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Abstract

In this paper we prove the existence and smoothness of the Navier-Stokes Equation for viscosity large
enough which after rescaling implies a solution for any positive viscosity, additionally, we show the ex-
istence of a curve of entire vector fields of order 2 that extends the solution to the complex domain for
positive time.
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Introduction

Fluid dynamics, the study of how fluids move and interact with their surroundings, encompasses a vast
array of phenomena observed in nature and engineering applications. From the graceful flow of a river to
the turbulent swirls in a cup of coffee, understanding the behavior of fluids is essential in fields ranging
from aerospace engineering to climate science.

At the heart of this discipline lies the Navier-Stokes Equation, a set of partial differential equations that gov-
ern the motion of fluids. Named after Claude-Louis Navier and George Gabriel Stokes, who independently
contributed to its formulation in the 19th century, this equation encapsulates the fundamental principles
underlying fluid motion, including conservation of mass and momentum.

Despite its seemingly straightforward appearance, the Navier-Stokes Equation conceals a wealth of com-
plexity. Its solutions exhibit a rich variety of behaviors, from laminar flow patterns characterized by smooth,
orderly motion, to turbulent regimes marked by chaotic fluctuations and eddies. Understanding and pre-
dicting these phenomena have been among the central challenges in fluid dynamics, with profound impli-
cations for fields as diverse as weather forecasting, aircraft design, and biomedical engineering.

In this paper we stick to solve the Navier-Stokes Equation for dimension d > 3 stated in [8] since the results
for dimension d = 2 are well known (See [24]). A fundamental difference between the Navier-Stokes
Equation and Euler Equation (the case v = 0) is that in the latter the existence of solutions with finite blow
up time T > 0 implies that the norm L®!(R3 x [0, T')) of the vorticity w(x, t) = curlyu(x,t) is infinite ([19]).
However, in the case v > 0 we have a solution extended without blow up time, in other words T = co.

In [15], Leray showed the existence of weak solutions of the Navier-Stokes Equation. The partial regularity
Theory of the Navier-Stokes Equation started with Scheffer [23] and also for suitable solutions in the work
of Caffarelli-Kohn-Nirenberg [4] . A direct and simplified proof of the main result of [4] can be found in the
work of Lin [18].

The plan of this article is as follows: In Section 1 we fix ideas about convenient notation and useful results.
In Section 2 we considered a well-known transformation in order to reduce the proof of the existence of
a smooth solution of the Navier-Stokes Equation to the case of a special viscosity v > 0. In Section 3 we
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study spaces of functions decreasing fast which are fundamental in order to construct the smooth solution
for large viscosity v > 0. In Section 4 we study a kind of generalization of the convolution that we call Riezs
convolution and its properties with respect to functions decreasing fast and Lebesgue spaces. In Section
5 we study a remarkable class of spaces of functions decreasing fast involving time that are dominated
by Fourier Caloric functions and their properties with respect to operations such as convolution and the
product associated to the Navier-Stokes Equation that we denote by ©. In Section 6 we construct the
solution for viscosity large enough using the results for spaces dominated by Fourier Caloric functions
decreasing fast. In Section 7 we show that for positive time we can extend the solution to the complex
domain obtaining a curve of entire vector fields of order 2.

1 Notation and Preliminary Results

In this Section we clarify the notation that we use throughout the paper.

1.1 Notation
For a field K = R, C we denote:

]K‘i+1 =K* x [0,00) and lK’ing =K x (0,00).
Let X be a vector space and ||-||{, ||-||, be two norms over X. We define the norm ||-||;,,

[€ll102 = 1%l + [lx[l5, for x € X.

Note that we can take Lebesgue spaces of two degrees py and p; and X = LPo(R?) N LP1(R?) we can
consider the norm ||| poapy ON X, we denote this space by LPo®P1(RY)

For 1 < p < co we denote the conjugate exponent by p/, ie., p, = % We call the map p — p’ the
conjugate function.

For & 71 € R? we define the tensor product ¢ ® 7 = &'

Letw > 0, we say that f : Ile_“ — C is a Fourier Caloric function if:

f& 1) = e M 0g), (1)

for (¢, t) € lR‘f’l, for some A > 0 and f* : R? — C. This name is motivated because the Fourier transform
f(-,t) of a Fourier Caloric function f is a solution of the fractional heat equation
ou

— = AAZu.
of "

with initial condition fAO.

Let (A, -) be a nonassociative algebra. For elements a4, - - - ay € A we denote by w'(ay, - - - ,a;) an arbitrary
monomial of degree k. If a; = - - - = a we write w; (a) = w’ (a1, - -+, ax).

Remark 1. Note that we emphasize the product - in the definition of the monomials since we can have
more than one product acting on the same set and even at the same time.

Furthermore, w'(ay, - - - , ax) denote the order in which each variable appears. For example, the notation for
the monomial a - b is of the form w’(a, b). We denote by M(ay, - - - , ax) the set of nonassociative monomials
of degree kinaq, - - -, a.



1.2 Preliminary Results
In this Subsection we propose some useful results that will be used later.

Proposition 1. Let « > 0, for every ¢, 7 € R? we have:
=& =nl" = Inl* < —ra 5",

for some 1, < 1.

Proof. By Theorem 15 we have that
(s+t)* < max {2"‘_1, 1} (s* +t%),
for every s > 0,t > 0. Therefore, for every ¢, 1 € RY:
g < (g = nl +[nD)* < max {271} (1§ = 1" + Iy*)).

Thus, we have the contention by defining 7, = m

Proposition 2. Let X be an inner product space. For every z € X we have:

max (x,y) = —HZH2
x+y=z,x,yeX ’ 4

Proof. Letx,y € X, z = x 4y, then the polarization identity implies that:

1 2 2\ e yll® _ el
= — _ —_ < =
(xy) =7 (Ix+ylP = = —yIP) < = =

2
Therefore, maxy y—z x,yex (¥, y) < @. However, taking x = y = 5 we obtain:

2
z z\_ |zl

> =,z )=—
x+yI:nzz,iJ§yeX<x’y> o <2’ 2> 4

Additionally, we state a useful result about the iteration of a linear operator.

Lemma 1. Let X be a vector space, L : X — X be a linear operator, x,y € X, a € C such that:

Lx = ax +y.

Then, for every n € IN we have:

n—1 .
L'x=a"x+ ) W L1y,
j=0

Proof. The proof is by induction over n.
For n = 1 we have 0
Ly =ax+ Y /L7y =ax+y,

j=0

so itis valid forn = 1.



Assume for n and note that:

L'y =L(L"x) =L (zx”x +3 odL”lfy>
j=0

n—1 .
=a"Lx+ ) /L'y
=0

n—1 )
=a"(ax+y)+ Y oJL" Ty
j=0
n—1 .
=a"Mx+ay+ Y WLy
j=0

n
=a"x+ Y WLy,
=0

Therefore, it is true for n + 1. The result follows by induction. O

2 Reduction of the Problem to Special Viscosities

Let us remind that (u, p) : lR‘i+1 — R%*+1 is a solution of the Navier-Stokes equation if

ou du
a—i—au—vAu—Vp—i—f,
div(u) =0,

u(x,0) = u%(x),
for (u, p) € C®°(RZM, R¥*1) such that:

' 2
su u(x, t)|“dx < co.
P | |

Here,v >0, f : lR‘f’1 — R4, 19 : R? — RY are smooth functions that decrease fast, i.e., f € S (R‘f’l)d and
u® € S(R%)“. For simplicity we will consider the homogeneous case in which f = 0.

Now we show that there is a solution for v > 0 if and only if there is a solution for av > 0 for every & > 0.

Let us consider the function (v,q) : R1"! — R4+ given by

x t x t
t P— —_ —_ t P— —_ —_
v(x,t) =u (a,“>,q(x, ) =7 (Mlx),
for some « > 0 arbitrary.

Tren, 3 (1) = 13 (3,4), 20 = 1403,

Therefore,



a_v( t)+%( Fo( t)fla_” x t +la_” xt xt
ot v ox T = o \ v vox \a' o)\ 2 x
T(ou(x by ouixt) (xt
a \ ot \a'« ox \a' o w
el w i
« o o o
1 x t 1 x t
= (#“ <;' ;)> VP <w>

= avAv(x, t) — Vq(x,t).

Furthermore,

div(o(x, 1)) = Tr (g—z(x,t)> = L1y (g—z (§£)> = Laio(u) (29 —0,

for (x,t) € RAFL
On the other hand, we have bounded energy,

2
/ \v(x,t)|2dx:/ u<f,£>} dx:zx2d/
R4 R4 oK K R4

2
dy.

(1)

In particular,

2
dx = a® sup |u(x, £)[* dx < oo.
>0 JR?

sup | lo(x, t) [ dx = sup a4 /]Rd

>0 /R >0

(1)

Additionally, the initial condition is:

o¥(x) = o(x,0) = u (2,0) =u (f) .

14

Since v € S(RY)? if u € S(R?)“ it is enough to solve the Navier-Stokes Equation for an arbitrary or
sufficiently large viscosity v > 0.

