.423 0.292 0.004
skyscraper 26, 54 82.225 28.782 5.444 0.703 0.054
skyscraper 22, 54 97.165 47.422 7.910 0.465 0.000
skyscraper 22, 63 96.947 36.408 5.521 0.449 0.008

skyscraper 26, 63 81.788 21.421 3.335 0.534 0.088
skyscraper 54, 63 96.074 37.149 5.594 0.615 0.046
skyscraper 22, 26, 54 81.461 18.940 2.363 0.169 0.000
skyscraper 22, 26, 63 81.243 15.252 1.706 0.184 0.004
skyscraper 22, 54, 63 95.420 29.090 3.023 0.234 0.000
skyscraper 26, 54, 63 81.134 16.823 1.975 0.350 0.023
skyscraper 22, 26, 54, 63 80.589 13.093 0.872 0.015 0.000
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Table 5: Non-target Label Activation Percentages (Non-TLA) for ADE20K and
Google Image dataset: Non-t: percentage of non-target label images that acti-
vate the neuron(s) associated with the concept being analyzed across various
activation thresholds.

Concepts non-t >0 non-t >20% non-t >40% non-t >60%

google ADE20K google ADE20K google ADE20K google ADE20K

buffet 32.714 40.135 12.374 25.817 3.708 9.470 0.825 1.804
building 43.375 11.458 12.314 5.208 2.276 1.458 0.182 0.000
building and dome 78.185 26.170 45.133 5.893 14.643 0.867 2.639 0.000
central reservation 84.973 44.893 57.993 34.343 19.734 14.927 2.913 3.816
clamp lamp and clamp 59.504 27.273 29.229 19.170 9.000 8.300 1.652 1.976
closet and air conditioning 71.054 30.168 38.491 15.620 10.135 5.513 1.267 1.378
cross walk 28.241 21.474 6.800 16.391 1.524 9.784 0.521 2.922
edifice and skyscraper 48.761 24.187 21.786 8.453 8.379 1.300 2.229 0.260
faucet and flusher 78.562 56.967 37.862 30.580 12.104 11.097 1.873 1.850
field 65.333 66.161 30.207 30.043 8.183 10.412 1.656 2.386
flusher and soap dish 63.552 19.481 29.901 10.035 7.695 3.896 1.148 0.236
footboard and chain 66.702 27.975 40.399 13.671 17.064 5.063 4.399 1.013
hedgerow and hedge 68.527 45.120 30.421 28.390 7.685 13.308 1.352 2.028
lid and soap dispenser 78.571 57.512 34.989 18.427 9.052 2.817 1.485 0.352
mountain 88.516 45.144 64.169 33.725 23.112 16.115 4.326 3.842
mountain and bushes 24.969 28.331 10.424 16.573 4.666 6.607 1.937 1.904
night table 56.714 30.534 27.691 15.267 7.691 5.954 1.137 1.679
open fireplace and coffee table 16.381 26.139 4.325 10.590 0.812 2.413 0.088 0.268
pillow 46.492 12.500 9.634 3.869 0.988 1.190 0.049 0.149
potty and flusher 76.830 58.410 36.537 24.194 10.755 4.608 1.932 1.152
road 44.592 8.501 17.727 6.955 3.471 4.328 0.702 0.927
road and automobile 41.466 17.604 16.055 14.497 3.301 8.728 0.701 2.811
road and car 48.571 14.815 25.373 11.704 8.399 6.074 3.261 1.333
route 45.089 12.349 18.937 10.241 4.809 5.723 1.169 1.807
route and car 47.408 17.073 18.871 14.204 4.081 7.461 1.416 2.152
shower stall and cistern 53.186 25.982 24.788 9.700 8.485 4.965 1.372 1.039
Shower stall and screen door 31.747 24.910 12.876 14.320 4.121 5.897 1.026 1.203
skyscraper 13.093 3.009 0.872 0.463 0.015 0.231 0.000 0.116
slope 64.503 66.520 29.976 29.967 6.894 9.879 1.200 1.976
tap and crapper 70.606 62.225 36.839 12.861 13.696 4.890 2.511 0.611
tap and shower screen 72.584 62.621 32.574 13.180 7.836 4.733 0.860 0.607
teapot and saucepan 47.984 23.632 18.577 11.176 4.367 6.519 0.845 1.281
wardrobe and air conditioning 65.034 30.525 31.795 16.160 6.958 5.525 1.145 0.967
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Table 6: Statistical Evaluation for confirmed concepts (concepts getting p-value
<0.05 for MWU): Non-t: percentage of non-target label images activating the
associated neuron(s) analyzed across various activation thresholds.

