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Abstract—Fronthaul quantization causes a significant distor-
tion in cell-free massive MIMO networks. Due to the limited
capacity of fronthaul links, information exchange among access
points (APs) must be quantized significantly. Furthermore, the
complexity of the multiplication operation in the base-band
processing unit increases with the number of bits of the operands.
Thus, quantizing the APs’ signal vector reduces the complexity
of signal estimation in the base-band processing unit. Most recent
works consider the direct quantization of the received signal
vectors at each AP without any pre-processing. However, the
signal vectors received at different APs are correlated mutu-
ally (inter-AP correlation) and also have correlated dimensions
(intra-AP correlation). Hence, cooperative quantization of APs
fronthaul can help to efficiently use the quantization bits at
each AP and further reduce the distortion imposed on the
quantized vector at the APs. This paper considers a daisy chain
fronthaul and three different processing sequences at each AP.
We show that 1) de-correlating the received signal vector at
each AP from the corresponding vectors of the previous APs
(inter-AP de-correlation) and 2) de-correlating the dimensions of
the received signal vector at each AP (intra-AP de-correlation)
before quantization helps to use the quantization bits at each
AP more efficiently than directly quantizing the received signal
vector without any pre-processing and consequently, improves the
bit error rate (BER) and normalized mean square error (NMSE)
of users signal estimation.

Index Terms—Cell-free network with daisy chain fronthaul
topology, Fronthaul quantization, Low complexity base-band
processing unit.

I. INTRODUCTION

Massive multiple-input-multiple-output (MIMO) networks
are very well known for their ability to spatially multiplex
users using a large number of antennas. Spatial multiplexing
enables the users to use the same time and frequency resources
and hence improves users’ spectral efficiency. In Cell-free
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massive MIMO (CFmMIMO), the antennas are distributed
among multiple distributed access points (APs), which are
coordinated by a central processing unit (CPU) [1]–[3]. The
APs cooperate to serve the users effectively. Such a paradigm
can further improve the spectral efficiency of the users by
exploiting the spatial diversity of the APs. Distributing an-
tennas in multiple small APs helps to alleviate the adverse
effect of large-scale fading, such as path-loss and shadowing,
on users’ channel gain [1] compared to the collocated massive
MIMO network. However, this advantage comes with a lot of
challenges. One of the challenges is the efficient usage of the
limited capacity of the fronthaul links connecting APs to each
other or to the CPU [4], [5]. The authors of [4] considered the
quantization of the pilot and data vector in the uplink to be sent
through the fronthaul link to the CPU. They considered three
cases based on where the channel is estimated and used for
users’ signal estimation. In addition, in [6], authors considered
fronthaul rate allocation to corresponding signals of different
users. In [7], the authors considered a CFmMIMO network in
which the APs are connected to the CPU in a star topology,
and each AP first reduces the number of streams that it sends
to the CPU using singular value decomposition (SVD) of the
received signal vector and then allocate bits to the streams
to maximize sum signal to noise ratio (SNR) of the streams.
However, in all the works mentioned above, it is assumed that
the APs are connected to the CPU in a star topology, and each
AP quantizes its received vector individually and in isolation
from other APs.

Besides the limited capacity fronthaul links, the hardware
size and complexity of the base-band processing unit in each
AP is of great importance as the APs in a CFmMIMO are
supposed to be cheap entities with low hardware complexity.
Thus, a significant effort should be invested regarding efficient
low-bit quantization of the received signal vectors to meet
the capacity constraint of the fronthaul link and hardware
complexity constraint of the base-band processing units.

A. Motivation

Besides star topology, daisy chain or sequential topology
has also been considered recently [8]–[11] in the context of
cell-free massive MIMO networks. In such a topology, each
AP refines user signal estimates in the uplink based on the
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information received from the previous AP over a capacity-
limited fronthaul link in the chain. Hence, the efficient usage
of fronthaul capacity is important. However, the authors in
[8], [9] don’t consider the limited capacity fronthaul constraint
impact on the performance. The authors in [11] investigate the
convergence behavior of recursive least squares algorithms un-
der limited capacity fronthaul links with quantizers operating
individually. However, in this work, we would like to consider
the impact of inter-AP information on quantization.

