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Abstract. This paper primarily focuses on the practical applications of optimal control theory for perturbed

sweeping processes within the realm of robotics dynamics. By describing these models as controlled sweeping

processes with pointwise control and state constraints and by employing necessary optimality conditions for such

systems, we formulate optimal control problems suitable to these models and develop numerical algorithms for

their solving. Subsequently, we use the Python Dynamic Optimization library GEKKO to simulate solutions to

the posed robotics problems in the case of any fixed number of robots under different initial conditions.
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1 Introduction and Discussions

This paper addresses an important class of differential variational inequalities (DVIs), which is known as
sweeping processes. This class of discontinuous dynamical systems was introduced and largely investigated
in the 1970s by Jean-Jacques Moreau (see, e.g., [31] and the references therein) via dissipative differential
inclusions given in the form

ẋ(t) ∈ −N
(
x(t);C(t)

)
a.e. t ∈ [0, T ], (1.1)

where C(·) is a continuously moving closed and convex set in a Hilbert space, and where N(·; Ω) for as
given set Ω stands for the classical normal cone of convex analysis

N(x; Ω) :=
{
v
∣∣ ⟨v, y − x⟩ ≤ 0 for all y ∈ Ω

}
if x ∈ Ω and N(x; Ω) := ∅ if x /∈ Ω. (1.2)

In view of (1.2), we see that (1.1) can be equivalently written in the usual DVI form

⟨ẋ(t), y − x(t)⟩ ≥ 0 for all y ∈ C(t), a.e. t ∈ [0, T ].

Over the years, sweeping process theory has been strongly developed and broadly applied to various
problems of nonsmooth mechanics, hysteresis, dynamic network, economics, equilibrium systems, etc.
We refer the reader to, e.g., [2, 3, 4, 6, 22, 24, 25, 32, 33] and the vast bibliographies therein.

One of the most impressive achievements of sweeping process theory is showing that the Cauchy prob-
lem x(0) = x0 for (1.1) admits the unique solution under very natural assumptions; see [23, Theorem 2].
This clearly excludes optimization of the sweeping dynamics described in (1.1). Note to this end that the
sweeping differential inclusion (1.1) is significantly different from the model

ẋ(t) ∈ F
(
x(t)

)
a.e. t ∈ [0, T ] (1.3)
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and G.N.A.M.P.A. of Istituto Nazionale di Alta Matematica “Francesco Severi”, Piazzale Aldo Moro 5, 00185 – Roma, Italy.
The research of this author was partly supported by the project funded by the EuropeanUnion – NextGenerationEU under
the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.1 - Call PRIN 2022 No. 104 of
February 2, 2022 of Italian Ministry of University and Research; Project 2022238YY5 (subject area: PE - Physical Sciences
and Engineering) “Optimal control problems: analysis, approximation and applications”.

2Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA (aa1086@wayne.edu). Research of
this author was partially supported by the US National Science Foundation under grant DMS-2204519, by the Australian
Research Council under Discovery Project DP-190100555, and by Project 111 of China under grant D21024.

3Department of Mathematics and Statistics, San Diego State University, CA 92182, USA (dnguyen28@sdsu.edu).
4Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA (daitrang.nguyen@wayne.edu).

Research of this author was partially supported by the US National Science Foundation under grant DMS-2204519.
5Department of Mathematics, Grand Valley State University (ortizron@gvsu.edu).

1

ar
X

iv
:2

40
5.

08
98

6v
1 

 [
m

at
h.

O
C

] 
 1

4 
M

ay
 2

02
4



governed by Lipschitzian set-valued mappings F ; in particular, in the case of explicit ODE control systems
with F (x) := g(x, U), i.e., (considering autonomous systems for simplicity) described by

ẋ(t) = g
(
x(t), u(t)

)
, u(t) ∈ U. (1.4)

Optimal control theory for Lipschitzian differential inclusions (1.3) has been largely developed with deriv-
ing comprehensive necessary optimality conditions, etc.; see, e.g., the books [12, 28, 34] among numerous
of applications. The crucial difference between the developed theory for (1.3) is the set-valued mapping
F (x(t)) := N(x(t);C(t) for a.e. t ∈ [0, T ] is not just non-Lipschitzian but highly discontinuous. Further-
more, the uniqueness of solutions to (1.1), which prevents optimization of such systems, is due to maximal
monotonicity of the unbounded normal cone operators that has never been of interest in [12, 28, 34] and
other publications on optimization of Lipschitzian differential inclusions.

Appropriate formulations of optimal control problems for sweeping processes and deriving necessary
optimality conditions for sweeping optimal solutions require significant modifications of the original model.
Several sweeping control models were proposed and developed in this direction. In [13, 15], the authors
suggested a control parametrization of the moving set C(t) = C(u(t)) as a controlled halfspace [15] or a
controlled polyhedron [15] with seeking an optimal control that minimises a cost functional of the Mayer
or Bolza type. Another approach to sweeping optimal control was suggested and developed in [5], where
control functions entered the adjacent ODE system; see also [1] for further results in this vein.