In conclusion, if we have solved the Navier-Stokes Equation:

Jdv  dv
m + Pl avAv — Vg,

div(v) =0,
v(x,0) = vo(x),
' 2
su v(x, t)] dx < oo,
up [ 065 0)

and we set the initial condition to be u°(x) = v’ (ax) then the solution of



2
su u(x, t)|“dx < co
P fu | |

is given by u(x,t) = v(ax,at), p(x,t) = q(ax, at).

3 Space of Functions Decreasing Fast

In this Section we study spaces of functions that have good behaviour at infinity. For a function ¢ : RY — R
we consider the multiplication map (M¢) (&) = (1+ |&|*)¢(Z), with this we can state the following:

Definition 1. Let (B, ||-||) a Banach space of functions ¢ : RY — R. We define the space of functions
decreasing fast associated to B as:

Ep={peB|M(p) € B,YnecN}.

We provide the space £5 with the topology given by the family of norms:

pu(¢) = [IM" (@),

for all n € IN. With this topology we have that £5 is a Frechet space. Furthermore, we have the multiplica-
tion map:

M": € — £, (M) (§) = (1+[2)"p(0).
It is continuous, since p;(M"¢) = p,(¢) forevery ¢ € £,j € N.
We denote this Frechet space simply by £ when there is no way to confusion andby £* = {¢p € £ | ¢ > 0}.

Remark 2. We can consider more generally Banach spaces of vector fields ¢ : R? — R¢ and the definition
of &5 applies. However, we explore only scalar fields ¢ : R? — R in this Section.

We have an interesting algebraic results.

Lemma 2. If (B, +, -) is a Banach algebra with the usual pointwise sum and product of functions:

@+ 9)(&) =) +v(2), (¢9)(&) = ¢(E)¥ (D)
then & is an ideal of B.
Proof. Let ¢, € &, since M(¢p + ¢) = M¢p + My and M(¢py) = (M¢)yp = ¢(My) we have that

pu(¢ +9) = [M (@ + )| < [[M"(¢) + M"(9)]]
< [IME@)[| + 1M ()| = pn(¢) + pu(®p)-

On the other hand, if ¢ € £, € B:

pu(9y) = [M (@) < [IM" ()¢l
< IMHYOI$ll = pal(P) ]l -

Therefore, ¢y € £. We conclude that £ < B. O



We are interested in the convolution operation:

@+ 9)@) = [, 9= mwinan,

for ¢,y € B.
We study the continuity of the convolution operation, so we consider the following result:

Lemma 3. For every, & 17 € R? we have:

L+ 67 <201+ (8 —n) (A + 1),

and ) ) )

1617 = 2(18 = 11" + [n[7)-
Proof. It is enough to make & = 2 in Corollaries 27 and 28 to obtain this result. O
With this we can state the following result:

Theorem 1. Assume that (B, +,*) is a Banach algebra and with a monotone norm, i.e., |¢p| < || implies ||¢|| <

[l and [|¢[| = l@[|| then ¢+ € Eif ¢, € E.

Proof. Let ¢, € £, note that Lemma 3 we have M"(|¢ = ¢|) < 2"(|M"(p)| * |[M"()|), since ||-|| is mono-
tone:

pu(@x9) = [M (I ]Il < 2" [|M" (@) | [M"(@)[[| < 2" [[IMH (P M ()] = 2" pu() pu(),

for every n € IN. Therefore, ¢ x 1 € £. O

Corollary 1. Assume that (B, +, *) is a Banach algebra and with a monotone norm, i.e., || < || implies ||¢|| <
||| then (E,+, %) is a subalgebra de Banach of (B, +, *).

In the next Subsections we study the case in which B = L®(IR%) and spaces related to it with singularities
at the origin.

3.1 Space of Functions Decreasing Fast Associated to L (R9)

Let us consider the space of functions that decrease fast associated to B = L®(R?) . We denote itby D = Ep.
We remind that in this case:

D= {4’ € L*(RY) | sup (1+ [5*)" [¢(§)| < oo, ¥n € N}-

R4

We provide the space D with the topology given by the family of norms:

pu(9) = sup (1+|5[*)" |9(2)] -

CER4
Remark 3. Notice that we do not require that every element ¢ € D to be smooth. However, we have that
S(R%) C D.

Observe that p, < pj11, forall n € N. Note that pg = ||[| [ (re) and we can write p(¢) = || M"(¢)|| 1 (ra)
for every ¢ € D.

Now, we study the relationship of the space D with other Lebesgue spaces.

Proposition 3. We have D C 1 <p<co LP (R?) with continuous inclusions D C LP (IR) for every 1 < p < co.



Proof. Since po(¢) = [¢]| Lo (rey we have the claim for p = co. Let 1 < p < oo and note that lp|? € D if
p€D.

In fact,

pu1917) = M7 (917 gy = || @ + 1) 1017

<|la+i-pyrigr|

L (RY)

s Rl = 1M OD I gy = P&

L (IRY) L (IRY)

With this it is enough to check that ¢ € L'(R¥) for ¢ € D since [¢|” € L' (R?) if and only if || € LP (R).
Note that,

w1 [9(&)]4¢

/ &)|dg = / IC\ TW < CdPH_H(g),

NI

with
/ = L2
R(14 (g
O

Remark 4. From here on C will denote a constant depending of the order of the involved Lebesgue spaces
and the dimension. In particular, if we fixed the Lebesgue spaces we will have that C is a dimensionality
constant C = C(d).

3.2 Space of Functions Decreasing Fast with Singularities
Now we will try to look for more general spaces with singularities at the origin.
Definition 2. Let us consider 0 < a < d and the operator:

¢(&)

S«(9)(8) = Hik

for ¢ # 0.

In the next result we give some integrability properties of S (¢) for ¢ € D.

Proposition 4. Ifd > 2 and ¢ € L'®P(RY) for some p € (d , } then

1Sa(@)lrr(rey < Clipllay -

Proof. In fact, if p > 7% then p’ < £ and ap’ < d. Therefore,

n / PE) o

1@l = [, 1)@ 1dz = [ & S T

g IC\
1
o

< </|%<1 ;i) (/Rdl (¢ )Pldi;) +./]Rd\ $(&)]dE < Cl¢llye, -

~ i< e




Corollary 2. Ifd > 2,1 < q < Land ¢ € LP®1(IR?) for some p € ( } then

d—aq’

158 (@)l sy < C 1911
Proof. In fact, applying Proposition 4 to |¢| we have:

1560 gy = 1SeCI0 s < € (WO, + 110 sy

< C (I, gy + 1191175 ey ) < ClIpll ey

Corollary 3. The map S, : L' (R?) — L1(IR) is continuous for p € (d%’la, oo}.

Corollary 4. The map S, : LPP1(R?) — L1(IRY) is continuous for 1 < q < 4 T pE (

Since D C MNi<p<oo LF (RY) it is useful to consider the subspace:
Di = Sa(D) = {Sal9) | p € D} = {¢ € L'(RY) | |-[*¢ € D},
with the topology that makes the map S, : D — D, continuous, i.e.,
Pj —jseo In Dy = \~\"‘¢j — 00 |-|* ¢ in D.

We conclude this section with a continuity result of the convolution operation on Dj.

Theorem 2. For ¢,y € Dy we have
pull-% (@ %)) < C (pull-1* 9)p, 4 1a741 (" 9) + P a2 (1 9)pa - 9))

for every n € IN.
Proof. Since ¢, € D, we have that |-|*¢,|-|" ¢ € D and

i lesp@l <2 | [, (el \¢<¢—r;>|) wOldn+ [ 10 =)l (11" ) d]
—2”‘[/]Rd(€—17“¢(5—17))(|17 [w(n / (1g—nl" 19 - ’7))(|’7a¢(’7)|)d717a]

[/l
=2 | [ Q= o =) (ol WD) e+ [, Qal* o) (2=l lo(& =) 2 .

Therefore,

2P =)@ <20 | [ (4 12=aP)" 1=l i@ =l (0 Pl Lol 2

o (e Py o) (11 =) i =l (e = 1) 7|

< e [pn('“gb) (/IRd S, ((1+ 2" |- |* |¢|) (q)d;y) +pa(l-* 9) (/IRd Sa ((1+ 1) |4’\) (’7)"1’7)}

_ ot [Pn('“@ S, ((14-\-\) |- |* |1p|) +pu([-]* ¥) ||Sa ((14—\'\) " |4’\)

Llle:|‘

L1(R4)



By Proposition 4 we have
152 (@) 111 (rey < ClI9llrep

for ¢ € L'®P(R%) and p € (d%'l,x,oo} .
However, |[¢]|11(ra) < CP[%]H(@ and

1

1@l L (rey = (/]Rd |¢(§)|pd<§) "< CP[g}H(WV’)% < CP[g) (@),

forp € (d%'la, oo} .
Therefore,

IS(®)luscxey < Cpig1(9)- @

Consequently,

I 21 1@ * )@ < [pulH P g1 (1 9) + P g a (T 0)pal 1 9)]

for every & € RY.
Thus,
a1 @ 9) < € (Pl )P, g2 (19 + Py ga (1 Ol )

Corollary 5. The convolution product * : Dy X Dy — Dy is continuous.

