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We perform a nonperturbative lattice study of the electroweak phase transition in the real singlet
scalar extension of the Standard Model.We consider both the heavy and light singlet-like scalar
regimes at non-zero singlet-doublet mixing angle. After reviewing features of the lattice method
relevant for phase transition studies, we analyze the dependence of phase transition thermodynam-
ics on phenomenologically relevant parameters. In the heavy singlet-like scalar regime, we find
that the transition is crossover for small doublet-singlet mixing angles, despite the presence of an
energy barrier in the tree-level potential. The transition becomes first order for sufficiently large
mixing angles. We find two-loop perturbation theory to agree closely with the lattice results for all
thermodynamical quantities considered here (critical temperature, order parameter discontinuity,
latent heat) when the transition is strongly first order. For the light singlet-like scalar regime rel-
evant to exotic Higgs decays, we update previous one-loop perturbative results using the two-loop
loop dimensionally reduced effective field theory and assess the nature of the transition with lattice
simulations at set of benchmark parameter points. For fixed singlet-like scalar mass the transition
becomes crossover when the magnitude of the Higgs-singlet portal coupling is small. We perform our
simulations in the high-temperature effective theory, which we briefly review, and present analytic
expressions for the relevant lattice-continuum relations.

I. INTRODUCTION

A fundamental feature of the electroweak (EW) sector
of the Standard Model (SM), and virtually all weakly-
coupled extensions to it, is the Higgs mechanism: mass
generation through condensation of a scalar field. This
effect can be lifted, at high temperature, by thermal fluc-
tuations. Determining the thermal history of this elec-
troweak phase transition (EWPT) is a forefront challenge
for particle physics and cosmology. While the Standard
Model EW transition is known to be a smooth crossover
and not a true phase transition for a 125 GeV Higgs bo-
son [1, 2], an extended scalar sector can readily admit a
first order electroweak phase transition (FOEWPT).

Such a transition could have provided the neces-
sary preconditions for generation of the cosmic baryon
asymmetry via electroweak baryogenesis if the transi-
tion were sufficiently strong (see [3] for a review). A
strong FOEWPT could also have provided a source for
a stochastic gravitational wave background that may be
accessible with next generation probes such as LISA [4],
Taiji, and Tianqin. Collider searches for beyond Stan-
dard Model (BSM) scalars, as well as precision measure-
ments of Higgs boson properties, provide powerful and,
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generically, definitive probes of a strong FOEWPT [5].

Extended scalar sectors continue to receive consider-
able attention, both theoretically and experimentally,
and they span a wide range of scenarios, ranging from
simplified model extensions to ultraviolet (UV) complete
theories, supersymmetric and otherwise. For a recent re-
view of these scenarios and their generic implications for
a first order EWPT, see Ref. [5]. The simplest exten-
sion consistent with a 125 GeV Higgs boson and a strong
FOEWPT entails the addition of a real singlet scalar, the
so-called “xSM” .

The xSM provides a useful simplified model stand in
for scalar sector extensions that do not carry SM gauge
charges (e.g. dark sectors). At the renormalizable level,
the xSM contains two Higgs portal interactions whose
couplings govern the thermal dynamics of EWPT. These
interactions also carry distinct phenomenological conse-
quences, making the xSM a rich arena for BSM collider
physics.

In this work, we report on the first-ever non-
perturbative study of thermal EWPT in the xSM in
which the singlet scalar S is retained as a dynamical de-
gree of freedom. As a consequence of the well-known
Linde problem [6], the reliability of perturbation the-
ory in the vicinity of relatively weak transitions breaks
down. Thus, one cannot ascertain the parameter-space
boundary between a smooth crossover and first order
EWPT perturbatively. Within the SM, lattice compu-
tations were decisive in revealing the onset of a crossover
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transition at the “critical Higgs mass” in the range of
∼ 70− 80 GeV [1, 2]. A key goal of the present study is
to determine this parameter space boundary for the xSM.
At the same time, we assess the degree to which state-of-
the-art perturbative computations – using thermal effec-
tive theory as described below – provide a realistic guide
to the xSM EWPT thermodynamics.

Doing so for both the xSM and other extended scalar
sector scenarios is important for both theory and ex-
periment. In general, one would like to know: Can a
given model admit a strong FOEWPT? If so, for what
choices of parameters? And how can a combination of
collider probes and gravitational wave (GW) searches
test this possibility? These questions have recently been
addressed for the real triplet scalar extension (“ΣSM” )
using a combination of lattice and thermal effective field
theory methods [7, 8]. The result is a determination of
the relevant phase diagram, including a delineation of the
first order phase transition crossover boundary, identifi-
cation of regions of two-step EWPT, and mapping be-
tween the phase diagram and relevant experimental col-
lider and GW sensitivities. The present study provides
the foundation for a similar exploration of the xSM.

In order to provide a robust determination of
the FOEWPT-viable xSM parameter space, we com-
bine lattice simulations with perturbative computa-
tions performed using the dimensionally reduced, three-
dimensional (3D) field theory at non-zero temperature
(DR3dEFT). The latter allows one to obtain a compre-
hensive survey of the parameter space by scanning over
the xSM parameters. We employ the state-of-the-art
DR3dEFT at O(g4), where g is the generic gauge cou-
pling and where we draw upon the necessary two-loop
computations [9, 10]. We carry out lattice simulations
and selected benchmark points in order to determine the
crossover-FOEWPT boundary and to assess the reliabil-
ity of the perturbative DR3dEFT computations. We se-
lect these benchmark points based on earlier results from
one-loop perturbation theory that have important phe-
nomenological implications [11–20].