However, the main attention in the most recent developments on sweeping optimal control has been
paid to control systems of the type{

ẋ(t) ∈ −N
(
x(t);C

)
+ g

(
x(t), u(t)

)
a.e. t ∈ [0, T ], x(0) = x0 ∈ C ⊂ Rn,

u(t) ∈ U ⊂ Rd a.e. t ∈ [0, T ],
(1.5)

where control actions u(t) appear in the dynamic perturbations g(x, u). Sweeping control systems of type
(1.5) are direct extensions of the standard controlled ODE dynamics in (1.4) by adding the normal cone
term N(x(t);C), which generates completely new phenomena when ∅ ≠ C ̸= Rn. Observe the following:

• The feasible velocity set

F (x) := −N(x;C) + g(x, U), where g(x, U) :=
{
v ∈ Rn

∣∣ ∃u ∈ U with v = g(x, u)
}
, (1.6)

is unbounded and discontinuous for all x ∈ C.

• There are intrinsic pointwise state constraints

x(t) ∈ C for all t ∈ [0, T ]. (1.7)

Indeed, (1.7) immediately follows from (1.5) due to the fulfillment of N(x(t);C) ̸= ∅ on [0, T ] therein.

To the best of our knowledge, a sweeping optimal control model with controlled perturbations of
type (1.5) has been formulated and studied for the first time in [9], in the case where C is a convex
polyhedron, with establishing there necessary conditions for optimal solutions by using the method of
discrete approximations developed in [26, 28] for Lipschitzian differential inclusions and then significantly
extended to controlled sweeping processes in many publications. Over the recent years, various methods
to derive necessary optimality conditions of different types for sweeping control problems with controlled
perturbations have been proposed and implemented under diverse assumptions on the sweeping set C
and the perturbation mapping g; see [7, 8, 11, 14, 17, 18, 19, 21, 35] among other publications. The
obtained optimality conditions were applied to solving a variety of practical models: crowd motions and
traffic equilibria [10, 11, 16], locomotion of a soft-robotic crawler [14], mobile robot dynamics [16], marine
surface vehicle modeling [8, 30], nanoparticle modeling [30], etc.

This paper continue the lines of new applications of sweeping control theory to practical modeling. Our
main attention is paid to a general robotic model with obstacles, which is formulated here as an optimal
control problem for the controlled sweeping dynamics (1.5) with pointwise state and control constraints.
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A much simplified version of this model was considered in [16] based on necessary optimality conditions
derived in [17]. The results obtained in [16, 17] allowed us to determine an optimal control only for the
model therein with only one obstacle. Now, by using newly developed necessary optimality conditions
taken from [18], we are able to solve the controlled robotic model for an arbitrarily fixed number of
obstacles, design a numerical algorithm to find optimal solutions, and constructively implement it using
the Python Dynamic Optimization library via GEKKO Optimization Suite.

The rest of the paper is organized as follows. In Section 2, we formulate an optimal control problem
for the control sweeping dynamic (1.5) and present the necessary optimality conditions for solutions to
this problem taken from [18] and applied below to the robotic model. The controlled robotic model of our
study is described and discussed in Section 3. The subsequent Section 4 applies the obtained necessary
optimality conditions to the controlled sweeping robotic model. Based on these optimality condition, we
design in Section 5 the algorithm to solve the controlled robotic model and implement it numerically by
using GEKKO in various model settings and scenario to find optimal solutions.

2 Optimization of Controlled Sweeping Processes

In this section we present, for completeness and reader’s convenience, the sweeping optimal control
problem and necessary conditions for its optimal solutions taken from [18]. In contrast to [18], we
consider here a control problem on a fixed time interval [0, T ], which is used on our robotics application.
Moreover, we do not need to impose additional endpoint constraints x(T ) ∈ Ω as in [18].

The precise formulation of the sweeping optimal control problem (P ) is as follows: minimize the
Mayer-type cost functional

J [x, u] := φ
(
x(T )

)
(2.8)

over control functions u(·) and the corresponding trajectories x(·) satisfying the controlled sweeping
dynamics in (1.5) with pointwise control constraints, where the set C is a convex polyhedron given by

C :=
⋂s

j=1 C
j with Cj :=

{
x ∈ Rn

∣∣ ⟨xj∗, x⟩ ≤ cj
}
,

∥xj∗∥ = 1, j = 1, . . . , s.
(2.9)

As follows from (1.7) and (2.9), we automatically have the pointwise state constraints

⟨xj∗, x(t)⟩ ≤ cj for all t ∈ [0, T ] and j = 1, . . . , s. (2.10)

The pair (x(·), u(·)) satisfying (1.5) and (2.10) is a feasible solution to (P ) if u(·) ∈ L2([0, T ];Rd) and
x(·) ∈W 1,2([0, T ];Rn). We say that a feasible solution (x̄(·), ū(·)) is W 1,2 × L2-local minimizer in (P ) if
J [x̄, ū] ≤ J [x, u] for all feasible solutions (x(·), u(·)) satisfying the localization condition∫ T

0

(
∥ẋ(t)− ˙̄x(t)∥2 + ∥u(t)− ū(t)∥2

)
dt ≤ ε.

