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Using the framework of semi-classical Landau-Lifshitz dynamics (LLD), we conduct a systematic
investigation of the temperature-dependent spin dynamics in the S = 1/2 Heisenberg square-lattice
antiferromagnet (SqAF). By performing inelastic neutron scattering measurements on Zn2VO(PO4)2
(ZVPO) and corresponding finite-temperature spin dynamics simulations based on LLD, we present
a comprehensive analysis that bridges quantum and classical spin dynamics over a broad tempera-
ture range. First, a remarkable agreement between experimental data and LLD simulations is found
in the paramagnetic phase of ZVPO, demonstrating the capability of LLD in accurately determining
the spin Hamiltonian of S = 1/2 systems and capturing the quantum-to-classical crossover of their
spin dynamics. Second, by analyzing the discrepancies between the experimental data and the LLD
simulations at lower temperatures, we determine the experimental temperature dependence of the
quantum effects in the excitation spectrum of the S = 1/2 SqAF: the quantum renormalization
factor for the magnon energies and the quantum continuum above the one-magnon bands. Notably,
the emergence of each quantum effect is found to correlate with the formation of three-dimensional
long-range order. This work demonstrates the utility of LLD in gaining experimental insights into
the temperature-induced modifications of quantum spin dynamics and their convergence towards
classical expectations at higher temperatures. This motivates further applications to more challeng-
ing quantum antiferromagnets dominated by stronger quantum fluctuations.

Understanding the collective phenomena of quantum
antiferromagnets remains an ongoing challenge, espe-
cially in low-dimensional systems where quantum fluc-
tuations are enhanced relative to three-dimensional anti-
ferromagnets. Recent inelastic neutron scattering (INS)
studies on various two-dimensional (2D) S = 1/2 antifer-
romagnets have unveiled a plethora of quantum phenom-
ena which illustrate deviations from classical spin dynam-
ics. These deviations include the significant renormaliza-
tion of magnon energies [1–4], pronounced magnon decay
[5, 6], a highly structured multi-magnon continuum [5, 7],
and most interestingly, the emergence of fractionalized
excitations [2, 8–12]. While these phenomena highlight
the diverse landscape of quantum magnetism, they also
introduce hurdles in modeling the excitation spectra with
traditional semi-classical methods, such as linear spin-
wave theory (LSWT), which are typically used to deduce
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spin Hamiltonians. Thus, the accurate identification of
the spin Hamiltonian in a quantum antiferromagnet fre-
quently calls for either sophisticated quantum spin dy-
namics calculations [7, 13, 14] or artificially suppressing
inherent quantum fluctuations by, for example, apply-
ing a strong external magnetic field [7, 15, 16]. Notably,
both approaches require considerable theoretical and/or
experimental efforts.

Introducing thermal fluctuations by increasing the
temperature—a cornerstone variable in condensed mat-
ter physics—can significantly aid in exploring the spin
dynamics of quantum antiferromagnets. Raising the tem-
perature moves quantum magnets into a regime where
thermal fluctuations begin to dominate quantum fluctu-
ations, which enables the following two investigative ap-
proaches. First, for temperatures T substantially exceed-
ing the magnetic energy scale, one can determine the spin
Hamiltonian using straightforward semi-classical spin dy-
namics theories. Second, and perhaps more intriguingly,
one can then track deviations from semi-classical spin
dynamics as T decreases towards the magnetic energy
scale, which reveals how quantum fluctuations begin to
impact the behavior of the system. Such a ”quantum-
to-classical” crossover can potentially deepen our under-
standing of the collective quantum phenomena found in
S = 1/2 antiferromagnets. This approach, however, re-
quires a simulation technique that systematically incor-
porates thermal fluctuations into spin dynamics, which
has been deemed challenging [17].

