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Abstract: Here, we present an EfficientNet-B0-based model to directly predict multiple properties 

of lithium manganese nickel oxides (LMNO) using their crystal structure images. The model is 

supposed to predict the energy above the convex hull, bandgap energy, crystal systems, and crystal 

space groups of LMNOs. In the last layer of the model, a linear function is used to predict the 

bandgap energy and energy above the convex hull, while a SoftMax function is used to classify 

the crystal systems and crystal space groups. In the test set, the percentages of coefficient of 

determination (R2) scores are 97.73% and 96.50% for the bandgap energy and energy above the 

convex hull predictions, respectively, while the percentages of accuracy are 99.45% and 99.27% 

for the crystal system and crystal space group classifications, respectively. The class saliency maps 

explain that the model pays more attention to the shape of the crystal lattices and gradients around 

the lattice region occupied by the larger ions. This work provides new insight into using an 

intelligent model to directly relate the crystal structures of LMNO materials with their properties. 
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1. Introduction 

Advancements in lithium-ion battery (LIB) technology, mainly through the development 

of battery materials, have significantly contributed to the progress in electric vehicle and portable 

electronic device development [1]. The choice of material for the positive electrode in LIBs is 

critical, influencing voltage and energy storage capacity. LixMn2–zNizO4 (LMNO)-based 

electrodes are gaining prominence over the traditional LiCoO2-based electrodes due to their 

superior energy density, affordability, extended cycle life, and enhanced safety features [2]. 

However, the presence of Mn3+ in LMNO induces Jahn–Teller distortions, which further affect the 

electrochemical stability of the material by altering the crystal structure [3]. Consequently, a 

thorough understanding of the structure of LMNO is crucial for devising effective solutions to its 

stability challenges. 

Despite the potential of using LMNO as a positive electrode in LIBs, correlating its crystal 

structure at the atomic scale with its properties remains challenging. Transmission electron 

microscopy (TEM) can visualize the atomic-scale structure of materials, providing detailed 

insights into their structural information. However, TEM falls short of directly correlating these 

structures with specific material properties, such as stability and electronic properties. This 

limitation poses a considerable challenge in the process of material optimization, highlighting the 

need for integrative approaches to bridge the gap between structural analysis and functional 

properties.  

Machine learning (ML) is a potential solution to the abovementioned challenge. ML 

algorithms can use material structures obtained from TEM to identify crystal structures and 

orientations and relate them with material properties [4]. This insight opens an opportunity to 

predict critical properties of LMNO, such as bandgap energy (Egap), energy above the convex hull 

(Ehull), crystal system, and crystal space groups. From a battery material standpoint, it is essential 

to examine Egap and Ehull of LMNO since Egap is strongly linked to the electronic conductivity and 

rate capability of cathode materials [5], while Ehull is relatable to the decomposition energy of the 

compound into a linear combination of stable phases [6]. Additionally, classifying crystal systems 

and space groups is incredibly useful in analyzing the physical properties of materials and can 

facilitate the quick screening of potential materials [7]. 
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The reason why ML can be an effective tool for discovering the relationship between 

crystal structures and LMNO properties is that ML can decipher complex features from intricate 

data, such as the arrangement and orientations of atoms in the crystal structure of materials [8].  

Beyond just structural analysis, ML has a proven track record of becoming a widely accepted 

approach in materials science, particularly for accelerating materials design and discovery using 

experimental and computational data [9]. Its utility spans across characterizing materials, 

predicting molecular properties, enhancing simulation speeds, and facilitating the discovery of 

new materials [10]. 

To address the challenge of directly linking the structure and properties of materials using 

randomly oriented atomic-scale structural information, we propose an ML approach utilizing the 

diverse orientations and structural appearances of randomly oriented crystal structures of LMNO 

simulated in VESTA software [11], which can simulate the structural information obtained from 

real-space TEM images. Using the simulated crystal structures, we utilized an EfficientNet-B0-

based ML to simultaneously predict Egap, Ehull, crystal system, and crystal space groups of LMNOs. 

