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Abstract—In this work, we present a generalization of the
recently proposed quantum Tanner codes by Leverrier and
Zémor, which contains a construction of asymptotically good
quantum LDPC codes. Quantum Tanner codes have so far been
constructed equivalently from groups, Cayley graphs, or square
complexes constructed from groups. We show how to enlarge this
to group actions on finite sets, Schreier graphs, and a family of
square complexes which is the largest possible in a certain sense.
Furthermore, we discuss how the proposed generalization opens
up the possibility of finding other families of asymptotically good
quantum codes.

I. INTRODUCTION

Quantum computers, which are based on the peculiarities
of quantum mechanics, have been predicted to revolutionize
several computing tasks for a long time, e.g., solving challeng-
ing problems that arise in chemistry and finance. A quantum
computer works by taking advantage of the quantum behavior
of particles, which makes it possible to have superpositions of
states. However, quantum computers are prone to errors due
to the fragile nature of quantum states, in particular when the
number of states grows. The use of quantum error-correction
codes can mitigate the effect of such errors and hence make
it possible to build large-scale quantum computers.

The existence of quantum error-correcting codes was first
established independently by Shor and Steane in the mid-
nineties [1], [2]. CSS codes allowing to build a quantum code
from two classical codes with the requirement that the dual
of one should be contained in the other [3], [4] were intro-
duced shortly after and then followed by quantum stabilizer
codes [5], [6] which are in many ways analogous to classical
linear codes. Since then, protecting quantum information has
received considerable interest, and it was a long-standing
open problem if asymptotically good quantum error-correcting
codes, i.e., codes with a minimum distance growing linearly
with the block length, could exist. This was largely due to
the CSS restriction that made it difficult to directly extend
classical asymptotically good code constructions. This was
settled in a 2022 paper by Panteleev and Kalachev [7]. Sub-
sequently, the construction in [7] was modified and improved
in [8], resulting in a construction with an improved estimate
of the minimum distance growth rate. Independently, very
similar constructions have also answered a long-standing open
question about locally testable classical codes [7], [9]. The
recent renewed interest in quantum error correction has come
due to recent progress in building intermediate-scale quantum
computers with 300-1000 qubits, enough to make them close
to performing some tasks faster than state-of-the-art classical
computers [10].

In this work, we propose a construction of quantum Tanner
codes that can loosely be described as follows. Take two
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Fig. 1. Our construction (green) generalizes the quantum Tanner codes (qTc)
from [8] (brown). We also consider a slightly less general construction (blue),
and in Section III-D we show that there are codes not from our construction
that also reasonably may be called general quantum Tanner codes (red).

regular' graphs on the same vertex set that commute, which
can be thought of as their union having many four cycles. From
the graphs, create a two-dimensional space of squares by filling
in certain of these cycles. This type of space is fittingly called a
square complex. The two diagonals in a square give rise to two
new graphs, and by putting bits on the edges and parity-check
constraints at the vertices of these graphs in a clever way,
we obtain quantum codes. When applied to bipartite double
covers of Cayley graphs, our construction gives the quantum
Tanner codes from [8] (see Proposition 3), illustrated by the
brown region of Fig. 1.

Our main technical result (Theorem 1) gives a necessary and
sufficient condition such that if one starts with a graph where
this clever assignment is possible, then the graph can always
be viewed as the graph of diagonals of a square complex, and
this complex can always be made from commuting graphs.
This condition puts us in the green region of Fig. 1. Such
an assignment may also be possible without this condition, in
which case the resulting codes still could reasonably be called
general quantum Tanner codes. Lemma 2 gives a condition for
this, putting us in the red region of Fig. 1. There is potential
to find other families of asymptotically good codes that do not
come from Cayley graphs. The methods in [11] can likely be
adapted if one, e.g., has a non-Cayley Ramanujan Schreier
graph commuting with a Cayley graph of two Ramanujan
components, as discussed in Section IV. The codes we look
at there are part of the blue region of Fig. 1, a subset of our
codes that are easier to work with (see Section III-B2).

All proofs are omitted due to lack of space.

A. Notation

Vectors are denoted by bold letters, matrices by sans serif
uppercase letters, and sets (and groups) by calligraphic up-
percase letters, e.g., a, A, and A, respectively. The neutral
element of a group will be denoted by 1, while e is reserved
for an edge in a graph. Linear codes, graphs, and square
complexes are denoted by script uppercase letters, e.g., %.