Recent studies have made substantial progress in ad-
dressing the aforementioned technical challenge using a
range of methodologies [17–19]. In particular, employing
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Landau-Lifshitz dynamics (LLD) to numerically calcu-
late dynamical spin-spin correlations via the time evo-
lution of real-space spin configurations emerges as espe-
cially promising [20, 21]. The primary benefit of this
approach lies in its ability to provide an energy-resolved
profile of spin dynamics at finite temperatures. This al-
lows for the fitting of multi-dimensional dynamical struc-
ture factors S(q, ω), which, thanks to the rich informa-
tion available across both momentum and energy dimen-
sions, facilitates the determination of the spin Hamilto-
nian with high fidelity, despite the typically broad and
diffuse spectra found at high temperatures [6, 11]. More-
over, the recent introduction of a temperature-dependent
renormalization technique associated with the size of
magnetic moments [17] has vastly extended the tem-
perature range over which the LLD approach can accu-
rately capture the energy scale of magnetic excitations;
see the Supplemental Material for more explanation [22].
While these features make LLD a promising approach for
modeling spin dynamics under sizable thermal fluctua-
tions, its predictions for S = 1/2 quantum antiferromag-
nets have not yet been comprehensively compared with
temperature-dependent experimental data. In contrast,
for classical systems with larger S values (S > 1/2), the
interplay between thermal fluctuations and spin dynam-
ics has been investigated by several studies [17, 23, 24].

The S = 1/2 Heisenberg square-lattice antiferromag-
net (SqAF) stands out as an ideal system for assessing
the capabilities and limitations of LLD in describing the
spin dynamics of quantum antiferromagnets under siz-
able thermal fluctuations. This is because the quan-
tum effects observed in its excitation spectrum are well-
established by extensive previous studies [4, 8, 9, 26–28],
and are less complex than those in other lattice geome-
tries [2, 5]. Key quantum phenomena in the S = 1/2
SqAF include (i) a momentum-independent spin-wave
energy enhancement due to an overall quantum renor-
malization factor Zc [4, 29, 30], (ii) a two-magnon contin-
uum above the one-magnon modes [4, 9, 31, 32], and (iii)
downward renormalization along with continuum scat-
tering around q = (π, 0) attributed to fractionalized
quasi-particles [8, 9]. Despite these features, the overall
magnetic excitation spectrum remains similar to classical
spin dynamics predictions. Hence, a comparative analy-
sis with LLD simulations, even though discrepancies are
anticipated at low temperatures, can yield insightful con-
clusions.

This work presents a successful application of
the semi-classical LLD approach to elucidate the
temperature-driven evolution of quantum spin dynam-
ics in the S = 1/2 Heisenberg SqAF. By conducting
INS measurements of the S = 1/2 Heisenberg SqAF
Zn2VO(PO4)2 and corresponding finite-temperature spin
dynamics simulations through a standardized protocol
proposed in this study, we engage in a thorough com-
parison of quantum versus classical spin dynamics over a
broad temperature range, 0.5TN < T < 21.3TN, with TN

being the Néel temperature. At temperatures well above
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FIG. 1. Structure and magnetic properties of Zn2VO(PO4)2
(ZVPO). (a) Crystal structure of ZVPO. (b) Magnetic struc-
ture of ZVPO [25] and exchange interactions between V4+

magnetic moments. (c) Temperature-dependent magnetiza-
tion of ZVPO under a 1 kOe magnetic field. The inset high-
lights the position of maximum susceptibility (Tmax = 6.1K
= 1.63TN). The orange solid line is the magnetic susceptibil-
ity obtained from the classical Monte-Carlo simulation with
the exchange parameters from the high-temperature INS data
analysis (Fig. 2). (d) Elastic component (−0.1meV < E <
0.1meV) of the neutron scattering data after subtracting the
result measured at 10 K, which shows the temperature de-
pendence of the (100) magnetic Bragg peak. The inset shows
the peak area fitted by a Gaussian function.

5TN, LLD simulations correspond remarkably well with
experimental observations and yield reliable determina-
tion of exchange parameters. Notably, this agreement
persists down to approximately 1.1TN upon incorporat-
ing an additional scale factor for the excitation energies
to account for the quantum renormalization factor Zc not
included in the LLD simulation. Moreover, by analyzing
the discrepancy between measured spectra and LLD sim-
ulations at lower temperatures, we delve into how ther-
mal fluctuations dissipate quantum effects within the ex-
citation spectrum of the S = 1/2 SqAF. The discussion
extends to potential applications for other quantum mag-
netic systems and possible future improvements to the
current LLD framework.