This multioutput property prediction, a cornerstone of the methodology in this work, encompasses 

simultaneous predictions of electronic and structural properties, which are crucial for 

understanding the performance of LMNO when utilized as a positive electrode in LIBs. Hence, 

this approach offers a broader understanding of the LMNO properties predicted using the crystal 

structure images, delivering a more cohesive view of the LMNO evaluation for use in LIB 

applications.  

All LMNO structures and their related properties to be predicted were obtained from the 

materials project [12]. The retrieved structures are in the form of crystallographic information files 

(CIFs). Using VESTA software, the CIFs were converted into space-filling style crystal structure 

images and augmented by randomly rotating them to simulate different viewpoints, like in the case 

of randomly chosen TEM images with unknown crystallographic directions. Data augmentation 

was conducted to help increase the diversity and variability of the limited data, allowing learning 

models to learn patterns from the data. However, it is essential to note that the original and 

augmented images share the same target data in augmentation [13]. Finally, we used the images to 

train, validate, and test our EfficientNet-B0-based model [14], which had been designed to contain 

three activation functions in its last layer, hence enabling us to simultaneously predict Ehull and 
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Egap via a linear activation function and classify the crystal system and crystal space group via a 

SoftMax activation function. 

2. Methods 

2.1 Data Acquisition and Preparation 

All LMNO crystal structures and their related properties to be predicted were retrieved 

from the materials project database [12]. There were 60 LNMO crystal structures found in the 

database with seven types of crystal systems and 19 space groups; Egap ranged from 0 eV to 1.6272 

eV, and Ehull ranged from 0 eV to 0.8195 eV. 

We created randomly rotating LMNO crystal structures in the Vesta software [11] to 

perform image augmentation. In this case, each LMNO crystal structure was opened in the CIF 

format, and then the animation tool was used to randomly rotate it in a space-filling style. While 

doing so, PyAutoGUI [15] was run and recorded the randomly rotating crystal structure, with a 

time interval and a bounding box to generate videos. Finally, the openCV-python [21] was used to 

create 60 crystal structure images with 512´512´3 pixels from the videos. The images were further 

compressed to 224´224´3 pixels and normalized by a factor of 255 before being used as the input 

dataset for the model prediction. The total number of LMNO data points in the dataset was 3,360. 

2.2 Training, Validation, and Testing of the Model 

 A 15% test set (549 data points) was created from the original dataset (3,360). The 

remaining dataset was split into a 20% validation set (778 data points) and an 80% training set 

(2,333 data points), which were used to train and validate the EfficientNet-B0-based model. The 

model included three activation functions: one linear and two SoftMax functions in its last layer. 

The linear function predicted Egap and Ehull via multioutput regression, while the SoftMax functions 

classified the crystal system and crystal space group separately. The mean squared error (MSE) 

and mean absolute error (MAE) were used to evaluate the regression task, while categorical cross-

entropy loss functions and accuracy metrics were used to evaluate the classification tasks. The 

model used an Adam optimizer with a learning rate of 0.001 and a batch size of 16. Finally, early 

stopping was applied with a patience of 30 to stop training and validation whenever the model 

achieved its best performance at a specific epoch. 

2.3 Saliency Mapping 
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The saliency map from the Keras-vis package [22] was used to reveal the attention of the 

model on the LMNO crystal structure images. We only investigated the model attention on the 

LMNO crystal structure for LMNO crystal system classification. In this case, we picked one 

crystal structure image belonging to each crystal system for prediction and then used saliency map 

parameters to generate the mapped images; for example, we used ReplaceToLinear as the model 

modifier, a smooth noise of 0.05, and a gray color map. To quantify the similarity of the saliency-

mapped images, we also calculated their similarity indices with the structural similarity index 

(SSM) method provided by scikit-image. Before doing so, we transformed and resized the images 

to 256 ×256. 

