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Abstract

The increasing complexity of Artificial Intelligence models
poses challenges to interpretability, particularly in healthcare
sector. This study investigates the impact of the deep learn-
ing models complexity and Explainable Al (XAI) efficacy,
utilizing four ResNet architectures (ResNet-18, 34, 50, 101).
Through methodical experimentation on 4,369 lung X-ray
images of COVID-19-infected and healthy patients, the re-
search evaluates models’ classification performance and the
relevance of corresponding XAl explanations with respect to
the ground-truth disease masks. Results indicate that the in-
crease in model complexity is associated with the decrease
in classification accuracy and AUC-ROC scores (ResNet-18:
98.4%, 0.997, ResNet-101: 95.9%, 0.988). Notably, in eleven
out of twelve statistical tests performed, no statistically sig-
nificant differences occurred between XAl quantitative met-
rics - Relevance Rank Accuracy and proposed Positive At-
tribution Ratio - across trained models. These results suggest
that increased model complexity does not consistently lead to
higher performance or the relevance of explanations of mod-
els’ decision-making processes.

Introduction

Deep Neural Networks (DNNs) have garnered substantial
success across diverse domains of Artificial Intelligence
(AI) applications. Nonetheless, the opacity of their decision-
making processes presents considerable challenges, partic-
ularly in sensitive sectors such as healthcare where trans-
parency is essential [[1, 2} 3]]. Efforts to reconcile the trade-
off between model’s accuracy and interpretability have led
to the development of methods to trace predictions back to
input features, enhancing model transparency [4} 15} 16} [7]].

In the medical domain, the demand for interpretable mod-
els is heightened due to the life-or-death implications of de-
cisions made [8}9]]. Despite the intrinsic complexity of accu-
rate machine learning models, medical experts require com-
prehensible insights into how specific features influence pre-
dictions [10L [11].

Artificial neural networks, particularly DNNs, are de-
signed to emulate the complexity of biological systems, re-
sulting in architectures that are not inherently transparent,
thus casting these models as “black-box” devices [12} |13}

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

14]. Consequently, enhancing model explainability is a key
factor influencing the adoption of machine learning models
in sensitive applications [15].

Interpretable and Explainable Al

The fields of Interpretable Machine Learning (IML) and Ex-
plainable Artificial Intelligence (XAI) have risen in response
to the need for transparency in deep learning models, at-
tracting significant attention in machine learning research
[L3} [16} [17]. Interpretability is defined by the ability of a
machine learning system to make its processes and deci-
sions understandable to humans. The quality of these ex-
planations is crucial for model evaluation, validation, and
debugging, and it’s evaluated on the clarity of the model’s
decision-making process, not merely on prediction accuracy
(18]

Interpretability is examined from two perspectives: global
and local. Global interpretability provides an overarching
understanding of the model’s functioning and decision pat-
terns, while local interpretability focuses on the specific ra-
tionale behind individual predictions. Both levels of inter-
pretability are essential, serving varied purposes from en-
hancing scientific understanding to identifying biases and
substantiating individual decisions [[19}[7]].

The challenge of explaining how neural networks arrive at
their predictions is central to XA, where the goal is to map
and quantify the influence of each input feature on the fi-
nal decision. This is particularly valuable in medical settings
where healthcare professionals benefit from understanding
the model’s reasoning [20| [18]. Despite their capabilities,
many machine learning models remain opaque, acting as
“black boxes” without revealing the underlying logic guid-
ing their decisions.

The attribution of a deep network’s predictions to its in-
put features has been identified as a fundamental challenge
[S]. This attribution is represented as a vector, quantifying
each input feature’s contribution to the network’s prediction,
thereby clarifying the decision-making process, particularly
beneficial for clinical experts in understanding the strengths
and limitations of the model [20, [18]].

Techniques such as DeepLIFT [21], Layerwise Relevance
Propagation [22], LIME [13]], and Integrated Gradients [J]
have been developed to unravel these decisions, breaking
down the contributions of individual neurons to input fea-



tures and thus advancing model interpretability. Moreover,
in the GradientShap methodology, SHAP values (SHapley
Additive exPlanations), have been adopted to attribute im-
portance to each feature in a prediction, grounded in coop-
erative game theory, enhancing the interpretability of model
features [23l14].

Further refinements in interpretability methods, such as
sensitivity and saliency maps, highlight influential image re-
gions. Methods such as SmoothGrad and NoiseGrad have
improved these techniques, reducing visual noise and inte-
grating stochastic elements into models, improving both lo-
cal and global interpretive clarity (24} 25]).

Evaluating feature significance within Explainable Al is
essential for model optimization and establishing trust in
model predictions [26]. Challenges arise from the lack of
universally accepted interpretability standards and the com-
plexity involved in selecting and configuring appropriate in-
terpretability methods [27} [6]].

Evaluating feature significance often involves analyzing
the effects of feature removal on model performance. This
method, while effective, can alter the evaluation data distri-
bution and thus potentially compromise the assessment’s va-
lidity [22,15]. With the growing necessity for transparent Al,
objective and reproducible evaluation metrics are increas-
ingly important [13]]. One of the comprehensive frameworks
for assessing the quality of the model explanations is Quan-
tus [28]]. This framework provides a comprehensive set of
tools for accurate assessment of explanations and follows a
transparent and impartial validation process for various XAl
methodologies.

