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POSITIVE OPERATOR-VALUED KERNELS AND

NON-COMMUTATIVE PROBABILITY

PALLE E.T. JORGENSEN AND JAMES TIAN

Abstract. We prove new factorization and dilation results for general pos-
itive operator-valued kernels, and we present their implications for associ-
ated Hilbert space-valued Gaussian processes, and their covariance structure.
Further applications are to non-commutative probability theory, including a
non-commutative Radon–Nikodym theorem for systems of completely positive
maps.
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1. Introduction

In this paper we present a result which offers a canonical link between a gen-
eral setting for operator valued completely positive maps on the one hand, with
an induced scalar valued counterpart. We further offer applications to a variety of
neighboring areas, including the following six closely interrelated areas: (i) operator
valued Gaussian processes, and their associated covariance structure; (ii) universal
factorizations; (iii) non-commutative operator valued Radon-Nikodym derivatives
and their applications to quantum gates and to quantum states; (iv) partial or-
ders on operator valued completely positive maps via their associated reproducing
kernel Hilbert spaces; (v) intertwining operators for representations induced from
completely positive maps; and (vi) applications of (iii) to completely positive maps
and associated quantum gates.

The paper is organized as follows: In Section 2 we present the general framework,
and the main theorems, for operator valued completely positive maps, as well as
their associated structures, including operator valued Gaussian processes. The
applications to non-commutative operator valued Radon-Nikodym derivatives are
given in Section 3, while the focus in Section 4 is that of completely positive maps.
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81P47.
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For the reader’s benefit, we include the following citations: For the theory of
positive definite kernels [Gue22b, AA22, Dav21], Hilbert space valued Gaussian
processes [AJ22, Kre19, LM17], completely positive maps [Tho24, Kod23, ZD22,
SCC21], quantum gates [ZHL24, PY24, GLL24, LCH24], and operator valued Radon-
Nikodym derivatives [MPR20, Ahm13].

The literature on the theory of reproducing kernels is vast, encompassing both
theoretical foundations and recent applications. For a comprehensive overview, in-
cluding the latest developments, we refer to the following resources: [AS56, Aro48,
AJ21, PR16, AFMP94, LYA23, CY17, Alp91, AD93, AL95, AB97, AD06, AJ15].

Notation. Throughout the paper, we use the physics convention that inner
products are linear in the second variable. Let |a 〉〈 b| denote Dirac’s rank-1 oper-
ator, c 7→ a 〈b, c〉. L (H) denotes the algebra of all bounded linear operators in a
Hilbert space H .

For a positive definite (p.d.) kernel K : S×S → C, let HK be the corresponding
reproducing kernel Hilbert space (RKHS). HK is the Hilbert completion of

spanC {Ky (·) := K (·, y) | y ∈ S} (1.1)

with respect to the inner product
〈
∑

i

ciK (·, xi) ,
∑

i

djK (·, yj)

〉

HK

:=
∑

i

∑

j

cidjK (xi, xj) . (1.2)

The following reproducing property holds:

ϕ (x) = 〈K (·, x) , ϕ〉HK , ∀x ∈ S, ∀ϕ ∈ HK . (1.3)

Any scalar-valued kernel K as above is associated with a zero-mean Gaussian
process, where K is the covariance:

K (s, t) = E
[
WsWt

]
, (1.4)

and Ws ∼ N (0,K (s, s)).
An L (H)-valued kernel K : S × S → L (H) is p.d. if

n∑

i=1

〈ai,K (si, sj) aj〉H ≥ 0 (1.5)

for all (ai)
n
1 in H , and all n ∈ N.

2. L (H)-valued kernels and H-valued Gaussian processes

In this section, we begin by revisiting a universal construction for operator-valued
positive definite kernels. This construction will be adapted for various applications,
which will be explored in the following sections.

Theorem 2.1 (Universal Factorization). Let K : S × S → L (H) be a p.d. kernel.
Then there exists a RKHS HK̃ , and a family of operators V (s) : H → HK̃ , s ∈ S,
such that

HK̃ = span {V (s) a : a ∈ H, s ∈ S} (2.1)

and

K (s, t) = V (s)
∗
V (t) . (2.2)
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Conversely, if there is a Hilbert space L and operators V (s) : H → L, s ∈ S,
such that

L = span {V (s) a : a ∈ H, s ∈ S} (2.3)

and (2.2) holds, then L ≃ HK̃ .