'A graph is called regular if all its vertices have the same degree.



A graph with vertex set )V and edge set £ is denoted by
¢ = (V, ), and may have parallel edges and self-loops unless
stated otherwise. The edges incident to a vertex v is called the
local view of v and denoted £(v). We work with undirected
graphs with an ordering on the edges, and view the graphs
as directed graphs (digraphs) with twice as many edges as
we see fit. The disjoint union of sets 4,8 is denoted by
AUB £ {(a,0),(b,1) : a € A b € B}. A linear code ¢ of
length n, dimension k, and minimum distance d is sometimes
referred to by [n, k,d), and its dual code is denoted €. The
binary field is denoted by F,, the identity matrix of size a by
I, the all-zero matrix (of arbitrary size) by 0, and the transpose
of a matrix by (-)". Standard order notation O(-) is used for
asymptotic results.

II. PRELIMINARIES

We recall some background on particular types of graphs,
their (spectral) expansion, definitions of classical and quantum
error-correcting codes, and the notion of a square complex.

A. Graphs

Definition 1. A labeling n on a digraph (V,E) by elements
of Ais a function n : £ — A. A digraph with a labeling is
called a labeled digraph, and we say it is well labeled if for
every vertex v € V and label a € A there is exactly one edge
starting at v labeled by a and exactly one edge ending in v
labeled by a.

A labeling on the local views of an undirected graph is
equivalent to a labeling on the corresponding digraph. An

edge v - w corresponds to a pair of directed edges v = w,

v <> w, and we use the convention that e has the label of € in
the local view of v and the label of € in the local view of w. We
write s(€) = v = t(€) and t(é) = w = s(€), where “s” and
“t” indicate the source and target vertices of a directed edge,
respectively. For bipartite graphs with vertex set V = Vo LUV,
we let € go from V, to V;. Given a (undirected) graph (V, £),
we write £9 for the edges of the corresponding digraph.

Given a group G, we will call a subset A C G symmetric if
a~te Aforall ac A

Definition 2. Given a group G and a symmetric subset A C G,
the left Cayley graph Cay,(G,A) is the regular graph with
vertex set G and an edge (g,9") if ¢’ = ag for an a € A, in
which case we label the edge by a and a~" in the local view
of g and ¢', respectively.”

Right Cayley graphs Cay, (G, .A) are defined similarly.
Definition 3. A group action of G on V is a function
p:GxV =V

such that p(1,v) = v and (g, 0(h,v)) = ¢(e(g,h),v) for
all v eV and g,h € G, where 1 is the neutral element of G.

Definition 4. Given a group G acting on a set V and a subset
A C G, the Schreier digraph Sch(G,V, A) is the digraph with
vertices V and an edge (v,v') labeled a whenever there is an

2Cayley and Schreier graphs are often defined to have symmetric labeling
sets, and so that they have no self-loops or parallel edges.

a € A mapping v to v’ by the group action. A Schreier graph
is a Schreier digraph with a choice of pairs e¢:v = w: e
such that every directed edge is part of exactly one pair. These
pairs are the edges of the graph.®

For symmetric .4, we will pair edges with inverse labels,
as we do for Cayley graphs. Note that a directed edge can be
paired with itself if it is a self-loop. It is known that all graphs
can be given the structure of a Schreier graph where A is not
necessarily symmetric.

Remark 1. Schreier graphs are regular graphs where the
local views are labeled such that the corresponding digraph
is well-labeled. Cayley graphs are the Schreier graphs where
the vertex set is the group G. Both are labeled by the group
elements A C G.

By Cayley’s theorem [12], the elements of any group can
be viewed as permutations of a set, turning multiplication of
elements in the group into composition of functions. Going
the other way, a set of permutations on a set )V will generate
a group and define a directed Schreier graph of that group
with vertex set 1. Concretely, we get a directed edge v — w
labeled = if m(v) = w.

With a stricter definition of Schreier graphs, most regular
graphs are still Schreier.

Proposition 1 ([13]). All regular graphs of even degree can
be given the structure of a Schreier graph with a symmetric
labeling set. The same is true for graphs of odd degree
precisely when they have a perfect matching.’

We will look at group actions of products of groups, i.e.,
commuting group actions (see Remark 3), and the following
will be useful.