The synthesis and characterization methods of poly-
crystalline ZVPO are provided in the Supplemental Ma-
terial [22]. INS data were collected with 9.3 g of powder
ZVPO at the CNCS time-of-flight spectrometer at the
Spallation Neutron Source (SNS), using incident neu-
tron energies of 3.32 meV and 1.55 meV. Data were
collected at 23 different temperatures between 1.9K
(base) and 80K under standard high-flux chopper con-
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FIG. 2. Spin Hamiltonian obtained by analyzing energy- and momentum-resolved excitation spectra in the classical regime
(T ≫ TN). (a)-(c) Experimental dynamical susceptibility χ′′(|q|, E) of ZVPO measured at temperatures above TN. (d)-(f) The
best-fitted χ′′(|q|, E) to (a)-(c) obtained by LLD. (g) Comparison between the measured and simulated energy dependence of
momentum-integrated χ′′(|q|, E). (h)-(i) Slices of the three-dimensional goodness-of-fit (χ2

r , see Supplemental Material [22])
map around the optimal solution J1 = 0.695(15) meV, J2 = 0.0(1)J1, and Jc = -0.07(+7,-20)J1 plotted as a green star. The
uncertainty of the parameters was derived from the increase in χ2

r of 1.

ditions. No background subtraction was performed on
the data presented in this work. Instead, a constant
background was estimated during the comparative anal-
ysis with the calculated magnetic excitation spectra for
T ≫ TN (see the Supplemental Material [22]). The
energy- and momentum-resolved dynamical susceptibil-
ity χ′′(q, E) was calculated from the time evolution of
the spin system simulated by LLD, using the Su(n)ny
package [20, 33]. A detailed, step-by-step protocol for
this calculation is described in the Supplemental Mate-
rial [22]. Instrumental energy and momentum resolutions
for the simulation were estimated using the Pychop pack-
age in Mantid [34] and the full width at half-maximum
of the (100) magnetic Bragg peak of ZVPO along the |q|
axis, respectively.

ZVPO is a nearly ideal realization of the S = 1/2
Heisenberg SqAF (Fig. 1). Previous bulk characteriza-
tions and powder neutron diffraction studies have identi-
fied the onset of long-range order below the Néel temper-
ature TN =3.75K [25, 35]. Neutron diffraction data fur-
ther revealed a Néel-type spin configuration for each V4+

square-lattice layer, with interlayer alignment being fer-
romagnetic; see Fig. 1(b) [25]. The magnetic moments of
V4+ ions are oriented along the c-axis. The elastic com-
ponent (−0.1meV < E < 0.1meV for Ei = 3.32meV
neutrons) of our powder INS data reveals a (100) mag-
netic Bragg peak for T < 3.8K [Fig. 1(d)], consistent
with previous studies [25].

The magnetism of ZVPO can be described by the
minimal spin model

Ĥ = J1
∑

<i,j>1

Ŝi · Ŝj + J2
∑

<i,j>2

Ŝi · Ŝj

+ Jc
∑

<i,j>c

Ŝi · Ŝj , (1)

where Jn and Jc denote the nth-neighbor intralayer and
first-neighbor interlayer coupling strengths, respectively
[see Fig. 1(b)]. The known magnetic structure of ZVPO
dictates that Jc must be negative (i.e., ferromagnetic)
and J2 should be less than 0.4J1 [36]. Prior quantitative
estimation of the J1 and J2 parameters, based on fit-
ting the temperature-dependent magnetization data to
high-temperature series expansion (HTSE) predictions,
yielded J1 = 0.682meV and J2 = 0.025J1 [35]. Also, the
isotropy of the spin Hamiltonian [Eq. (1)] is supported
by the observation of gapless Goldstone modes in ZVPO,
even though a tiny Ising-type XXZ anisotropy is antici-
pated from the spin configuration parallel to the c-axis;
see the Supplemental Material [22]. Thus, ZVPO can
be considered a nearly ideal S = 1/2 nearest-neighbor
Heisenberg SqAF, as also confirmed by the analysis pre-
sented in this work (Fig. 2).

The investigation of the spin dynamics in the predom-
inantly classical regime (T ≫TN), when based on the
analysis protocol suggested in this work (see the Sup-
plemental Material [22]), allows for credible estimation
of the exchange parameters through LLD (Fig. 2). No-
tably, simultaneous analysis of the energy-resolved exci-
tation spectra measured at various temperatures provides
enough information to determine multiple exchange pa-
rameters. The optimal values of J1, J2, and Jc were iden-
tified by finding the minimum of the reduced chi-square
χ2
r(J1, J2, Jc) between the three measured [Figs. 2(a)-(c)]

and calculated [Figs. 2(a)-(f)] dynamical susceptibility
maps χ′′(|q|, E) [22]. The agreement between the data
and the best fit is exceptional, as evident in the energy-
dependent profile of χ′′(|q|, E) shown in Fig. 2(g).