Proof. For a detailed proof, we refer the reader to [JT24b, JT24a]. We provide a
brief outline of the main steps below:

Given a p.d. kernel K : S × S → L (H), define K̃ : (S ×H)× (S ×H) → C as

K̃ ((s, a) , (t, b)) := 〈a,K (s, t) b〉H . (2.4)

Then K̃ is a scalar-valued p.d. kernel. Let HK̃ be the associated RKHS.
Set V (s) : H → HK̃ by

V (s) a = K̃(s,a) = K̃ (·, (s, a)) : (S ×H) → C, ∀a ∈ H. (2.5)

One verifies that

V (s)
∗
K̃ (·, (t, b)) = K (s, t) b.

and the factorization K (s, t) = V (s)
∗
V (t) holds. �

Remark 2.2. The setting in Theorem 2.1 includes and extends well known construc-
tions in classical dilation theory. Notably, transitioning from an operator-valued
kernel K to the scalar-valued positive definite kernel K̃ enables a function-based
approach to dilation theory, contrasting with the traditional abstract spaces of
equivalence classes. The literature is vast, and here we call attention to [Arv10],
and the papers cited there.

Building upon Ito’s seminal work, Hilbert spaces and their corresponding oper-
ators have become essential tools in the stochastic analysis of Gaussian processes.
For more detailed insights, see e.g., [Sch52, AJ15, AJ21], as well as the earlier works
cited therein. We explore two principal types of Gaussian processes in this field: (i)
scalar-valued processes that are indexed by a Hilbert space, typically through an
Ito-isometry; and (ii) processes where the Gaussian values are embedded directly
within a Hilbert space (see e.g., [Lop23, Gue22a, KM20, FS20, Kat19, JT23]). This
paper concentrates on the second type, which provides enhanced adaptability in
modeling covariance structures—a key element in processing large datasets. We
now proceed to discuss the details of this approach.

Theorem 2.3. Every operator-valued p.d. kernel K : S×S → L (H) is associated
with an H-valued Gaussian process {W (s)}s∈S with zero-mean, realized on some
probability space (Ω,P), such that

K (s, t) =

∫

Ω

|W (s) 〉〈W (t)| dP. (2.6)

Conversely, every H-valued Gaussian process is obtained from such a L (H)-valued
kernel.

Remark 2.4. More precisely, the identity (2.6) holds in the sense that

E [〈a,W (s)〉H 〈W (t) , b〉H ] = 〈a,K (s, t) b〉H . (2.7)

for all s, t ∈ S, and all a, b ∈ H . For a detailed proof, see [JT24a].
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Definition 2.5. Consider the H-valued Gaussian process Ws : Ω → H ,

W (t) =
∑

i

(
V (t)∗ ϕi

)
Zi, (2.8)

where (ϕi) is an ONB in HK̃ . Following standard conventions, here {Zi} refers
to a choice of an independent identically distributed (i.i.d.) system of standard
scalar Gaussians N(0, 1) random variables, and with an index matching the choice
of ONB.

Theorem 2.6. We have

E [〈a,W (s)〉H 〈W (t) , b〉H ] = 〈a,K (s, t) b〉H . (2.9)

Proof. Note that E [ZiZj] = δi,j . From this, we get

LHS(2.9) = E [〈a,W (s)〉H 〈W (t) , b〉H ]

=
∑

i

∑

j

〈
a, V (s)

∗
ϕi
〉 〈
V (t)

∗
ϕj , b

〉
E [ZiZj ]

=
∑

i

〈V (s) a, ϕi〉HK̃
〈ϕi, V (t) b〉HK̃

= 〈V (s) a, V (t) b〉HK̃
=
〈
a, V (s)

∗
V (t) b

〉

H
= 〈a,K (s, t) b〉H .

