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Abstract

On Hadamard manifolds, the radial fields, which are the negative gradients of the Busemann func-

tions, can be used to designate a canonical sense of direction. This has many potential interesting

applications to Hadamard manifold-valued data, for example in defining notions of quantiles or

treatment effects. Some of the most commonly encountered Hadamard manifolds in statistics are

the spaces of symmetric positive definite matrices, which are used in, for example, covariance ma-

trix analysis and diffusion tensor imaging. In this paper, we derive an expression for the radial

fields on these manifolds and demonstrate their smoothness.
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1 Introduction

In a metric space (M,d), two unit-speed geodesic rays γ1, γ2 : [0,∞) → M are called asymptotic

if d(γ1(t), γ2(t)), t ∈ [0,∞), is bounded; in the rest of this paper, we will refer to the metric

space (M,d) as simply M , with its metric d being implicit. One can form an equivalence relation of

geodesic rays in M on the basis of their being asymptotic; the set of all resulting equivalence classes

is called the boundary at infinity ∂M , not to be confused with the topological boundary. There

is a class of metric spaces called Hadamard spaces, equivalently complete CAT(0) spaces or global

non-positive curvature spaces, on which for any ξ ∈ ∂M , there is exactly one member γ of this

equivalence class for every x ∈ M satisfying γ(0) = x; see Chapter II.8 of Bridson and Haefliger

(1999) for more information.

Hadamard spaces that are also Riemannian manifolds are called Hadamard manifolds, which

can equivalently be characterized as complete, simply connected Riemannian manifolds whose sec-

tional curvatures are non-positive. By the Cartan–Hadamard theorem, an n-dimensional Hadamard

manifold M is diffeomorphic to R
n via the exponential map expp : TpM ∼= R

n → M at any p ∈ M .

For any x ∈ M and ξ ∈ ∂M , denoting the unique member of ξ originating at x by γx, we can asso-

ciate a unique unit vector ξx := γ′x(0) in TxM with ξ. The vector fields on M defined by x 7→ ξx for

ξ ∈ ∂M , which have been called radial fields (Heintze and Im Hof (1977), Shcherbakov (1983)),

are also the negative gradients of the so-called Busemann functions x 7→ limt→∞ d(x, γ(t)) − t,

where γ is any member of ξ; thus the radial fields are normal to the level sets of these function,

which are called horospheres. Proposition 3.3(a) of Shin and Oh (2023) shows that

ξx = lim
t→∞

logx(γ(t))

d(x, γ(t))
, (1)

where γ : [0,∞) → M is any member of the equivalence class ξ, and Proposition 5.1 in that paper

presents an expression for the radial fields in hyperbolic spaces. A note about the notation in this

paper: exp and log with subscripts denote the Riemannian exponential maps and their inverses,

respectively, while exp and log without subscripts denote the usual exponential and logarithm for

real and positive numbers and Exp and Log denote the matrix exponential and logarithm.

Radial fields can be used to define a canonical sense of direction on Hadamard manifolds. That
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is, we can talk about ξx being the unit vector at x “in the direction of ξ”. This is canonical in

the sense that it does not require arbitrary decisions. On the other hand, one might try to define

direction using parallel transport, but this is problematic because parallel transport between two

points depends on the path taken between those points. One way to deal with this might be to

choose a base point whose tangent space we transport vectors from other points, but in general,

this choice of base point would be arbitrary.

Besides being interesting mathematical objects in their own right and as tools for studying

the boundary at infinity, Busemann functions and horospheres, radial fields have many potential

applications due to providing this sense of direction. As an example, Chaudhuri (1996) defined

a quantile loss function for multivariate data by ‖x − p‖ + 〈u, x − p〉, where x is a data point

and u is a fixed vector of norm less than 1; by conceptualizing u = ‖u‖(u/‖u‖) (if u 6= 0) and

x − p as tangent vectors at p, Shin and Oh (2023) generalized this loss function to Hadamard

manifold-valued data as d(p, x) + 〈βξp, logp(x)〉, where β ∈ [0, 1) and ξ ∈ ∂M . Then other asym-

metric loss functions, such as the expectile (Newey and Powell (1987), Hermann et al. (2018))

or M-quantile (Breckling and Chambers (1988)) loss functions can analogously be generalized to

Hadamard manifolds using radial fields.