We consider two regimes based on the masses M1,2 of
xSM neutral mass eigenstates, h1,2: (a) a heavy singlet-
like scalar h2 with M2 > 2M1, with h1 being the SM-like
Higgs boson having M1 = 125 GeV; (b) a light h2 with
M1 > 2M2. Region (a) is relevant for resonant di-Higgs
production in proton-proton collisions, while region (b)
allows for exotic decays of the SM-like Higgs boson. For
both regions, singlet-doublet mixing – characterized by
a mixing angle θ – yields distinct signatures in precision
Higgs studies, relevant for future lepton collider Higgs
factories. Our key findings are:

(1) Region (a): For fixed M2 and singlet Higgs portal
coupling a2, we find that there exists a minimum
value of | sin θ| for which a first order transition oc-
curs, whereas perturbative computations always in-
dicate the existence of a first order transition, even
for vanishing mixing angle.

(2) Region (a): For values of | sin θ| consistent with
a FOEWPT, two-loop DR3dEFT perturbative re-
sults for the discontinuity in the Higgs scalar con-
densate ⟨ϕ†ϕ⟩ closely track the lattice results.

(3) Region (b): Perturbative computations imply that,
for a given value of M2, the nucleation rate is de-
cisive for setting the minimum magnitude of the
doublet-singlet cross-quartic coupling a2 consistent
with a FOEWPT that completes. Our lattice re-
sults indicate that, depending on the values of the
other parameters in the scalar potential, thermo-
dynamics can also play an important role in deter-
mining the minimum value of |a2|.

These results have important consequences for collider
phenomenology.

• Point (1) implies that the xSM FOEWPT-viable
parameter space is less extensive than one would
conclude from purely perturbative studies. Thus,
prospective precision Higgs and resonant di-Higgs
production have a relatively greater ability to test
the xSM EWPT than previously thought.

• Point (2) indicates that in the regions of FOEWPT,
the two-loop DR3dEFT computations provide a re-
liable guide to the strength of the transition. This
strength is important for both the signal magni-
tude of potential gravitational waves result from
the FOEWPT as well as for the preservation of a
baryon asymmetry during electroweak baryogene-
sis.

• From point (3) we conclude that the existence
and parameter space location of a minimum exotic
Higgs decay branching ratio is governed by both
the nucleation rate and the xSM thermodynamics.
With our results for the lattice thermodynamics
now in hand, future refinements of nucleation rate
computations will yield the most robust target for
exotic Higgs decay studies.

The remainder of the paper provides detailed discus-
sion of the computations and analysis leading to these
conclusions. Along the way, we endeavor to provide a
thorough presentation of the lattice simulations, coupled
with technical material in the Appendices. Sections II
and III review the xSM and its DRT3dEFT formulation.
Sections IV, V, and VI give the corresponding lattice
formulation, general features of the lattice simulations,
and the procedure for obtaining the critical temperature,
respectively. We define the quantities that character-
ize the strength of the transition in Section VII. Sec-
tion VIII presents the assessment of the lattice spacing
and volume dependence. Result for regions (a) and (b)
are given in Sections IX and X, respectively. We dis-
cuss the phenomenological implications of this work in
Section XI and summarize in Section XII. Readers who
are primarily interested in model-phenomenological re-
sults may want to skip sections III through X on the
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first read-through. There are two appendices, detailing
the matching of 3D lattice and continuum theories and
documenting our reweighting scheme for analyzing sim-
ulation results.

II. MODEL SETUP

The singlet-extended SM is defined by the scalar po-
tential

V (ϕ, S) =m2
ϕϕ

†ϕ+ λ(ϕ†ϕ)2 + b1S +
1

2
m2

SS
2

+
1

3
b3S

3 +
1

4
b4S

4 +
1

2
a1Sϕ

†ϕ+
1

2
a2S

2ϕ†ϕ

(1)

where ϕ is the electroweak (EW) Higgs doublet and S is
a real singlet scalar field. Setting b1, b3, a1 = 0 makes the
theory Z2 symmetric under S → −S; in this paper we
focus on the more general potential where this symmetry
is absent.

The parameters are fixed in standard fashion, at zero
temperature, by fixing a Rξ gauge and shifting

ϕ → ϕ+
1√
2

(
0
v0

)
, (2)

requiring that the potential has a minimum at v0 > 0
(the EW vacuum) and matching to experimental input
via perturbation theory around this vacuum. We also
use the freedom to shift S at will to remove the vacuum
expectation value (VEV) of S in the EW minimum: this
fixes b1. Note that some studies eliminate b1 in favor of
the singlet VEV [11, 13, 20]. The model predicts two
electrically-neutral scalars h1, h2 that, in the absence of
aforementioned Z2 symmetry, are linear combinations of
the singlet and the Standard Model Higgs field h:

(
h1

h2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
h
S

)
, (3)

where the mixing angle θ is chosen to diagonalize the
neutral scalar mass-squared matrix in the (h1, h2) basis
with h1 being the SM-like Higgs boson.

Our EW sector inputs are the W and Z boson pole
masses, that of the top quark, the SM Higgs pole mass
M1 = 125.10 GeV, and the Fermi constant Gµ. We ne-
glect Yukawa interactions of all fermions lighter than the
top. For BSM parameters we input the pole mass m2

of the new scalar h2, and sin θ. This leaves the cou-
plings b3, b4, a2 which we treat as free parameters (in the
MS scheme). Expressing parameters in the potential in

terms of the inputs gives

m2
ϕ = −1

4

(
m2

1 +m2
2 − (m2

2 −m2
1) cos 2θ

)
(4)

m2
S =

1

2

(
m2

1 +m2
2 + (m2

2 −m2
1) cos 2θ − a2v

2
0

)
(5)

b1 = −1

4
v0(m

2
2 −m2

1) sin 2θ (6)

a1 = v−1
0 (m2

2 −m2
1) sin 2θ (7)

λ =
1

4
v−2
0

(
m2

1 +m2
2 − (m2

2 −m2
2) cos 2θ

)
. (8)