From now on, we call the above pair (x̄(·), ū(·)) simply a “local minimizer” in (P ) and observe that
this notion of local minima is specific for variational problems of type (P ). It clearly holds for strong
minimizers with the replacement of L2 by the space C and, of course, for global optimal solutions to (P ).

Next we formulate the basic assumptions needed for fulfillment of the necessary optimality conditions
presented bellow for the W 1,2 × L2-local minimizer (x̄(·), ū(·)) in (P ) under consideration. Observe
that the main results of [18] are established under essentially less restrictive assumptions while those
formulated below are met in the robotics model of our interest in this paper.

(H1) The control region U ̸= ∅ is a closed, bounded, and convex subset of Rd.

(H2) The perturbation mapping g : Rn ×U → Rn is continuously differentiable around x̄(t), ū(t)) on
[0, T ]. Furthermore, g satisfies the the sublinear growth condition

∥g(x, u)∥ ≤ β
(
1 + ∥x∥

)
for all u ∈ U with some β > 0.
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(H3) The vector field g(x, U) from (1.6) is convex for all x around x̄(t) and all t ∈ [0, T ].

(H4) The linear independence constraint qualification (LICQ) is satisfied along x̄(t) on [0, T ], i.e.,[ ∑
j∈I(x̄)

αjx
j
∗ = 0, αj ∈ R

]
=⇒

[
αj = 0 for all j ∈ I(x̄)

]
,

where I(x) stands for the collections of active indices of polyhedron (2.9) at x defined by

I(x) :=
{
j ∈ {1, . . . , s}

∣∣ ⟨xj∗, x⟩ = cj
}
. (2.11)

(H5) The cost function φ is continuously differentiable around x̄(T ).

Deduce further from the Motzkin’s theorem of the alternative that the normal cone to the polyhedral
set C from (2.9) is represented in the form

N(x;C) =
{ ∑

j∈I(x)

ηjxj∗

∣∣∣ ηj ≥ 0
}
. (2.12)

Using (2.12), it follows that any trajectory x(·) of (1.5) is represented as

−ẋ(t) =
s∑

j=1

ηj(t)xj∗ − g
(
x(t), u(t)

)
for all t ∈ [0, T ),

where ηj ∈ L2([0, T ];R+) and ηj(t) = 0 for all t such that j /∈ I(t, x(t)). We say that the normal cone to
C is active along x(·) on the set E ⊂ [0, T ] if for a.e. t ∈ E and all j ∈ I(x) it holds ηj(t) > 0. Denoting
by E0 the largest subset E of [0, T ] where the normal cone to C is active along x̄ on E, we say that it is
active along x(·) provided that E0 = [0, T ].

Now we are ready to formulate the necessary optimality conditions for problem (P ), which specify
the results of [18, Theorem 5.2] for problem (P ) under consideration.

Theorem 2.1 Let (x̄(·), ū(·)) be a local minimizer to problem (P ) under the imposed assumptions (H1)–
(H5). Then there exist a multiplier λ ≥ 0, a nonnegative vector measure γ> = (γ1>, . . . , γ

s
>) ∈ C∗([0, T ];Rs),

a signed vector measure γ0 = (γ10 , . . . , γ
s
0) ∈ C∗([0, T ];Rs), as well as adjoint arcs p(·) ∈W 1,2([0, T ];Rn)

and q(·) ∈ BV ([0, T ];Rn) such that the following conditions are fulfilled:

• The primal arc representation

− ˙̄x(t) =

s∑
j=1

ηj(t)xj∗ − g
(
x̄(t), ū(t)

)
for a.e. t ∈ [0, T ),

where the functions ηj(·) ∈ L2([0, T );R+), j = 1, . . . , s, are uniquely determined for a.e. t ∈ [0, T ) by the
above representation.

• The adjoint dynamical system

ṗ(t) = −∇xg
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ],

where the right continuous representative of q(·), with the same notation, satisfies

q(t) = p(t)−
∫
(t,T ]

s∑
j=1

dγj(τ)xj∗

for all t ∈ [0, T ] except at most a countable subset, and moreover p(T ) = q(T ) with γ = γ> + γ0.
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• The maximization condition〈
ψ(t), ū(t)

〉
= max

u∈U

〈
ψ(t), u

〉
for a.e. t ∈ [0, T ],

• The dynamic complementary slackness conditions〈
xj∗, x̄(t)

〉
< cj =⇒ ηj(t) = 0 and ηj(t) > 0 =⇒

〈
xj∗, q(t)

〉
= 0

for a.e. t ∈ [0, T ] and all indices j = 1, . . . , s.

• The transversality condition: there exist numbers ηj(T ) ≥ 0 for j ∈ I(x̄(T )) such that

−p(T ) =
∑

j∈I(x̄(T ))

ηj(T )xj∗ + λ∇φ
(
x̄(T )

)
and

∑
j∈I(x̄(T ))

ηj(T )xj∗ ∈ N
(
x̄(T );C

)
,

where the collection of active indices of the polyhedron (2.9) is taken from (2.11).

• The endpoint complementary slackness conditions〈
xj∗, x̄(T )

〉
< cj =⇒ ηj(T ) = 0 for all j ∈ I

(
x̄(T )

)
.