�

Remark 2.7. The Gaussian process {W (t)}t∈S in (2.8) is well defined and possesses
the stated properties. This is an application of the central limit theorem to the
choice {Zi} of i.i.d. N (0, 1) Gaussians on the right-side of (2.8).

Varying the choices of ONBs (ϕi) and i.i.d. N (0, 1) Gaussian random variables
(Zi) will result in different Gaussian processes {W (t)}t∈S , but all will adhere to
the covariance condition specified in (2.9). Importantly, once the ONB (ϕi) and
the random variables (Zi) are fixed, the resulting Gaussian process {W (t)}t∈S is
uniquely determined by its first two moments (mean and covariance).

3. A non-commutative Radon–Nikodym theorem

As is known, the theory of von Neumann algebras offers a framework for non-
commutative measure theory, see e.g., [Sak65]. In this interpretation, the projec-
tions in the algebra are the characteristic functions of the (non-commuting) “mea-
surable sets.” From the elements of the Hilbert space H we then build the bounded
measurable functions; and the (normal) states are the probability measures on the
underlying (non-commutative) measure space. Here we shall supplement this theory
with Aronszajn’s notion of systems of ordered p.d. kernels and contractive contain-
ment of the corresponding reproducing kernel Hilbert spaces (RKHSs.) From this
we then build a natural (but different) notion of non-commutative Radon–Nikodym
derivatives.

For the sake of completeness, we include a proof of Aronszajn’s inclusion theorem
below. It states that, for two (scalar-valued) p.d. kernels K and L on S×S, K ≤ L
(i.e., L − K is p.d.) if and only if HK is contractively contained in HL (see e.g.,
[Aro50]).

Theorem 3.1 (Aronszajn). If K ≤ L, then HK ⊂ HL and ‖f‖HL ≤ ‖f‖HK for
all f ∈ HK .
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Proof. Let f ∈ HK . To verify that f ∈ HL, it is equivalent to show that
∣
∣
∣

∑

cif (si)
∣
∣
∣

2

≤ const ·
∥
∥
∥

∑

ciLsi

∥
∥
∥

2

HL

for all (ci)
n
i=1 in C, (si)

n
i=1 in S, and n ∈ N. This follows from the reproducing

property, and the assumption K ≤ L:

∣
∣
∣

∑

cif (si)
∣
∣
∣

2

=

∣
∣
∣
∣

〈∑

ciKsi , f
〉

HK

∣
∣
∣
∣

2

≤ ‖f‖
2
HK

∥
∥
∥

∑

ciKsi

∥
∥
∥

2

HK

≤ ‖f‖
2
HK

∑

cicjK (si, sj) ≤ ‖f‖
2
HK

∑

cicjL (si, sj)

= ‖f‖
2
HK

∥
∥
∥

∑

ciLsi

∥
∥
∥

2

HL
.

�

Proposition 3.2. Suppose K,L are p.d. on S × S, and K ≤ L. There exists a
unique positive selfadjoint operator T on HL, such that 0 ≤ T ≤ IHK , and

K (s, t) =
〈

T 1/2Ls, T
1/2Lt

〉

HL
, s, t ∈ S. (3.1)

Proof. Define a map Φ as

Φ (Ls, Lt) = K (s, t)

and extend it by linearity:

Φ





m∑

i=1

ciLsi ,

n∑

j=1

djLtj



 =

m∑

i=1

n∑

j=1

cidjK (si, tj) .

Then Φ extends by density to a unique bounded sesquilinear form on HL.
The remaining assertions follow from the general theory of quadratic forms. In

particular, if j : HK → HL is the inclusion map, then T = jj∗ : HL → HL is the
desired operator. �

We now consider L (H)-valued p.d. kernels.

Definition 3.3. Suppose K,L are L (H)-valued p.d. kernels defined on S×S. We
say that K ≤ L if

∑

〈ai,K (si, sj) aj〉H ≤
∑

〈ai, L (si, sj) aj〉H (3.2)

for all (si)
n
i=1 in S, (ai)

n
i=1 in H , and n ∈ N.