Al and XAI in Medicine

The integration of Al into healthcare is a strategic initiative
aimed at personalizing patient treatment by harnessing the
analytical prowess of Al to process and interpret large-scale
clinical datasets [29,9]]. Deep learning architectures, capable
of sifting through extensive data such as hundreds of thou-
sands of labelled X-ray images, are particularly instrumental
in this shift from traditional rule-based diagnostics to a more
nuanced, data-driven approach. This transition necessitates a
framework within which the complex outputs of these mod-
els can be understood and trusted by medical professionals,
a need met by the emerging field of Explainable AT [30} 8].

XAI in medicine not only aims to unravel the decision-
making processes of deep learning models but also strives
to validate the reliability of Al-supported recommendations.
The overarching goal is to establish a symbiotic relationship
where Al systems are not merely tools for data extrapolation
but partners in clinical decision-making, providing transpar-
ent and interpretable explanations that foster trust and facil-
itate informed medical judgments [31} |10} 32].

Al carries transformative economic implications, neces-
sitating a balance between peak performance and opera-
tional efficiency [29, 132, |9]. The deepening of neural net-
works, while advancing capabilities, approaches a threshold
beyond which additional layers yield minimal performance
gains, as identified by [33]] and [34]. Contemporary advance-
ments in complex architectural designs, such as Generative
Pre-trained Transformers (GPT), have brought to the fore

the significant financial and environmental costs inherent in
the training processes. This development necessitates a judi-
cious equilibrium between the advantages conferred by Al
and the consumption of resources it entails [35} 36].

In healthcare, the role of Al is especially important as it
offers the dual benefits of cost reduction and enhanced pa-
tient care. However, the adoption of Al must consider not
just technological prowess but also the practicalities of ap-
plication [37, 138]]. This balance is essential in ensuring that
Al’s integration into healthcare remains both efficient and
beneficial, providing clear, interpretable outcomes that align
with the overarching goals of medical practice.

The COVID-19 pandemic has accelerated the application
of deep learning computer vision models in medical diag-
nostics, as the disease can be identified on the X-ray images
of infected patients’ lungs. [39, 40, 41]]. Studies utilizing
Residual Networks (ResNets) architectures [42] on COVID-
19 datasets have yielded promising results, underscoring the
potential of deep learning in aiding pandemic response [43]].
Furthermore, the use of saliency maps in medical image seg-
mentation has provided visual explanations that enhance the
interpretability of model predictions, essential for medical
diagnostics [44].

Influence of Model Scale on Performance and XAI
Evaluations

In the field of machine learning, there is a common hypoth-
esis that an increase in model capacity should correlate with
enhanced training efficacy [45]. Nonetheless, this correla-
tion is not absolute, as studies have shown variable perfor-
mance benefits with the scaling of model complexity, partic-
ularly in ResNet architectures [46,|33]]. While deeper neural
networks such as ResNet-50, which is a 50-layer Convolu-
tional Neural Network (CNN), have demonstrated improve-
ments in specific tasks, these models do not universally out-
perform across all scenarios, with instances where less com-
plex models like ResNet-18, an 18-layer CNN, match or ex-
ceed the accuracy of their larger counterparts [47, 48].

The concept of diminishing returns becomes evident as
network complexity increases beyond a certain threshold,
resulting in marginal performance enhancements that do
not justify the additional complexity [45] 133]. In particular,
ResNet-18 has been noted for its competitive performance
against more elaborate models in certain classification tasks,
prompting a reevaluation of the efficacy of scaling up net-
work depth [49]. These observations underscore the imper-
ative for a strategic approach in model selection that weighs
computational efficiency against the specific performance
requirements of the given task, thereby optimizing the bal-
ance between model architecture size and functional output.

To the best of our knowledge, no previous research has
explored the relationship between the complexity of deep
learning model architectures and the quality of XAI expla-
nations. Our study is the first to address the problem in the
literature by conducting experiments to investigate this rela-
tionship. In sectors where transparency is paramount, such
as healthcare, understanding how architectural complexities
affect both the model performance and the quality of XAI
explanations is crucial. By conducting methodical experi-



ments, this study aims to gain in-depth insight into the re-
lationship between the complexity of deep learning models
and the greatest possible interpretability, ultimately aiming
to increase the accuracy and reliability of XAl explanations.
Therefore, this study proposed two hypotheses.

Hypothesis 1: As the model’s complexity increases, char-
acterized by a greater number of trainable parameters, it ex-
hibits better classification performance.

Hypothesis 2: As the model’s complexity increases, char-
acterized by a greater number of trainable parameters, XAl
assessment indicators are anticipated to yield inferior re-
sults, indicating an increased challenge in explaining the un-
derlying decision-making process.

Methodology

To answer the underlying question, of whether more com-
plex architectures provide better explainability in image
classification tasks, in the conducted research the same
workflow was employed for all of the trained ResNet mod-
els (ResNet-18, ResNet-34, ResNet-50, and ResNet-101).
Initially, each ResNet model was trained from scratch, uti-
lizing a consistent subset of randomly assigned images and
model hyper-parameters to ensure equitable training condi-
tions across all architectures.

After the training phase, a focused exploration into model
explainability was undertaken by generating XAI explana-
tions for each trained model, employing the Quantus library
[28]. Three XAI methodologies were leveraged: Saliency
Maps [, 13]], GradientShap [4]], and Integrated Gradients [S]],
each providing distinct perspectives into model decision-
making processes.

The derived explanations were then subjected to a quan-
titative evaluation utilizing two pertinent metrics: Relevance
Rank Accuracy [6] and proposed in this paper Positive At-
tribution Ratio, providing insightful revelations regarding
the reliability and interpretability of the explanations prop-
agated by each model. Having this approach, the following
experiment provides a clear evaluation of the models’ be-
haviour in the conducted image classification task.