3. Results and discussion 

3.1 Randomly Oriented LMNO Crystal Structures and EfficientNet-B0 Model 

Fig. 1 demonstrates the process of augmenting the randomly oriented LMNO crystal 

structures. To do this, each LMNO CIF was opened as a video in Vesta software and then rotated 

randomly with a space-filling style. Simultaneously, the PyAutoGUI [15] captured the moving 

video to produce 60 randomly oriented crystal structure images for each LMNO. The generated 

image came with a bounding box (black lines in the images) and a background color. By examining 

the images, it is apparent that the different atoms have different sizes and colors, while the same 

atoms have the same size and color. These distinguishable crystal orientations became the unique 

features of each LMNO crystal structure from which the model learned to perform predictions.  

 

Fig. 1. The process of generating the randomly oriented crystal structures of LMNOs. First, each CIF of 

LNMO structures was opened using Vesta software as a video. At the same time, the PyAutoGUI captured 

60 randomly oriented crystal structure images from the video. 

CIF

CIF of LNMO Randomly-oriented 
video frame  

Representative of randomly-oriented 
crystal structure images   

LMNO CIF
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To prepare the images for the learning model, they were first uniformly compressed down 

to a size of 224´224´3 and then scaled by a factor of 225. Then, they were converted into NumPy 

arrays of numbers before being input into the model, as illustrated in Fig. 2. The pre-trained 

EfficientNet-B0 was used as the ML model, which is based on the mobile inverted bottleneck 

building block and developed through a neural architecture search framework that considers 

certain constraints when finding the best architecture in the search space architecture [14,16]. In 

this model, the final layer uses a specific activation function to make predictions. This work used 

the linear activation function to predict Egap and Ehull and the SoftMax activation function to predict 

crystal systems and crystal space groups of LMNOs. 

 

 
Fig. 2. The images were compressed to 224×224×3, converted into NumPy arrays, and finally used as input 

into the EfficientNet-B0-based model. The last layer uses two activation functions: a linear function to 

predict Egap and Ehull and a SoftMax function to predict crystal systems and space groups of LMNOs. 

 

The model network utilized convolutional operations, scaling, and global pooling on the 

input data before sending it to the activation functions for making predictions. An early stopping 

parameter was applied during training and validation to avoid overfitting and long training times. 

The process was terminated after reaching convergence at the 124th epoch, as shown in Fig. S1. 



 7 

3.2 Multioutput Regression to Predict Egap and Ehull of LMNO 

During the training and validation, the model adjusted the weight and bias by minimizing 

the difference between the predicted and actual values of Egap and Ehull via the mean squared error 

(MSE) loss function. Loss function minimization was continuously performed until a satisfactory 

performance level was reached on the training and validation dataset or when convergence to a 

local minimum was achieved. In Fig. S1a, the training and validation MSEs drastically drop to 

low values after a few epochs and gradually decrease until they almost become constant at 

approximately 0. However, the validation curve is less stable and higher than the training curve. 

The mean absolute error (MAE) curves in Fig. S1b also show a similar trend after a few epochs, 

but they still decrease as the number of epochs increases. The final MAE reaches a value of 

approximately 0.1. However, the validation curves are less stable and higher than the training 

curve, suggesting that the validation performances are still not as good as the training performance. 

Another way to evaluate model performance is through a parity plot, a representation of 

the predicted values of a trained model compared to the actual values. The plot can help visually 

show how well a model fits the data and detect patterns or trends. The parity plots for validation 

and testing are depicted in Fig. 3a for Egap and Fig. 3b for Ehull. The trend of the validation and test 

plots tends to be the same as that of the ideal predictions, increasing from the lower value to the 

higher value of Egap and Ehull. The model prediction errors in the test set are almost consistent since 

deviations from both sides (below and above) of the ideal line tend to have equal magnitude, 

meaning that the model does not have a high bias toward overestimating or underestimating the 

predictions in the test set. However, there are some more significant deviations from the ideal line 

in the case of the validation set prediction, especially for the higher valued-Egap and Ehull. This 

might be due to the nature of the target data distribution. In this case, fewer data points exist in the 

higher-valued range than in the lower-valued range of Egap and Ehull, as shown in Fig. S2. Such a 

case can make the model learn only a little information in the higher-valued ranges but also rich 

information from the lower-valued ranges. Overall, the high performance of the model can be 

judged from the high percentages of the R2 score test: 97.73% for Egap and 96.50% for Ehull. 
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Fig. 3. Training and test parity plots with R2 scores of (a) Egap and (b) Ehull. 