• The measure nonatomicity condition: If t ∈ [0, T ) and ⟨xj∗, x̄(t)⟩ < cj for all j = 1, . . . , s, then
there exists a neighborhood Vt of t in [0, T ) such that γ(V ) = 0 for all the Borel subsets V of Vt.

• The general nontriviality condition

(λ, p, ∥γ0∥TV , ∥γ>∥TV ) ̸= 0

accompanied by the support condition

supp(γ>) ∩ int(E0) = ∅,
which holds provided that the normal cone is active on a set with nonempty interior.

• The enhanced nontriviality condition

(λ, p(T )) ̸= 0

provided that ⟨xj∗, x̄(t)⟩ < cj for all t ∈ [0, T ] and all indices j = 1, . . . , s.

The proof of Theorem 2.1, as induced by that of [18, Theorem 5.2], constitutes a special case where the
time is fixed. It relies on the method of discrete approximations and the machinery of variational analysis
developed in [27, 29]. Note that, although problem (P ) is formulated only in terms of smooth functions
and convex sets, the given proof employs tools of second-order generalized differentiation involving the
coderivative calculation for the feasible velocity mapping (1.6) whose graph is always nonconvex; see
[18, 29] for more details and references.

3 Controlled Robotic Model

This section is dedicated to recalling the formulation of an optimal control problem for the robotics
model, featuring obstacles, whose dynamics are determined as a sweeping process. Generally, the model
considers n ≥ 2 robots represented as safety disks with the same radius R located on a plane. Each robot
aims to reach its destination via the shortest possible path during the designated time interval [0, T ] while
avoiding collisions (but potentially making contact) with other obstacles, such as walls or other robots.

First we describe the trajectory xi(t) of the i-robotic by

xi(t) =
(
∥xi(t)∥ cos θi(t), ∥xi(t)∥ sin θi(t)

)
for i = 1, . . . , n
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with the configuration vector x = (x1, . . . , xn) ∈ R2n, where xi ∈ R2 denotes the center of the i-th robotic
disk with coordinates representation (∥xi∥ cos θi, ∥xi∥ sin θi) and θi stands for the smallest positive angle
in standard position formed by the positive x-axis and Oxi, with the target is the origin.

To avoid collisions during the movement of all robots, the distance between the robots and obstacles
must be maintained. Hence the set of admissible configurations is formulated by imposing the nonover-
lapping conditions ∥xi − xj∥ ≥ 2R as follows:

A :=
{
x =

(
x1, . . . , xn

)
∈ R2n

∣∣ Dij(x) ≥ 0 for all i, j ∈ {1, . . . , n}
}
, (3.1)

where Dij(x) = ∥xi − xj∥ − 2R is the distance between the inelastic disks i and j. Let ∇Dij(x) be the
gradient of the distance function Dij(x) at x ̸= 0, the set of admissible velocities is defined by

Vh(x) :=
{
v ∈ R2n

∣∣ Dij(x) + h∇Dij(x)v ≥ 0 for all i, j ∈ {1, . . . , n}, i < j
}
, x ∈ R2n.

Suppose that at time tk ∈ [0, T ] the admissible configuration is xk := x(tk) ∈ A. Then after the period
of time h > 0, the next configuration is xk+1 = x(tk + h). Taking into account the first-order Taylor
expansion around xk ̸= 0 gives us

Dij

(
x(tk + h)

)
= Dij

(
x(tk)

)
+ h∇Dij

(
x(tk)

)
ẋ(tk) + o(h) for small h > 0. (3.2)

Considering the admissible velocity ẋ(tk) ∈ Vh(xk) and skipping the term o(h) for small h yields

Dij(xk) + h
〈
∇Dij(xk), ẋ(tk)

〉
≥ 0,

and therefore it follows from (3.2) that

Dij(x(tk + h)) ≥ 0, i.e., x(tk + h) ∈ A.

In the absence of other obstacles, every robot aims to reach its target by the shortest path; so the
robots tend to keep their desired spontaneous velocities till reaching the target. However, when the robot
in consideration touches the obstacles in the sense that ∥xi(t)−xj(t)∥ = 2R, its velocity needs adjustment
to ensure the distance remains at least 2R through some specific control actions applied to the velocity
term. This situation is represented through the following modeling approach:

g
(
x(t), u(t)

)
=

(
s1∥u1(t)∥ cos θ1(t), s1∥u1(t)∥ sin θ1(t), . . . , sn∥un(t)∥ cos θn(t), sn∥un(t)∥ sin θn(t)

)
(3.3)

where the control constraints are defined by

u(t) =
(
u1(t), . . . , un(t)

)
∈ U ⊂ Rn for a.e. t ∈ [0, T ] (3.4)

with the closed and convex control region U specified below.