Data

The dataset used in the following experiment was the
COVID-QU-Ex dataset formulated by researchers from
Qatar University and the University of Dhaka, which is a
collection of the X-ray lung images obtained from vari-
ous resources [50]. The dataset contains three groups of
X-rays: COVID-19 pneumonia, other diseases (non-covid),
and healthy patients’ lungs. For the X-rays from COVID-
QU-EX, corresponding ground-truth masks from the QaTa-
COV19 dataset were used. QaTa-COV19 dataset was de-
veloped by Qatar University and Tampere University which
provides binary segmentation masks of COVID-19 pneumo-
nia [31].

For the following experiment, 4,369 X-ray lung images
of different patients and corresponding ground truth masks
were used. 2,913 images labelled as COVID-19 infected and
1,456 as Healthy, non-infected patients. For training, valida-
tion and testing, X-ray images were randomly split on 70%,
20%, and 10% dataset fractions respectively.
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Figure 1: Residual learning: a building block.
Source: Own preparation based on [42].

Before training, all the images were resized to the size of
224x224 pixels, turned into grayscale, transformed into ten-
sors, and normalized. Transformations were done with the
use of PyTorch’s Torchvision library [52].

Models

In our experiment four ResNets architectures were explored,
each distinguished by its depth: ResNet-18, ResNet-34,
ResNet-50, and ResNet-101, where the suffix indicates the
respective number of layers in the CNN models [42]. Recog-
nized for effectively addressing challenges in training deep
networks for image classification tasks, these architectures
were selected to probe the relationship between network
depth and performance. Figure (1| shows a building block
containing the residual connection that provides an iden-
tity input to every other layer, which became a state-of-the-
art building block of deep learning architectures. Figure [3]
presents a ResNet-34 architecture in comparison with plain
34-layer deep learning architecture [42]. We did not consider
using pre-trained ResNet models because they are primarily
trained on the ImageNet [53] dataset, which consists of nat-
ural images. These are significantly different from medical
lung X-ray images, and hence would not improve the per-
formance of medical image classification [54]]. Additionally,
we did not use the CheXNet [55] pre-trained model, which
was trained on over 100,000 frontal-view X-ray images with
14 diseases, because it is a fixed-size model that bases on
DenseNet-121 [56], and there is no possibility to compare
the XAI explanations to other CheXNet models, since there
are no other pre-trained CheXNet models that base on a dif-
ferent number of DenseNet layers.

Baseline performance was established using ResNet-18
and ResNet-34, which were chosen for their balance of
predictive power and computational efficiency. In contrast,
ResNet-50 and ResNet-101 were scrutinized for potential
accuracy improvements, despite their increased computa-
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Figure 2: Comprehensive Workflow Schema of the Research Methodology. The abbreviations RRA and PAR stand for Rele-
vance Rank Accuracy and Positive Attribution Ratio, respectively. Note that the model representation is illustrative and may
not precisely reflect the original and specific number and type of layers of each model.

Source: Own preparation.

tional costs. A uniform training and testing process was ap-
plied to all models to ensure a fair comparison, and the trade-
offs between model size, computational demand, and predic-
tive accuracy were elucidated in the context of our research.

In Table [T} the number of trainable parameters for all
ResNet models is presented. Each consequent ResNet model
has approximately double the number of the trainable pa-
rameters of the former model.

Model Training Setup

In our research all ResNet architectures were trained from
scratch for the image classification tasks. From the origi-
nal dataset, the X-rays labelled as other diseases (non-covid)
were excluded, leaving a dataset categorized into two label
groups: COVID-19 and healthy. Under the aforementioned
approach, all models conducted binary classification tasks.

Number of
Model Trainable Parameters
ResNet-18 6,139,842
ResNet-34 12,329,218
ResNet-50 23,532,418
ResNet-101 42,550,658

Table 1: Number of Trainable Parameters in ResNet Models.
Source: Own calculations.

A concerted approach was employed to ensure the co-
herent training, validation, and testing of all models, with
the images being randomly partitioned into respective sub-
groups comprising 70%, 20%, and 10% of the data that con-
tained in total 4,369 images subdivided into 2,913 and 1,456
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Figure 3: Computer Vision network architectures. Left: 34-
layer plain network. Right: 34-layer residual network. Dot-
ted lines represent dimension-expanding connections.
Source: Own preparation based on [42].

images of COVID-19 and healthy groups respectively.

The models were developed using the PyTorch library
[57] and utilized a Cross-Entropy Loss criterion. This crite-
rion computes the cross-entropy loss between predicted and
target class labels, facilitating the models’ learning from the
logits.

The optimization of the model parameters was under-
taken using Stochastic Gradient Descent [S8]] with a learn-
ing rate and momentum of 0.001 and 0.9, respectively. All
models were subjected to the training for 50 epochs, with a
batch size of 64, to gauge their efficacy in distinguishing
between the defined label groups under consistent hyper-
parameter settings [59]. Although each model was trained
for 50 epochs, the final evaluation on the test set was con-
ducted using the best-performing model checkpoint, which
was selected based on the lowest validation loss encountered
during the training process.

Ensuring experimental reproducibility and consistency
across all training sessions, the random seeds for PyTorch
and NumPy were fixed at a value of 42 [60].

All model training sessions and subsequent Explainable
Al analyses were conducted utilizing the Nvidia A100 GPU
with 40 GB of RAM capacity.