Here m1,m2 are the eigenvalues of the mass matrix. At
tree level they match the pole masses, however there are
corrections at loop level and importantly, at one-loop the
corrections are of same parametric order as two-loop cor-
rections to thermal masses [10]. In this parametrization,
the Z2 symmetric limit corresponds to b3 → 0, θ → 0.
The accuracy of our lattice simulations will ultimately

be constrained by the perturbative mapping between the
lattice action and T = 0 input parameters; hence we
include one-loop corrections to Eqs. (4) through (8), and
to other parameters in the EW sector. We perform this in
the MS scheme following ref. [10]; details of the procedure
are given in the Appendix of that paper. Specificially, we
fix the values of the T = 0 parameters using Eqs. (A27)
through (A35) in [10].
At the perturbative level, the EW transition occurs

when the thermally-corrected effective potential shifts
its global minimum from v0 = 0 to v0 > 0.1 This ac-
tivates the electroweak Higgs mechanism and generates
tree-level masses for gauge fields. The term “spontaneous
gauge symmetry breaking” is often used to describe this
phenomenon; however we deliberately avoid this termi-
nology as taking the concept too literally obfuscates the
true, gauge invariant physics of the EWPT [1]. Indeed,
physical states, including the vacuum state, are always
gauge invariant, and the apparent breakdown of a global
SU(2) in the v0 ̸= 0 minimum is an artifact of gauge
fixing which is always necessary in perturbation theory
[21, 22]. These details become important in the non-
perturbative lattice approach where gauge invariance is
manifest. Gauge fixing is only needed in this and the
next section for perturbatively relating the T = 0 theory
to a lattice theory.
The main challenge in describing the finite tempera-

ture EWPT is that perturbation theory for bosons con-
verges slowly in the infrared (IR). Specifically, at high
temperature, the expansion parameter is of form g2T/m
[6], where g2 denotes a generic quartic coupling and
m ≪ T is the mass of a relevant bosonic excitation. In

1 Note that we follow the Ehrenfest classification of phase transi-
tions according to the lowest order derivative of the free energy
that displays a discontinuity. In a crossover transition, no dis-
continuity occurs. If first order, some supercooling is expected
before the transition actually takes place.



4

the high-T phase where the Higgs mechanism is lifted,
gauge bosons are perturbatively massless and perturba-
tive expansions are ill-behaved. This is the Linde prob-
lem [6] and means that any perturbative description of
the EWPT is necessary incomplete. At the same time,
the EWPT typically occurs at a temperature where the
SM-like Higgs excitation is light compared to the tem-
perature, which reduces reliability of perturbative predic-
tions already in the scalar sector. The combined effect
of these two problems is that perturbation theory fails
to describe weak transitions (and crossovers) in which
nonperturbative effects in the gauge sector are impor-
tant [23], and in other cases it is typically necessary to
extend perturbative calculations beyond one-loop if accu-
rate predictions of thermal quantities are needed [24–26].

Our goal in this paper is to include the problematic IR
physics by means of nonperturbative lattice simulations,
and thus provide a reliable description of the EWPT in
the singlet-extended model. With the Higgs mass M1

fixed to its SM value, one expects the EWPT strength to
be predominantly controlled by parameters a2 and sin θ
that directly couple the singlet and the ϕ doublet. In
contrast, b3 and b4 contribute only through loops and
are expected to have a milder effect [11, 16]. We will
mostly focus on a2 and sin θ.
In addition to EWPT in the Higgs direction of the po-

tential, the vacuum structure may be nontrivial also in
the singlet direction. In the general, non-Z2 symmetric
model this is generally the case, as loop corrections shift
the singlet VEV away from the origin. A similar situation
can arise in the Z2 symmetric limit if the theory under-
goes spontaneous breakdown of the discrete Z2 symme-
try at temperatures above the EWPT temperature. This
is the two-step phase transition scenario [5, 11, 12, 14],
and analogous multi-step transitions can occur also in the
more general model but without spontaneous Z2 break-
ing [27]. Transitions in the pure singlet direction will not
be discussed further in this work as our focus is on the
actual EWPT.

III. HIGH-T EFFECTIVE THEORY

Some approximations are required before the finite-
temperature theory can be studied nonperturbatively on
the lattice. The most fundamental issue to overcome is
that formulating a chiral gauge theory such as the SM on
the lattice is an unsolved problem (see [28] for a recent
development).2 The second issue is that controlling the

continuum limit while simultaneously preserving connec-
tion to known EW physics is tedious when the theory con-
tains many parameters, each requiring renormalization.
The final hurdle is that a finite-temperature system ad-
mits a natural hierarchy of scales, e.g. scales gT and g2T
associated with screening of electric and magnetic fields
respectively and the scale πT of short-distance thermal
fluctuations. Fitting these on a lattice simultaneously
necessitates numerically demanding simulations.
Despite these complications, simulations and contin-

uum extrapolations have been successfully carried out
for the bosonic SU(2) + Higgs theory at finite tempera-
ture [2, 29]. Still, for the singlet extension this approach
seems unpractical due to the large number of parame-
ters in the scalar potential, and would require that we
neglect all effects of fermions on the EWPT; likely not a
good approximation given that the thermal Higgs mass
obtains its largest SM contributions from the top quark
[30].
A way of bypassing the aforementioned issues is pro-

vided by the effective field theory (EFT) approach to
high-T field theory [30–33]. In this method, one pertur-
batively maps the 4D finite-T theory to a simpler 3D
theory with similar field content (“ dimensional reduc-
tion” ), apart from fermions whose contributions are in-
cluded in “matching relations” between the 3D and 4D
parameters. The resulting bosonic 3D EFT can then be
simulated on the lattice, avoiding all of the issues high-
lighted above [34]. This 3D approach is common for
EWPT studies both in lattice [8, 23, 24, 35–37] and per-
turbative contexts [10, 38–43], and it is the approach we
follow in this paper. The downside is that the quality
of 4D → 3D mapping becomes a limiting factor for the
full analysis. This is usually not an issue as long as the
zero-temperature theory is sufficiently weakly coupled.
For instance the 4D and 3D simulations of the SU(2)
+ Higgs case agree within error bars [44]. Systematic er-
rors are in much better control in the 3D analysis because
the effective 3D theory is super-renormalizable, making
it possible to find analytical relations between continuum
and lattice actions that become exact in the continuum
limit [45, 46]. This generalizes directly to the singlet ex-
tension and is the final step in our pipeline relating the
“physical” input parameters, described in section II, to
a practical lattice formulation.
For our model the high-T EFT is a super-

renormalizable SU(2) × U(1) + Higgs + singlet theory
in 3D with temperature dependent parameters. The ac-
tion reads