Lemma 1. Two permutations 7,73 : V — V commute if
and only if mo is a digraph homomorphism on the digraph
G4 = WV, &) where & = {(v,m(v)) : v € V}, ie,
(m2(v), m2(w)) € &1 whenever (v,w) € &;.

Given two Schreier graphs ¥x = (V,€a) and % =
(V, &) on the same vertex set, we will say they commute
if their defining permutations commute pairwise. That is, if
95 and ¢ are labeled by na and np and we are given

edges vg & v & Vs £ V3 £ vy such that ey,e3 € &g,
ea,eq € Ep, Na(€1) = na(€3), and ng(e2) = np(€4), then
vo = vq. We will say they have overlapping edges if there is
a pair of vertices v, w such that both graphs have at least one
edge between v and w.

B. Graph Expansion

By picking an order on the vertices of a graph 4 = (V, £),
we get an adjacency matrix M? where MZ is the number of
edges from the j-th vertex to the i-th vertex.

Since M¥ is symmetric, it will have real eigenvalues \; >
R )\|v|, where A\; = A when ¢ is A-regular, and )‘\V\ =
—A if and only if it also is bipartite [14]. For ¢ connected

3 A perfect matching is a set of edges where no edges share endpoints and
all vertices are endpoints of edges in the set. We allow for self-loops in this
set of edges.



and |V| > 2, define A\(¥) = max{|\;|: \; # +A}. This is
a measure of the (spectral) expansion of the graph, and the
graph is called Ramanujan when \(¢) < 2/A —1 [14].

C. Tanner Codes and Quantum CSS Codes

Tanner codes were introduced by Tanner in [15] and fa-
mously give asymptotically good families of classical codes.
Loosely speaking, the construction takes a graph, puts bits on
the edges of the graph, and assigns a code to each vertex. We
will be using a regular graph with the same code on every
vertex. A choice of bits is then in the Tanner code if, for any
vertex, the bits on the edges connected to the vertex are in the
code assigned to it. Formally, we use the following definition,
where the restriction of a vector ¢ € IF‘;‘ defined on the edges
& of a graph to the local view of a vertex v is denoted c,.
Note that we assume an ordering on £ so that we may use
]F‘;‘ instead of {& — Fy} as our vector space.

Definition 5. Let € be a linear code of length A and 4 =
(V,E) be a A-regular graph, possibly with parallel edges but
without self-loops. We define the Tanner code on ¢ and € as
Tan(¥,%) £ {c € F‘QSI: ¢y, €C forallv eV}

The definition assumes a well-labeling on ¢. One may think
of this as an order on each local view, where each order is
independent of the other orderings.

For our main construction, the local code & will be the dual
of a tensor product code.

Definition 6. Given linear codes €, g of length na and ng,
respectively, their tensor code €a @ 6p is defined as the set
of na X ng matrices with columns in €x and rows in 6g.

If €5 and 6 have parameters [na, ka, da] and [ng, kg, dg],
then ¥a ® ¢p has parameters [nang, kakgs, dadg]. The dual
code (6 ® 6p)t is equal to €i- @ F3® + Fo* @ 65~ and has
minimum distance min(da, dp).

Definition 7. We say the classical codes 6y and €1 form a
CSS code when €3~ C 6.

If the classical codes %, and %7 have parity-check matrices
Ho and H;, respectively, Definition 7 is equivalent to HoH] =
0. CSS codes were introduced in [3], where they show that
the classical codes %y and %7 can be used to construct good
quantum error-correcting codes.

The dimension k of a CSS code where the classical codes
are of length n is k = dim(%; \ ;") = dim €, +dim %, — n,
and the minimum distance d of the quantum CSS code can
be given as the minimum of dx = min.c¢,\« |c| and dz =
mingcq,\gy [€f-

A CSS code (6p, 1) is called a quantum LDPC code when
both codes %, and %), are defined by sparse parity-check
matrices. For families of codes, we require that the columns
and rows of the parity-check matrices have weight at most
A, for some constant A independent of the code length n. A
code family is called asymptotically good if it has parameters

[n,k =0O(n),d =0(n)].
D. Square Complexes

We will need the notion of square complexes, normally
defined as two-dimensional cube complexes, a particular type

of a CW complex. We will use the following definition, which
is equivalent for our purposes.