Gradient-based Techniques

In the field of machine and deep learning, gradients are de-
fined as the rate of change of the output with respect to
the input and are acknowledged for their importance in the
model’s optimization. Formerly, the product of model coef-
ficients with feature values has been examined by practition-
ers to interpret simpler, usually linear models. In deep neural
networks, gradients are perceived as intrinsic coefficients,
signifying the intricate connection between input and output
[2} 3]. With advancements in research, gradient-based tech-
niques have been introduced in the field of XAlI, enabling a
more profound interpretation of model behaviour and given
prediction.

In this section, three gradient-based methods are outlined,
specifically Saliency Maps [1} |2, 3], GradientShap [4], and
Integrated Gradients [5]. In the Saliency Maps method, the
derivative of the class score with respect to the input image
is calculated, identifying pixels that, when slightly altered,
are found to have the most significant influence on the class
score. Subsequently, the GradientShap method synthesizes
Shapley values and gradients, further enhancing the under-
standing of model predictions. Lastly, the Integrated Gradi-
ents method is presented, wherein the path integration be-
tween input and output is detailed, providing a comprehen-
sive attribution explanation.

A comprehensive examination of these gradient-based
methodologies is undertaken in this chapter, highlighting
their roles in augmenting the interpretability and trans-
parency of deep neural architectures.

X-rays of both healthy and COVID-19-infected lungs,
along with their respective ground-truth masks and pixel at-
tribution maps, are presented in Figure 4 and Figure [5]

Saliency Maps One of the pioneering methodologies in
the field of XAI is denoted as saliency maps |1, 3], which
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Source: Own preparation.

delineates the significance of specific components, such as
pixels on the image, concerning the observed empirical re-
lationships.

Given the inherent nonlinearity of the models with com-
plex architecture, straightforward interpretations become
elusive [3]. In this context, the saliency maps serve as an
instrumental visualization mechanism, highlighting regions
within the image that exhibit strong correlations to dis-
tinct tasks. By employing this technique, a transition from
the high-dimensional input data space to a substantially re-
duced vector of projections is facilitated. This process inher-
ently involves profound weight sharing, underlined by asso-
ciations amongst weights interfacing the input and hidden
layers of the feed-forward neural network architecture, as
CNNs are. The saliency attributed to an input channel (for
instance, the pixel ¢ of an image vector) is quantified by the
noticeable alteration in the cost function upon its exclusion.

In the research presented in Deep Inside Convolutional
Networks: Visualising Image Classification Models and
Saliency Maps [3]], a gradient-based technique was intro-
duced to compute an image-specific class saliency map, tai-
lored to a distinct image and class combination. This method
was harnessed using classification ConvNets and was de-
signed to identify and highlight the spatial significance of
a specific class within a given image. Essentially, for a given
image Iy and its associated class c, the pixels of Iy were
ranked based on their impact on the class score S.(lp).
Given the intricate non-linearity of deep ConvNets, the class
score S.(I) was approximated linearly in the vicinity of

Iy using the first-order Taylor expansion. Through this ap-
proach, pixels that could be altered minimally to most influ-
ence the class score were explained.

The procedure involved first determining the derivative w
via back-propagation. Subsequently, the saliency map was
extracted by reorganizing the components of vector w. For
grey-scale images, the dimensions of w were found to align
with the pixel count of I, allowing for the map’s computa-
tion as M;; = |wp(; )|, where h(i, j) denoted the index of
w that corresponded to the pixel situated in the i-th row and
j-th column. Notably, this saliency map derivation utilized a
classification ConvNet, trained exclusively on image labels,
thereby eliminating the need for supplemental annotations,
such as bounding boxes or segmentation masks.

To address the problem of accuracy-interpretability trade-
off, [4]] proposed an explanation framework named SHAP
- SHapley Additive exPlanations. SHAP undertakes the
model’s feature interpretability on the concept from coop-
erative game theory [23] by allocating an importance value
to each feature for a specific prediction.

In research on model interpretability, it is commonly ad-
dressed that a simple model acts naturally as its own best ex-
planation, eliminating the need for additional clarifications
[4]. However, for complex models like deep neural network
architectures, the original model is not interpretable by its
nature. Thus, a more straightforward, interpretable model
approximation or the explanation model is needed. Consider
denoting the original model as f and the explanation model
as g. Explanation models typically employ simplified inputs,



x¢, which correlate to the original inputs via a transforma-
tion function, x = h;(zp). The objective of local methods
is to ensure that g(zo) closely mirrors f(h,(zo)) whenever
2o 18 akin to xg.

Shapley Values In the field of cooperative game theory,
the Shapley value is a fundamental mechanism designed to
equitably allocate gains and costs among various partici-
pants within a coalition [23]. This concept, originally for-
mulated by Lloyd Shapley, becomes indispensable in sce-
narios where distinct actors contribute unequally yet collab-
orate towards a shared objective. The central premise of the
Shapley value is to guarantee that each participant receives
a payoff commensurate with their contribution, ensuring it
is not less than what they would achieve independently. To
clarify, within a strategic game involving multiple players
aiming for a specific outcome, the Shapley value quantifies
the average marginal contribution of each player, after con-
sidering all feasible combinations.