 

 

3.3 Classification of the Crystal System and Crystal Space Groups of LMNO 

The working mechanism and the model architecture of the EfficientNet-B0 to classify 

crystal systems and crystal space groups are the same as the regression above. However, the only 

difference is that the classification task used the SoftMax function as the activation function. 

Usually, the SoftMax function, which outputs values from 0 to 1, is used in the multiclass task, 

where it returns probabilities of each class, with the highest probability corresponding to the target 

class  [17]. In this work, the SoftMax function mapped the randomly oriented crystal structure 

images that EfficientNet-B0 had processed to a probability distribution over crystal systems and 

crystal space groups. 

The loss curves, which are categorical cross-entropies, and accuracies for the training and 

validation are shown in Fig. S1c-d for the crystal system classification and in Fig. S1e-f for the 

crystal space group classification of LMNOs. The training and validation losses drop drastically 

to approximately 0 after a few epochs and remain almost constant. This makes the accuracy curves 

for training and validation drastically increase to values close to 1.0 after a few epochs and remain 

practically constant. However, the validation loss and accuracy curves are unstable because they 

decrease and increase significantly at certain epochs. 
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To assess the accuracy of the model classification of data, confusion matrices were created 

for each classification performance based on the number of true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN) samples [18]. These matrices are displayed in Fig. 4a-

b for the test set consisting of 549 data points. This shows that almost all crystal systems and space 

groups are correctly classified in both cases. The model misclassifies only three triclinic crystals 

into three cubic crystals, as shown in Fig. 4a. 

Meanwhile, in Fig. 4b, one P2_13, one P2_1, and two P-1 crystal space groups are 

misclassified into one P4_332, one P-1, and two P4_332 groups, respectively. In addition, the 

confusion matrices were plotted for the validation sets of crystal systems and crystal space groups, 

as shown in Fig. S2a-b, respectively. Four triclinic crystals are misclassified into 4 four cubic 

crystals, as shown in Fig. S2a. Meanwhile, one P2_13, three P-1, one Cmce, and two C2/c are 

classified into one P-1, three P4_332, one C2/m, and one Cmce and one C2/m, respectively. The 

same crystal system is misclassified into the wrong one in the validation and test sets. The model 

consistently classifies the LMNO crystal systems in different datasets. However, some 

misclassified crystal space groups are not the same in the test and validation sets in the LMNO 

crystal space group classification. This indicates that the model is less consistent in classifying the 

LMNO crystal systems in different datasets. Overall, the model demonstrates a high accuracy in 

classifying the test set, indicating that the model accurately predicted the correct labels for most 

instances in each crystal class [19]. 
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Fig. 4. Confusion matrices in test sets of (a) crystal system and (b) crystal space group classifications. 

 

The classification report for crystal system and crystal space group classifications in the 

test sets are shown in Table 1 and Table 2, respectively. The table includes precision, recall, F1-

score, and several support data points. Precision and recall are determined at a single point, 

reflecting the model performance at a specific threshold. The classification reports quantify the 

prediction presented in the confusion matrices above. In Table 1, only the triclinic and cubic 

crystals have F1-scores below 1.000. This is in line with the misclassification observed in the 

confusion matrix of the crystal system above, where three triclinic crystals are misclassified into 

three cubic crystals. Therefore, the triclinic crystal has a precision of 0.9822, while the cubic 

crystal has a recall of 0.7692. Table 2 shows the quantified prediction of the crystal space group. 

Only P2_13, P2_1, P-1, and P4_332 have F1-scores below 1.000. This is because one P2_13, one 

P2_1, and two P-1 crystal space groups are misclassified into one P4_332, one P-1, and two 

P4_332, respectively, as shown in the confusion matrix of the LMNO crystal space group 

prediction above. P-1, P2_1, and P2_13 have precisions of 0.9487, 0.9667, and 0.8571, 

respectively, while P-1 and P4_332 have recalls of 0.9737 and 0.500, respectively. 