Let K̃, L̃ be the associated scalar-valued p.d. kernels on S × S, and HK̃ , HL̃ be
the respective RKHSs (see (2.4)). Definition 3.3 means that

K ≤ L⇐⇒ K̃ ≤ L̃. (3.3)

Theorem 3.4. Let K,L : S×S → L (H) be operator-valued p.d. kernels on S×S.

Let K̃, L̃ be the associated scalar-valued p.d. kernels, and HK̃ , HL̃ be the respective
RKHSs.

The following are equivalent:

(1) K ≤ L in the sense of (3.2)–(3.3).
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(2) There exists a positive selfadjoint operator T : HL̃ → HL̃, 0 ≤ T ≤ IHL̃ ,
such that

K (s, t) = VL (s)∗ TVL (t) . (3.4)

Equivalently,

VK (t) = T 1/2VL (t) . (3.5)

Here, L (s, t) = VL (s)
∗
VL (t) and K (s, t) = VK (s)

∗
VK (t) are the respec-

tive canonical factorizations of L and K (Theorem 2.1).

Proof. (1) ⇒ (2) Assume K ≤ L. By Theorem 3.1, HK̃ ⊂ HL̃ and ‖f‖HL̃
≤ ‖f‖HK̃

for all f ∈ HK̃ .
Recall that L factors as

L (s, t) = VL (s)
∗
VL (t)

where VL (t) : H → HL̃ is given by VL (t) a = L̃(t,a), for all t ∈ S and a ∈ H (see
(2.5)).

Apply Proposition 3.2 to the scalar-valued kernels K̃ and L̃: There exists a
unique selfadjoint operator T in HL̃, with 0 ≤ T ≤ IHL̃ , so that

〈a,K (s, t) b〉H =
〈

K̃(s,a), K̃(t,b)

〉

HK̃

=
〈

T 1/2L̃(s,a), T
1/2L̃(t,b)

〉

HL̃

=
〈

T 1/2VL (s) a, T 1/2VL (t) b
〉

HL̃

=
〈
a, VL (s)

∗
TVL (t) b

〉

H

for all a, b ∈ H , and all s, t ∈ S. Therefore, (3.4) holds. The identity (3.5) follows
from the above argument and the proof of Proposition 3.2.

(2) ⇒ (1) Conversely, from (3.4) and the fact that 0 ≤ T ≤ IHL̃ , we have

∑

i,j

〈ai,K (si, sj) aj〉H =
∑

i,j

〈
ai, VL (si)

∗
TVL (sj) aj

〉

H

=

∥
∥
∥
∥
∥
T 1/2

∑

i

VL (si) ai

∥
∥
∥
∥
∥

2

HL̃

≤

∥
∥
∥
∥
∥

∑

i

VL (si) ai

∥
∥
∥
∥
∥

2

HL̃

=
∑

i,j

〈
ai, VL (si)

∗ VL (sj) aj
〉

H

=
∑

i,j

〈ai, L (si, sj) aj〉H

and so K ≤ L. �

Corollary 3.5. Suppose K,L : S × S → L (H) p.d., and K ≤ L. Let T = dK/dL
be the Radon-Nikodym derivative from Theorem 3.4.

Let WL (t) be the H-valued Gaussian process from (2.8), i.e.,

WL (t) =
∑

i

(
VL (t)

∗
ϕi
)
Zi (3.6)
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Set

WK (t) :=
∑

i

(

VL (t)∗ T 1/2ϕi

)

Zi. (3.7)

Then K admits the following decomposition

K (s, t) =

∫

Ω

|WK (s) 〉〈WK (t)| dP. (3.8)

Proof. Recall that (3.8) is equivalent to

E [〈a,WK (s)〉H 〈WK (t) , b〉H ] = 〈a,K (s, t) b〉H , (3.9)

for all a, b ∈ H and s, t ∈ S.
Given L : S × S → L (H) p.d., recall that

L (s, t) = VL (s)
∗
VL (t)

where VL (t) : H → HL̃ = the RKHS of L̃.
Let (ϕi) be an ONB in HL̃, and apply the identity

IHL̃ =
∑

i

|ϕi 〉〈ϕi|

we then get

L (s, t) = VL (s)∗ IHL̃VL (t)

=
∑

i

∣
∣VL (s)

∗
ϕi 〉〈VL (t)

∗
ϕi
∣
∣ .