Other statistical tools that use vectors could conceivably also be generalized to Hadamard

manifold-valued data by using non-negative numbers and radial fields to define magnitudes and

directions, respectively, but because the use of radial fields for statistical inference on Hadamard

manifolds is a new area of research, much of this vast potential is yet unexplored. For example,

another possible application is in the area of causal inference. The most important parameter in

causal inference is the average treatment effect (ATE) E(rT ) − E(rC), where rT and rC are the

treatment and control random variables or vectors, respectively. Then on Hadamard manifolds,

one could define the ATE to be the (β, ξ) ∈ [0,∞) × ∂M for which exprC (βξrC ) and rT have the

same Fréchet means, and the quantile and median treatment effects could be defined analogously.

An expression for the radial fields on the spaces of symmetric positive definite matrices specifi-

cally is needed because these are some of the most commonly encountered examples of Hadamard

manifolds. Denote the space of real symmetric m×m matrices by Sm and the space of real sym-

metric positive-definite (SPD) m×m matrices by Pm. The former is an m(m+ 1)/2-dimensional

vector space, and the latter can be considered a m(m+1)/2-dimensional smooth manifold on which
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the tangent space at each point is isomorphic to Sm. This manifold is typically equipped with one

of a handful of different Riemannian metrics, such as the Log-Cholesky metric of Lin (2019), but

the most commonly used is the so-called trace, or affine invariant, metric, defined at x ∈ Pm by

〈v1, v2〉 = tr(x−1v1x
−1v2),

where v1, v2 ∈ TxPm
∼= Sm. This Riemannian manifold is complete and simply connected with

sectional curvatures in [−1/2, 0] (see Proposition I.1 of Criscitiello and Boumal (2020)); therefore,

this is a Hadamard manifold.

These spaces have many uses, and often, data take values in them. For example, diffusion tensor

imaging (DTI), first proposed by Basser et al. (1994), is a methodology for modeling diffusion of

water molecules in voxels of brain scans as 3× 3 SPD matrices lying in P3. Crucially, these spaces

need to be studied because covariance matrices (and their inverses, precision matrices), among the

central objects of study in statistics and probability, are SPD matrices. Covariance matrices can

be random Pm-valued objects in their own right, for example, as sample covariance matrices or

as parameters in a Bayesian framework, in which case the assigned prior is most commonly the

inverse-Wishart distribution (see, for instance, Lee and Lee (2018)).

Our main contribution here is an expression for the radial fields on Pm, which is much less

forthcoming than in the case of hyperbolic space. We also demonstrate that the radial fields are

smooth on Pm, which is not true in general on Hadamard manifolds.

2 Radial fields on Pm

Any A ∈ Sm has a real eigendecomposition

A = V













d1 . . . 0

...
. . .

...

0 . . . dm













V T
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Then, the matrix exponential of A is SPD and can be written as

Exp(A) = V













exp(d1) . . . 0

...
. . .

...

0 . . . exp(dm)













V T . (2)

Furthermore, if A is SPD, then A has a unique real SPD matrix logarithm

Log(A) = V













log(d1) . . . 0

...
. . .

...

0 . . . log(dm)













V T (3)

and, for any integer t, unique real SPD tth root

A1/t = V













d
1/t
1 . . . 0

...
. . .

...

0 . . . d
1/t
m













V T . (4)

In this section, all matrices whose logarithms and tth roots are SPD, so Log(A) and A1/t will

specifically refer to these unique real SPD matrices mentioned above.

On a practical note, there are computational issues with implementing matrix logarithms and

square roots in code for general square matrices that make the process extremely slow, especially

for batches of multiple matrices. In the specific case of real SPD matrices, however, the eigende-

composition method in the previous paragraph can be encoded to handle batches of matrices in

parallel, for example, PyTorch, significantly accelerating the entire process.

The exponential maps, their inverses and parallel transport on Pm are given by

expx(v) = x1/2Exp(x−1/2vx−1/2)x1/2,

logx(p) = x1/2Log(x−1/2px−1/2)x1/2

4



and

Γx→p(v) = x1/2Exp

(

1

2
x−1/2 logx(p)x

−1/2

)

x−1/2vx−1/2Exp

(

1

2
x−1/2 logx(p)x

−1/2

)

x1/2,

where x, p ∈ Pm and v ∈ TxPm (see, for example, Section 3 of Sra and Hosseini (2015), 3.4 of

Pennec et al. (2006), 5 of Ferreira et al. (2006) or IV.A of Jaquier and Calinon (2017)), and

therefore, the distance between x and p is

d(x, p) = ‖Log(x−1/2px−1/2)‖F ,

where ‖·‖F denotes the Frobenius norm.

In the following theorem, we derive an expression for the radial field ξx.