Remark 5. Note that Theorem 2 implies that (¢ * ) € D, for ¢, € D, however for some cases we can
have even that (¢ * ) € D, this important case will be treated now.

Theorem 3. Let 0 < &, B < d such that a + B < d then

pu@x9) < C (pu(l1" 0P, (g a (P 9) + Py g0 (0Dl 9)).
for every ¢ € Do, € Dgand n € N.

Proof. Since ¢ € D, € Dg we have that |-|%, |-|P € D. For every n € N we have:
(L+[EP)" (@ $)(@)] < 2" [/Rd (a+1g=nP "o —m1) (P wn)]) dr;]

ot 1 _2\nx o |& o 1 2\n |.,1B d77 ‘|
< [/Rd ((+1g=n)"1e = n*le@ = ml) (@ + )" ) |¢<n>)7|§_ﬂ|amﬁ

n n 14 n d;?
<2 [/HM (g =nP)" e = nl* e —m1) (A + ) n|ﬂ|¢<n>)7€_ﬂaw|ﬁ
2\n o o 12\n B _ d77
+/|H|ZW (1P o) (+1g =" g —nlf lpE—nl) Fw_mﬁ]

10



<2"

n w n dn

Sy oy (@I =018 =l 0@ = 1) (0 ) 1 o)) P
2\n o _ 12\n B _ dﬂ

o (@ P g 1) (1= nPy e = nlP [0 = )] W]

<2 o2 ) ([, Swes (04 FD 1P 191) ) + a1 ) [ Sucp (0412 117 lgl) () |
= 2" [pn<-“¢> Sa (12" 1P g]) Su (T + 1)1 lel)

+pu(l-1P )

L1(R4)

Llle}’

In consequence, if we apply Equation (2) we obtain that:

A+ @ *9) @1 < C (a1 0P g2 0+ Prcgria (I 0)pal1F9))

for every & € RY. Thus,

pu@x ) < C (pul" 0P, (g1 (P 9) + P g a (1 )Pl 9) ).

Corollary 6. We have the bilinear continuous operator * : Dy X Dg — D, if 0 <a+p < d.

Remark 6. The condition « 4 B < d is necessary. If we define

o2l
T

and .
e 1¢l

1P
we have that ¢ € Dy, ¢p € Dﬁ. However,

_ _f e2F -2 /.
(s 0) = [ oCnpinir= [ Cgrze? [ty =
ifa+p>d. Thus, ¢x¢p & D.
Corollary 7. Let 0 < a < § then
pu(@x ) < € (pul-1* 911, (g1 (11 9) + P g2 (1 D)pa-119))
for every ¢, € Dy andn € IN.

Corollary 8. We have the bilinear continuous operator * : Dy X Dy — D, if 0 < o < %

4 Riesz Convolution

In this Section we consider a generalization of the convolution operation.

Definition 3. Let f,g : R? — R such that f x ¢ : R? — R is well defined. Let 0 < a < d, we define the
Riesz convolution between f and g tobe f x, ¢: RY — R,

(f 0 2)(8) = Su(f % 2)(€) = %ﬁ)@

11



Note that *, is commutative. In fact, since

(Frag)@ =1 Tﬂ@ -8 *g}l(‘f) — (g% (@),

for& e R? — {0}, we obtain f %, ¢ = g *4 f.
Additionally, *, is distributive but not associative.

Remark 7. A remarkable case is when we consider f,g € D since f * g € D we have that f x, ¢ € D, and
the operation *, : D x D — D,. f 0 <& < % we obtain by Corollary 8 the operation *, : Dy X Dy — D,

In the following result we study the behaviour of *, with respect to LP-spaces.

Proposition 5. Let 1 < g < g and1<p<oo,d>2.Iff € LPP1(R%) and g € Lor (RY) then
1f *a g”Lq(IRd) <C (”f”LP(IRd) HgHLp/(]Rd) + ||f||Lq(]Rd) ||3HL1(]Rd)) :

Proof. By Corollary 3 we have that
1Sa(@)llLawey < Clillyeq-

d dq
forl<g<g,re (d_—aq,oo} ,d > 2.
If f € LP®(RY), ¢ € L1%7 (R?) we take ¢ = f x g € L*(RY) we have:
1f *a 8llLa(ray = [Sa(@)lLaray < Cll¢lloong
=C (Hf*SHLw(IRd) + ||f*8||m(]Rd)) =C (”f”LP(IRd) H8||Lp’(]Rd) + ||f||Lq(]Rd) ||8HL1(]Rd)) :

Corollary 9. Let 1 < g < and1 < p < oo, d > 2. If f € LPPI(RY) and g € L'V (R?) then:
1f *a 8llraray < ClIflpeg 81lpre -
Corollary 10. Let 1 < p < co,d > 2. If f € L1 (R?) and g € L'®V (R?) then:
1 *a gllparay < ClIA Ml pen 1811 -
Theorem 4. Let 72 < p < @, d>2 If f € LP¥1(R?) and g € L'¥F' (RY) then:
1f *a glhopep < Clfllpor 81y -
Proof. By Corollary 10 we have:
1 *a gllparey < ClA Nl pon 8] -
By Proposition 5 with p = g we have:

1f *a &llLrrey < Cllfllpway 181lyer < ClAAler 18]er-

Since *, is commutative and d%’la <pwehavel <p' < g and we can exchange p and p’ to obtain:

”f *a gHLp’(]Rd) = ”g *a fHLp’(]Rd)
< gl o lgllr < Clfl o Il e

12



since p” = p.
In consequence,
1 e 8lhepep < CIFlper I18]er
O

Remark 8. Observe that the condition % < % implies that & < %. In particular, whend = 2and 1 < a <2

we havethata < 1. If d > 3thena < % Since we are interested in the case « > 1 it is convenient to take
d > 3.

From now on we will consider d > 3.

Remark 9. Note that if A, = L'®P%7 (R?), 24— < p < @ then #, : A) x A, — A, is a closed operation and
is continuous since:

Hf *u g“l@p@p’ < C Hf”l@p@p/ Hng@p@p/ . (3)

Since L2(RY) ¢ LPV (IR?) for every 1 < p < co it is interesting to take p = 2. In this case, A, = L1®2(R%)
and we have:

| f *a ng@z <C Hf”maz Hg”l@z-

It is useful to generalize Equation (3) to monomials of degree greater than 2.

Theorem 5. If f1,- - - f € Ap, for % <p< % then

k
k—
sup Jlw (i fo) lepep < C T liopey
wGM(xl,---,xk) ]:l

Proof. By induction over k. For k = 1 is obvious. For k = 2 it is given by Equation (3).

Assume the statement of this Theorem for 1 < j < k. Letw € M(xy, -, x;) then we can write w = w(1ywy)
for ZU(l) € M(xl, s ,X]') and W(z) S M(x]'+1,' = ,xk).

Applying the case k = 2 and the induction hypothesis for w ;) and w,) we have:

Jw*(fy, - - ,fk)Hl@p@p, = ng)(fl, L fi) *a w&(fjﬂw .. 'fk)H

<€y o)

1epap’

*a
1opop! () S+ fk)HlEBpEBp/

o ‘ k
<c <c1—1r[|ﬁ|1@,,@,,/> <c"—f—1 I1 |fz|1@,,@,,/>
=1

I=j+1
k—1 k
=C 1_]1: Hfful@p@p’ :
j=

a

So far we have some estimates of || f *x g||p(ga) for Zi_a < p < 4 however we need some estimates of the

L*®-norm of the Riesz convolution. Since in general f %, ¢ ¢ L®(R?) it is a good idea to consider this norm
on the complement of a ball centered at the origin. For simplicity we can consider the unit ball.

Lemmad. If f,g € Ay, for d%'la <p< g then:

51p 11448 < sy Iehepay - @

13



Proof. In fact, if |¢| > 1 then by Holder Inequality:

|(f % ) < [(f ) < I f Lo (rey 181107 ey < [1fl1wpepr 18 lh1@pep -

Now we generalize Equation (4) to monomials of degree greater than 2.

Theorem 6. If f,- - fy € Ap, for 79— < p < 9 then

k
sup sup |w*“(f1, ce ;fk)(€)| < Ck_zl_[ Hf]lul@p@p’ :
weM(xy,+,xg) |§]>1 =1

Proof. By induction over k > 2. For k = 2 we use Equation (4) . Assume the statement for 1 < j < k. Let
w € M(xy,- -+, x;) then we can write w = wq)w(y) for w(;) € M(xy,- -+, x;) and w(p) € M(xj41, -+, Xk)-

Applying the case k = 2 and Theorem 5 for w(;) and w ;) we have for [¢] > 1:

|w*“(f1,-- ’ |_‘ fl/"" )*aw (f]+1r rfk))(g)
= "w?f)(fl" N ’fj)Hl@p@p’ o Uivr ’fk)Hl@p@P’
o 1T
< (C]_1H||fl|1@p@p/> <Ck_]_l H ||fl|169p@r/>
1=1 I=j+1

k
= Ck_zl_]1: Hﬁ”l@p@p’ :
]:

Corollary 11. If f € Ap,for - <p< d then

sup  sup [w* (&) < 2 gpep -
weM(xlr'“rxk) |C‘21

Now we consider a variation of the estimates in the unit ball.