Similarly, using VK (t) = T 1/2VL (t) from (3.5),

K (s, t) =
∑

i

∣
∣
∣VL (s)∗ T 1/2ϕi 〉〈VL (t)∗ T 1/2ϕi

∣
∣
∣ . (3.10)

Thus,

l.h.s.(3.9) =
∑

i,j

〈

a, VL (s)
∗
T 1/2ϕi

〉

H

〈

VL (t)
∗
T 1/2ϕj , b

〉

H
E [ZiZj]
︸ ︷︷ ︸

=δi,j

=
∑

i

〈

a, VL (s)
∗
T 1/2ϕi

〉

H

〈

VL (t)
∗
T 1/2ϕi, b

〉

H

=

〈

a,

(
∑

i

∣
∣
∣VL (s)∗ T 1/2ϕi 〉〈VL (t)∗ T 1/2ϕi

∣
∣
∣

)

b

〉

H

=
(3.10)

〈a,K (s, t) b〉H .

�

4. Completely positive maps

The role in physics of completely positive maps includes the following: It is the
kind of transformation resulting, for example, from passing a beam in a certain
mixed state through some device thereby producing another beam in a different
mixed state, hence allowing for dissipative effects. Such transformations must map
states into states and hence be positive. But complete positivity is stronger. Under
standard assumptions of unitary dynamics as a whole, completely positive maps
arise as restrictions of representations realized in the bigger system, e.g., beam
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plus transformer. In mathematical terms, this corresponds to the form given in
Stinespring’s theorem. Recall that Stinespring’s theorem (see (4.1)) states that each
completely positive map can be realized as a compression of a unitary dynamics,
hence is experimentally realizable.

Let A and B be unital C∗-algebras. A map ψ : A → B is said to be completely
positive (CP) if ψ ⊗ In : A⊗Mn → B⊗Mn is positive for all n ∈ N.

Let A be a unital C∗-algebra. Suppose ψ : A → L (H) is completely positive and
ψ (I) = IH . Stinespring’s dilation theorem states that, there exists a Hilbert space
K , a representation π : A → L (K ), and an isometric embedding V : H → K

such that

ψ (A) = V ∗π (A)V. (4.1)

Further, (π, V,K ) may be chosen to be minimal, i.e., K = π (A)V H . In that case,
the dilation is unique up to unitary equivalence.

We sketch a proof of (4.1) as an application of results in Sections 2–3.

Corollary 4.1. Let ψ : A → L (H) be as above, i.e., completely positive, and
ψ (I) = I. Let K = Kϕ : A× A → L (H) be given by

K (A,B) := ψ (A∗B) , A,B ∈ A,

as a L (H)-valued p.d. kernel on A×A. Let K = HK̃ = the RKHS of the associated

scalar-valued kernel K̃. Define V = V (I) : H → K by

V h = K̃(I,h) : A×H → C;

set π : A → L (K ) by

π (A) K̃(B,h) = K̃(AB,h)

for all (B, h) ∈ A×H. Then (4.1) holds, and (π, V,K ) is minimal.

Proof. This is a direct “translation” of Theorem 2.1 to the setting of CP maps.
Specifically, when K (A,B) = ψ (A∗B), it factors into

K (A,B) = V ∗ (A)V (B)

as in (2.2). That is,

K (A,B)h = V ∗ (A)V (B)h = V ∗ (A) K̃(B,h) = ψ (A∗B)h.

By setting A = I and V := V (I), this reduces to

K (I, B)h = V ∗V (B)h = V ∗K̃(B,h)

= V ∗π (B) K̃(I,h)

= V ∗π (B)V h = ψ (B)h,

which is (4.1).
Moreover, since

K = HK̃ = span
{

K̃(A,h) : A ∈ A, h ∈ H
}

= span {π (A) V h : A ∈ A, h ∈ H} = π (A)V H,

the dilation is minimal. The assertion of uniqueness (up to unitary equivalence) is
immediate. �
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In the above setting, there is also a Radon–Nikodym type theorem that charac-
terizes all CP maps ϕ, ψ for which ϕ ≤ ψ, in the sense that ψ−ϕ is CP. In term of
the operator-valued kernels, say Kϕ and Kψ, we have ϕ ≤ ψ ⇐⇒ Kϕ ≤ Kψ, and
the latter is in the sense of Definition 3.3.