In a machine learning framework, the traditional players
of the cooperative game are analogously represented by the
features inherent to the machine learning model, with the
model’s output serving as a corollary to the game’s payoff
[61]. Shapley values offer a perspective on feature impor-
tance within linear models, particularly when multicollinear-
ity is present. The application of this method necessitates the
retraining of the model for all feature subsets S C F', where
F denotes the complete set of features. Each feature has as-
signed an importance value, representing its impact on the
model prediction when included. To determine this impact,
one model, f SU{i}s incorporates the particular feature, while
the other, fg, excludes it. The predictions of these two mod-
els are subsequently contrasted based on the current input:
Fsugiy(sugiy) — fs(zs), wherein 25 symbolizes the val-
ues of the input features contained within set .S. Given that
the ramifications of omitting a feature are influenced by the
model’s other features, the aforementioned differences are
evaluated across all feasible subsets S C F'\ {i}. Subse-
quent calculations yield the Shapley values, then formally,
the contribution ¢ of model feature ¢ is defined as:

= Y

SCF\{i}

[SIE] = 1S] = 1)!
]!

[fsugiy(Tsugiy)—fs(zs)]

ey

Conceptually, the Shapley value quantifies the average

contribution of a specific feature ¢, by evaluating the incre-

mental payoff introduced by 7 across all possible coalitions
that exclude feature .

SHAP Values SHAP values are proposed as a unified
measure of feature importance, representing the Shapley val-
ues of a conditional expectation function of the original
model [4]. These values are attributed to each feature, re-
flecting the change in the expected model prediction upon
conditioning on that particular feature. The transition from
the base value F[f(z)] — which would have been predicted
in the absence of any known features — to the current output
f(z) is explained by SHAP values.

The unique additive feature importance measure that ad-
heres to several properties is provided by SHAP values.
These properties encompass:

Local accuracy — ensuring that the explanation model
g(zo) corresponds with the original model f(z) when x =
ha(20);

Missingness — where features with x; = 0 are con-
strained to have no attributed impact;

Consistency — which mandates that if a model’s alter-
ation causes a simplified input’s contribution to either in-
crease or remain unchanged irrespective of other inputs, the
attribution of that input should not diminish.

Conditional expectations are utilized to define simplified
inputs within these values. Inherent in the SHAP value defi-
nition is a simplified input mapping, denoted as h,(zo) =
zs, where zg contains missing values for features absent
in set S. Owing to most models’ inability to process ar-
bitrary patterns of missing input values, f(zg) is approxi-
mated with E[f(z)|zs]. This definition of SHAP values is
structured to closely resonate with the foundational Shapley
values [23| 14].

GradientShap GradientShap method estimates SHAP
values by evaluating the gradient expectations, achieved by
random sampling from a baseline distribution. By introduc-
ing white noise to input samples multiple times, it randomly
selects a baseline and an intermediate point between the
baseline and input, then calculates the gradient with respect
to these random points. The resulting SHAP values mirror
the expected values of these gradients multiplied by the dif-
ference between inputs and baselines.

The underlying assumption with GradientShap presumes
that input features are independent and the explanation
model is linear, indicating that the interpretations are mod-
elled using the additive composition of feature effects. How-
ever, if the model exhibits non-linearity or the input features
lack independence, the sequence in which features are in-
corporated into the expectation becomes significant. Under
these circumstances, SHAP values are derived by averaging
the Shapley values across all conceivable sequences. Given
these conditions, the SHAP value can be approximated by
the expected gradients computed for randomly generated
samples, after Gaussian noise has been added to each input
across various baselines.

Integrated Gradients The problem addressed in Ax-
iomatic Attribution for Deep Networks publication [5] con-
cerned the issue that many previous gradient base methods
broke at least one of the two axioms that should always
be satisfied in feature attribution methods, namely sensitiv-
ity and implementation invariance axioms. To address this
problem, the Integrated Gradients method was presented.
The Integrated Gradients approach has emerged as a no-
table solution in the field of deep neural network interpreta-
tion. Rooted from an axiomatic framework inspired by eco-
nomics literature, Integrated Gradients seeks to fulfil both
sensitivity and implementation invariance axioms. This en-
sures that the computed attributions are not just artefacts of
the method but genuinely reflect the network’s behaviour

(5]
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Source: Own preparation with the use of Quantus library.

An attribution technique adheres to the sensitivity crite-
rion when, for any input and baseline differing in just one
feature with different predictions, the differing feature re-
ceives a non-zero attribution. consequently, if the deep net-
work’s function exhibits no mathematical dependence on a
particular variable, that variable’s attribution is always zero.
In practical terms, the absence of sensitivity can lead to gra-
dients predominantly concentrating on irrelevant features.

Within the context of neural networks, two architectures
are deemed functionally equivalent when they produce con-
sistent outputs across all given inputs, even if their internal
implementations differ considerably. For attribution tech-
niques, it is essential to adhere to the principle of implemen-
tation invariance. This principle ensures that the attributions
remain consistent for networks that are functionally equiva-
lent, regardless of their distinct structures.

In the Integrated Gradients method, gradients are sys-
tematically integrated between a designated baseline, usu-
ally a black image, and the actual input image. This tech-
nique identifies the presence or absence of distinct features,
thereby highlighting the significance of specific pixels or
features within the contextual framework. It is commonly
called a path-attribution technique [[7]. Critically, Integrated
Gradients is deemed a complete path-attribution approach.
This implies that the cumulative relevance scores across all
input features equate to the disparity between the predic-
tion derived from the actual image and that of the reference

image. In computer vision applications, pixel-wise attribu-
tions are presented, highlighting the areas of an image that
resulted in the model’s decision-making process.

Evaluation Metrics

In the context of machine learning interpretability, ensuring
rigorous evaluation of explanatory heatmaps is crucial for
computer vision models, especially when discerning model
relevance. Therefore, to evaluate all the XAI approaches that
have been used in this research study, Relevance Rank Accu-
racy [l6] and proposed in this paper Positive Attribution Ratio
metrics were used. Since both metrics are calculating the ra-
tios, their values fall within the [0-1] range, with a higher
score signifying a more precise relevance heatmap.