To meet the fronthaul and hardware requirement, it is
possible to quantize the raw received signal vector element-
wise, which is not recommended as the elements of the raw
received signal vector at each AP are correlated. A better
approach is to first de-correlate the dimensions of the raw
received signal vector at each AP and then quantize it element-
wise. However, the received signal vectors among APs are
also usually correlated, conditioned on the local channel state
information (CSI). Hence, in a third approach, APs can use
the information received from the previous AP in the chain to
de-correlate their received signal vector from the signal vector
of the previous APs in the chain before quantization. This
will allow the APs to use the quantization bits efficiently for
quantizing the received signal vector. The APs then use the
quantized vector to refine user signal estimates.

To clarify the impact of de-correlation on the efficient usage
of the quantization bits, consider the following toy example.
Suppose we want to estimate a random variable x based on
the realization of two other random variables, y1 and y2.
Assume that x, y1 and y2 have zero mean. We consider the
linear minimum mean square error (LMMSE) estimate of one

of them with respect to others. Hence, if E{x
[
y1
y2

]H

} ̸= 0,

LMMSE estimate of x with respect to y1 and y2 is as follows:

x̂ = v1y1 + v2y2. (1)

where vi = E{xyH
i }E{yiyH

i }−1, i ∈ {1, 2} [12]. Similarly,
if y1 and y2 are correlated, i.e. E{y1yH

2 } ̸= 0, we calculate
LMMSE estimate of y2 with respect to y1 as follows:

ŷ2 = by1, (2)

then, it follows that:

y2 = ŷ2 + ỹ2, (3)

where ỹ2 is the estimation error. Based on the orthogonality
principle of the LMMSE estimate:

E{y1ỹH
2 } = 0, (4)

or in general, the estimation error ỹ2 is uncorrelated to any
linear function of y1. Based on (1), (2) and (3), we have:

x̂ = v1y1 + v2(ŷ2 + ỹ2) = (v1 + v2b)y1 + v2ỹ2. (5)

Therefore, the knowledge of ỹ2 (instead of y2) is enough
to estimate x. Now, consider that there is a quantization
step for both observations before the estimation of x. As 1)
knowledge of ỹ2 is enough for estimating x, and 2) based on

the orthogonality principle of LMMSE estimator, the variance
of the ỹ2 is smaller than y2, i.e., E{ỹ2ỹH

2 } < E{y2yH
2 }, the

error of quantizing ỹ2 is smaller than y2 while using uniform
quantization with a certain number of bits. Therefore, it is
recommended to de-correlate y2 from y1 and then quantize y1
and ỹ2.

B. Notation

We denote vectors and matrices with boldface lower-case
and upper-case letters, respectively. Transpose and conjugate
transpose operations are denoted by superscripts T and H,
respectively. A circularly symmetric complex Gaussian distri-
bution with covariance matrix X is represented as CN (0,X).
Symbol E{x} denotes the mean of x. Re(x) and Im(x) denote
the elemen-wise real and imaginary part of x, respectively.
diag(x) is a diagonal matrix with the same diagonal elements
as the elements of vector x.

C. Contribution

This paper uses joint fronthaul quantization and hardware
complexity reduction in a cell-free massive MIMO network
with sequential fronthaul. In practical scenarios, the number
of bits at each AP to quantize the received signal vector
is limited by 1) fronthaul capacity between the APs and 2)
hardware complexity in the base-band processing unit in each
AP. We consider three Options for processing sequence at
each AP, as shown in Fig. 2. We show that AP l can more
efficiently use the quantization bits to quantize its received
signal vector in Option 1 where it takes the information sent
from AP l − 1 into account before quantization. In Option
1, AP l quantizes a vector that is not only de-correlated
from the corresponding vectors in previous APs (inter-AP
de-correlation) but also has de-correlated dimensions (intra-
AP de-correlation). We compared Option 1 with 1) Option
2 where AP l only considers the de-correlation between the
dimensions of its local received signal vector (intra-AP de-
correlation only) before quantization and 2) Option 3 where
AP l directly quantizes the received signal vector without any
inter-AP or intra-AP de-correlation (no de-correlation before
quantization). The simulation results show the superiority of
Option 1 over the other two options.