To prevent the overlap between the robot and obstacles, let xk ∈ A at the time tk, and use the
mapping g : R2n × Rn → R2n from (3.3) with a given feasible control uk := u(tk) from (3.4). The next
configuration xk+1 is computed by

xk+1 = xk + hVk+1, Vk+1 ∈ R2n, (3.5)

addressing the following convex optimization problem:

minimize ∥g(xk, uk)− V ∥2 subject to V ∈ Vh(xk), (3.6)

where the control uk ∈ U is incorporated into the desired velocity term to modify the actual velocities of
the robots, guaranteeing they maintain nonoverlapping trajectories. Moreover, the algorithm described in
equations (3.5) and (3.6) implies that Vk+1 is chosen as the (unique) element from the admissible velocities
set that is nearest to the desired velocity g(xk, uk), preventing thereby any overlap among the robots.
Select any natural number m and portion the interval [0, T ] into the 2m equal subintervals of length

6



hm := T/2m ↓ 0 as m→ ∞. Considering the discrete time tkm := khm, denote Ikm := [tkm, t(k+1)m) for
k = 0, . . . , 2m − 1 and I2mm := {T}. Hence, by referring subsequently to equations (3.5) and (3.6), the
algorithm is formulated as follows:

x0m ∈ A

x(k+1)m := xkm + hmV(k+1)m, k = 0, . . . , 2m − 1, (3.7)

where the admissible velocity in the next iteration is defined by

V(k+1)m := Π
(
g(xkm, ukm);Vhm

(xkm)
)
, k = 0, . . . , 2m − 1. (3.8)

Taking into account the construction of xkm for 0 ≤ k ≤ 2m − 1 and m ∈ IN , define a sequence of
piecewise linear mappings x2m : [0, T ] → R2n, m ∈ IN , which passes through those points by:

x2m(t) := xkm + (t− tkm)V(k+1)m for all t ∈ Ikm, k = 0, . . . , 2m − 1. (3.9)

The following relationships hold whenever m ∈ IN :

x2m(tkm) = xkm = lim
t→tkm

xkm(t) and ẋ2m(t) := V(k+1)m for all t ∈ (tkm, t(k+1)m). (3.10)

Through discussions in [20], it is observed that the solutions to (3.9) in the uncontrolled setting of (3.8)
with g = g(x) uniformly converge on [0, T ] to a trajectory of a specific perturbed sweeping process. The
controlled model under investigation in this scenario presents significantly more involved. To advance
and utilize the insights from [18, Theorem 5.2], the following set is considered for all x ∈ R2n

K(x) :=
{
y ∈ R2n

∣∣ Dij(x) +∇Dij(x)(y − x) ≥ 0 whenever i < j
}
, (3.11)

enabling us to express the algorithm in (3.8), (3.9) as

x(k+1)m = Π
(
xkm + hmg(xkm, ukm);K(xkm)

)
for k = 0, . . . , 2m − 1.

It then can be expressed in an equivalent form as

x2m
(
ϑ2m(t)

)
= Π

(
x2m(τ2m(t)) + hmg

(
x2m(τ2m(t)), u2m(τ2m(t)

)
;K(x2m(τ2m(t))

)
for all t ∈ [0, T ],

where the functions τ2m(·) and ϑ2m(·) are extended to the entire interval [0, T ] by τ2m(t) := tkm and
ϑ2m(t) := t(k+1)m for all t ∈ Ikm. In addition, considering the construction of the convex set K(x) as
described in (3.11) and the definition of the normal cone (1.2), along with the relationships outlined in
(3.10), we get the following controlled sweeping dynamics:

ẋ2m(t) ∈ −N
(
x2m(ϑ2m(t));K(x2m(τ2m(t)))

)
+ g

(
x2m(τ2m(t)), u2m(τ2m(t))

)
a.e. t ∈ [0, T ] (3.12)

with x2m(0) = x0 ∈ K(x0) = A and x2m(ϑ2m(t)) ∈ K(x2m(τ2m(t))) on [0, T ]. The inclusion in (3.12) can
be formalized as a controlled perturbed sweeping process (1.5) through the convex polyhedron

C :=

n−1⋂
j=1

{
x ∈ R2n

∣∣ ⟨xj∗, x⟩ ≤ cj
}

(3.13)

with cj := −2R and with the n− 1 vertices of the polyhedron given by

xj∗ := ej1 + ej2 − e(j+1)1 − e(j+1)2 ∈ R2n, j = 1, . . . , n− 1, (3.14)

where eji for j = 1, . . . , n and i = 1, 2 are the vectors in R2n of the form

e :=
(
e11, e12, e21, e22, . . . , en1, en2

)
∈ R2n

7



with 1 at only one position of eji and 0 at all the other positions.