The minimal χ2
r is found for J1 = 0.695(15)meV, J2 =

0.0(1)J1, and Jc = -0.07(+7,-20)J1, with the uncertain-
ties derived from the increase in χ2

r of 1. The uncertainty
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FIG. 3. Comparison between the INS data and the LLD simulations at low temperatures. (a)-(d) Measured and simulated
χ′′(|q|, E) maps at T =0.5TN. Compared to the LLD result in (b), the result in (c) further involves the quantum renormalization
factor Zc > 1, as explained in the main text. (e)-(g) Full temperature evolution of the magnetic excitation spectrum plotted
via the dynamical susceptibility χ′′(|q|, E), demonstrating the excellence of the LLD approach in capturing the spin dynamics
above TN and visualizing the transition from quantum to classical spin dynamics. Orange solid (blue dashed) lines are the LLD
simulation results with (without) the quantum renormalization factor Zc.

in Jc is asymmetric along its positive and negative direc-
tions, thus both values are noted. While these results
closely align with the J1 and J2 values derived from the
HTSE analysis of thermodynamic measurements [35], our
analysis indicates more clearly that J2 is negligible [Figs.
2(h)–(i)]. Also, it points towards a more accurate model
that incorporates finite Jc (< 0), an essential element for
understanding TN in the S = 1/2 SqAF and the ferro-
magnetic spin configuration along the c-axis [Fig. 1(b)].
While the χ2

r metric indicates non-zero Jc, its relatively
minor impact on the excitation spectra in Figs. 2(a)-(c)
results in a significant uncertainty [Fig. 2(i)]. Never-
theless, the obtained Jc = -0.07J1 is well corroborated
by our analysis of the T ≪TN data represented fully by
a spin-wave spectrum, which exhibits a unique feature
that enables more precise quantification of Jc (see the
Supplemental Material [22]). The credibility of the fitted
parameters is also evident in the consistency between the
measured and calculated temperature dependence of the
magnetic susceptibility [Fig. 1(c)], the latter derived from
classical Monte-Carlo simulations with the spin length
normalized to

√
S(S + 1) [22].

Based on the exchange parameters derived in the clas-
sical regime (T ≫TN), we extend our analysis to lower
temperatures where sizable quantum effects on the spin
dynamics are expected. Specifically, we present a com-
prehensive overview of the temperature effects based on
the measured excitation spectra and LLD simulation re-
sults at 20 different temperatures ranging from 0.50TN

and 2.67TN. It is important to emphasize that the sim-
ulations are all based on the same exchange parame-

ters obtained from the classical regime at T ≫TN. We
initially compare results from the lowest temperature
(T = 0.50TN) with minimal thermal fluctuations; see
Figs. 3(a)-(b) and 3(d). At such a low temperature, LLD
produces nearly the same spin-wave spectrum as LSWT,
with both methodologies converging on the same result
as the temperature approaches zero [22]. Although the
overall shape of the measured spectrum [Fig. 3(a)] resem-
bles the LLD-generated spectrum [Fig. 3(b)], the match
in terms of the dynamical susceptibility χ′′(|q|, E) is not
as precise as that found in the classical regime, implying
the emergence of quantum effects not captured by the
semi-classical LLD approach.

The primary discrepancy at T = 0.50TN arises from
LLD’s underestimation of the overall magnon energy
scale. This is attributed to the momentum-independent
quantum renormalization factor Zc > 1 of the magnon
energy ℏωq in the Néel-ordered phase of the S = 1/2
Heisenberg SqAF [4, 31, 32],

ℏωq =2J1Zc

√[
1 +

jc
2
(1− γq,c)

]2
− γ2

q,1

≡ 2J̃1

√[
1 +

jc
2
(1− γq,c)