Theorem 2.1. For any p ∈ Pm and unit vector in TpPm, let ξ be the unique point in ∂Pm such

that the aforementioned unit vector equals ξp. Take any eigendecomposition V DV T of p−1/2ξpp
−1/2

satisfying d1 ≥ · · · ≥ dm, where

D =













d1 . . . 0

...
. . .

...

0 . . . dm













.

Then, denoting the columns of the matrix W := x−1/2p1/2V by w1, . . . , wm so that W =

[w1, . . . , wm], let {u1, . . . , um} be an orthonormal basis of R
m that results from applying the

Gram-Schmidt orthonormalization process to {w1, . . . , wm}. Then ξx = x1/2UDUTx1/2, where

U := [u1, . . . , um].

Proof. Throughout this proof, which makes extensive use of (2), (3), and (4), t is restricted to

the positive integers. We will denote the Euclidean norm and inner product by ‖·‖ and 〈·, ·〉,

respectively, and the Frobenius norm by ‖·‖F . The limit limt→∞ d(x, expp(tξ))/t = 1 since

(d(expp(tξ), p)− d(x, p))/t ≤ d(x, expp(tξ))/t ≤ (d(expp(tξ), p) + d(x, p))/t
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by the triangle equality, so

ξx = lim
t→∞

logx(expp(tξ))

d(x, expp(tξ))

= lim
t→∞

x1/2 Log(x−1/2p1/2 Exp(tp−1/2ξp−1/2)p1/2x−1/2)x1/2

t

= x1/2( lim
t→∞

Log
(

[x−1/2p1/2 Exp(tp−1/2ξp−1/2)p1/2x−1/2]1/t)
)

x1/2

= x1/2 Log

(

lim
t→∞

[x−1/2p1/2 Exp(tp−1/2ξp−1/2)p1/2x−1/2]1/t
)

x1/2

= x1/2 Log

(

lim
t→∞

[x−1/2p1/2V Exp(tD)V T p1/2x−1/2]1/t
)

x1/2

= x1/2 Log

(

lim
t→∞

[ m
∑

i=1

etdiwiw
T
i

]1/t)

x1/2;

(5)

the first equality follows from (1), and the limit in the fourth exists because it must equal

Exp(x−1/2ξxx
−1/2) by the continuity of Exp. Define

H(t) :=

[ m
∑

i=1

etdiwiw
T
i

]1/t

.

Let S−1 be the size of the set {j : dj 6= dj+1} ⊂ {1, . . . ,m}, n1 < · · · < nS−1 be the elements of

this set, n0 = 0 and nS = m. For any j ∈ {1, . . . ,m}, denote the jth largest eigenvalue of a matrix

A ∈ Sm by αj(A). Recall Weyl’s inequality which states that for A,B ∈ Sm, αi+j−1(A + B) ≤

αj(A) + αi(B) ≤ αi+j−m(A+B); by letting i = 1 and N ,

αj(A) + αm(B) ≤ αj(A+B) ≤ αj(A) + α1(B). (6)

Also recall the minimax principle (Section I.10 of Kato (1995)) which states that for A ∈ Sm,

αj(A) = max
dim(T )=j

min
v∈T ,‖v‖2=1

vTAv, (7)

where T is a j-dimensional subspace of Rm. Denote by P ′
m the space of m × m real symmetric

positive semidefinite matrices. If C ∈ Sm and A− C ∈ P ′
m, vTCv = vTAv − vT (A− C)v ≤ vTAv,

so by (7),

αj(C) ≤ αj(A). (8)
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Since W is invertible, {W1, . . . ,Wm} is indeed a basis for R
m. Any j-dimensional subspace

T of Rn contains some unit vector uT which is orthogonal to each of W1, . . . ,Wj−1 because the

orthogonal complement of the span of W1, . . . ,Wj−1 is of dimension m−j+1 and T is of dimension

j; thus, if no such uT exists, the union of two bases, one for each of these subspaces, is a linearly

independent set of m+ 1 vectors in R
m: a contradiction. Set s as the unique value in 1, . . . , S − 1

for which ns−1 < j ≤ ns. For

As(t) :=

ns
∑

i=1

exp(t(di − dns
))wiw

T
i ,

taking this uT gives

αj(As(t)) ≤ max
dim(T )=j

uTT As(t)uT

= max
dim(T )=j

ns
∑

i=j

(uTT wi)
2

≤ max
dim(T )=j

ns
∑

i=j

(wT
i wi)(u

T
T uT )