Corollary 12. If f1,- - - fi € Ap, for ﬁ <p< g then

k
sup  sup |&]" [w ™ (f, -, fi) (E)] < Ck_zl_! Hffuleapeap"
i

ZUEM(XL"' ka) ‘é‘gl

Proof. We make induction over k > 2. For k = 2 we have that M(x1,x2) = {x1x2, x2x1 } however since *,
is commutative is enough to consider w(x1, x3) = x1x7.

Note that for || < 1 we have:
E1% [ (f1, £2)(@)] = [EI* [(f %2 ) ()] < [(fr % f2) (D)

2
<A >"fZHL""(]Rd) < HfluLP(]Rd) Hf2HLp’(1Rd) < 11 HfjHl@p@p/'
]:

Assume the statement for 1 < j < k. Letw € M(xy,- -+, x;) then we can write w = w(yyw(,) for w(y) €
M(xl, S ,xj) and W(2) S M(xj+l/' .. ka)~

14



*o

Applying Theorem 5 for g = wzki‘) (fi,--,fj)and g2 = ws) (fi+1,- -+, fr) we have for || < 1:
1% [w™ (fr -, fi) @] = 181" 1(81 *a 82)(8)]
C , k
< 11g1 lurrey 82l ey < (cﬂnmh@p@p/) (c"“ I1 |fz|1@p@p/>
1=1

I=j+1

k
= Ckiz I_]l: H—fjHl@p@p/ :
j=

5 Spaces of Functions Dominated by Fourier Caloric Functions

In this Section we consider spaces of functions in which time is involved. It is motivated by the solution of
the Navier-Stokes Equation since this is an evolution equation.

Definition 4. Let £ be a space of functions decreasing fast such that £ is closed by pointwise addition,
convolution and maximum.

Let p,q,n € N, & > 0 we define C,(€)} " be the complex space generated by functions f : Ile_“ — CP*1
such that: .
@ 0] < e MEL£(Q), (5)

for (¢, t) € Ile_“, for some A >0, f0 € £*.

We denote Cy (£)P*T = &%_Ca(E)h 7. For f € Cu(E) T we say that A in Equation (5) is an exponent of f
and we will use the notation exp(f).

We simplify the notation to C§ “7 when there is no place to confusion.

Remark 10. e Observe that if fi,--- fx € C{*7 and Aj = exp(fj) for 1 < j < k then we can take a
common exponent A = min {A; | 1 < j <k}.

On the other hand, since £* is closed by maximum we can take f = max { fj0 |1<j< k}.

Thus, we have that every element f € C} 7 satisfies:

@ D] < pne (@),
for a polynomial p € C[t] such that p([0, o)) C [0, o).
With Remark 10 we can obtain the following result.
Proposition 6. For every p,q € N, C{ ™" is a graded E-module and a C|t)-module with pointwise operations.

We can consider the product of two elements f € C/™, ¢ € ¢,

(f-8)(& 1) = f(&,1)g(& 1), (&) e RE.

Note that f - g : ]Rﬁfrl — CP*7. In the following result we verify that this product is well behaved.

Proposition 7. If £ is closed by pointwise product then the product - : C{ ™" x Cy*" — C}™" is a bilinear operator.
The set C{ ™" is a E-algebra with the product -.

15



Proof. In fact, since f € C/™7, ¢ € C;* they are compatible. We can assume without loss of generality that
they are generators, so we can write:

F(E, 1)) < tMe MM fO(a), [g(E, 1)] < tr2e = 2MIEl g0(g),

for (¢, t) € lel_“.
Therefore,
()@ 1] < #rmem (AT £000(g),
for (& t) € RL.
Since f9¢% € £+ we have that f - g € C}™". In particular C} 7 is a graded £-algebra. Clearly - is bilinear. O
Corollary 13. If £* is closed by pointwise product and p € N, then C} " is a C-algebra.
Now, we consider an interesting operation in the spaces C A,

Definition 5. For f € C/™7, ¢ € C;”" we define the tensor convolution of f and g to be:
(F8)@n = [, f&=nt)-gnt)an.

Similarly to the pointwise product we have the following result for tensor convolution.

Theorem 7. The tensor convolution  : CL*T x C.™7 — ™" is a bilinear operator. The set ClPisa E-algebra
with the product .

Proof. By Proposition 7 we have that - is bilinear so * is bilinear. Let f € C}“7and g € C, 7. We can assume
without loss of generality that they are generators, so we can write:

(& 1)] < e MEF (), |g(&, )] < 172 MIEF g0 (g),
for (&, t) € R

By Proposition 1 we have that for every &7 € R%:

— [ =nl" = n" < —re|E]°,

for some r, < 1. Consequently,

1f¢—mt)-gm ) <If(C—mnt)lIg(nt)|
< e MIEITHID £O(E — ) g () < e MR £0(E — )g°(p).

Thus, X
[(f8)(§ )] < e MER(f04 %) 2).
Since 0 x g0 € £* for f0,¢" € £* we have that f x g € C} ™. O

For p,g € N and A > 0 we denote C!“7(A) = {f eCl™ exp(f) € (O,A)}. Additionally, a remarkable
case is when a = 2 that we denote simply by CP*9(A).

In order to solve the Navier-Stokes Equation we need to consider a product associated with the gaussian
distribution.

16



Definition 6. Let K : R — C9*¢ such that supzegd [|K(S) [l £(cay < 1, we define the product:

(Fo8)( 1) =2miK(E) | [ e P (fag)E o) ¢

for f, g € Cq1(47%v).

Theorem 8. Assume that ET is closed by Riezs convolution *q, ie., fOx1¢° € £+ for f0,¢° € &+ orit is
closed by convolution after multiplication by |-|, i.e., |-| (fO* g°) € €T for f0,¢° € E*. Then the product © :
CP1(4r?v) x CPN(4r?v) — C¥N(4rv) is a bilinear operator.

Proof. By Theorem 7 we have that * is bilinear so ® is bilinear. However, we need to check that f ©® g €
CP1(4r?v) for f,g € CP1(4m2v).

Let f € C?*1(47%v) and g € C¥*1(471%v). We can assume without loss of generality that they are generators,
SO we can write: ) )
F(E 1) < tmeMEEO(2), |g(8,1)] < 1726 MEFG0(0),
for (¢, t) € lel_“.
By Theorem 7 implies that:

(f )& )] < e 21 (04 g0) (),
for (&, t) € RTHL

Therefore,

|(f®g)((:, t)| <2rm (/Ot 3*47T2V(t75)\{f|25n1+712€*%|C\2(fO *gO)(g)ds) ‘€|
— ot =4t (/()te(4n2v§)5|§|2ds> (% ¢%)(2) |¢|

e(4n2v7%)s|§|2

(47‘[21/ - %) |§\2

2 mv—3 e _
e gsmne? (£ 1) oy
(47'[21/ — %) 12|

2 2
o~ el _ —arPutie]

(47121/ — %) &2

) o —(4n2v—%)t|§\2
— ot & o= 3t l—e 0, o0V (7).
ot I e ( T )(f +8)(6)

— 2t || p—amvt|E [ ] (f*+8%)(2)
0

= 27" |g| ( ) (f°*8%)(@)

e If £ is closed by Riezs convolution *; then we have that

27 1y — AL E[2
7) e T (040 8)(0),

24
44y 5

[(fogEhl < <

for (& t) € R Since f0%; ¢° € £ we have that f © g € C¥*1(47%v).

17



e If £ it is closed by convolution after multiplication by |-|, we use that
1 __p—X
max ( ¢ ) =1,
x>0 X
1 _ At

(F@8)(& 1)] < 2mtmtnatle HIEF (0 4 g0) () = prtnatle HIEFRO(g),

for (¢, t) € Ile_“ with h9(&) = 27 |&| (f° * ¢°)(&). Therefore h® € £F and we have that f © ¢ €
C1(4m?v).

to conclude that

We assume the notation of Theorem 8 to state the following:
Corollary 14. If £ is closed by Riezs convolution *1 and f, g € C?*1(47%v) then:

1tz

(F@8) (& 1) < e H1E (04, §9)(2).

%

Proof. Since A < 4772y we have that 4772V — % > 2772y then

27T 27 < i
471:21/_% — 22y T omv

d

Since we are looking for solutions of the Navier-Stokes Equation is important to consider derivatives with
respect to time. This motivates the following definition.

Definition 7. Let £ be a space of functions decreasing fast closed by pointwise addition, convolution and
maximum.

Let d > 3, we define V(&) be the complex space generated by functions f : Ile_“ — C€%1 such that
feC(&), f(&-) € C°([0,00),C%) for a.e ¢ € R? and we have the automorphisms & : V(€) — V(&) and
|-] : V(€) — V() satisfying that for every m,n € N:

m9"f BB e—ALE £0
a2 @ 0| < )ty R @),
for every (¢, t) € IRd“, for some A > 0, f,?m €EF,a,beRyy.

Remark 11. Note that we have a uniform exponent A = exp (\ "5 t{f ) for every m,n € IN.

In the next result we study the behaviour of the restriction of tensor convolution to the space V(&). For
simplicity we will denote it by V.