We sketch below that this result can be derived as an application of Theorem 3.4.

Corollary 4.2. Let ϕ, ψ : A → L (H) be CP maps. Let (πψ , Vψ,Kψ) be the minimal

Stinespring dilation from Corollary 4.1, i.e., Kψ = HK̃ψ
= the RKHS of K̃ψ, and

K̃ ((A, a) , (B, b)) = 〈a, ψ (A∗B) b〉H

for all A,B ∈ A, and a, b ∈ H.
Then ϕ ≤ ψ if and only if there exists a unique positive selfadjoint operator T

in the commutant πψ (A)
′
, 0 ≤ T ≤ IKψ

, such that

ϕ (A) = V ∗

ψT
1/2πψ (A)T 1/2Vψ , A ∈ A. (4.2)

Proof. Suppose ϕ ≤ ψ (i.e., Kϕ ≤ Kψ).
Set Kψ (A,B) = ψ (A∗B) as before, so it factors into

Kψ (A,B) = Vψ (A)∗ Vψ (B) .

By Theorem 3.4, there exists a unique T , 0 ≤ T ≤ IHK̃ψ
, such that (see (3.4))

Kϕ (A,B) = Vψ (A)
∗
TVψ (B) . (4.3)

Set A = I in (4.3), then

ϕ (B) = Kϕ (I, B) = Vψ (I)
∗
TVψ (B) = VψTπψ (B)Vψ , (4.4)

where Vψ := Vψ (I), and πψ : A → L (Kψ) is as in Corollary 4.1. In particular,

Vψ (A) = πψ (A) Vψ, A ∈ A. (4.5)

It remains to show that T ∈ πψ (A)
′
. For this, one checks that

ϕ (B) = ϕ
(
(B∗)

∗
I
)

= Kϕ (B
∗, I)

=
(4.3)

Vψ (B∗)∗ TVψ (I)

=
(4.5)

(πψ (B∗)Vψ)
∗
TVψ

= V ∗

ψπψ (B)TVψ. (4.6)

Combining (4.4) and (4.6), we conclude that πψ (B)T = Tπψ (B), for all B ∈ A.

Thus, T ∈ πψ (A)
′
and (4.2) follows.

Conversely, given (4.2), it is clear that ϕ is CP. See e.g., the proof of “(2)⇒(1)”
in Theorem 3.4. �

In view of the correspondence between operator-valued p.d. kernels and Hilbert
space-valued Gaussian processes, we have:

Corollary 4.3. Every CP map ψ : A → L (H) admits a direct integral decomposi-
tion

ψ (A∗B) =

∫

Ω

|Wψ (A) 〉〈Wψ (B)| dP (4.7)

where {Wψ (A)}A∈A
is a mean-zero, H-valued Gaussian process, realized in some

probability space (Ω,P).
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Proof. Let (Vψ , πψ,Kψ) be the minimal Stinespring dilation in Corollary 4.1, i.e.,

Kψ = HK̃ψ
= the RKHS of K̃ψ. Then,

ψ (A∗B) = V ∗

ψπψ (A∗B)Vψ

= (πψ (A)Vψ)
∗
(πψ (B)Vψ)

=
∑

i

∣
∣(πψ (A)Vψ)

∗
ϕi 〉〈 (πψ (B) Vψ)

∗
ϕi
∣
∣

where (ϕi) is an ONB in Kψ. Setting

Wψ (A) :=
∑

i

(
(πψ (A)Vψ)

∗
ϕi
)
Zi

with {Zi} i.i.d. N (0, 1) as above, we get

〈a, ψ (A∗B) b〉H = E
[
〈a,Wψ (A)〉H 〈Wψ (B) , b〉H

]

for all a, b ∈ H , and A,B ∈ A, which is (4.7). �
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