2 Not to be confused with technical challenges associated with im-
plementing chiral symmetry and its breaking on the lattice in

non-chiral gauge theories such as QCD.
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S3D =
1

T

∫
d3x

{1
4
F a
ijF

a
ij +

1

4
BijBij + |Diϕ|2 +

1

2
(∂iS)

2 + V3D(ϕ, S)
}

(9)

V3D(ϕ, S) = m̄2
ϕϕ

†ϕ+ λ̄(ϕ†ϕ)2 + b̄1S +
1

2
m̄2

SS
2 +

1

3
b̄3S

3 +
1

4
b̄4S

4 +
1

2
ā1Sϕ

†ϕ+
1

2
ā2S

2ϕ†ϕ. (10)

In the above, Fij and Bij are SU(2) and U(1) field
strengths in 3D for their respective gauge fields Ai and
Bi. The Higgs covariant derivative is Diϕ = (∂i+ iḡAi+
1
2 iḡ

′Bi)ϕ. The prefactor T−1, arising from trivial inte-
gration over the imaginary time, is often removed by a
rescaling of fields and couplings in the EFT, as done for
example in refs. [8, 10, 23, 24] (but not in [37]). We have
chosen to not perform this rescaling in order to keep the
connection to 4D quantities and units more transparent.
The 4D → 3D relation for the parameters has been de-
rived in [10] and can be read from Eqs. (30)-(41) and
(51)-(55) therein.3 The matching relations from [10] in-
clude thermal mass corrections at O(g4), or two-loop,
and corrections to coupling constants at the same para-
metric order.

The 3D approximation is formally valid for energy
scales ≪ πT , i.e. when the high-T expansion of loop in-
tegrals is valid. The dominant error arises from neglect of
higher-dimensional operators in the 3D action: for exam-
ple, the 4D → 3D matching generates dimension five and
six operators such as S5 and (ϕ†ϕ)3. These contribute
only at higher orders of high-T perturbation theory (i.e.
we expand in m/T ) [10, 30, 40] and are neglected in our
numerical analysis (see IV for more discussion on this
point). In our model we treat the T = 0 BSM scalar
mass M2 as an input, and EFT will likely fail if the ratio
M2/T grows large. This is a qualitative statement and
cannot directly be used to set a strict upper bound on

allowed M2 because the relevant finite-T mass is differ-
ent from M2, and the way M2 affects EWPT quantities
is not easily tractable.

A quantitative error estimate for the truncated EFT
(9) can be obtained by explicitly including operators at
dimensions five and six and perturbatively calculating
the shift induced in the effective Higgs potential4 Doing
this in the SM case suggests percent-level accuracy for
the 4D → 3D mapping [30]. This was generalized to
the singlet extension in [10] and the error was found to
remain small, much less than 5% for most benchmarks
in the reference. Hence the 3D EFT should provide an
excellent starting point also for precision lattice studies
at least for M2

<∼ 450 GeV which was the largest M2

studied in [10].

IV. LATTICE FORMULATION

It is straightforward to write down a lattice action that
reduces to the EFT (9) in the naive continuum limit
a → 0, a being the lattice spacing. For completeness,
we include also the U(1) hypercharge interactions that
are often neglected in the EWPT simulations (for lattice
studies of the SM transition including the U(1) field, see
[35, 47, 48]). Our lattice action reads

SL = β
∑
x,i<j

[
1− 1

2
ReTrPij(x)

]
+ β′ ∑

x,i<j

[
1− Re prij(x)

]
+ 2aT−1

∑
x,i

[
ϕ†(x)ϕ(x)− ϕ†(x)Ui(x)ui(x)ϕ(x+ i)

]
+ aT−1

∑
x,i

[
S(x)2 − S(x)S(x+ i)

]
+ a3T−1

∑
x

[
m2

ϕ,Lϕ
†ϕ+ λ̄(ϕ†ϕ)2 + b1,LS +

1

2
m2

S,LS
2 +

1

3
b̄3S

3 +
1

4
b̄4S

4 +
1

2
ā1Sϕ

†ϕ+
1

2
ā2S

2ϕ†ϕ
]
. (11)

3 In addition to keeping the 1/T factor explicit, we have simplified
the notation from that of Ref. [10] by dropping redundant sub-
scripts from the 3D parameters. For instance, our ā2 corresponds
to ā2,3/T in [10].

4 Specifically, location of its minimum after the EWPT. This is

Here Ui and ui are SU(2) and U(1) link variables respec-
tively. At small a their relation to the continuum gauge

not a direct physical quantity but is still a useful indicator of
EWPT strength in the perturbative context.
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fields is

Ui(x) = eiaḡAi(x), ui(x) = e
1
2 iaḡ

′Bi(x). (12)

Pij and pij are elementary plaquettes constructed from
the links,

Pij(x) = Ui(x)Uj(x+ i)U†
i (x+ j)U†

j (x) (13)

and similarly for the U(1) plaquette pij . Couplings ap-
pearing in the gauge part are

β =
4

aT ḡ2
, β′ =

4

aT ḡ′2r2
(14)

and r ̸= 0 is an integer that labels irreducible repre-
sentations of the U(1) group. We use standard periodic
boundary conditions to preserve translational invariance.

Parameters appearing in the lattice action are the un-
renormalized (bare) ones, and it remains to match these
to the MS renormalized parameters of the EFT (9). Be-
cause of super-renormalizability, only m2

ϕ,L,m
2
S,L and

b1,L contain divergences, and the other parameters are
renormalization group (RG) invariant up to corrections
that vanish in the a → 0 limit. Following Ref. [45], we
may analytically relate the divergent parameters to those
appearing in the continuum theory by calculating the 3D
energy density around a generic (ϕ, S) background, (i.e.,
the effective potential) and equating the lattice and con-
tinuum results. A two-loop calculation suffices to remove
all divergences. Moreover, since the two schemes can dif-
fer only in the UV region, nonperturbative IR effects do
not spoil the lattice-continuum matching.