Definition 8. A square complex X = (V, &, Q) is a triple of
sets such that (V, &) is a graph and the elements of Q are of
the form ((vi,vs), (vi,v3), (v2,v4), (v3,v4)) € EX4

III. PROPOSED GENERALIZED CONSTRUCTION

We start by giving an example of commuting non-Cayley
Schreier graphs. Then, we give a construction of quantum
LDPC codes that generalizes the quantum Tanner codes of [8]
and can take these Schreier graphs as input. We compare
the two constructions and characterize the new one in three
different ways.

A. Example

The Petersen graph, pictured to the left in Fig. 2, is known
to be a non-Cayley graph, and can be considered as two 5-

cycles joined in a certain way. Let
00110
00011
10001
11000
01100

denote different adjacency matrices for a 5-cycle (vertices
labeled by 1,2,...,5 for C5 and vertices labeled by 1’,...,5’
for Ci, as in the left graph in Fig. 2). In a certain basis, the
Petersen graph has the adjacency matrix

Mp = [ ?5 g’, }, commuting with Mg = [ %5 CO ],
5 5 5

which is the adjacency matrix of the second graph depicted in
Fig. 2, so the pair of graphs gives an example of a non-Cayley
graph commuting with a 2-component graph when labeled as
in the figure. By reordering the vertices, one can also write
the adjacency matrices as

G| P (G o
| o= [

MA:{PT G

for a certain permutation matrix P.

The two graphs have overlapping edges and different de-
grees. This is unwanted for our applications and may be
remedied, for example, in the following way. First, add self-
loops to all vertices of the second graph to make their degrees
equal. Then, take two copies of the resulting graph, and use
the bipartite double cover of the Petersen graph (the Desargues
graph), as explained in Section III-C. If one in the end also
wants both graphs to be bipartite on the same partition of
vertices, one may take the bipartite double cover of both
resulting graphs.

10700
Cs=|01010| and Ci=

00101

10010

B. New Construction

1) General Case: Let 9y = (V,Ex) and % = (V,&p)
be (non-directed) commuting A-regular Schreier graphs with
no overlapping edges and a chosen partition ¥V = Vy U V;
for which both graphs are bipartite. We treat the graphs as
digraphs and call the labelings they have in virtue of being
Schreier graphs na : £ — A and 7 : EF — B.
Furthermore, assume that if two vertices are connected by an
edge in %y, then the pairs {(ng(€;),n8(€;)) : 0 <i < A} are
the same for all edges e;, 0 < ¢ < A, in the local views of
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Fig. 2. The Petersen graph is shown to the left. On the right is a Schreier graph
commuting with the Petersen graph. They are labeled by A = {ao, a1,a2}
and B = {bo, b1 }, respectively, where ao_1 = ao, ‘11_1 = as, and bgl = by.

the two vertices, and vice versa. This can loosely be thought
of as the labels being locally invertible.

From the commuting graphs ¥, %, we may construct a
square complex X with vertices V, edges £x U &g, and for
each v € Vg, a € A, and b € B, a square (eq,ea,e3,€e4) €
Ea X Ep x Eg x &g given by (1) below. We illustrate it by

the square on the left when ¢(¢1) = (w, 1), t(€3) = (', 1),
s(€2) = (v/,0), na(€1) = a, and np(€s) = b.
(w',1) % (v',0) 5(é1) = s(€3) = (v,0),
o]es Hes ma@) = ma(@). s(e2) = @), (1)
(v,0) —2— (w,1) M(€3) = nB(Ea), s(€a) =1(€1).

The squares (eq,eq,e3,€4) and (e, €1, eq,€3) are identified.
We refer to X' as the Schreier complex on ¥, and %, and
denote its set of squares by Q.

We define 4 = (VO,EOQ) as the AZ-regular graph
with vertices Vy and an edge (v,v') € &§ labeled by
(na(€1),78(€3)) = (a,b) € A x B in the local view of v
and (na(€2),n8(€4)) in the local view of v’, for each square
on the form (1). Similarly, we let 7 = (V,£2) be the A2-
regular graph with vertices V; and an edge (w,w’) labeled
(na(€1),me(€4)) in the local view of w and (na(€2),ns(€3))
in the local view of w’ for each square on the form (1).

Remark 2. The graphs %D and %F are the subgraphs of the
two bipartite halves of 9a U 9 where all edges contain an
edge from each graph 9, %s.

Definition 9. Given graphs as above and classical codes €,
6g of length A, define 6, and ¢, as the Tanner codes

6o = Tan(9, (6p @ €8)1), €1 = Tan(947, (63 @ 65)71).