Table 1.Classification report of crystal systems in the test set 

Crystal System Precision Recall F1-score Support 

Cubic 1.0000 0.7692 0.8696 13 

(a)                                                                                       (b)
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Hexagonal 1.0000 1.0000 1.0000 8 

Monoclinic 1.0000 1.0000 1.0000 257 

Orthorhombic 1.0000 1.0000 1.0000 40 

Tetragonal 1.0000 1.0000 1.0000 7 

Triclinic 0.9822 1.0000 0.9910 166 

Trigonal 1.0000 1.0000 1.0000 58 

Accuracy   0.9945 549 

Macro average 0.9975 0.9670 0.9801 549 

Weighted 

average 

0.9946 0.9945 0.9942 549 

 

Table 2. Classification report of the crystal space groups in the test set 

Class Precision Recall F1-score Support 

C2 1.0000 1.0000 1.0000 52 

C2/c 1.0000 1.0000 1.0000 17 

C2/m 1.0000 1.0000 1.0000 118 

Cc 1.0000 1.0000 1.0000 11 

Cm 1.0000 1.0000 1.0000 20 

Cmce 1.0000 1.0000 1.0000 16 

I-4m2 1.0000 1.0000 1.0000 7 

Imm2 1.0000 1.0000 1.0000 8 

Imma 1.0000 1.0000 1.0000 16 

PI 1.0000 1.0000 1.0000 130 

P-I 0.9487 0.9737 0.9610 38 

P2/m 1.0000 1.0000 1.0000 9 

P2_1 0.9667 1.0000 0.9831 29 

P2_13 0.8571 1.0000 0.9231                6 

P4_332 1.0000 0.5000 0.6667 6 

P6_3mc 1.0000 1.0000 1.0000 8 

R32 1.0000 1.0000 1.0000 39 
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R3m 1.0000 1.0000 1.0000 12 

R-3 m 1.0000 1.0000 1.0000 7 

Accuracy   0.9977 549 

Macro average 0.9947 0.9969 0.9956 549 

Weighted 

average 

0.9980 0.9977 0.9978 549 

 

From the confusion matrices and classification reports above, the classes from which the 

actual data are misclassified have low precision values, while the classes into which the actual data 

are misclassified have low recall values. The F1-scores are above 0.9 and are as high as 1.00, 

leading to a total accuracy of 0.9945 (99.45%), a macro average accuracy of 0.9801 (98.01%), and 

a weighted average accuracy of 0.9942 (99.42%) for the LMNO crystal system classification, and 

a total accuracy of 0.9977 (99.77%), a macro average accuracy of 0.9969 (99.69%), and a weighted 

average accuracy of 0.9978 (99.78%) for the LMNO crystal space group classification. The 

classification reports for the validation sets of the LMNO crystal system and crystal space group 

classifications are also presented in Tables S1-S2, respectively, showing high accuracy. The high 

accuracy predictions indicate that the model has a high potential to correctly identify positive 

crystal classes with a low rate of false positives, correctly identify a large percentage of all positive 

crystal classes, and achieve high precision without sacrificing recall, and vice versa. 

Receiver operating characteristic (ROC) curves are constructed to investigate imbalanced 

classifications. The ROC curves of the crystal system and crystal space group classifications in the 

test sets are shown in Fig. 5a-b, respectively. The ROC curve evaluates the trade-off between the 

true positive rate (TPR) and the false positive rate (FPR) at different decision thresholds. The TPR 

(sensitivity or recall) is the ratio of the TP to TP plus FN, indicating the proportion of the actual 

positive class that the model correctly classifies as positive, while the FPR is the ratio of FP to FP 

plus TN, determining the proportion of the actual negative class that the model incorrectly 

classifies as positive. Ideally, the prediction should have a correct positive class prediction rate of 

1 (top of the plot) and an incorrect negative class prediction rate of 0 (left of the plot). In other 

words, the best possible model to achieve perfect prediction is the top-left of the plot, with a 

coordinate of (0,1) 
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Fig. 5. ROC curves in test sets of (a) crystal system and (b) crystal space group classifications of LMNO. 