Appendix A describes the lattice-continuum match-
ing calculation in more detail. Eqs. (A4)-(A6) give the
resulting lattice-continuum relations form2

ϕ,L,m
2
S,L, b1,L,

which is exact up to O(a) corrections. Remaining cutoff
dependence can be eliminated by extrapolating simula-
tion results to the continuum, see section VIII.

As indicated above, this analytical mapping between
continuum and lattice actions allows us to fix renormal-
ized parameters on the continuum side so that we re-
produce perturbative T = 0 physics of the EW sector,
perform the finite-T reduction from 4D to 3D, and fi-
nally compute the corresponding lattice parameters at
given value of the lattice spacing. This avoids the need
for nonperturbative renormalization.

We note in passing that it is, in principle, possible to
extend the lattice action with operators of higher dimen-
sionality, for instance the aforementioned (ϕ†ϕ)3. This
could be useful if the 3D EFT (9), truncated at operator
dimension four, is deemed too inaccurate in some region
of the parameter space. However, operators of dimension
six are not super-renormalizable in 3D, and analytical
control over the a → 0 limit is then lost. In our view,
this complications makes simulations with higher-order
operators highly impractical.

At finite cutoff the dynamics depends on the repre-
sentation chosen for U(1), in particular the lattice the-
ory admits topological monopole configurations [49] that

however vanish in the a → 0 limit. For simplicity we
perform all of our simulations at r = 1. As discussed in
[35], this choice minimizes correction terms in the lattice-
continuum relations leading to smaller O(a) effects re-
lated to ḡ′. A potential complication is that the ratio
β′/β is rather large for realistic values of U(1) and SU(2)
couplings, necessitating a large number of lattice sites to
fully capture the IR behavior of the hypercharge field.
This situation is not too worrying, however, considering
that the effect of U(1) on the EWPT is small in the first
place [35], and our results below indicate a clean infinite-
volume limit.

V. LATTICE SIMULATIONS: GENERALITIES

The EW theory (with or without the singlet) does not
admit a gauge-invariant order parameter, nor a symme-
try, that could distinguish phases of active and inactive
Higgs mechanism (“broken“ and “symmetric“ phases,
or Higgsed and non-Higgsed phases). This is a generic
feature of gauge-Higgs theories with fundamental rep-
resentation matter [22, 50] and means that there really
is just one thermodynamical phase, one that is strongly
coupled at high temperatures due to the Linde problem,
and weakly coupled at low temperatures where tree-level
masses produced by the Higgs mechanism yield an IR
cutoff in the gauge sector. We say that the phase dia-
gram is continuously connected.
Keeping the above in mind, in the following we use

the common labels “symmetric“ and “broken“ phases
to describe high-T and low-T regimes of the theory re-
spectively. The EWPT is the transition between these
two regimes as the temperature changes. This transition
can occur smoothly as in the SM (crossover, i.e. not
a phase transition at all), or be abrupt and discontinu-
ous as in a first-order phase transition. At the boundary
where first-order behavior turns into a crossover there is
a second order phase transition [1, 51]. The situation is
analogous to the liquid-gas transition in classical fluids
such as water, also a smooth crossover at high tempera-
ture and pressure.
Nonperturbative studies of the EWPT are based on

expectation values of local gauge-invariant operators, or
condensates, and their distributions in the canonical en-
semble. In our singlet extension the simplest operators of
interest are ϕ†ϕ, S and S2. The Higgs condensate ⟨ϕ†ϕ⟩
is discontinuous at a first-order EWPT [1, 34] and acts
as an effective order parameter for the transition. In the
Z2 symmetric limit of the theory, a nonzero value of ⟨S⟩
signals spontaneous breakdown of the discrete symmetry,
but does not cause Higgs mechanism. In the more gen-
eral model in which the Z2 symmetry is explicitly broken
by cubic interactions in the scalar potential, ⟨S⟩ is gener-
ally non-zero at all temperatures and the phase diagram
is expected to again be continuously connected.
A Monte Carlo simulation aims to generate field config-

urations in the canonical ensemble, i.e. the probability
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distribution of a generic lattice field configuration {φ}
is p({φ}) ∝ exp[−SL({φ})]. Condensates such as ⟨ϕ†ϕ⟩
are estimated by measuring ϕ†(x)ϕ(x) locally and aver-
aging over the lattice to reduce noise. For a sufficiently
large sample {φi} of canonically-distributed field config-
urations, the mean of individual measurements yields a
good estimate for the expectation value ⟨ϕ†ϕ⟩.
Standard sampling algorithms for generat-

ing field configurations with the distribution
p({φ}) ∝ exp[−SL({φ})] proceed through local de-
formations of the fields with a probabilistic accept/reject
step to preserve the ensemble. As such, successive
field configurations are not statistically independent,
and the field update algorithm should be designed to
efficiently reduce autocorrelations in observables of
interest. Our field update algorithm combines standard
SU(2) heatbath [52] for the gauge links and the Higgs
overrelaxation method of Kajantie et al. for the scalars
[23], modified to include the singlet field. Compared to
simpler Metropolis-like algorithms, the overrelaxation
method more effectively evolves the radial Higgs field
mode [23]. We observe similar improvement also for the
singlet (see appendix D in [27] for a related comparison).
Our full update sweep consists of one heatbath update of
gauge links and four scalar overrelaxation steps, followed
by a Metropolis update on the scalars to guarantee
ergodicity.

80 90 100 110 120 130 140 150 160

T / GeV

0

2

4

6

8

M2 = 350 GeV, sin θ = −0.08, a2 = 3.0, b3 = 40 GeV, b4 = 0.3, β = 40, Ns = 80

〈S〉/T
〈S2〉/T 2

2〈φ†φ〉/T 2

FIG. 1. Temperature dependence of scalar condensates in the
benchmark point defined in Eq. (20) below, converted to MS
scheme (scale µ̄ = T ). The data is taken on a β = 40, Ns =
80 lattice. Each point is from a separate short simulation
consisting of 4000 - 10000 measurements. Negative values
of ⟨ϕ†ϕ⟩ and ⟨S2⟩ are due to additive renormalization, see
Eq. (A3).