D. Outline

The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we consider the
uplink signal estimation using distributed MMSE processing.
We introduce the concept of dithering and how it facilitates the
analysis of the quantization noise. In section IV, we show the
numerical result, and finally, section V concludes the paper.

II. SYSTEM MODEL

We consider a cell-free massive MIMO network with L APs
connected in a daisy chain topology, each with N antennas
serving K > N users in the uplink. We assume the channel
between AP l and user k is a circularly symmetric complex
Gaussian random vector, denoted by hkl ∈ CN (0,Rhkl

), also



called correlated Rayleigh fading channel [13]. The large-scale
fading coefficient is βkl = trace(Rhkl

)/N . The received signal
vector at AP l is as follows:

yl = Hls+ nl, (6)

where Hl =
[
h1l . . . hKl

]
and nl ∼ CN (0, σ2IN ) is

the noise vector at AP l. We assume vector s with E{ssH} =
pIK as the user transmitted signal vector. We assume a block
fading model channel with Bc as coherence bandwidth and
Tc as coherence time. The transmitted signal bandwidth is
B. The channel matrix will remain constant for τc = TcBc

samples. Out of τc samples, τd samples are used for uplink
data transmission. We assume perfect CSI at the APs.

III. UPLINK PROCESSING AND USERS’ SIGNAL
ESTIMATION

This section considers the sequential estimation of users’
signal in the uplink using distributed MMSE processing [9],
[10]. In this section, we elaborate mathematically on Option
1 processing sequence as shown in Fig. 2. As the signal
estimation is recursive, i.e., each AP’s estimate depends on
the previous AP’s estimate in the chain to update user signal
estimates, we start from AP 1. AP 1 estimates users’ signal
as follows:

ŝ1 = V1f1(y1), (7)

Where V1 ∈ CK×r contains local combining vector, f1 :
CN → Cr such that r = min(N,K) is the function that
includes the de-correlation pre-processing and quantization. It
will be shown in Subsection III-B that f1 is a linear function
of y1 described as:

f1(y1) = A1y1 + b1, (8)

where A1 ∈ Cr×N is a deterministic matrix and b1 ∈ Cr×1

is a random vector. Vector b1 results from the de-correlation,
dithering, and quantization, elaborated in Subsection III-B.

A. Received signal vector processing at AP l

Each AP l receives from AP l − 1:

• For each sample in a coherence block, K user signal
estimates, i.e. vector ŝl−1,

• And once per coherence block, the user signal estimation
error covariance matrix Cl−1 ∈ CK×K defined as,

Cl−1 = E{s̃l−1s̃
H
l−1|Hl}, (9)

where
s̃l−1 = s− ŝl−1, (10)

According to (10), AP l must refine the user signal estimates of
AP l − 1 by estimating the error s̃l−1 on that previous estimate
ŝl−1. To do so, AP l first subtracts the LMMSE estimate of its
received signal vector yl based on fi(yi), i ∈ {1, . . . , l − 1}
from yl. It can be shown that this LMMSE estimate can be

calculated using only the local channel matrix at AP l and the
user signal estimates:

Gl(yl) = yl − LMMSE{yl|f1(y1), . . . , fl−1(yl−1)}
(a)
= yl −Hlŝl−1 = Hl(s− ŝl−1) + nl

(b)
= Hls̃l−1 + nl,

(11)

where
(a)
= is due to the following fact:

LMMSE{yl|f1(y1), . . . , fl−1(yl−1)} = Hlŝl−1. (12)

The proof is omitted due to space limitations. The interested
reader is referred to [9]. This LMMSE estimate is fully based
on the user signal previous estimates, so there is no new
information in it. Hence, it should be removed so that the
quantization bits can be used for the remaining information in

yl. Furthermore, (10) proves
(b)
= in (11).