As a result, we proceed to formulate sweeping optimal control problem denoted as (P) from Section 2,
characterized as the continuous-time counterpart of the discrete algorithm employed in the robotics model.
Consider the cost functional

minimize J [x, u] :=
1

2

∥∥x(T )∥∥2, (3.15)

with the model objective of minimizing the distance of robots from the admissible configuration set to
the target. We describe the continuous-time dynamics by the controlled sweeping process{

−ẋ(t) ∈ N
(
x(t);C

)
+ g

(
x(t), u(t)

)
for a.e. t ∈ [0, T ],

x(0) = x0 ∈ C, u(t) ∈ U a.e. on [0, T ],
(3.16)

where the constant set C is taken from (3.13), the control constraints reduce to (3.3). The dynamic
requirement for nonoverlapping, expressed as ∥xi(t) − xj(t)∥ ≥ 2R, is equivalent to the pointwise state
constraints given by

x(t) ∈ C ⇐⇒ ⟨xj∗, x(t)⟩ ≤ cj for all t ∈ [0, T ] and j = 1, . . . , n− 1, (3.17)

which follows from (3.10) s a result of constructing C and the normal cone definition. Additionally,
considering that the result in the limiting process from Theorem 2.1 will be employed when the discrete
step h in (3.5) diminishes, then for convenience, we choose an equivalent norm ∥(xj1, xj2)∥ := |xj1|+ |xj2|
for each component xj ∈ R2 of x ∈ R2n.

4 Necessary Optimality Conditions for the Robotics Model

In this section, we obtain the necessary optimality conditions for problem defined in (3.15)–(3.17) with
the robotics model data by applying Theorem 2.1. However, the absence of the varying time T can be
easily incorporated into the proof, and so we omit it here while referring the reader to [16].

Theorem 4.1 (necessary optimality conditions for the sweeping controlled robotics model).
Let (x̄(·), ū(·)) be a W 1,2×L2-local minimizer for problem (P ), and let all the assumptions of Theorem 2.1
be fulfilled. Then there exist a multiplier λ ≥ 0, a measure γ ∈ C∗([0, T ];R2n) as well as adjoint arcs
p(·) ∈W 1,2([0, T ];Rn) and q(·) ∈ BV ([0, T ];Rn) satisfying to the conditions:

(1) − ˙̄x(t) =

n−1∑
j=1

ηj(t)xj∗ +
(
g(x̄1(t), ū1(t))), . . . , g(x̄n(t), ūn(t)

)
for a.e. t ∈ [0, T ),

where ηj(·) ∈ L2([0, T ];R+) are uniquely defined by this representation and well defined at t = T .

(2) ∥x̄j(t)− x̄j+1(t)∥ > 2R =⇒ ηj(t) = 0 for all j = 1, . . . , n− 1 and a.e. t ∈ [0, T ] including t = T .

(3) ηj(t) > 0 =⇒ ⟨xj∗, q(t)⟩ = 0 for all j = 1, . . . , n− 1 and a.e. t ∈ [0, T ].

(4) ṗ(t) = −∇xg
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ].

(5) q(t) = p(t)− γ([t, T ]) for all t ∈ [0, T ] except at most a countable subset.

(6)
〈
ψ(t), ū(t)

〉
= maxu∈U

〈
ψ(t), u

〉
for a.e. t ∈ [0, T ].

(7) −p(T ) = λx̄(T ) +
∑

j∈I(x̄(T )) η
j(T )xj∗ via the set of active polyhedron indices I(x̄(T )) at x̄(T ).

(8)
∑

j∈I(x̄(T )) η
j(T )xj∗ ∈ N

(
x̄(T );C).
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(9) (λ, p, ∥γ0∥TV , ∥γ>∥TV ) ̸= 0 with the support conditions{
supp(γ0) ∪ supp(γ>) ⊂ {t | ∥x̄j(t)− x̄j+1(t)∥ = 2R},
supp(γ>) ∩ int(E0) = ∅, provided that int(E0) = int({t | ηj(t) > 0, j ∈ I(x)}) is nonempty.

Subsequently, the above theorem allows us to deduce several conclusions for the robotics model,
considering the perturbation mapping g as described in equation (3.3).

• It can be seen from the model description that if at he contacting time t1 ∈ [0, T ] we have ∥x̄i(t1)−
x̄1(t1)∥ = 2R for some i = 2, . . . , n, then the considered robot tends to adjust its velocity to ensure
a distance of at least 2R between itself and the obstacle in contact with. According to the model
requirements, the robot will keep a constant velocity after time t = t1 until either reaching other obstacles
ahead or stopping at the ending time t = T . Moreover, if the robot comes into contact with other
obstacles, it pushes them to move toward the end of the straight circular capillaries in the same direction
as before t = t1. Using (3.3), we reformulate the differential relation in (1) for a.e. t ∈ [0, T ] as follows:

−
(
˙̄x11(t), ˙̄x12(t)

)
= η1(t)(1, 1)−

(
s1ū

1(t) cos θ1(t), s1ū
1(t) sin θ1(t)

)
,

−
(
˙̄xi1(t), ˙̄xi2(t)

)
= ηi−1(t)(−1,−1) + ηi(t)(1, 1)−

(
siū

i(t) cos θi(t), siū
i(t) sin θi(t)

)
whenever i = 2, . . . , n− 1, and
−( ˙̄xn1(t), ˙̄xn2(t)

)
= ηn−1(t)(−1,−1)−

(
snū

n(t) cos θn(t), snū
n(t) sin θn(t)

)
.