To find the phase transition point we perform simula-
tions at different temperatures, measuring condensates of
ϕ†ϕ and of other operators appearing in the action and
tracking their evolution with the temperature. Fig. 1
illustrates this temperature evolution for scalar conden-
sates of lowest dimensionality in one benchmark scenario.

At high temperatures, the Higgs condensate ⟨ϕ†ϕ⟩ is ap-
proximately constant in units of T but undergoes a sud-
den change to a larger value at T ≈ 127 GeV. In this
lower-T regime, the conventional Higgs mechanism be-
comes effective. The ⟨ϕ†ϕ⟩ discontinuity seen in Fig. 1
suggests a first-order transition, and means physically
that the low- and high-T phases can coexist, separated
by a free energy barrier.5 The first quantity of interest for
EWPT analyses is the critical temperature Tc, at which
both phases are thermodynamically equally favored.
The discontinuous behavior contrasts with that of a

crossover transition in which the condensates interpolate
smoothly and no phase boundary exists. As an aside,
we point out that the condensates would remain contin-
uous also in a second-order phase transition. The main
practical difference between second order transition and
crossover is that in the former the system develops an in-
finite correlation length (i.e. massless Higgs excitation)
and exhibits critical behavior. The EWPT is known to
be second order at the boundary between first-order and
crossover transitions [1, 51] and is therefore a very spe-
cialized case.
A few remarks regarding Fig. 1 are now in order:

i. In conventional perturbative studies based on the
thermal effective potential for the scalar fields, one
finds the phase transition point by following the
global minimum of the potential as function of the
temperature. The lattice approach replaces mini-
mization of the potential by a Monte Carlo determi-
nation of scalar condensates from thermalized field
configurations (however, see point iii. below).

ii. Condensates of composite operators are generally UV
divergent and carry no direct physical meaning. As
for the lattice mass parameters in Section IV, we may
relate the bare (unrenormalized) lattice condensates
obtained from simulations to renormalized conden-
sates in a given renormalization scheme, cf. [34, 45]
and Appendix A. For Fig. 1, we have converted
the nonperturbative lattice condensates to contin-
uum MS scheme (scale µ̄ = T ). For quadratic con-
densates like ⟨ϕ†ϕ⟩ and ⟨S2⟩ the required renormal-
ization is additive and drops out when considering
condensate discontinuities across a phase transition
[34]. The non-composite singlet condensate ⟨S⟩ does
not require renormalization.

iii. For each T , we start the simulation from a “cold”
field configuration. For example, the fields are set to

5 Strictly speaking the condensate can be discontinuous only in the
thermodynamic limit (V → ∞), while in simulations we operate
on a finite-size system. At finite volume ⟨ϕ†ϕ⟩ can take val-
ues outside the thermodynamically allowed bulk values, but this
is exponentially unlikely when the volume is sufficiently large.
There is no ambiguity in deducing that we have a first-order
transition if the probabilistic suppression persists and increases
indefinitely as the volume grows.
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a constant value everywhere, and the field update al-
gorithm is guaranteed to bring the system into a ther-
malized state after an initial thermalization period.6

However, if the theory admits multiple (meta)stable
phases (i.e., distinct local minima of the free energy)
at a given T , there is no guarantee that the simula-
tion thermalizes to the global free energy minimum
instead of a metastable branch of a long-lived but
statistically disfavored phase. For instance, a sim-
ulation at T < Tc may get stuck in the symmetric
phase and not be able to tunnel to the more stable
broken phase.

As illustrated by point iii, it is necessary to have reliable
means of comparing free energies of the two phases. We
do so by studying probability distributions of the order
parameter, i.e. histograms of ϕ†ϕ.

Near a first order transition the histogram has a char-
acteristic two-peak structure as depicted in Fig. 2. The
peaks describe bulk fluctuations of the condensate in two
minima of the free energy. At critical temperature the
phases have equal free energies. One may formalize this
condition by requiring that both peaks in the order pa-
rameter histogram cover equal areas at T = Tc [23].

As evident from Fig. 2, the probability of finding con-
figurations where ϕ†ϕ lies outside its thermodynamically
preferred value is exponentially suppressed. At finite vol-
ume, most configurations in the disfavored region are in-
homogeneous mixed-phase configurations in which a sub-
region of the lattice is in one metastable phase and rest
of the lattice is in the other phase (see e.g. [53]). The
free-energy cost of such configuration is proportional to
the area of the phase interface. Thus, the suppression of
disfavored configurations increases with system size.

VI. FINDING THE CRITICAL TEMPERATURE

In conventional simulations that sample field configu-
rations in the canonical ensemble, the probability of any
configuration that does not correspond to a thermody-
namically stable phase is exponentially small. But be-
cause the configurations are sampled through small de-
formations of the fields, the simulation will necessarily
need to pass through disfavored configurations in order
to transition from one phase to another. For large enough
volumes this will never happen on practical time scales,
and canonical simulations are often limited to sampling
only one phase.

A standard way of overcoming this difficulty is to use
multicanonical simulations [54]. This approach consists

6 Naturally, measurements should be taken only after the sys-
tem has fully thermalized. Different observables can have dif-
ferent thermalization times; here we start measurements once
the volume-averaged ϕ†ϕ reaches a stable value. Typically this
occurs well within 500 iterations of our lattice update, although
thermalization can take longer near the critical temperature.