Proposition 2 below is proved similarly to the corresponding
statement in [8].

Proposition 2. The codes 6y and 61 form a CSS code which
is also a quantum LDPC code.

Remark 3. Two Schreier graphs commute precisely when the
group actions Ga XV — V and Gg x V — V defining them
form a group action Ga X Gg X V — V. Hence, without loss
of generality, we can define our construction using a group
action Ga X Gg XV — V and subsets A C Gao,B C Gp
instead of the commuting Schreier graphs Sch(Ga,V, A) and
Sch(Gg, V, B).

2) Symmetric Labeling Set: The construction used in Def-
inition 9 can be somewhat simplified when the labeling sets
are symmetric. In this case, the inverse of each label is well
defined. When the graphs involved are not already bipartite
(with respect to the same partition of vertices), we can make
them so by using the bipartite double cover of the graphs,
simplifying it further. In this case, 4’ = ¥-.

C. Connection With Previous Constructions

To create commuting graphs ¥4, %, one may start with
a group G and two symmetric subsets A,B8 C G. Then
the Cayley graphs ¥, = Cay,(G, A) and % = Cay, (G, B)
will commute because group multiplication is associative. Our
construction on the bipartite double covers of these graphs
is equivalent to the approach used to create quantum Tanner
codes so far [8].

Our assumption that the graphs ¥4, % have no overlapping
edges plays the same role as the total no-conjugacy (TNC)
condition for the quantum Tanner codes defined on groups,
which states that ag # gb for all ¢ € G,a € A,b € B. It
ensures that v and v’ in (1) are different so that there are no
self-loops in %OD,%F. Many authors use what is often called
“the quadripartite construction” to avoid dealing with the TNC
condition.

In our setup, the quadripartite construction corresponds to
the regular construction on two copies of one of the graphs
and the bipartite double cover of the other. In other words, for
graphs with adjacency matrices M, and Mg, use the graphs

with adjacency matrices
Mg | O
} and [ 0 M }

0 | Ma

Ma| O
It can easily be seen that the two graphs still commute after this
step when the obvious labeling is chosen. In the case of Cayley
graphs, one may equivalently swap the group G for G x Fo,
and use A" = {(a,1) : a € A} and B’ = {(b,0) : b € B}.
This means that using the quadripartite construction is quite
restrictive when looking for concrete finite-length examples.

The following proposition should be clear when comparing

our construction with the one from [8].

Proposition 3. Let G be a group with generating symmetric
subsets A and B of size A satisfying the TNC condition and
not containing the neutral element, and let €, %p be codes
of length A. Then, our construction applied to the bipartite
double covers of the graphs Cay,(G, A),Cay, (G, B) and the
codes G, %p gives the same CSS code as the construction

from [8] applied to G, A, B, 6x, 65.

From Proposition 1, most regular graphs can be used to
construct quantum Tanner codes. However, to have freedom
when choosing the other graph, the automorphism group of
the graph should be large. Moving away from Cayley graphs
means getting a smaller automorphism group, see Section IV.

D. Equivalent Characterizations

It is natural to ask when a square complex can give CSS
codes the way left-right Cayley complexes and our square
complexes described in Section III-C do, namely, by changing
which diagonal of the squares that determine their endpoints



when viewed as edges. We now turn to prove that these are
precisely the square complexes that can be made from two
commuting Schreier graphs (see Corollary 1). Along the way,
we present another view of quantum Tanner codes (Lemma 2),
and show how our construction fits in (Theorem 1).

In Lemma 2, we consider A2-regular Schreier graphs. The
local views are viewed as A x A-matrices so that the Tanner
codes and the rows and columns are well defined.

Lemma 2. Let go = (Vo,go) and 4, = (Vl,gl) be A2-
regular Schreier graphs such that |Vo| = V1|, and let ) :
&y — &1 be the bijection given by the order on the edges.
Then, (i) and (ii) are equivalent.

(i) The Tanner codes €y = Tan(%y, (€x @ 63)*) and €, =
Tan(%, (€5 @ 65-)*) form a CSS code for all classical
codes Gn,€s of length A.

(ii) For any vertices v € Vo, w € Vi, either (& (v)) N
E1(w) = 0, or the intersection forms one or more rows or
columns in Ey(v) and &1 (w) such that each row (column)
is mapped onto a row (column) by ), preserving the order
inside the row (column).