 

In Fig. 5a, the ROC curves of crystal systems are denoted as 0 (cubic), 1 (hexagonal), 2 

(monoclinic), 3 (orthorhombic), 4 (tetragonal), 5 (triclinic), and 6 (trigonal). In Fig. 5b, the ROC 

curves of spaces groups are denoted as class 0 (C2), 1 (C2/c), 2 (C2/m), 3 (Cc), 4 (Cm), 5 (Cmce), 

6 (I-4m2), 7 (Imm2), 8 (Imma), 9 (P1), 10 (P-1), 11 (P2/m), 12 (P2_1), 13 (P2_13), 14 (P4_332), 

15 (P6_3mc), 16 (R32), 17 (R3m), and 18 (R-3 m). The ROC curves in Fig. 5a-b are very close to 

the upper left corner, signifying that the model has a high discriminatory power to distinguish the 

positive and negative classes of the crystal systems and the crystal space groups, respectively. 

This also means that the TPR (sensitivity) is high while the FPR is low, which attests to 

the fact that the model correctly identifies most positive classes while minimizing the number of 

false positive classes. Furthermore, the area under the curve (AUC) values (or the area in Fig. 5a 

of the crystal system classification) is mostly 1.0000. Only the crystal system (triclinic) from which 

the misclassified data originates has a lower AUC value. The same trend is observed in Fig. 5, 

where only the crystal space groups (P-1 and P2_13) from which the misclassified data originate 

have AUC values lower than 1.0000. The microaverage ROC and macroaverage ROC are 

calculated and found to be 1.00. The microaverage ROC focuses on overall performance across 

classes, while the macroaverage focuses on the performance of the model for each class of crystal 

systems and crystal space groups. The ROC curves for the LMNO crystal system validation set 

and crystal space group classifications are also plotted in Fig. S4a-b for comparison. 

(a)                                                                                               (b)
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Another performance metric that can investigate imbalanced classification is the precision-

recall (PR) curve. Fig. 6a-b shows the PR curves for the crystal system and crystal space group 

classifications in the test sets. The crystal systems in Fig. 6a are denoted as 0 (cubic), 1 

(hexagonal), 2 (monoclinic), 3 (orthorhombic), 4 (tetragonal), 5 (triclinic), and 6 (trigonal), while 

the crystal space groups in Fig. 6b are denoted as 0 (C2), 1 (C2/c), 2 (C2/m), 3 (Cc), 4 (Cm), 5 

(Cmce), 6 (I-4m2), 7 (Imm2), 8 (Imma), 9 (P1), 10 (P-1), 11 (P2/m), 12 (P2_1), 13 (P2_13), 14 

(P4_332), 15 (P6_3mc), 16 (R32), 17 (R3m), and 18 (R-3 m). The PR curves of the crystal system 

and crystal space group classifications in the validation set are also plotted in Fig. S5a-b. When 

the F1 value increases from 0.2 to 0.8, the iso-F1 curve shifts to the right, indicating higher 

precision at the same level of recall, resulting in a trade-off between higher precision and higher 

recall and leading to higher average precision (AP) values (1.00). 

This suggests that we simply need to obtain an F1  score of 0.8 or above to have a higher 

threshold of precision and recall simultaneously. High precision and recall are important in 

classifying the crystal systems and crystal space groups because they can maximize correct 

identification and minimize incorrect classifications of the model, respectively. The AP values 

shown in the figures result from integrating the AUC across multiple thresholds, thus representing 

the summarization of the overall performance of the model across all thresholds by calculating the 

average precision across the different recall levels. 

Fig. 6. (PR) curve (a) crystal system (b) crystal space group classifications of LMNOs. 

(a)                                                                       (b)
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3.4 Visualization of the Crystal System Attention of the EfficientNet-B0 Model 

To understand how the EfficientNet-B0 model received attention from the crystal 

structures, saliency maps of the crystal system are visualized. A saliency map determines which 

aspects of the proposed model are most important to obtain accurate predictions. It is calculated 

by taking the gradient of the model output value concerning the input matrix [20]. The general 

goal of the saliency map is to transform the original view of an image intuitively, where the high-

impact features, such as image pixels and resolutions, are distinguished from the low-impact 

features with respect to the model prediction outputs. 