0.50 0.55 0.60 0.65 0.70 0.75
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10−11

10−9

10−7

10−5
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101

p(
φ
† φ

)

Ns = 46
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Ns = 80

FIG. 2. Normalized histograms of the quadratic Higgs con-
densate at different volumes (N3

s total sites), evaluated at the
critical temperature for benchmark point (20) with β = 40 us-
ing multicanonical simulations. The peaks at small and large
aϕ†ϕ/T correspond to the symmetric and broken phases, re-
spectively. Statistical errors are denoted by shaded bands.

of modifying the ensemble by shifting S → S +W (ϕ†ϕ),
where W is a carefully chosen weight function. Distri-
bution of the order parameter in this modified ensemble
is

pmulti(ϕ
†ϕ) ∝ pcan(ϕ

†ϕ)e−W (ϕ†ϕ). (15)

Here pcan is the canonical probability distribution. In
a multicanonical simulation, we compute pmulti(ϕ

†ϕ) by
sampling configurations in the modified ensemble.7 The
multicanonical distribution becomes flat if the weight is
chosen according to W (ϕ†ϕ) = ln pcan(ϕ

†ϕ), and the sim-
ulation can freely probe all values of the order parameter
in a random walk fashion. This bypasses the probabilistic
suppression seen in Fig. 2. To extract physical informa-
tion about the phase transition we ultimately need the
canonical histogram, obtained by inverting Eq. (15).
An obvious drawback of the multicanonical method is

that the optimal weight function W (ϕ†ϕ) = ln pcan(ϕ
†ϕ)

depends on pcan(ϕ
†ϕ), the quantity we are trying to ob-

tain in the first place. In practice we have to find a weight
function that suffices to allow efficient sampling in the
interesting order parameter range. We do so by an auto-
mated recursive process akin to refs. [23, 36], consisting
of short simulations to estimate pcan(ϕ

†ϕ). Once suffi-
cient convergence for W has been reached, we perform a
production run with fixed weight function.

7 Following [36], this is achieved by performing a global ac-
cept/reject step based on change in W after updating half of
lattice sites. The local field updates are performed as in stan-
dard canonical simulations, and the additional multicanonical
step biases the simulation to prefer configurations with small
W (ϕ†ϕ).
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We identify the critical temperature by the condition
that both phases have same free energy at T = Tc, i.e.,
peaks in the canonical histogram cover equal areas. In
practice, we first scan (as in Fig. 1) with small-volume
simulations and look for an approximate T ≈ Tc that
produces a two-peak histogram. We then run a long
multicanonical simulation at the target volume to obtain
a clean two-peak histogram. Finally, we vary the tem-
perature in order to obtain the critical histogram with
equally-probable peaks.8

We perform the last step without resorting to new sim-
ulations by using a standard reweighting technique [55].
In brief, reweighting exploits the relationship between
distributions of a configuration {ϕ} at temperatures T
and T ′:

pT ′({ϕ}) ∝ e−ST ′ ({ϕ})+ST ({ϕ})pT ({ϕ}) , (16)

thereby allowing us to use data from a fixed-T simulation
to obtain expectation values and histograms also at any
other T that is reasonably close to the simulated temper-
ature. Details of our reweighting scheme are presented
in Appendix B.

We also utilize an alternative for finding the Tc, based
on mixed-phase configurations where two phases exist si-
multaneously on the lattice and separated by a planar in-
terface (there will be two interfaces on a periodic lattice).
At the critical temperature both phases will, on average,
occupy equal fraction of the total volume, and the or-
der parameter histogram becomes flat when restricted to
mixed-phase configurations only. This method has pre-
viously been discussed in [8, 26, 56] and works well with
“cylindrical” lattices where one dimension is longer than
the others; this guarantees that the interface(s) form per-
pendicular to the long direction. Mixed-phase configura-
tions can be sampled by manually choosing a multicanon-
ical weight function that traps the order parameter in a
small window between its statistically favored values.

The mixed-phase method is convenient for very strong
transitions where the computation of multicanoncal
weights for the standard algorithm can become costly.
The downside is that one does not get full probability
distributions, and separate simulations in both phases
are needed to find values of condensates.

8 The practical condition is as follows. We specify a “cutpoint”
near the value of ϕ†ϕ where the histogram has a local minimum,
and count how many measurements lie to left and right of the
cutpoint. For T = Tc the counts should be equal. The precise
choice of the cutpoint does not matter as near the probability
minimum there is only an exponentially small number of mea-
surements.

VII. STRENGTH OF THE TRANSITION

The quantities commonly used for quantifying EWPT
strength are the discontinuity of the Higgs condensate9

v2

2
≡ ∆⟨ϕ†ϕ⟩, (17)

where ∆(· · · ) means difference of low- and high-T phases,
and the latent heat L. The condensate discontinuity (17)
is both gauge- and RG-invariant (in 3D) and is correlated
with the suppression of electroweak sphaleron rate in the
broken phase [57]. In contrast, the latent heat describes
the amount of energy released in the transition and is
more relevant for gravitational-wave studies [58]. In the
minimal SM (without the U(1) field) these quantities are
proportional [34], but in a BSM setting their relationship
is more complicated as the latent heat obtains contribu-
tions from other condensates as well.
Jump in the Higgs condensate is directly obtainable

from histogram such as those in Fig. 2. For extracting
the latent heat we employ two methods:

1. In terms of the free energy density f we have, at
T = Tc,

L = −Tc
d∆f

dT
=

T 2
c

V

d

dT
ln

P2

P1
, (18)

where P1 and P2 are probabilities for finding the
system in phase 1 or 2, respectively [23]. The ra-
tio P2/P1 is found from histograms of the order
parameter ϕ†ϕ as described above (at the critical
temperature, P1 = P2), and the T -derivative is cal-
culated by reweighting, see appendix B.

2. The above can equally be written as

L =
T 2
c

V
Z−1 d

dT

∫
Dϕ e−SL = −T 2

c

V
∆
〈dSL

dT

〉
. (19)

Here Z is the partition function and SL the lat-
tice action. We measure this expectation value
from separate simulations in the two phases; this
is possible once the volume is large enough that a
non-multicanonical simulation never tunnels to the
other phase. In practice we evaluate dSL/dT by
expressing it in terms of condensates via the chain
rule, see related expression (B5) in the appendix.

The latter method can be applied without knowledge
of the full order-parameter probability distribution, pro-
vided that Tc is found by other means, for example using
the mixed-phase approach discussed at the end of sec-
tion VI.