Using the orthogonality principle of the LMMSE estimator:

E{fi(yi)Gl(yl)
H} = 0,∀i ∈ {1, . . . , l − 1}. (13)

The process in (11) is called inter-AP de-correlation. How-
ever, the dimensions of Gl(yl) may still be correlated. To
use the quantization bits even more efficiently, AP l also de-
correlates the dimensions of Gl(yl) via the well-known PCA
method. The resulting vector is then quantized element-wise.
To use the PCA method, AP l computes the r eigenvectors
with the largest corresponding eigenvalues of the covariance
matrix of the inter-AP de-correlated received signal vector,
i.e., RGl(yl) = E{Gl(yl)Gl(yl)

H|Hl}. According to (11), the
SVD decomposition of RGl(yl) is as follows:

RGl(yl) = E{Gl(yl)Gl(yl)
H |Hl}

= HlE{s̃l−1s̃
H
l−1|Hl}HH

l + σ2IN

(a)
= HlCl−1H

H
l + σ2IN

= UlΣlU
H
l ,

(14)

where
(a)
= is a result of (9). Matrix Ul contains the eigen-

vectors of RGl(yl). Assuming that eigenvalues are sorted in
descending order, we select the r most prominent eigenvectors
(corresponding to the largest eigenvalues), as follows:

Al = Ul[:,[1:r]]. (15)

Matrix Al then projects Gl(yl) onto the subspace spanned by
these eigenvectors. The PCA processed version of Gl(yl) is:

Pl(Gl(yl)) = AH
l Gl(yl). (16)

AP l then passes the real and imaginary part of each element
of Pl(Gl(yl)) separately through one quantizer. Therefore, the
total number of quantizers in AP l is 2r (r pairs).



B. Uniform Quantization at AP l

We use uniform quantization for each element of
Pl(Gl(yl)). The bits allocated to each quantizer at AP l
is bl. The function Ql is an element-wise quantizer. Be-
fore quantization, a dither signal vector independent from
Pl(Gl(yl)), with zero mean and i.i.d uniformly distributed
elements is added to Pl(Gl(yl)). Adding the dither signal
before quantization ensures the quantization noise is uniformly
distributed and uncorrelated to the input [14], which makes the
LMMSE estimation of users’ signal tractable. The dithered and
quantized signal vectors are shown respectively as follows:

zl = Pl(Gl(yl)) + dl, (17)

fl(yl) = Ql(zl + dl)

(a)
= AH

l Gl(yl) + dl + ηηηl,
(18)

where (18) is a result of (11), (16) and (17). Note that
Re(dl) and Im(dl) are also i.i.d uniformly distributed random
vectors. The range of the dither signal elements depends on
the dynamic range and number of bits of the corresponding
quantizers. The dynamic range of the ith pair of quantizers
at AP l is γil (quantizers for the real and imaginary part
of ith element of dithered signal in (17) have the same
dynamic range). If each quantizer at AP l is allocated bl bits,
accordingly, the range of the real and imaginary part of ith

element of dither signal vector dil is as follows:

∆il =
2γil
2bl

. (19)

The dither signal vector covariance matrix is then Rdl
=

diag(∆2
1l/6 . . .∆2

rl/6). We define vector ηηηl ∈ Cr×1 as the
quantization noise. Based on (11) and (18):

bl = −AH
l Hlŝl−1 + dl + ηηηl. (20)

The elements of ηηηl are also zero-mean uniformly distributed
i.i.d random variables with covariance matrix Rηηηl

= Rdl
and

uncorrelated with Pl(Gl(yl)) [15]. To validate the claims on
distribution, Fig. 1 shows the CDF of the quantization noise of
the ith pair of quantizers at a random AP l using Monte Carlo
simulation compared to a corresponding uniform distribution
with range ∆il. Note that the three CDFs almost completely
overlap.