Theorem 9. The tensor convolution * : V x V — V is a bilinear operator. The set V is a £-algebra with the product
*.

Proof. Let us take f, g € V and write:

(B4 )m L@ 0| < (¥ (poyme #1EP S, (0) ©

and

(iS5 0| < (b R (payme PGS, @), 7)

for every (¢, t) € ]R‘f’l, for some 8 > 0, f7911/7’11’g372/7’12 € &*,a,b,c,d € Ryy.

18



By Newton binomial and triangle inequality we have for every & 7 € R%:

& < (&~ 1] + )™ i( )|¢ gl gl

Therefore, applying the Leibnitz rule we have:

[CIEIE s

y (7)1 (5E 5t ) @0

=0
<X%]f% () (et 10| 52) = (821 | 525) ) .
By Theorem 7 we have that:
(62 107|52) = (82 1 | 58]) ) @0 < (B epr (o) s iy e B P (st v b (@)

Thus,

at”
<3 (")( )<ﬁa>%<ﬁb> (5 (Bt e 2R (1l )
r=0j=0 \/
— (B2 (a? +c2)) (ﬁ(b+d)) e 2l (Fx 9)% . (E)

obtain that f x g € V. O

Remark 12. Note that, after a simple inspection we see that for every & > 0, (f %, g)(,)n,n < (f*2 9)% in

and (f *q g)%,n < (f *u g)%,nJrl for every m,n € Nif fr(zl,n < fr?tJrl,n’ f191,n < fr(r)1,n+1 and g%,n < g?nJrl,n’
g%/n < g?n,nﬂ, for every m,n € IN.

In other words, if f,%,n < f%/ v and g?n,n < g%, v for every m,m’,n,n" € N such that m < m’ and n < n’
then (f *, g)(,)n,n < (f *a g)%, v forevery m,m’,n,n’" € N such that m < m’and n < n'.

Remark 13. If 2 > 1 and ¢ > 1 in Equations (6) and (7) respectively then we obtain the simpler inequality:
5 ( ) ¢ % m b+ d))" —% |(’,“2 0
(B2 12" 5 (&) = (B2 (a+c))"(B(b+d))"e (f * &)mu().
Furthermore, we can write the original inequality using the Riesz convolution x*;:

\w% e Lasl, 0\ < (BH(at +¢2))" (B(b+d))"e” T (F 21 9)%,,(0).

Definition 8. For > 0 we denote V(B) = {f eV |exp (||m %) < B,Vm,n e ]N}. Additionally we
define A = 47°v.
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With this definition we can state the following result.
Lemma 5. For every f,g € V(A) and n € N we have:

. — i yn—1—7 *
PUOD 1) = (<212P)" (o 8@ 1 +2miK(E @( My L8 g ¢|>é,

atnlj

d
for every (¢, ) € R,

Proof. The proof is a consequence of Lemma 1 with:

L= 5% =(fOg)& ) y(& 1) =2mK(E)(f*18)(G 1) [5] & a(§) = A |5|* and:

W8 (g1 = (<212 (F 0 9)(& )+ 20K (@) (F 1 9)(& 1) [l &
O
Remark 14. Note that for every f € V(A) and m,n € IN we can write:
WD TEE 0| < (0 ere PR, (0), ®)

for every (,t) € ]R‘f’l, for B = exp(f). Furthermore, by taking a V b = max {a, b} we can simplify the
inequality to:

D" SEE 0| < (av o) Ene PR, (0), ©)

for every (¢, t) € lel_“.
We use the notation considered so far to state the following result.

Theorem 10. For every m,n € N, f,g € V(A) we have

(1L e )

<

1 1\2n
(A(a? +c)2) 341 (A (b + d))n! (a2 +c2)" = (o +ay
v %

for some (f © )9, , € ET.
Proof. Let us take f,g € V(A) and use Remark 14 to write:

WG En| < G Fane L, ), (10)
and
WD )| < 00 F e P (0), a

for every (Z,t) € RA*!, for some 0 < B < A, f9 1,89,y € €1, a,b,0,d € Re.

By Theorem 9 and Remark 14 we have:
1 d" 1,1 1 (2
)L ) < a2t + )G+ ) ()
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Using the case n = 0 and Corollary 14 we obtain:

1,1 1
(A (k)" g

(At )" (fog)E ] < F (f #1800 (©)-
Therefore,
1 0" 1 nzl | 0"
e e n| < byl o e o+ 5L ok e s )
£
(a2 1))t o
< P AT B2 (a9 20(0)
n—1 11 1 , . 2
_‘_27” X%)(Aj ((ﬂ +CE))m+2}+2(A(b_‘_d))nflfje*%m (f *1 g)9n+2j+2,n—1—j(€)
f=
(a2 2)ymt2n gy o
< P AN B (a0 200(2)
1,1 1 n-1 2 )2 I txp2
£ 2T\t 4 )2 (A0 + ) (];) wrer )e—ﬁzlé (F © 2D
with (f © g)5,(8) = maxo<j<u—1(f *1 8)21+2j+2,n—1_j(5)-
However, ‘
L3 voma2n — (yho 1 1img2 wr [ ] (@2 4 e2)?]
(A (at +c)™2 < (Aot )20+ a) | L || -
j=0

In fact, the term on the left hand side is the term on the right hand side when j = n — 1. Additionally,
(f *1 g)(r)n+2n,o(§) < (f@g)gm(‘.f) and

ni:l (a%—l—c%)z j (wébicd%)z)n_l B (a%+c%)2n—(b+d)n
= (ﬂi*j) . (b+d)r—1 [(a% +c%)2 — (b+d)}
Thus,
ey 28 ¢ )
Ty [ (@) erar ) (F ©8)n(@),
™ (b+d)r—1 [(a%Jrc%)z—(ber)

Corollary 15. If (a2 + c2)2 < 2(b + d) then:

A (A} 1 ) "
(b1 EULO8) o | < 2@ HEVTAB LD Bl 5 1, 2,

d
for every (&) € R,
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Remark 15. Note that in Corollary 15 the condition is satisfied if a < b and ¢ < d.
Corollary 16. Ifa > band c > d then:

WM@J) <

n 11
ot 2az2c2 v

(A2 1))

d+1
for every (¢,t) € R
Proof. In fact,if a > b and ¢ > d then

(a2 +c2)2— (b+d) =a+2a2b? +c—b—d > 2a2b2.

Remark 16. Observe that f € V(A) and m, n € IN we can write:

WD TEE 0| < GF e PR, (0), 12

for every (&,t) € RA'!, for B = exp(f). Furthermore, by taking a Vb = max {a,b} we can simplify the
inequality to:

’u% |5\>"1ng (5,t>’ < (Mav o) e P L (), (13)

for every (¢, t) € ]R‘f’l. It means that it is enough to consider the case in which a = b.

Corollary 17. If f,g € V(A) such that:

WG En| < on T e B L @) (9
and o
e SEEn| < oF e e, (@) (19

for every (&,t) € R, forsome 0 < B <A, fo 11 8%, € EF, 0, € Rog. Then,

1 "(fO _B
ey P2 g | < LS80 o g ), (16)
2aic2mv
for every (&,t) € RETL
Proof. It is enough to apply Corollary 16 since in this case 2 = b and ¢ = d. O

Corollary 18. Assume that £* is closed by Riezs convolution x1, i.e., fO+1 g° € E* for f0,¢° € EF. Then the
product ® : V(A) x V(A) — V(A) is a bilinear operator.

Proof. This is a direct consequence of Inequality (16) and the properties defining £.

A remarkable case of Corollary 17 is when a,c € Z, and we state now because is fundamental to construct
the solution of the Navier-Stokes Equation.

Corollary 19. Let f,g € V such that a,c € Z then:

1 n % % 2 %4»71 b =2
()\7 ‘é’|)ma (gt?g)(g’t) < (/\(a tc ) ) e—%\rﬂ

2tV

(f©8)nnld), 17)

d
for every (&,1) € R,
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Remark 17. Note that we have that:
(fOma(@) = max (fx 3)0m+2j+2,n—1—j(§)

0<j<n—1

0 0
= ma ma * . .
O§j§nx—10§j§m—i(2j+2<fl’r 1 gm+2]+2—l,n—l—]—r) (6)

0<r<m—1-j

— 0 0
N 0§r1Tg)§nfl <fll’rl 1 81,)(6)-

ll+12+2(71+72):m+2n

In particular, after a simple inspection we see that (f © ¢)9, , < (f © g>21+l,n and (f©¢)%,, < (f® g)SmJrl

for every m,n € Nif f), , < 1(1)1—«—1,71' fon < 1(1)1,n+1 and g), , < 321-«—1,71' 8 < g(r)n,n—H’ for every m,n € IN.