Relevance Rank Accuracy The Relevance Rank Accu-
racy is defined to gauge the degree to which the most pro-
nounced relevance points are aligned with the ground truth.
First, K is determined, representing the size of the ground
truth mask. Then, the top K relevance values are extracted.
Afterwards, the number of these values that correspond to
locations within the ground truth is counted. This count is
subsequently normalized by the dimension of the ground
truth mask. Formally, this procedure can be expressed as:

DK | Rpy >Rp, > ... >Ry} ()

where P, represents the set of pixels, each associated

PtopK = {phan cee



with relevance values R, , Rp,, ..., %), arranged in de-
scending order up to the K'-th pixel. Subsequently, the rank
accuracy is determined as:

|R0pK N GT|

—_— 3
T 3)

where GT represents the set of pixel positions contained

within the ground truth mask, and |GT'| denotes the total
count of pixels within this mask.

Rank Accuracy =

Positive Attribution Ratio The Positive Attribution Ratio
derives its foundation from the Relevance Mass Accuracy
outlined by [6]. Nevertheless, a pivotal distinction exists,
since it solely operates on pixels that possess positive attri-
bution. We believe that for the future end-user, it is more im-
portant to be informed about the ratio of the number of pix-
els that have positive attribution localized inside the ground
truth mask with respect to all positively attributed pixels on
the investigated image.

The Relevance Mass Accuracy is calculated by dividing
the aggregated sum of relevance values located within the
ground truth mask by the total relevance values across the
entire image. Essentially, this metric evaluates the propor-
tion of the explanation method’s “mass” attributed to the
pixels within the ground truth. Positive Attribution Ratio
operates in a similar manner, however, it focuses solely on
pixels with positive attributions. As such, the Positive At-
tribution Ratio indicates the proportion of positive attribu-
tions within the ground truth mask R,,;¢nin With respect to
the positive attributions across the entire image Ry,;q;- This
might be formally represented as:

Ryt
Positive Atribution Ratio = ——20 @)
total
where
|GT|
Ryithin = Z R, VR, >0 5)
St prEGT
and
N
oot = Z Ry, VBp, >0 (6)
k=1

where R, denotes the relevance value corresponding to
pixel py, which has positive relevance attribution, GT encom-
passes pixel locations present within the ground truth mask,
|GT| signifies the count of pixels within this mask, and N
stands for the overall pixel count in the image.

Experiments and Results
Models’ Performance

Performance of the each ResNet models in terms of accu-
racy, AUC-ROC and Cross-Entropy Loss metrics on the sep-
arated test set is presented in Table 2] The ResNet-18 ar-
chitecture achieved the highest accuracy of 98.4% and an
AUC-ROC of 0.997, alongside maintaining the lowest cross-
entropy loss of 0.066, misclassifying only 7 out of 437 X-ray
images in the hold-out test set. Although all models demon-
strated high accuracies and AUC-ROC values exceeding

95.9% and 0.988 respectively, an inverse relationship was
noted between model complexity and performance metrics,
with ResNet-101 registering the lowest accuracy and AUC-
ROC scores in the series. These findings are consistent with
the results reported by [49]].

This evaluation underscores the need to consider the
trade-off between model complexity and predictive perfor-
mance in the selection of suitable deep learning architectures
for image classification.

Model Accuracy AUC-ROC Cross-Entropy
(%) Loss
ResNet-18 98.4 0.997 0.066
ResNet-34 97.3 0.996 0.097
ResNet-50 96.1 0.995 0.168
ResNet-101 95.9 0.988 0.153

Table 2: Performance Metrics of ResNet Models on Test Set.
Source: Own calculations.

Results

The quantitative evaluations of all ResNet architectures, uti-
lizing both the Relevance Rank Accuracy and Positive At-
tribution Ratio metrics, are presented in Table [3]and Table 4]
respectively. These evaluations incorporated the aforemen-
tioned XAI methodologies: Saliency Maps, GradientShap,
and Integrated Gradients. The same interpretative method-
ologies were uniformly implemented across four ResNet
models and evaluated independently on a test set consisting
of 292 X-ray images labelled as COVID-19 class and 145
X-ray images of Healthy class.

In the context of the COVID-19 class, clear fluctua-
tions in performance indicators are evident. For the Rele-
vance Rank Accuracy metric, ResNet-18 registered the high-
est mean score of 0.199 (SD=0.7) when analyzed through
the Saliency Maps approach. Conversely, the application
of GradientShap and Integrated Gradients methodologies
resulted in the highest scores of 0.118 (SD=0.09) and
0.119 (SD=0.09), respectively, which were attributed to the
ResNet-101 architecture.

In the evaluation of the Healthy class, the Relevance
Rank Accuracy metric exposed varying performance paths.
The ResNet-34 architecture, when interfaced with the
Saliency Maps methodology, achieved a mean score of
0.305 (SD=0.05). However, when subjected to the Gra-
dientShap and Integrated Gradients methodologies, mean
scores of 0.249 (SD=0.07) and 0.251 (SD=0.07) were pre-
dominantly associated with ResNet-34 and ResNet-18 archi-
tectures, respectively.

Referring to the Positive Attribution Ratio scores within
the COVID-19 group, ResNet-18 achieved the highest mean
score of 0.186 (SD=0.12) and 0.120 (SD=0.1) within the
Saliency Maps and Integrated Gradients methodologies re-
spectively. ResNet-101 achieved the highest mean score of
0.12 (SD=0.1) in the GradientShap.