To reveal the model attention on the input features using the salience map, we selected one 

of the target predictions to use, namely, the LMNO crystal systems, which are shown in Fig. 5. In 

the figure, the left pictures are the original images, while the right pictures are the salience map 

images. The model attention, as depicted with high contrast pixels, is concentrated around the areas 

of interest of the structures. The saliency maps also show more significant gradients around lattice 

regions occupied by larger ions, which means that the proposed model pays more attention to the 

spatial arrangement of large ions to capture salient information. This agrees with the general 

observation that the larger ions form a close-packed structure, whereas the smaller ions occupy the 

interstices; the close-packed structure determines the crystal structure. Furthermore, the model can 

also capture the shapes of the crystal structures and use them to make predictions. 
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Fig. 7. Saliency map of the LNMO crystal systems. 

 

All saliency maps have different patterns; therefore, we can assume they are characteristic 

of the corresponding crystal systems. This is quantitatively supported by the similarity index 

values, as shown in Fig. 8, which differ for each crystal system. This saliency map, therefore, 

explains why the proposed EfficientNet-B0 model can result in high-performance predictions. 

(a) Hexagonal Li2Mn3NiO8 (b) Orthorhombic Li2Mn2NiO6

(c) Triclinic Li4Mn3(NiO4)3 (d) Cubic Li2Mn3NiO8

(e) Tetragonal Li2MnNiO4 (f) Trigonal Li2MnNi3O8

(g) Monoclinic LiMn2NiO6
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Fig. 8. Similarity index comparison of the LMNO crystal system salience map. 

 

Lastly, the model in this work is compared with a crystal graph neural network (CGNN)-based 

model, which is a more standard approach to predicting material properties based on crystal 

structures [8]. To make the ML design meet the CGNN model architecture, the CIFs of the LMNOs 

were translated into a graph format where the atomic positions become nodes in the graph and the 

interactions (or bonds) between atoms become the edges. The electronic radial distribution 

function capturing the electronic environment around atoms was used as a global feature. The 

global features were combined with the atomic number of each atom in the structure to represent 

the node features of the graph. Meanwhile, each bond in the crystal structure was used to describe 

the edge of the graph, with the edge feature being the distance between atoms in the crystal 

structure. The graph data were used as input for the CGNN-based model to make the multi-output 

property predictions of LMNOs.  

The prediction performances of the CGNN-based model are shown in Fig. S6. The R2 values 

of the bandgap and energy above the convex hull fluctuate significantly below 0, as shown in Fig. 

S6a-b, indicating high variance and error. Meanwhile, the train and test set of the crystal system 

predictions can hit 1.0 (100%) accuracy yet significantly fluctuate, as shown in Fig. S6c. For the 

crystal space group prediction, the train and test accuracy are far separated, where the train 
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accuracy can hit 1.0 (100%) while the test accuracy cannot even reach 0.5, as shown in Fig. S6d.  

From this observation, only the crystal system seems to be predicted well using the CGNN-based 

models. 

4. Conclusion 

This study represents an advance in addressing the challenge of directly correlating the crystal 

structure of LMNOs with their electrochemical properties. By leveraging the EfficientNet-B0-

based machine learning model, we established a direct, reliable method for simultaneously 

predicting bandgap energy, energy above the convex hull, crystal systems, and crystal space 

groups of LixMn2–zNizO4 (LMNO) materials from their crystal structure images, which is a 

limitation of traditional atomic-scale crystal structure visualization techniques, such as 

transmission electron microscopy. The predictive performances of the model are promising, 

evidenced by outstanding R2 scores of 97.73% and 96.50% for the bandgap energy and the energy 

above the convex hull predictions, respectively, and classification accuracies of 99.45% and 

99.27% for the crystal systems and the space groups of LMNO. Class saliency maps revealed that 

the model paid more attention to the larger atoms in the crystal structure images and shapes of the 

LMNO crystal structures. This study offers a pioneering method that leverages LMNO crystal 

structure images for multioutput electrochemical property predictions, providing a more 

integrative analysis and facilitating rapid property predictions using crystal structure images.  
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