For a quantizer to work within the dynamic range, the
dynamic range of the quantizer should be some multiple (α) of
the standard deviation of the input of the quantizer. Consider
the ith element of zl. The dynamic range of ith pair of
quantizers is calculated as follows:

γ2
il = α2E{zlizH

li}/2

= α2(E{Pl(Gl(yl))iPl(Gl(yl))
H
i }/2 +

∆2
li

12
)

= α2(E{Pl(Gl(yl))iPl(Gl(yl))
H
i }/2 +

γ2
li

3× 4bl
)

→ γil =

√
α2(1− α2

3× 4bl
)−1E{Pl(Gl(yl))iPl(Gl(yl))H

i }/2,
(21)
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Fig. 1. Quantization noise of a random pair of quantizers at a random AP.
L=5, N=4, K=10, bl = 3 and p = −10dB.

where zli and Pl(Gl(yl))i are the ith element of the zl and
Pl(Gl(yl)), respectively.

C. Users’ signal estimation at AP l

The resulting quantized vector is sent to the base-band
processing unit to update user signal estimates. As mentioned
earlier, AP l tries to estimate the unknown part of s which is
s̃l−1 in (10). The MMSE estimate of s̃l−1 from Ql{zl} is as
follows:

ˆ̃sl−1 = E{s̃l−1fl(yl)
H}}(E{fl(yl)fl(yl)

H|Hl})−1fl(yl)

= Cl−1H
H
l AlR

−1
fl(yl)

fl(yl),
(22)

where Vl = Cl−1H
H
l AlR

−1
fl(yl)

.

Rfl(yl) = AlRGl(yl)A
H
l +Rdl

+Rηηηl
, (23)

We show the diagonality of Rηηηl
with the Monte Carlo

simulation. Fig. (3) shows that the eigenvalues and diagonal
elements of the covariance matrix of the quantization noise
vector at a randomly selected AP are the same, testifying to
the diagonality of the quantization noise covariance matrix.

The user signal estimates are updated as follows:

ŝl = ŝl−1 + ˆ̃sl−1. (24)

Accordingly, the user signal estimation error covariance matrix
is updated as follows:

Cl = E{(s− ŝl)(s− ŝl)
H}

(a)
= E{(s̃l−1 − ˆ̃sl−1)(s̃l−1 − ˆ̃sl−1)

H}
(b)
= (IK −VlA

H
l Hl)Cl−1.

(25)

The updated user signal estimates and error covariance matrix
are sent to AP l + 1.



Fig. 2. Three possible processing sequences for sequential signal estimation approaches at AP l. i) Option 1: Before quantization, AP l first de-correlates
its received signal vector from the previous APs vector (inter-AP de-correlation) and then uses PCA to de-correlate the dimensions of the resulting vector
(intra-AP de-correlation). ii) Option 2: AP l only considers de-correlating the dimensions of its own received signal vector (intra-AP de-correlation) before
quantization, iii) Option 3: AP l does not do any de-correlation before quantization and directly quantizes the received signal vector elements (No de-
correlation before quantization). Due to space limitations, dithering is not shown in the block diagram.
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Fig. 3. Diagonal vs. eigenvalues of the quantization noise covariance matrix
at a random AP. L=5, N=4, K=10, bl = 3 and p = −10dB.

D. Fronthaul bit rate

As shown in (22), the refinement of users’ signal in each
AP is a multiplication of an K × r matrix with a vector of
dimension r (inner product of the combining vectors with the
quantized pre-processed received signal vector). Hence, we
have the inner product of two vectors with dimension r for
each user. Assume that the real or imaginary part of each
element of the combining vector and quantized pre-processed
vector has bc and bl bits, respectively. For calculating the
number of bits of the combining operation, two things should
be remembered: 1) the result of the multiplication of two
binary numbers (ignoring sign bits) with bit length bl and
bc can be fully represented using ρ = bc + bl bits and 2)
the summation of two binary numbers with same bit length ρ
can be fully represented using ρ + 1 bits. For each element
of ŝl, we first multiply r pairs of complex scalars and then
add the results together. Then, each element of ŝl has up to
bs = 2(bc + bl + 2r − 1) bits [16]. Assume that the user
signal estimation error covariance matrix i.e., Cl, needs a total
number of be bits to be transmitted in each coherence block.
As there are τd uplink samples per coherence block, and we
assume there are NCB = B/Bc coherence blocks over a time

distance of Tc [17, Chapter 2], the bit rate on a fronthaul link
connecting AP l to AP l − 1 is as follows:

Brf =
NCB(be + 2τdK(bc + bl + 2r − 1))

Tc
. (26)

So the number of bits to be transmitted on the fronthaul link
increases linearly with bl. This means that each AP should try
to lower bl to satisfy fronthaul capacity constraints without
compromising performance significantly.

It is also worth mentioning that the quantization for fron-
thaul can also happen after users’ signal estimation. However,
this choice will not reduce the hardware complexity of base-
band processing. Furthermore, in this case, the number of
quantizers in the whole network will be L× 2K ≥ L× 2r.

E. Hardware complexity

As mentioned, aside from affecting fronthaul bit rate, the
number of bits of the quantized pre-processed signal vector
also affects both the hardware and the time for the multiplica-
tion at the base-band processing unit where the multiplication
with the combining vector actually happens. For example, for
multiplying two numbers with bc and bl bits, the number of
logical gates linearly increases with bl [16]. Hence, having
a large bl increases the size and complexity of the hardware
responsible for the combining and user signal estimates refine-
ment in the base-band processing unit of each AP.

F. Alternative methods

Option 1 processing sequence in an AP, which is elaborated
in the Subsections III-A, III-B and III-C, is compared to two
alternative approaches: 1) Option 2 where the signal received
at each AP is only de-correlated intra-AP, e.g., by computing
the SVD of the received signal vector at the AP and then
applying PCA on the received signal vector and 2) Option
3 where the received signal vector at the APs passes through
quantizers without any inter-AP or intra-AP de-correlation
in advance. The block diagram of the processing sequences
corresponding to the three options is shown in Fig. 2.
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IV. NUMERICAL EXPERIMENT

In this section, we present the simulation result. A simu-
lation area with a perimeter of D = 500m [9] is considered
with a total NL = 20 antennas serving K = 10 users in the
uplink. The simulation parameters are given is table I. The

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
Bandwidth (B) 100MHz Carrier frequency 2GHz
Noise figure 9dB Noise variance -85dBm

considered propagation model is the 3GPP Urban Microcell
model in [18], with a large-scale fading coefficient defined as:

βkl = −30.5− 36.7 log10(
dkl
1m

), (27)

where dkl is the distance between user k and AP l. In Fig.
4, we compare the normalized MSE (NMSE) of user signal
estimates when using Option 1 processing sequence and
the alternative processing sequences as shown in Fig. 2. We
observe that with Option 1 processing sequence at each AP,
the NMSE approaches the level of NMSE of No quantization
for a relatively smaller number of bits than the other two
options. In Fig. 5, while users send the BPSK modulated
signal, the bit error rate (BER) of the three aforementioned
processing sequence options is bench-marked with the case of
No quantization. We observe that Option 1 shows superior
performance compared to the two other alternative options.

V. CONCLUSION

In this paper, we consider the efficient quantization of the
received signal vector at the APs in a daisy chain cell-free
massive MIMO network to 1) reduce the complexity of the
local base-band processing unit in each AP, 2) meet the limited
capacity requirement of the fronthaul links. Furthermore, we
demonstrate that the element-wise quantization of the raw
received signal vector (Option 3) without intra-AP or inter-
AP de-correlation in advance adversely affects NMSE of user
signal estimates and bit error rate performance. On the other
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B
it
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Fig. 5. Bit error rate of BPSK modulation vs. user transmit power. L = 5,
N = 4, K = 10 and bl = 3.

hand, de-correlating the local received vector dimensions using
PCA before quantization (Option 2) helps to use the bits more
efficiently than Option 3, in the considered setup. Ultimately,
de-correlating the received signal vectors inter-AP (Option 1)
before quantization further improves the performance.
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