]2
− γ2

q,1, (2)

where jc = |Jc|/J1 (with J1 > 0 and Jc < 0), while
γq,1 = 1

4

∑
δ1
cos(q · δ1) and γq,c = 1

2

∑
δc
cos(q · δc) in

terms of the intralayer and interlayer bond vectors δ1 and
δc. Typically, Zc is incorporated into J1 by defining an
effective coupling strength J̃1, as in the second line of
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Eq. (2). This is because analyzing the spin-wave spec-

trum only reveals the value of J̃1 = ZcJ1, leaving J1 itself
ambiguous unless the theoretical value of Zc is utilized
[28]. However, by first analyzing the classical regime,
T ≫ TN (Fig. 2), our methodology enables direct access
to J1 as the influence of Zc vanishes at sufficiently high
temperatures. Consequently, the magnitude of Zc can
be explicitly visualized through a comparison between
the data [Fig. 3(a)] and the LLD simulations [Fig. 3(b)].

Moreover, assuming that J1 is independent of tem-
perature (which is mostly true unless a system under-
goes a structural phase transition), Zc can be experimen-
tally quantified by matching the energy scale of the LLD
simulation to the observed spin-wave spectrum. For in-
stance, as shown in Fig. 3(d), J̃1 ∼ 1.2J1 best describes
the magnon energies measured at T = 0.5TN. Impor-
tantly, this value is consistent with the theoretical result
Zc = 1.18(2) at zero temperature, predicted by spin-wave
theory up to the order of 1/S2 [30] or the series expansion
technique [29]. This validates the high precision of the
exchange parameters derived from our refinement process
in the classical regime (Fig. 2).

Another apparent discrepancy between the data and
the LLD simulation result is the continuum scattering we
observe above the one-magnon spectrum (E > 1.8meV),
as indicated by purple arrows in Figs. 3(a) and 3(d).
Notably, according to Fig. 3(d), the spectral weight of
this continuum scattering is approximately 17% of that
from the one-magnon modes. This continuum is likely
a combination of two-magnon scattering that becomes
most significant at q = (π, π) [|Q| = 0.71 Å in Fig. 3(a)]
[4, 31, 32] and fractionalized quasi-particles that domi-
nate the spectrum around q = (π, 0) [|Q| = 0.50 or 1.12 Å
in Fig. 3(a)] [8, 9]. A comparison between the observed
continuum signal and the theoretical dynamical structure
factor of the two-magnon continuum is presented in the
Supplemental Material [22].

Expanding the analysis to higher temperatures (T >
0.5TN) yields a complete temperature-dependent profile
of Zc(T ) and the continuum scattering. Figs. 3(e)-(g)
show the measured energy dependence of χ′′(|q|, E), with
|q| integrated from 0.55 Å−1 to 1.5 Å−1, and the corre-
sponding LLD simulations with (orange solid lines) and
without (blue dashed lines) the best-fitted Zc(T ) for each
temperature. We again emphasize that the calculations
in Figs. 3(e)-(g) are all based on the same set of ex-
change parameters. The dashed lines are derived by ap-
plying an individual multiplicative scaling factor of χ′′

for each temperature, whereas the solid lines are ob-
tained by fitting both the multiplicative scaling factor
and the Zc parameter for each temperature. For selected
temperatures, a detailed comparison of the energy- and
momentum-resolved spectra is available in the Supple-
mental Material [22]. As long as the excitation energies
are appropriately rescaled by the temperature-dependent
but momentum-independent Zc(T ), a good agreement is
found for temperatures down to about 1.1TN [Figs. 3(f)-
(g)]. This illustrates LLD’s capability to model the spin

1  

1.1

1.2

1.3

F
itt

ed
 Z

c(T
)

0  

0.1

0.2

I co
nt

 (
ar

b.
 u

ni
ts

)

1 5 10 20

T/T
N

0   

0.03

I (1
00

) (
ar

b.
 u

ni
ts

)

Data
LLD

Z
c
(T = 0), theory

3D LRO 2D SRO

1.8 < E < 2.8 (meV)

T
N

 = 3.75 K

(a)

(b)

(c)

FIG. 4. Temperature dependence of the quantum effects
in the spin dynamics of ZVPO. (a) Temperature-dependent
quantum renormalization factor Zc(T ), obtained by dividing

the optimal J̃1(T ) at each temperature with J1 = 0.695meV.
Two arrows on the top indicate the ranges with 3D long-
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Temperature-dependent intensity of the quantum continuum
(Icont), obtained by integrating the remnant intensities under-
estimated by LLD [orange solid lines in Figs. 3(e)-(g)] above
1.8 meV. (c) Temperature-dependent intensity of the (100)
magnetic Bragg peak. The data (open circles) are the same
as the inset of Fig. 1(d). Note that the reduced temperature
T/TN is plotted in a logarithmic scale for better presentation.

dynamics of the S = 1/2 Heisenberg SqAF above TN.