In other words, if f5),, < f0, ,and g5, < g%, , for every m,m’,n,n" € N such that m < m’ and n < n’
then (f ©¢)%, < (f©8)%, , forevery m,m’,n,n’" € N such that m < m’ and n < n’,

6 Existence and Smoothness of the Navier-Stokes Equation

In this Section we will construct a smooth solution (u, p) : Ile_“ — R of the Navier-Stokes Equation.
We start by defining the following recurrence relation:

— 2
v0(G,t) = e MTu0(@),
k—1
Uk = 2 i ® Uk—1—j, k>1.
j=0

With our convention A = 47t%v. We denote by {ci} ;< the sequence of Catalan numbers, i.e.,

=1,

1/2(k—1)
=z > 1.
Cl k( k—1 >,k_1

Note that we have the alternative expression

k(1
! (j)k k>1
kton T
Moreover its generating function is given by c(t) = 1= VZt_4t. Additionally, it satisfies the recurrence rela-
tion:

Cr =

=1,
k—1

Cy = 2 CjCk—l—j-
j=0

The sequence {vy };, satisfies a remarkable family of inequalities that we state in the incoming result.

Proposition 8. For every m,n, k € IN we obtain:

1 o" AMk+1)2)7+0 a2
(/\j |§Dm atz’ik ((;I,t) = Ck( ((2_‘7_'(11/31‘) e zk“ﬂ vg,m,n(g)f

for some vgrm,n € Dy, m,n,k € N. Furthermore, for every k € IN, v%m,n < vg,m,,n, for m,m’,n,n’ € N such that
m<mandn <n.
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Proof. By induction over k.

e For k = 0, we have that

DS n)| < (1P E e MR i),

forall m,n € IN.

Hence,

‘(/\2 |EH™ atn (g t)‘ < A%+new\c\208’m(g)l

with o (&) = max {1, |&| 2

Lﬁ)(g)] for all m,n € N.

Note that vOmn = vgm+2n0and v(mn < for m,m’,n,n’ € N such that m < m’ and n < n’.

0,m’, n’

Additionally, we define v 9.(&) =max{1,|¢[}"

ud(g )’ for & € R, in particular o, =00 . 0.

¢ For k = 1, note that v; = vy ® vg and by Corollary 19 we have that:

c1(4A)7 "

M2
T 2167 (09 © 09)9, 4 (€)-

et <

Therefore, it is enough to take o), (&) = (vo ® v0)}, ,(&). Note that by Remark 17,2 < U(l),m/,n/
form,m’,n,n’ € Nsuchthatm <m’and n < n'.

Assume the result for 0 < j <k, i.e,

9"v; ’ c]-(/\(j+1)2)% T Ayap

ek | < T —e I, )

Using the recursion relation we have:

1 0 k=1 1 0
b e Gten| < ot AUELERE
_ >+12%+ k_’2%2%+n_7mm ’ 2
= X%) S ((2[7'<[]1/)(27)13)]<27£1(/)k_1]2]} ) ) e {2] 2 }m U O Vk_1— ])m n(g)
= U(CZJ;Xk)ﬁnethglzv?,m,n(é)/

with v%m,n(é) = maxogjgk,l(v]- ® Uk—l—j)(r)n,n(é)-
Note that by Remark 17,0 <9 ,  form,m’,n,n" € N such thatm < m’andn < n'.

Additionally, if we expand using the definition of (f ® ¢)° for f, g € V(A) we have:

0 20 0
v = max max ma IR ON/ .
k(6 0<j<k—10<g<n— 10<l<m+2q+2( s © Pkt 2q2-1n-1-g-1) (€)
0<r<n—1-—q
0 0
= max max v; *1 0 ; .
OS]Sk*l 0§711+712§7171 ( ],ml,nl 1 k*l*],mz,nz)(g)

my+mp+2(ny+ny)=m+2n
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Note that 02 mn € D1 form,n,k € IN, in the following result we see that we can bound every of such
element by a monimial in the nonassociative algebra (Dy, *1), since d > 3.

Theorem 11. For m,n, k € IN we have that:

0 < %1 (10 o ... .0
Uk,m,n(g) > 0§11+---:I—ll?j_(1§m+2n w (vo,lll 00,12/ ’ vorlk+1) (g)

ZUEM(XL"' ka+l)

Proof. By induction over k.

e For k = 0 it is obvious since

0 0 0
vO,m,n(g) - 00,m+2n(§) = Oggiﬁvao’l(g).

* Assume that it is true for every 0 < j < k. For 0 < j < k — 1 we write:

0 %1 (0,0 0 0
[ < max w' (v v SR /) .
jmyng (g) = 0§r1+---+rj+1§m1+2n1 ( 0,r17 Y0,rp7 ’ O,rk+1)(§)
weM(y1, Yjr1)
Therefore,
0 0 0
v = max max v; *10 .
k/m/n(g) OS]Sk—l 0§1’l1+}’l2§}’l—1 ( ], 1 k717]1m2/n2)(€)
my+mp+2(ny+ny)=m+2n
< max max max wr (oY, o0 08
= 02joko1 0<g<n—1 0<ry+oorbriyg <y +2m; ( 0,717 0,157 ’ O,YJH)
m+my=m+2q+2 weM(y1, - Yjs1)
ny+ny=n—1-gq
#1000 0
* max w* (v, v R )
! 0<sy 4o Asg_ j<mp 4217 ( Os17 20,527 O'Skﬂ) 9
weM(zy, 2k j)
< max w02, 00, 00 .
—_ 0§11+"'+lk+1§m+21’l ( 0,11’ 0,12’ 4 0,lk+1)(§)
ZUEM(Xl,"',Xk+1)
O
Note that by Theorem 6, Corollary 12 and Theorem 11 we obtain:
0 0 0
su v < max su v v S /)
<pl |(§‘ k,m,n(é) 0<ly+4-- +lk+1<m+2n <Pl |(§‘ ( 0,117 Y0,1p” ’ Oflk-%—l)((:)
Ig1< Ig1<
weM(xl, Xka1)
' k+1
< k- H
B 0<ll+ +lk+1<m+2n1_[ Ol 1@;;@;;
and for every > 0:
B0 B, *1(,0 0 0
su v < max su w' (v 0, 0,
p 2750, @ < | omax o oup 160w 0o, o) (©)
Ig1> Ig1>
wWEM(x1,+ ,Xp11)
< 2P max sup w*1 (o2 o o, 00
T 0<l 4 +lk+1<m+2n|€‘>pl ' Ohi+pr "0 l+p7 7 0/lk+1+ﬁ)<§)
weM(x1,+ Xgy1)
k+1
< 2Bck-1 max H H 01 +/3H .
0<ly++- +lk+1<m+2n 1opap’
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Remark 18. Note that we can extend the definition of o for m € R by defining v} o = 1P

Corollary 20. For every m,n, k € IN and 1 < q < d we have that:

k+1

ket 431 0

v d+1
0+ 45

0
Hvk,m,n

S max H
1@q O§11+---+lk+1§m+2n ]:1

1opap’

Proof. Note that for every 1 < q < d we have:

9
L9(RR7)

= [ Ohal@)7dC

g7 (81
— Tl Tkmnis) g
le<1 &7 +/|

0
Hvk,m,n

k+1 q

0

max 0
0+ 43t

0<ly+-+ g <m+2n 5

<ch

max H
0§11+“'+lk+1§m+2n ]:1

< C(k*’#)q ax H

m
0§11+~~~+lk+1§m+2n j:l

Therefore,
k+1

<o 11
LI(RY) 1

0

4 d+1
01 +55=

max
0§11+"'+lk+1§m+271

0
Hvk,m,n

1epap’ '
If we apply Equation (18) and the special case for g = 1 < d and sum we obtain:

k+1

ke 441 0

v d+1
0+ 45

0
Hvk'm'” 18 = 0<h ol <2 I1 ’
q Shte g Sm+ ni=1 1opop!

Corollary 21. For every m,n,k € N, 1 < g < d we have that :

d k+1
< ck+3

1@q

0
H”k,m,n 00,m42n4 44 H

169;769;7”
if0 <k <m+2n,

S Ck+%
1®q

‘m—«—Zn

0
Hvk,m,n UO d+1

72

k+1—m—2n
z]O,m—4—2n—4—# ‘

1epsp’ 1epsp’

ifk > m+2n+1.

Proof. We consider the inequalities of the form:

0<l+4-4hyg <m+2n forly, -, iy >0.

Note that 0 < lj < m + 2n implies:

0 < o0
Oo 14451 = Pomyont g1

o If0 <k <m+ 2nthen
k+1

< ck+iF
1®g —

0
0,m-+2n+9431

0
Hvk,m,n ’
1®opap’
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o Ifk > m+2n+1,since I + -+ + lx31 < m+ 2n we can assume that without loss of generality

Lntont1 = -+ - = lxpq1 = 0, therefore
0 R T 0
Hvk,mn 1 <C : H 001.+M 001.+M
&g j=1 T hepep j=mtn+1 1l T T Nepep!
eadst || o m-+2n 20 k+1-m—2n
< C o d+1 d+1
0,m+2n+43= 1op@p’ O,T 1epop’
O
Corollary 22. For every m,n, k € IN we have that:
H (Ad | L A+ DI yan ] o o
JymZZk < . ,
ot" 162,00 (27‘[1/)k 0,m+2n+% 102
if0<k<m+2n,
2\ m+2n k+1—m—2n
H(/\i ‘.Dma”vk cr(A(k+1) )2+"Ck+% 0 " o
ot" 162,00 (27‘[1/)k 0,m~+2n+43= 12 0 -l PP
ifk>m+2n+1.
Proof. We use the family of inequalities of Proposition 8 and Corollary 21 to obtain this result. O

Now we consider the Banach space B = L'®2(R?,C%) and the associated space of functions that decrease
fast
&g = {4>:1Rd—>cd | M™(¢) eB,Vne]N}.