=

ns
∑

i=j

wT
i wi

(9)

by (7) and the Cauchy-Schwarz inequality. For Cs(t) :=
∑ns

i=1wiw
T
i , As(t) − Cs(t) ∈ P ′

m and (8)

holds; since Cs(t) has rank ns ≥ j, αj(Cs(t)) > 0. Then, for

Bs(t) :=

m
∑

i=ns+1

exp(t(di − dns
))wiw

T
i ,

(6), (9), and (8) imply

αj(As(t) +Bs(t)) ∈

[

αj(Cs(t)) + αm(Bs(t)),

ns
∑

i=j

wT
i wi + α1(Bs(t))

]

, (10)

and because

lim
t→∞

Bs(t) = 0 (11)

and αj(Cs(t)) and
∑ns

i=j w
T
i wi are finite positive constants independent of t, the tth root of both
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bounds in this interval converges to 1 as t → ∞. Thus,

αj( lim
t→∞

H(t)) = exp(dj) lim
t→∞

(αj(As(t) +Bs(t)))
1/t = exp(dj), (12)

for each j = 1, . . . ,m, and the eigenvalues of limt→∞H(t) are exp(d1), . . . , exp(dm).

For A,B ∈ Sm and a, b, δ ∈ R, let E be a matrix whose columns constitute an orthonormal

basis for the eigenspace of A associated with the eigenvalues contained in (a, b), and let L be a

matrix whose columns constitute an orthonormal basis for the eigenspace of A+B associated with

the eigenvalues contained in R\(a− δ, b+ δ). Recall the Davis–Kahan sin(Θ) theorem (see Section

VII.3 of Bhatia (1996)) which states that

‖LTE‖F ≤
‖B‖F
δ

; (13)

the norm can be any unitarily invariant norm, the Frobenius norm being one such example.

Let As(t), Bs(t) and Cs(t) be as defined above. In this paragraph, we will give a high-level

overview of the next part of the proof. The Davis-Kahan sin(Θ) theorem can be used to show

that the eigenspace of H(t) corresponding to α1(H(t)), . . . , αns
(H(t)) converges in some sense to

the eigenspace of A1(t) corresponding to non-zero eigenvalues, which is equivalently the span of

w1, . . . , wn1
or of u1, . . . , wn1

; this exploits the fact that H(t) and As(t)+Bs(t) have the exact same

eigenvectors associated with corresponding eigenvalues thanks to (4). Then it can be shown that

the eigenspace corresponding to αns−1+1(H(t)), . . . , αns
(H(t)) of H(t) converges both to the span

of uns−1+1, ..., uns
and to the eigenspace of limt→∞H(t) corresponding to exp(dns

). This exploits

the fact that

lim
t→∞

αk(H(t)) = αk( lim
t→∞

H(t)) (14)

since the eigenvalues of a matrix are the roots of its characteristic polynomial, whose coefficients

depend continuously on the entries of the matrix, and therefore, the ordered eigenvalues of a

convergent sequence of matrices converge to the ordered eigenvalues of the limit of the matrices.

Letting a = αns
(Cs(t))/2 > 0, b =

∑ns

i=1 w
T
i wi +1 < ∞ and δ = αns

(Cs(t))/4, then αi(As(t)) ∈

(a, b) precisely when i = 1, . . . , ns, thanks to (8), (9), and the fact that m−ns of the eigenvalues of

As(t) are 0 because As(t) has rank ns. The eigenspace associated with these eigenvalues is precisely
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the span of {w1, . . . , wns
}, and so we can let E in (13) be

Es := [u1, . . . , uns
].

Denote an ordered orthonormal basis of Rm of eigenvectors of As(t)+Bs(t) by y1(t), . . . , ym(t),

and define Ks(t) := [y1(t), . . . , yns
(t)] and Ls(t) := [yns+1(t), . . . , ym(t)]; also define K0(t) to be

the zero matrix. H(t) and As(t) + Bs(t) have the exact same eigenvectors so each yi(t) does not

depend on s. For i in ns + 1, . . . ,m, letting s′ be the unique integer for which ns′−1 < i ≤ ns′ ,

αi(As(t)+Bs(t)) = exp(t(di−dns
))αi(As′(t)+Bs′(t)) → 0 as t → 0 by (10) since di < dj . Therefore,

αns+1(As(t) + Bs(t)), . . . , αm(As(t) + Bs(t)) ∈ R\(a − δ, b + δ) for sufficiently large t by (11) and

we can choose L in (13) such that yns+1(t), . . . , ym(t) are among its columns.