The resultant Zc(T ) is shown in Fig. 4(a). As ex-
pected, Zc(T ) converges towards 1.18 for T ≪ TN and
approaches 1 in the high-temperature regime (T ≫ TN).
Interestingly, however, the behavior of Zc(T ) in the in-
termediate temperature range defies a simple, monotonic
progression from Zc(T = 0) = 1.18 to Zc(T ≫TN) = 1.
Instead, Zc(T ) gradually increases as T approaches TN

and reaches its maximum between TN and the tempera-
ture of maximum susceptibility, Tmax ∼ 1.6TN, similar to
the trend observed in the temperature-dependent mag-
netization [Fig. 1(c)]. Nevertheless, we caution against
over-interpreting this finding due to one limitation of our
current LLD model: it relies on Boltzmann statistics to
model thermal fluctuations, which likely results in an
overestimation of thermal fluctuations around TN [17].
Such an overestimation becomes apparent when compar-
ing the measured and calculated intensities of the mag-
netic (100) peak [Fig. 4(c)], the latter of which was ob-
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tained from LLD simulations. As this would lead to the
underestimation of excitation energies around T =TN,
the unusual behavior of Zc(T ) near TN may blend the
actual quantum renormalization effect with adjustments
for overestimated thermal fluctuations. Thus, accessing
the true nature of Zc(T ) around TN first requires disen-
tangling these two factors, which we leave as a future
challenge. It can be potentially achieved by refining the
current LLD approach to better follow the Bose-Einstein
statistics, as suggested in Refs. [17, 37].

Analyzing the temperature dependence of the con-
tinuum scattering also reveals important insights. First
of all, it is crucial to recognize that thermal fluctua-
tions already induce a continuum-like signal above the
one-magnon bands at sufficiently high temperatures (re-
ferred to as a “thermal” continuum), as evident from the
LLD simulation results shown in Figs. 3(e)-(f). Thus, the
“quantum” continuum, resulting from two-magnon scat-
tering and fractionalized quasi-particles, must be distin-
guished by isolating the spectral weight not captured by
the semi-classical LLD simulations. Indeed, LLD consis-
tently underestimates χ′′(|q|, E) above the one-magnon
band (E > 1.8meV) for T below approximately 1.1TN

[see Figs. 3(d)-(f)]. Figure 4(b) shows the integral of un-
derestimated χ′′(|q|, E) above 1.8 meV at each temper-
ature, exhibiting a similar trend to the magnetic Bragg
peak intensity [Fig. 4(c)]. In other words, the emergence
of the quantum continuum is marginal above TN, imply-
ing its relevance to the formation of 3D long-range order.
Conversely, the regime characterized by 2D short-range
correlations (around Tmax) is still well described by semi-
classical LLD simulations. For completeness, however,
additional examination using S = 1/2 SqAFs with sig-
nificantly weaker Jc (e.g., cuprates [28]) is required since
the observed temperature dependence might have been
affected by the non-negligible strength of Jc in ZVPO

(5 ∼ 7% of J1).

The comparative analysis of temperature dependence
presented in this study demonstrates the proficiency of
LLD in both accurately determining the spin Hamilto-
nian of quantum antiferromagnets and visualizing the
quantum-to-classical crossover in their spin dynamics.
Specifically, the remarkable agreement between the ex-
perimental data and the LLD simulations above TN en-
courages the extension of this approach to more chal-
lenging S = 1/2 systems with much stronger quantum
fluctuations, in which the excitation spectra below TN are
expected to have larger deviations from predictions based
on conventional spin-wave theory. Low-dimensional frus-
trated magnets, such as the S = 1/2 triangular lattice
antiferromagnet [2, 10] or the S = 1/2 honeycomb anti-
ferromagnet proximate to the suggested Kitaev spin liq-
uid phase [12], stand out as promising examples, as also
suggested in another recent theoretical study [38]. Our
findings highlight the potential of LLD in exploring the
dynamics of systems at the forefront of quantum mag-
netism research.
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