For the Healthy class, under the Positive Attribution Ratio
metric, ResNet-34 reached the highest mean score of 0.315
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Figure 6: Average results for relevance rank accuracy
within COVID-19 class.
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Figure 8: Average results for positive attribution ratio
within COVID-19 class.

(8D=0.07) using the Saliency Maps approach. In contrast,
with the GradientShap methodology, ResNet-101 achieved
a mean score of 0.263 (SD=0.09), while ResNet-18 reached
a mean score of 0.253 (SD=0.08) with the Integrated Gradi-
ents approach.

To assess the statistical significance of the differences be-
tween the means obtained from each of the ResNet architec-
tures (18, 34, 50, and 101) for both metrics (Relevance Rank
Accuracy and Positive Attribution Ratio), a procedure of sta-
tistical analyses was performed. These evaluations spanned
across each of the three XAl methodologies (Saliency Maps,
GradientShap, and Integrated Gradients) and were further
separated based on two classes: COVID-19 and Healthy. The
analyses for the COVID-19 subgroup were conducted utiliz-
ing a set of 292 X-ray images, whereas the Healthy class
was assessed based on 145 X-rays. Both subgroups utilized
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Figure 7: Average results for relevance rank accuracy
within healthy class.
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Figure 9: Average results for positive attribution ratio
within healthy class.

images from the test set.

Upon analyzing the undertaken dataset, several obser-
vations emerge. Notably, ResNet-50 did not attain the top
performance in either Relevance Rank Accuracy or Pos-
itive Attribution Ratio metric. Meanwhile, ResNet-18 se-
cured the highest scores in five out of the twelve evaluated
instances. ResNet-101 achieved the highest score in four out
of the twelve instances, and lastly, ResNet-34 secured the
top scores in three of the twelve evaluations.

From the derived observations, it becomes clear that there
is no direct correlation between the size or complexity of
the ResNet model architecture and the resultant performance
metrics like accuracy or AUC-ROC, aligning with the find-
ings reported by [47, 48]). In terms of XAI quantita-
tive metrics results, while ResNet-18 often displayed supe-
rior results, ResNet-50 did not necessarily follow suit, de-



Saliency Gradient Integrated

Saliency Gradient Integrated

Maps Shap Gradients Maps Shap Gradients

Class Model Mean Mean Mean Class Model Mean Mean Mean
(SD)  (SD) (SD) (SD)  (SD) (SD)

ResNet-18  0.199 0116 0.118 ResNet-18  0.186 0117 0.120

0.10)  (0.10) (0.0 0.12)  (0.10)  (0.10)

ResNet-34  0.198  0.117  0.115 ResNet-34  0.185  0.118  0.118

0.10)  (0.10)  (0.10) ©.12)  (0.10)  (0.10)

COVID-19  peeNet-50 0191 0115  0.116 COVID-19  pesNet-50 0182 0116  0.118
©.11) (0.10)  (0.10) ©.12)  (0.10)  (0.10)

ResNet-101  0.175 0118  0.119 ResNet-101  0.169 0120  0.119

0.12) (009  (0.09) ©.13)  (0.10)  (0.10)

ResNet-18 0303 0248 0.251 ResNet-18 0308 0250  0.253

0.05)  (0.07)  (0.07) 0.07)  (0.08)  (0.08)

ResNet-34 0305 0249  0.248 ResNet-34 0315 0255  0.250

0.05)  (0.07)  (0.07) 0.07)  (0.08)  (0.08)

Healthy  p.Net:so 0301 0243 0248 Healthy  p.Net:s0 0304 0242 0245
0.05)  (0.07)  (0.07) 0.07)  (0.07)  (0.07)

ResNet-101 0200 0248  0.249 ResNet-101 0202 0.263 0252

0.06)  (0.08)  (0.07) 0.08)  (0.09  (0.08)

Table 3: Mean and Standard Deviation Scores for Relevance
Rank Accuracy.
Source: Own calculations.

spite its increased complexity. Conversely, in certain scenar-
ios, both ResNet-101 and ResNet-34 demonstrated superior
performances, surpassing the results achieved by ResNet-
50. Hence, it is imperative to understand that the choice
of model architecture should not be solely based on its
size or complexity. The results emphasize the importance of
context-specific evaluations and suggest that in the domain
of explainable Al for medical imaging, no one-size-fits-all
approach is suitable.

Due to the unequal variances among groups, the Kruskal-
Wallis test was used as a non-parametric alternative to the
one-way ANOVA. This method evaluates the differences in
medians across groups while accommodating the potential
non-parametric distribution of the data, thus facilitating the
detection of differences among the medians of the ResNet
models. To clarify these differences, pairwise comparisons
among the four ResNet models were performed using the
Mann-Whitney U test. Considering the risk of type I errors
due to multiple comparisons, the p-values obtained were ad-
justed using the Bonferroni correction method. With this sta-
tistical approach, a clear understanding of performance dis-
parities across distinct model architectures with specific XAl
techniques and image classes was achieved.

The statistical analysis reveals that the sole statistically
significant divergence in medians across the ResNet archi-
tectures, at a threshold of p < 0.05, is discerned within the
Relevance Rank Accuracy metric for the COVID-19 cate-
gory, only for the Saliency Maps methodology (p = 0.02).
An extended analysis using the Mann-Whitney U test ex-
plained the statistically significant difference between the re-
sults for the ResNet-18 and ResNet-101 architectures, with
p = 0.03. Furthermore, a marginal approach to significance

Table 4: Mean and Standard Deviation Scores for Positive
Attribution Ratio.
Source: Own calculations.

within the same group and approach was observed between
the ResNet-34 and ResNet-101 models, registering a p-value
of 0.053.