(4.1)

• If the robot under consideration (referred to as robot 1) does not make contact with the first obstacle
(robot 2) in the sense that ∥x̄2(t)− x̄1(t)∥ > 2R for all t ∈ [0, T ], then we deduce from (2) of Theorem 4.1
that η1(t) = 0 for a.e. t ∈ [0, T ]. Substituting η1(t) = 0 into (4.1) yields

−
(
˙̄x11(t), ˙̄x12(t)

)
= −

(
s1ū

1(t) cos θ1(t), s1ū
1(t) sin θ1(t)

)
a.e. on [0, T ],

which means that the actual velocity and the spontaneous velocity of the robot agree for a.e. t ∈ [0, T ].
Similarly we conclude that the condition ∥x̄n(t)−x̄n−1(t)∥ > 2R on [0, T ] yields− ˙̄xn(t) = −g(x̄n(t), ūn(t))
for a.e. t ∈ [0, T ], and then continue in this way with robot i.

To proceed further, assume that λ = 1 (otherwise we do not have enough information to efficiently
employ Theorem 4.1). Additionally, for simplicity in handling the forthcoming examples, suppose that
ūi(·) are constant on [0, T ] for all i = 1, . . . , n. Applying the Newton-Leibniz formula in (4.1), we obtain
the trajectory representations

(
x̄11(t), x̄12(t)

)
=

(
x110 , x

12
0

)
−
∫ t

0

η1(τ) (1, 1) dτ + t
(
s1ū

1 cos θ1, s1ū
1 sin θ1

)
,(

x̄i1(t), x̄i2(t)
)
=

(
xi10 , x

i2
0

)
+

∫ t

0

ηi−1(τ) (1, 1) dτ −
∫ t

0

ηi(τ) (1, 1) dτ

+t
(
siū

i cos θi, siū
i sin θi

)
whenever i = 2, . . . , n− 1,(

x̄n1(t), x̄n2(t)
)
=

(
xn10 , xn20

)
+

∫ t

0

ηn−1(τ) (1, 1) dτ + t (snū
n cos θn, snū

n sin θn)

(4.2)

for all t ∈ [0, T ], where x0 := (x110 , x
12
0 . . . , xn10 , xn20 ) ∈ C stands for the starting point in (3.16).

As follows from condition (2), we can assume that η(·) is piecewise constant on [0, T ] and satisfies

η(t) = 0 for a.e. t ∈ [0, ti) and η(t) = ηi(t) for a.e. t ∈ [ti, T ],

where ti is the contacting time between robot i and robot i + 1. Using condition 4.1, the velocities of
robots i and i+ 1 after the contacting time can be expressed as{

˙̄xi(t) = −ηi(t)(1, 1) +
(
siū

i(t) cos θi(t), siū
i(t) sin θi(t)

)
,

˙̄xi+1(t) = −ηi(t)(−1,−1) +
(
si+1ū

i+1(t) cos θi+1(t), si+1ū
i+1(t) sin θi+1(t)

) (4.3)
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for i = 1, . . . , n− 1. Hence we obtain the following representation

ηi(t) =

{
1
2

(
siū

i(t) cos θi+1(t)− si+1ū
i+1(t) cos θi+1(t)

)
if cos θi(t) = cos θi+1(t) and siū

i(t) ̸= si+1ū
i+1(t),

0, otherwise.

The cost functional is calculated by

J [x, u] :=
1

2

∥∥x(T )∥∥2 =
1

2

((
x11(T )

)2
+
(
x12(T )

)2
+

(
x21(T )

)2
+

(
x22(T )

)2
+ . . .+

(
xn1(T )

)2
+

(
xn2(T )

)2)
,

since x(t) has the same dimension as xj∗ and cj .

5 Numerical Algorithm

This section illustrates the power of the necessary optimality conditions obtained in Theorem 4.1 for
solving the controlled robotics model developed in Section 3. We furnish this by applying the obtained
conditions to problems with specified numerical data. Our main achievement here is to design a new
algorithm, which allows us to calculate optimal solutions in robotic models with encompassing different
scenarios, where n = 2, 3, 4, 5, 10, 100, . . . and beyond.

Based on the sweeping control description of the robotics model in Section 3 and the necessary
optimality conditions of Theorem 4.1, we consider the following optimal control problem for developing
our algorithm for in the general robotic setting with an arbitrary number of robots:

minimize
1

2
∥x(T )∥2 subject to

−ẋ(t) =
n−1∑
j=1

ηj(t)x
∗
j + (g(x1(t), u1(t)), . . . , g(xn(t), un(t)))

∥xj(t)− xj−1(t)∥ ≥ 2R

with the representation functions ηi defined by

ηj(t) =

0 if x1,j+1(t)− x1,j(t) + x2,j+1(t)− x2,j(t) > 2R,
1

2
(sjuj(t) cos θj+1(t)− sj+1uj+1(t) cos θj+1(t)) otherwise

for j = 1, . . . , n − 1. We utilize the GEKKO Dynamic Optimization Suite library from Python, which
uses nonlinear solvers such as IPOPT and SNOPT to obtain the numerical solution (x̄(t), ū(t)).

Our implementation consists of three parts. First, we develop the necessary Python code to efficiently
read input files both as a single file and in batch mode to allow for large numbers of simulations. Second,
we implement the code that uses the input file information to formulate the problem as a GEKKO
optimization problem that is sent to the selected solver. Finally, the final portion of the code ensures
that all the aspects of the simulation procedure, such as input file, output graphics, and solution efficiency
data, are recorded and time stamped so that we can analyze large numbers of simulations.