Corollary 23. There exists v € C*([0,00),ER) such that

v =1y + 0%,
for v large enough.

Proof. Let us consider v = } ;2 ; vx. By Corollary 22 we have that v € C®([0, c0), ) for v large enough.

In fact, note that

m+2n ce(Alk+ 1)2)%—«—71 o d1 k1
k C : z}O m—4—2n—4—M
k=0 (27v) ’ 7 a2
© (A(k+1)2)E ki1 m+2n k+1—m—2n
C ‘ ,
+k:m§n+l (27tv)k C0,m2n+ 441 102 Yo,241 102
converges after applying the Ratio test:
2
im (1) (6 (L) e = feben| =2 || <n
k—sco \| Ck Ak +1) 27y g 2V ] O |l v || O ||y

independently on m and n.
162

: : 2C [,0
if and only if v > == ||v 0,451

Furthermore, we have

) 0 o k—1
U= Evk:vo—i—zvk:vo—i—z EZ)]'@Z)k,l,]'
k=0 k=1 k=1 j=0

[ ©2
—00+Z Z 0 © Vg1 ]—vo+<2 ) = vy + 02

j=0k=j+1 j=0
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Theorem 12. Let g : RZ™! — C defined by

e =2mi((E25) @eoene),

then,
%(é, f = —A%vo + 2mi(v*xv)(E, 1) — q(E, ).

Proof. In fact, since v = vy + v°? we have that:

% _ % + _E)UQZ = —4m?vyy + _av®2
ot ot of 0T o

However, by Lemma 5 we have for every f,g € V(A) and n € N:

n n nl 9" (f
PUL8 6,0 = (- lP)" (Fo g n +27iK(E) (Z (-riep) L8 a) 3

ot = otn—1-J

Taking f =g¢=v,n=1and K(§) = I; — % with I; € R4 the identity matrix we obtain:

agfz = 40?4 27K (&) (v % 0) (&, t)E = —4m*vo®? 4 2mi(v % v) (&, )& — q(&, t).
Thus,
3_7; = —4m?voy — 4mvo®? + 27i (0 % 0) (8, )€ — q(&,t) = —4m*vo + 27i(0 % 0) (8, )5 — (&, 1).

: . RA+1 d
Corollary 24. Define (u,p) : R — RY,

u(x,t) = /Rd 0(E, t)e " TFE4E,
i (:Tq(gf t) 6727Iix~§d(;z,

p(x/t) = _27.”' RY ‘€|2
then (u, p) is the solution of the Navier-Stokes Equation for v > 0 large enough.

Proof. By Corollary 23 we have that:

n
0"

1
L) € Lerme),

for every m,n € IN.

By Theorem 12 we obtain:

g—zt} = 4100y — 4P vo®? 4 271i(v * 0) (1) E — (&, t) = —4m*vo + 27i(v * ) (&, £)E — (&, t).
Additionally, since:

(0 =2mi((£25) weoene),
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we deduce that %q(@, t) =q(¢,t) and:

— 5 ® 5 —2mix-Cqx _ ' —27ix-¢
Vploh) = [ e a@0e g = [ (e ne g

On the other hand, note that:
2mi /Rd (0% 0)(C, )Ee2TvE4g
= 271i /Rd /]I'{d o(E—n,t) @v(n, t)Ee 2 CdydE
_ ; _ —2mix-¢
2ri [ [ o(@—n8) @ o(n, e gy
=i [ | [ 0@ 0@ 000)(E+me 2™ E apag
=i [ [ o(g o0 ge 2 E ayag
/ / é- ¢ é-T 17 t) —2mix-(+n) d?]dg

</ / (—2mieT)e 27'(ix-§d§> <./]I'{dv(;7,t)e—2mx-qd;7>

()()

Therefore,

ou  oJu
E—i—a—u—vAu—Vp.

Furthermore, (1, p) € C® (R, R¥*1Y), u(x,0) = u®(x), div(u)(x,t) = [ra 27i¢T0 (&, t)e¥™ ¥ 4dE = 0

Therefore, have bounded energy for all the derivatives of u since by Plancherel identity:

o
8t” ax

for every multi-index 7 € N and € N. O

n
< ||(an? |.|2)Ma_v < o0,
- ot 1200 (]Ri-%—l)

LZ,oo(Rli-H)

Thus, we have the existence of a smooth solution of the Navier-Stokes Equation. In fact, we have a stronger
result, the existence of an entire extension (U(z,t), P(z,t)) for positive time that we explore in the next
section.

7 The existence of the Curve of Entire Vector Fields of order 2

In this Section we show the existence of the curve (U, P) : C’iJ’Ol — C%*1such that U(,-) and P(, -) are entire
of order 2 and U(x, t) = u(x,t), P(x,t) = p(x,t) for every x € Rt > 0.

We start with a useful result about uniform convergence.

Lemma 6. Let {gy}rcn C CO(R? — {0}, R) such that:

* There is a sequence {ry }c such that rg —k_co 00 and supyy s, gk(x) <0, forallk € N.

o We have gy k0o O uniformly in R? — B(0,8) for some & > 0. Then, SUp|y >, Qk(x) <0, forallk € N, for
somer =r(8) > 1.
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Proof. Lete > 0 fixed. Since 7y —¢_s00 00 and gx —¢_s00 0 uniformly in R? — B(0, ) we have Thy <0 < Tyt
and ||g; — gkoHLw(]Rd—B(o,J)) < eforall k > ko. Since sup >, gk, (*) < SUP x>, 8k, (x) < 0 we have that

gko(x) < 0for |x| > 4.

Therefore,
‘gk(x) _gko(x)‘ S Hgk _gkOHL"O(]Rde(O,(?)) <€,

for allk > ko, |x| > ¢.
With this we conclude that if |x| > § and k > k:

Sk(%) = (8r(x) — gio (%)) + 8xo (¥) < [ gk (%) — gk, (%) | < €.
Letr = max {r1,- - ,7x,, 6,1} then:

sup gj(x) < sup gj(x) <0<e,
|x|>r \x|2rj

for1 <j <kgand

sup g]-(x) < sup g]-(x) <e€,
|x|>r |x|>6

for j > ko.

In particular, sup; SUP |4 |>, gk(x) < € for € > 0 arbitrary. Letting ¢ — 0" we have
SUPeN sup‘x‘zrgk(x) <0. O
Now we have some remarkable spaces.

Definition 9. Let £ be a space of functions that decreasing fast closed by pointwise addition, convolution
and maximum .

Letd > 3 and & > 1 we define V,(€) be the complex space generated by functions f : ]R’file — €1 such
that f € C(£)o, f(&,-) € C*(]0,00),C?) fora.e & € R? and we have the automorphisms % V(&) = Vu(€)
and |-| : Va(€) = Vu(€) satisfying that for every m, n € IN:

1 d" m _ ®
AHED" S @ 0| < Q)T by R (0)
for every (¢, t) € Ile_“, for some A > 0, f%n €ET,a,b e Ryy.

Remark 19. Note that we have a uniform exponent A = exp (\ | %) for every m,n € IN.

Let us consider the Banach space B = L!(IR?) and & its associated space of functions decreasing fast. The
spaces V,(€) for a > 1 are interesting because of the following

Theorem 13. For every f € Vy (&) we have that f(-,t) has an entire extension to a function F(-,t) : C% — C% such
that:

—DAH(E)" e ) (=)
e, ) < el e
for every (z,t) € C’i’gl such that |Im(z)| large enough and some constant ¢ > 0.

Proof. Note that by Corollary 29 in Appendix we have that

« T\ o
—[e* +egn < (@ =1t (5) Il

for &1 € RY.
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Furthermore,

F(& 1) < e MEFfO(g), for (&t) € REF.

Let us consider the Laplace-Fourier transform:

F(z,t) / F(E e 2M=8dE, for (z,t) € CLHL

If we write z = x + iy, x, y € RY then:

& 1) |e27=8| = |f(g, )] 2mE < M 2mef0(g) < MRSV E) () 19)

< e(a—l)m(%)a/\y\“/fo(g).

Then the integrand belongs to L' (R?) for every (z,t) € C’i+01. We can apply the Morera’s Theorem to obtain
that F is entire. Furthermore, by Equation (19) we obtain

E

‘P(Z, t)| < e(rx—l)/\t(M \Im z)

"I

for every (z,t) € CTol‘ O

L(R4)’

Corollary 25. For every f € Va(E) there €XiSfSA F: C’iJ“Ol — C% such that F(-,t) is entire for every t > 0 and
F(z,-) is smooth for every z € C? and F |ji+1= 1
&

Proof. Since f € V,(€) we have:

o] <,

for (&) € R, n e N.

Therefore, we can exchange % with the integral defining F in such a way that:

Jo"F d" s,
S = [ g @0

By Theorem 13 we have that E)t” E(.,t) is entire for every n € IN, t > 0 and F(z,-) € C®([0,00)) for every
z e

Additionally, if z = x € R? we have F(x,t) = f(x,t),t > 0.