In contrast, the remaining comparisons failed to evince
any statistical discrepancies across the models, irrespective
of the metric, category, or XAl technique in question. No-
tably, within the Healthy category utilizing Saliency Maps,
there was a boundary approach to statistical significance in
the difference between medians across ResNet models, re-
sulting in p-value of 0.06 for the Positive Attribution Ratio
metrics.

Discussion

It is pertinent to note that the efficacy of interpretative meth-
ods in XAI hinges on their proper configuration [62} [5]]. In-
correct settings can substantially diminish their effective-
ness, as evidenced by past research [27]. Therefore, con-
structing an empirical framework is crucial for validating the
effectiveness and reliability of these methods [26].

In healthcare and finance, users may mistakenly view pre-
dictive model outputs as causal, for instance, interpreting
high saliency metrics as confirmation of specific health con-
ditions. The capability of adversarial attacks to subtly alter
inputs and shift focus from relevant to irrelevant features
poses a significant challenge; such manipulations often go
undetected as they do not change the diagnostic labels [63].
The vulnerability of DNNSs to these adversarial attacks is a
documented concern, casting doubt on the trustworthiness
of their predictive labels |64} 165 166].

The research by [63]] delves into the impact of adversarial
perturbations on the interpretations provided by neural net-
works. The interpretation of a neural network is considered



Metric Class

Methodology

Kruskal-Wallis

Kruskal-Wallis

H-statistics p-value

Saliency Maps 9.79 0.02
Relevance COVID-19 GradientShap 0.62 0.89
Rank Integrated Gradients 1.19 0.76

an
Accuracy Saliency Maps 5.83 0.12
Healthy GradientShap 0.58 0.90
Integrated Gradients 0.20 0.98
Saliency Maps 4.87 0.18
o COVID-19 GradientShap 0.05 1
P031't1ve. Integrated Gradients 0.30 0.96
Attribution

Ratio Saliency Maps 7.37 0.06
Healthy GradientShap 3.90 0.27
Integrated Gradients 0.82 0.84

Table 5: Statistical Test for Differences in Scores Across ResNet-18, ResNet-34, ResNet-50, and ResNet-101 Models.

Note: * indicates statistical significance at the 0.05 level.
Source: Own calculations.

vulnerable if there is a possibility to manipulate an image
without a perceptual difference, maintaining the initial clas-
sification label, while significantly altering the network’s in-
terpretation of that image [63].

Conclusions

The influence of architectural complexity on the perfor-
mance and explainability of ResNet models in medical im-
age classification was investigated in this study. It was found
that models with reduced complexity could deliver perfor-
mance and interpretability comparable to or surpassing that
of their more intricate counterparts. Specifically, architec-
tures such as ResNet-18 were shown to provide effective ac-
curacy and interpretability, challenging the prevailing belief
that increased complexity ensures enhanced efficacy of the
model. This provides grounds for rejecting Hypothesis 1.

Statistical analysis conducted on interpretability metrics
on four ResNet models highlighted a lack of consistent cor-
relation between architectural complexity and the quality of
XAI explanations. The outcomes of this study necessitate a
sensible approach to the selection of deep learning models,
especially for applications that demand high precision and
transparent explanations, such as those prevalent in health-
care. The results suggest that the additional resources re-
quired for more complex architectures, e.g. increased mem-
ory usage, higher financial costs, greater environmental im-
pact, and longer training times, may not be justified, given
that less complex architectures could achieve similar or su-
perior levels of interpretability. This justifies the rejection
of Hypothesis 2.

The study highlights the importance of properly config-
uring XAl methods to prevent misinterpretation of model
predictions and urges for the development of an empirical
framework to establish the reliability of these interpretive
approaches. The conducted research reinforces the princi-
ple of a context-specific selection of neural network archi-
tectures underscoring the importance of both performance

and interpretability, especially in applications within sensi-
tive domains.

Future Work

In consideration of future explorations within the domain
of Explainable Artificial Intelligence and image classifica-
tion, it is crucial to address the growing interest in the Vi-
sion Transformer (ViT) architecture which surpasses the tra-
ditional CNN models in a variety of deep learning tasks
[67.168]. The inherent capacity of Transformers to facilitate
complex, sequential data processing through self-attention
mechanisms posits them as a prime candidate for augment-
ing the interpretability of deep learning models [67]].

Future investigations should strive to establish method-
ological approaches that quantify the effect of Vision Trans-
former complexity on explanation quality. This research
should also extend to examining the capability of Trans-
formers to preserve explainability when processing image
datasets.

Additionally, it is crucial to extend the assessment of
the explainability of Vision Transformers by leveraging
the CheXpert [69] dataset, a comprehensive repository of
224,316 chest X-rays across 65,240 patients. The dataset
encompasses 14 diverse radiological observations, each ac-
companied by annotations that mark uncertain diagnoses,
providing a robust framework for appraising the inter-
pretability of Al in the field of medical image analysis.

Such research endeavours are expected to contribute sig-
nificantly to the development of Al systems that are both
advanced in their operational capabilities and transparent in
their reasoning processes. This balance is essential for build-
ing trust and enabling effective Human-Al interaction, pro-
pelling the field of XAI forward.



Reproducibility
The code utilized for replicating the experimental results is

accessible at https://github.com/mateuszcedro/Beyond-the-
Black-Box.
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