For any i = 1, . . . , ns, vs,i(t) := Ks(t)Ks(t)
Tui, the projection of ui onto the span of

y1(t), . . . , yns
(t), satisfies

‖ui − vs,i(t)‖2 = ‖(I −Ks(t)Ks(t)
T )ui‖2

= ‖Ls(t)Ls(t)
Tui‖2

= (uTi Ls(t)Ls(t)
TLs(t)Ls(t)

Tui)
1/2

= ‖Ls(t)
Tui‖2

→ 0

(15)

as t → ∞ by (11) and (13) since ui is a column of Es. If s > 1, {vs−1,l}, (l = 1, . . . , ns−1),

is a basis of the span of y1(t), . . . , yns−1
(t) when t is sufficiently large because its elements are

orthogonal and (15) ensures that they are eventually non-zero. Therefore, since Ks−1(t)Ks−1(t)
Tul

and Ks−1(t)Ks−1(t)
Tui are orthogonal if l ∈ {1, . . . , ns−1} and i ∈ {ns−1 + 1, . . . , ns}, vs−1,i(t) =

0 and vs,i(t) = (Ks(t) − Ks−1(t))(Ks(t) − Ks−1(t))
Tui, the projection of ui onto the span of

yns−1+1(t), . . . , yns
(t); this implies

〈vs,i(t), yl(t)〉2 = 0 (16)

when l ∈ {1, . . . , ns−1} in addition to when l ∈ {ns + 1, . . . ,m}. So, keeping (12), (14), (15), and

9



(16) in mind,

(

lim
t→∞

H(t)
)

ui = lim
t→∞

H(t)

( m
∑

l=1

〈ui, yl(t)〉2yl(t)

)

= lim
t→∞

( m
∑

l=1

αl(H(t))〈ui, yl(t)〉2yl(t)

)

= lim
t→∞

( ns
∑

l=ns−1+1

exp(dns
)〈vs,i(t), yl(t)〉2yl(t)

)

+ lim
t→∞

( ns
∑

l=ns−1+1

[αl(H(t))− exp(dns
)]〈vs,i(t), yl(t)〉2yl(t)

)

+ lim
t→∞

( ns−1
∑

l=1

αl(H(t))〈vs,i(t), yl(t)〉2yl(t)

)

+ lim
t→∞

( m
∑

l=ns+1

αl(H(t))〈vs,i(t), yl(t)〉2yl(t)

)

+ lim
t→∞

( m
∑

l=1

αk(H(t))〈ui − vs,i(t), yl(t)〉2yl(t)

)

= exp(dns
) lim
t→∞

vs,i(t)

= exp(dns
)ui

for s = 1, . . . , S and i = ns−1 + 1, . . . , ns. The expression for ξx follows from (3) and (5).

One may wonder whether the radial fields are smooth on Hadamard manifolds. In fact, though

they are known to be C1 (see Proposition 3.1 of Heintze and Im Hof (1977)) they are not even

guaranteed to be C2. Green (1974) and Shcherbakov (1983) provide some conditions on the

curvature of the manifold under which twice continuous differentiability can be guaranteed, but

since they require the supremum of the sectional curvatures to be less than 0, these results do

not apply to Pm. However, we can show that the radial fields are, in fact, smooth in Pm, just as

Shin and Oh (2023) did in hyperbolic spaces.

Corollary 2.1. The radial fields on Pm are smooth.

Proof. Because z 7→ z/‖z‖2 on R
m\{0} → R

m\{0} is smooth, W 7→ U defined on GLm(R) →

GLm(R), which is diffeomorphic to an open subset of Rm(m+1)/2, is also smooth. The map z 7→ z1/2
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on Pm → Pm, also diffeomorphic to an open subset of Rm(m+1)/2, is also smooth, and therefore, so

is x 7→ W on Pm → GLm(R). Then, the smoothness of the map x 7→ ξx on Pm → Sm
∼= R

m(m+1)/2

follows from Theorem 2.1.

This smoothness is important because, for example, it means that the joint asymptotic normality

of quantiles of Theorem 4.2 and Corollaries 4.1 and 4.2 of Shin and Oh (2023) can be applied to

quantiles on Pm, and that the gradient of the quantile loss functions in that space can also be

calculated using Jacobi fields as in hyperbolic spaces.

3 Concluding remarks

As detailed in the introduction, radial fields have the potential to generalize many statistical tech-

niques to Hadamard manifolds by defining a canonical sense of direction. The results of this paper,

namely an expression for the radial fields on Pm, among the most commonly encountered Hadamard

manifolds, and the smoothness of these fields, should be of great use to researchers looking to apply

these techniques to Pm.
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