Finally, note that:

d"F DA(E) 1

S an)| < G e o)
forevery n € N and (z,t) € Cd>+01‘ O
By results of the previous section we have that v, € V,(&) for every k € IN with exponent exp(vg) = 47;,? v,

therefore we can not find a common positive exponent in order to have v € V,(€). However, we can apply
the previous results in this section to obtain that v € V(&) for every 1 < a < 2. Now we define A = 47t%v.

Theorem 14. There exists a smooth function (U, P) : C‘i*él — CH1 extending (u, p) : ]R‘i*él — RI*1 such that
(U(-,t), P(-,t)) is entire for t > 0,

a"u

. t)’ <e((a—lw(%)“#cl(n))um<z>\“/
atn 7 —_

4
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for every (z,t) € Cd>+01 such that |Im(z)| is large enough for some constants c1(n) > 0, ca(n) > 0, for every n € IN.

2
Proof. Let1 < a < 2 and consider & € RY such that |&| > 27°% then |E|*™% > 2%, in other words |Z|* < E—,‘r

Therefore,
d"v k

1 2)%
‘(/\2 ‘€|)m o ((;I,t)’ < c(Ak+1)%) +

(27tv)k

n
Y o
oM vg,m’n(g),

for |&| > rp withr, = 27,

Define wy ,, , : (R? — {0}) x [0,00) — R,

m 9" v

Wy (& 1) = ’(A% ) —(@,t)‘ kDI e o

(27_[1/)]( k,m,n(g)'

ot"

Therefore,

sup Wy, (&) <0, form,n,k € N.
[&=7%

Additionally applying Theorem 6 with p = 2 we have:

d+1

2Ck+ T oy o 0 m+2n k+1-—m—2n
min
sup wk,m,n(é) < 2 k (/\(k + 1) )2 vo m4-2n+4£1 vo d+1
lg[>1 (27tv) ’ 2 g2 "7 {12
m+2n
k ’UO d+1
i [ C | o R P 0
< 2C C P 0 d+1 UO d+1 %k_}oo O,
27 || 057 ||y 0 7 lhae2
vo d+1
72 112
: C 0
ifv> o U ds1 .
72 l1@2

Then Lemma 6 implies that:

sup Wy, ,(¢) <0, forall m,n,k € N, for some 7y, > 1.
|§|27m,11

Let us define f; ., : RT™! — R,

k 2\ 5+n
fk,m,n(grt) - Ck<)\<(2‘|7‘_“1/;k) vl(g,m,n(é)X{0<|§|§1’m,n}<€’t)
ck(Ak+1)%)2 "

¢ Ok Ol (1)

and fi,un(0,t) =0fork >1,m,n € N, t > 0.

Hence,

1 9"
(A1) 2R )| < fmnlEt),

for (¢, t) € lel_“.
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Furthermore,

2\ B +n
fomn(@ 1) < FAETVIT 0 -y

(27tv)k
Therefore,
c(A(k+ 122y
Z [ frmn (s Hl@Z = ; (27tv)k Okmn |l yen
m-+2n 2\ %+n k+1
<y ok (A (k+1)k)2 | »
= (27-“/) 0m+2n+T 102
o0 Alk—+1 2\ B +n m-+2n k+1—m—2n
+ Z Ck( ( i )k) Ck+% 8 S 778 d+1
k=m+2n+1 (27tv) M g2 77 he2
Since,
Ak +2)? 1 _2C
i () (30 ()b, - Zhtl
k—oo \| Ck Alk+1) 27y PPN 7 | Rl | PP
if and only if v > % 8 ag independently on m,n € N, we have that Y22 || fk,m,n||1 200 < O
162

Therefore, f(,,n) = Lo fimn € L1620 (R

Note that we can write:

fk,m,n(‘:/t) < ei)\tmaflgm,n,a(g)’
for (¢, t) € lel_“.

With oo
« cr(Ak+1)%) 2+
Fonnel® = (M 10,0 0+ Xy @) LHE el @)
Therefore,
f(m,}’l)(gf t) 7)\“5' fmna ( )’
with f0, ) = X0 fimma € LI>(RET) forv > 2 |lo g% L
@
Thus,
1 " VL
(U E TN )
andv € V,(€) forl <o < 2.
Note that we have the identity
Coaen =—Lwoent,
14 i 4

for every (¢, t) € ]R‘i“. By Theorem 7 and V,(£) C C4*1(€) we obtain that V, (&) is closed by convolution
and therefore g € V4 (&) for1 < a < 2.
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Applying Theorem 14 we have that u(-,t) = 9(-, t) and

¢’ 27
PO = [y a6 e

have entire extensions that gives rise to an smooth vector field (U,P) : C%l — C%1 such that
(U(-,t), P(-,t))is entire for t > 0,

P t)‘ _ (@0 e ) imo)
R ’

7

ou t)‘ (0@ et ) ime
atn 7 i

foreveryl < a < 2,(z,t) € Cd>+01 such that |Im(z)| is large enough, for some constants c¢1 (1) > 0, ca(n) > 0,
for every n € IN. ]

Corollary 26. There exists a curve (U, P) : C‘i*él — C¥*1 of entire vector fields of order 2 that such that U (x,t) =
— d+1

u(x,t), P(x,t) = p(x,t) for every (x,t) € RLH.

Proof. Since the conclusion of Theorem 14 is valid for «’ > 2 arbitrary (it is valid for # < 2 arbitrary and

the conjugate function is continuous) we have that (U(-, t), P(-,t)) is an entire function of order 2 for every
t > 0. Furthermore,

ou oJou, . _ T 27iz-E 3
By + gy U =vAU — VP and div(U)(z,t) = ./]Rd 2mig v(g, t)e a¢=0.

Remark 20. Note that since

1ime<(“_l)/\t<%) +C1(n)>\lm(z)| :hme<(“—1)rw\f(ﬁ) +Cz(n)>\lm(z)|

t—0 t—0

= 0o,

for every (z,t) € C2}! with |Im(z)| > 0 we can not assure the entire extension until the boundary IR =
RY x {0}. However, in the boundary we have that (u, p) is smooth. Furthermore, u(-,0) = u® € S(IR¥)“.

Appendix A

In this Appendix we remind basic properties of the power function.

Let f:][0,0) — R,

fora > 0.
Then f € C*((0,0), R) satisfying f(0) =1, f(1) 22—0‘ =2%"land tlim f(t)=1.
—00

Note that

16 ) e O e )
fO="rrmr

Therefore, f (1) = 0.
e Ifa > 1then f(1) =2*"! > 1, hence max;> f(t) = f(1) and min;>¢ f(t) = f(0) = 1.
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e If0 < a < 1then f(1) =2%! < 1, hence max;>¢ f(t) = 1 and min;>q f(t) = f(1) = 2%"L.

Therefore, 1 < f(t) < 241 for t > O whena > 1and 2¢°! < f(t) <1lfort > 0when0 < & < 1.

Multiplying by 1 + t* we obtain:

T+ < (1+H)* <211 4+4%), fort >0, & > 1,
22T 1) <A+ 0¥ <14t fort >0,0<a <1,

In particular, we have the following result:

Theorem 15. For everys > 0,t >0,

s 1% < (s )Y <287 (sM 1Y), fora > 1,
227N ) < (s 1) <Y1, for 0 < & < 1.

As a byproduct we have
Corollary 27. For every t € R4, t > 0 we have

1
1#lle < Nltlly < 2+ [[£]],,
for o > 1.

We can use this to get a useful result in normed spaces.

Corollary 28. Let X be a normed space and x1, - - - x,, € X then

1+

« n
<2 T+ [y,
j=1

n
L%
j=1

We conclude with an important inequality.

Proposition 9. For « > 1and a > 0 consider g : [0,00) — R,

g(t) = —t" +at,

then

!

g(t) < (x—1) (g)a , fort > 0.

Proof. Note that ¢’(t) = —at*~! + g, then the only critical point is
a\y
h=(3) -
Since g (t) = —a(a — 1)t*~2 satisfies ¢’ (tg) < 0 we have that:
a\y a\ et
maxg(t) = g(to) = — (£)" +a (%)

t>0
’ / /

() e e @)
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Corollary 29. For « > 1 consider h : RY - R,
h(x) = —|x|*+cx-y,

for a constant ¢ > 0 and y € RY. Then,

h(x) < (x—1) [ﬂ“ y*, for x € RY.

Proof. Note that by Cauchy-Schwarz inequality we have:

h(x) < — |x[* +clx| [y],

applying Proposition 9 with a = c |y| we have:

h(x) < (a—1) [ﬂa |y|“/, for x € R%

Conclusions and Comments

In this article, we proved the existence and smoothness of a solution of the Navier-Stokes Equation for
viscosity large enough, it was possible after study remarkable spaces of functions V,(€) dominated by
Fourier Caloric functions with initial condition in a space of functions £ decreasing fast, furthermore we
obtain as a byproduct the existence of a smooth curve of entire functions of order 2 for positive time that
extend the solution (u, p) of the Navier-Stokes Equation to the complex domain.
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