Concepts Google ADE20K p-values

non-t >0

building 43.37468 11.45833 0.018471
building and dome 78.185 26.16984 6.06E-05
central reservation 84.97336 44.89338 1.75E-66
closet and air conditioning 71.05416 30.16845 0.009373
edifice and skyscraper 48.76092 24.18726 0.016058
faucet and flusher 78.562 56.96671 9.19E-07
footboard and chain 66.702 27.97468 0.000284
lid and soap dispenser 78.57143 57.51174 0.00218
pillow 46.49232 12.5 4.21E-23
potty and flusher 76.82974 58.41014 1.39E-07
shower stall and cistern 53.1865 25.98152 0.016657
tap and crapper 70.60579 62.22494 6.17E-08
tap and shower screen 72.584 62.62136 0.007024

Wilcoxon signed rank test (non-t >0) 0.0001221

non-t >20 %

building 12.31365 5.208333 1.72E-17
building and dome 45.13343 5.892548 1.37E-23
clamp lamp and clamp 29.2287 19.16996 1.57E-07
closet and air conditioning 38.4913 15.62021 0.000287
edifice and skyscraper 21.78641 8.452536 5.80E-17
faucet and flusher 37.86209 30.57953 1.80E-15
lid and soap dispenser 34.98939 18.42723 2.74E-15
mountain and bushes 10.42437 16.57335 3.25E-06
pillow 9.634389 3.869048 3.49E-49
potty and flusher 36.53659 24.19355 3.69E-18
Shower stall and screen door 12.87584 14.3201 0.035051
skyscraper 0.872071 0.462963 1.99E-05
tap and crapper 36.83933 12.86064 0.000114
tap and shower screen 32.5745 13.17961 3.22E-14
wardrobe and air conditioning 31.79496 16.16022 2.18E-11

Wilcoxon signed rank test (non-t > 20%) 0.0004272

non-t >40 %

building 2.27609 1.458333 3.16E-19
building and dome 14.64338 0.866551 6.28E-20
central reservation 19.73357 14.92705 1.18E-05
clamp lamp and clamp 9.000096 8.300395 2.79E-31
closet and air conditioning 10.1354 5.513017 6.38E-09
cross walk 1.52392 9.78399 0.000572
edifice and skyscraper 8.37939 1.30039 5.06E-17
faucet and flusher 12.10377 11.09741 2.90E-24
field 8.183384 10.41215 3.82E-05
flusher and soap dish 7.695067 3.896104 4.26E-08
lid and soap dispenser 9.052334 2.816901 2.04E-19
mountain and bushes 4.666314 6.606943 1.28E-12
pillow 0.988239 1.190476 1.37E-23
potty and flusher 10.75519 4.608295 1.97E-09
road 3.471037 4.327666 0.033105
road and car 8.399088 6.074074 0.009958
Shower stall and screen door 4.120976 5.89651 1.13E-07
skyscraper 0.015367 0.231481 2.47E-30
slope 6.893903 9.879254 1.14E-07
tap and shower screen 7.835857 4.73301 2.05E-12
wardrobe and air conditioning 6.9579 5.524862 1.70E-19

Wilcoxon signed rank test (non-t > 40%) 0.0479
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non-t > 60%

building 0.182087 0 1.08E-07
building and dome 2.639495 0 5.70E-10
central reservation 2.912966 3.815937 1.50E-07
clamp lamp and clamp 1.652099 1.976285 4.24E-19
closet and air conditioning 1.266925 1.378254 2.50E-07
cross walk 0.520833 2.92249 0.000171
edifice and skyscraper 2.228561 0.260078 4.80E-07
faucet and flusher 1.872623 1.849568 0.008524
field 1.655819 2.386117 1.43E-09
flusher and soap dish 1.147982 0.236128 3.03E-13
lid and soap dispenser 1.485149 0.352113 3.10E-07
mountain and bushes 1.936961 1.903695 9.96E-12
pillow 0.048848 0.14881 1.04E-09
potty and flusher 1.931664 1.152074 0.010232
road 0.701794 0.927357 0.000445
road and car 3.261441 1.333333 3.79E-05
route and car 1.415601 2.15208 0.000137
shower stall and cistern 1.372089 1.039261 0.031085
Shower stall and screen door 1.025822 1.203369 9.36E-11
skyscraper 0 0.115741 6.15E-26
slope 1.200192 1.975851 2.39E-10
tap and shower screen 0.859795 0.606796 3.67E-08
wardrobe and air conditioning 1.144971 0.966851 1.52E-14

Wilcoxon signed rank test (non-t > 60%) 0.05803
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