We find it reasonable to call any codes %y, 61 constructed
as in (¢) general quantum Tanner codes, so these codes fit in
the red region of Fig. 1. Note that A™-regular graphs with m
local codes %4, , ..., %a,, also are of interest and could share
this name. However, we restrict ourselves to the case m = 2.

Theorem 1 gives a condition that restricts the red region of
Fig. 1 to the green region.

Theorem 1. Let %, %, and 1) be as in Lemma 2. Then, (i)

and (ii) of Lemma 2 are equivalent to (iii) below if and only if

for each of the two labels of an edge ) fixes, the labels share

one index in the labeling set A x A.

(iii) There exist Schreier graphs 9,4 such that %D =9
i=0,1

Corollary 1. All square complexes that give CSS codes using
the construction from Section III-B, can be constructed from
a pair of commuting Schreier graphs as in Section III-B.

IV. ASYMPTOTICALLY GOOD QUANTUM CODES

In this section, we discuss how our proposed construction
might be used to create new asymptotically good codes. The
discussion assumes that the graphs are not already bipartite,
and will be made so by taking their bipartite double cover. We
start by stating Proposition 4 below, which gives an obstruction
for when a pair of commuting graphs can be non-Cayley.

Proposition 4. If Y and 4z commute, then they are either
Cayley graphs, or one of them has more than one component.

At first glance, it might seem like Proposition 4 tells us there
is no hope of finding asymptotically good quantum codes using
the methods from [11]. After all, A\(¢) = A for a A-regular
graph ¢ with more than one component, which is as large as it
can get. However, as already seen in Section III-C, we can get
good codes even in this case, as one of the graphs will have
two components when using the quadripartite construction.
This stems from the fact that 47,4 and the components
of ¥, and ¥ may have a small A.

Since the adjacency matrices M, and Mg are symmetric and
commute, they are simultaneously diagonalizable. Therefore,
Ma + Mg and MsMg, which are the adjacency matrices of
respectively (V,Ex U &) and both ¢ and %, have eigen-
values the sums and products, respectively, of the eigenvalues
of M and Mg.

We know that the all-ones vector w will correspond to
A1 = A for any regular graph, and for a graph with two
components commuting with a connected graph, the other
eigenvector corresponding to this eigenvalue that is also an
eigenvector for the other graph, will have to be (u, —u).

Let My = QT; 22 and Mg = 501 é)Q be the
adjacency matrices of ¢ and %, respectively. We demand
that MAMg = MgM,, which means that the product is a
symmetric matrix. These two products are

{A1|31 Asz} and {51A1

ALB; | AsBs B2Aj

which are equal if and only if we have the relations AsBy =
BlAQ, AlBl = BlAl, and Ade = BQA3 ASSUIIliIlg that Bl,
B2, A1, and A3 correspond to connected graphs, Proposition 4
now tells us they all have to be Cayley graphs. Lemma 1
tells us that Ay either is the 0 matrix or consists of graph
isomorphisms between the two components of %, so the two
components of ¥ are equal up to a rearrangement of the
vertices since we assume %, is connected. All this fits what
we saw in the example of Section III-A.

If we assume that the blocks of M come from distinct gen-
erators and let a be the regularity of the graph corresponding
to A, then the eigenvalue of My, corresponding to (w, —u)
is 2a — A. So, when the weights of the rows in A; and A
are equal, then \(4) = 2¢/A — 1 for i = 0,1 when ¥, and
the two components of ¢ are Ramananujan graphs, because
Ao = A for 4 is multiplied with 0.

We end with pointing at a possible way to create a connected
Schreier graph ¢, that commutes with a Cayley graph ¢ with
two components. Let ¥ be a Cayley graph on the above form,
and let P be a permutation matrix of the same size as Ag. If
PAsPT commutes with By, then the matrix

ALl Ao

AL | PASPT
will still commute with Mg. We can ensure this by letting P
be given by an isomorphism between two isomorphic Cayley
graphs on different generating sets. For example, given a
Cayley graph Cay(¥, BB) and an automorphism ¢ on ¥, then
o also is an isomorphism between Cay(G, B) and Cay(G, B'),

where B’ = {obo~! : b € B}. A clever choice of ¢ should
make (2) the adjacency matrix of a non-Cayley Schreier graph.

BiAs
B2As |’

2
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