The input files contain crucial parameters such as the initial position of the robots, the bounds on the
control function, the robots’ radius R, and the final time T . Leveraging this input, our code initializes the
number of robots (n) and executes the GEKKO dynamic optimization algorithm made up of differential
equations extracted from the obtained necessary optimality conditions. Successful execution results in a
detailed description of the path of the robots, the controls utilized, the performance measure, and the
functions ηi are presented in Figure 1 below.

In our work so far, we have been able to run around 200 simulations. Although we performed some
simulations utilizing the IPOPT solver and others with SNOPT, we did not observe any significant
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Figure 1: The code with the differential equations involved in the necessary conditions

differences in time to a solution or likelihood of convergence based on the solver chosen. We did find a
significant difference in time of convergence based on the number of robots and observed that the time to
achieve a solution increased rapidly and proportionally to the number of robots involved. We illustrate
our results here with three examples. The first is a simulation that involves two robots. Solutions to
2−robot simulations resulted in one of three scenarios. Either one robot moves as close as possible
to the origin and then stops to allow the second robot to proceed to the origin as fast as possible,
the two move almost in synchrony towards the origin, or finally the robots wait to move and then
move rapidly to the origin. In all the cases, the time to a solution hovered around 10 seconds and the
performance measure was often 0.5R. This last observation about the performance measure highlights
one of the challenges of the problem as stated. Since the robots are set to reach the origin, but are
not removed from the dynamics once they do, in order to minimize the distance of all robots to the
origin, the solution must balance the distance of all robots to the origin causing at times for robots to
move past the origin. In the case of two robots, this can be achieved by having one robot 0.5R past
the origin and one the same distance on the opposite side of the origin. We specify the data as follows
x11(0) = 2, x12(0) = 2, x21(0) = 3, x22(0) = 3, T = 2, R1 = R2 = 1, s1 = 3, s2 = 1, θi = 45◦ and
∥ui(t)∥ ≤ 10, for i = 1, 2. The controls and the position of the robots are presented below and illustrate
the second scenario, where the robots move almost synchronously toward the origin, and where the final
position shows both robots at the positions described (1/2R).

Two robots. R = 1, T = 2, and |u(t)| ≤ 10.
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In this second example, we include a simulation with 5 robots. The data for this case is contained
in Table 1, where (X,Y ) are the positions of the robots on the plane at the initial time, s indicates the
speed for each robot. The total time is T = 8, five robots have the same radius R = 1, θi = 45◦ for
i = 0, . . . , 4, and the controls satisfy ∥ui∥ ≤ 5 for i = 0, . . . , 4.

Robot X Y s
0 5 5 2
1 11 11 2
2 16 16 1
3 20 20 3
4 27 27 3

Table 1: Data for the case of 5 robots.
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The time to solution was 211 seconds and the performance measure of 32. On average simulations
with 5 bots took about 200 seconds. This example demonstrates the outcome of having two robots wait
for the others to get close to the origin before speeding there. One also can see η activated around time
t = 6 when the last two robots are to move, but would collide if allowed to use their natural speeds.

Five robots simulation. R = 1, T = 8, and |u(t)| ≤ 5.
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The last example is the one with 10 robots. Table 2 shows the data for this case with T = 8, radius
for all robots is R = 1, θi = 225◦, and the controls ∥ui(t)∥ ≤ 5, for i = 0, . . . , 9. On average these

Robot X Y s
0 -10 -10 1
1 -13 -13 1
2 -18 -18 1
3 -22 -22 2
4 -25 -25 2
5 -29 -29 2
6 -32 -32 3
7 -35 -35 3
8 -38 -38 3
9 -40 -40 3

Table 2: Data for the case of 10 robots

simulations took 1100 seconds, but the example below took 1751.3 seconds. In this simulation, we can
see that the robots have to adjust their speed almost immediately and then again before the time T = 3;
both cases requiring the activation of η. After that they move almost synchronously toward the origin.

Ten Robots simulation. R = 1,T = 8 and |u(t)| ≤ 5.

14



15



These simulations are promising, but there are important adjustments that may be considered and
that may affect the efficiency of the solvers. For instance, the code could account for success when the
robot reaches the origin in order that the final solution is not a minimizing weighted position for all the
robots as related to the origin, with some unable to reach the target. Implementing such adjustments
would result in smaller performance measures, and it is possible that they could lead to faster convergence
times. Overall, our method of solving reaches good visualizations; however, in its current state, the time to
a solution is not reasonable for very large numbers of robots. One possible explanation for this limitation
is that the time allocated for the robots to reach the target may not be optimal. Therefore, our future
work will be devoted to minimizing the time variable required for the robots to reach the target in the
algorithm, which takes into account the theoretical results developed in [18] with applications to other
practical sweeping control models, e.g., those considered in [30].

Acknowledgements. The authors are grateful to Andrew Regan for many useful discussions related
to the coding part of the algorithm.
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