9 Note that our v is different from what is usually meant by the
Higgs VEV in perturbative context, i.e. minimum of the effective
potential in a fixed gauge. The minimum is gauge-dependent by
construction and does not make a good observable, however in
Rξ Landau gauge its value is known to be close to the gauge-
invariant quantity defined in (17) [10].
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FIG. 3. Simulation results for the critical temperature (left) and the Higgs condensate discontinuity (17) (right) in the
benchmark point (20). Points with same β are connected with dashed lines to guide the eye.

VIII. LATTICE SPACING AND VOLUME
DEPENDENCE

The lattice theory gives physically meaningful results
after removal of UV and IR cutoffs. Thus, we must take
the continuum and infinite volume limits. The tradi-
tional approach involves performing simulations at dif-
ferent lattice spacings and volumes and extrapolating
a → 0, V → ∞. Doing so requires considerable numeri-
cal effort that is impractical to implement for every pa-
rameter point studied in this work. For our purposes it
suffices to perform simulations at small enough a (large
β) so that discretization effects are sufficiently small, e.g.
of same order of magnitude or smaller as the expected er-
rors from our 4D → 3D mapping. Similar considerations
apply to finite-volume dependence.

For the phase transition in 3D SU(2) + Higgs theory
discretization errors are well under control for β >∼ 20
[23, 26]. In BSM theories one can expect more significant
O(a) corrections if there are large couplings in the scalar
potential – as is often the case in first-order EWPT sce-
narios – or if the BSM excitations are heavy comparable
to the magnetic scale g2T ; see for example simulations in
the two-Higgs doublet model [24]. To investigate cutoff
dependence in our singlet extension we have performed
a benchmark study in the following parameter point:

{M2, sin θ, a2, b3, b4}
= {350 GeV,−0.08, 3.0, 40 GeV, 0.3}. (20)

With these parameters we find the transition to be first
order, in agreement with two-loop perturbation theory

[10]10.
Fig. 3 shows our results for the critical temperature

and order parameter discontinuity as functions of the lat-
tice side length, Ns labeling the number of lattice sites
in one direction, and at various values of β. The errors
shown are statistical only and obtained with the blocked
jackknife method. For fixed β and for lattices larger than
aNsT >∼ 15 the results display a high degree of volume
independence. The physical explanation is that SU(2) at
high temperature has a mass gap of order m ∼ g2T , and
correlations over distances larger than 1/m are exponen-
tially small. The hypercharge field remains nonperturba-
tively massless and has long-range correlations [35], but
our results do not indicate sensitivity to these effects.
Turning next to lattice spacing dependence, we have

data from a broad range of β values ranging from 12 to 80.
Using ḡ2 ≈ 0.4 this range translates to aT ∈ (0.13, 0.83).
The continuum limit can be inferred by extrapolating
the large-volume results to 1/β → 0. For small enough
a the dominant lattice spacing dependence originates
from missing corrections to the lattice-continuum rela-
tions (see appendix A). Departure from the continuum
limit has a power series expansion in a, with possible
logarithmic corrections at each order.
For the benchmark point (20) we have enough data

for quadratic fits, shown in Fig. 4 for Tc and the con-
densate discontinuity. Fig. 5 shows continuum extrapo-
lations for the latent heat L as computed with the two
methods introduced above.11 The latent heat has con-
siderably larger statistical errors than Tc or v/Tc. At

10 This is the benchmark point “BM3” from [10]
11 Volume dependence of L/T 4

c is similar to that of v/Tc; here we
only show points with aNsT > 15.
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FIG. 4. Continuum extrapolations for Tc and the Higgs condensate discontinuity. We have used fit functions of form 1+aT (1+
(aNsT )

−1) + (aT )2(1 + (aNsT )
−1) and included only the large-volume runs with aNsT > 15.
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FIG. 5. Continuum extrapolations for the latent heat, computed using the two methods described in section VII. The fitting
ansatze are of the form described in the caption of Fig. 4.

least for method two, this situation is to be expected
since the measurement involves more condensates than
just ⟨ϕ†ϕ⟩. Despite the relatively large uncertainty in
L/T 4

c , the a → 0 extrapolated values from both methods
agree well within error bars.

We also show in table I the results from our simula-
tion at fixed UV and IR cutoffs, at β = 40, Ns = 80.
The numbers are well within 5% of the a → 0 extrapo-
lated values, with the largest deviation being in the latent
heat. This level of precision is more than reasonable for
phenomenological purposes and should also be sufficient
for benchmarking analytical calculations, at least until

Tc/GeV v/Tc L/T 4
c (1) L/T 4

c (2)

β = 40, Ns = 80 126.997(14) 1.1282(7) 0.4191(27) 0.4291(3)

β → ∞, Ns → ∞ 127.053(9) 1.1520(7) 0.4285(30) 0.4201(53)

TABLE I. Results at the benchmark point (20). The paren-
theses denote statistical error in the last digits. The two val-
ues of latent heat correspond to Eqs. (18) and (19) respec-
tively. Numbers on the second row are extrapolations to the
continuum and infinite volume as described in the text.

perturbative corrections beyond two-loop become avail-
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able. For remainder of this paper we shall work at fixed
β = 40, Ns = 80.

IX. FIRST-ORDER TRANSITIONS IN THE
SINGLET MODEL

What are the conditions for having a first-order EWPT
in the singlet-extended SM? The minimal SM itself would
have a first-order transition if the Higgs self-coupling λ
was smaller by roughly a factor of two [1, 2, 30]. In
the singlet-extended model there are a few main mecha-
nisms for turning the SM crossover into a proper phase
transition: (i) Effective decoupling of the BSM degree of
freedom but with sufficiently large (negative) renormal-
ization of the Higgs quartic coupling, and (ii) having a
more complicated vacuum structure so that a free-energy
barrier can exist already in the tree-level scalar potential
(see discussion in section II). There is also option (iii)
in which the other (non-Higgs) direction in the effective
potential play little to no role, yet the new scalar is ei-
ther too light or too strongly coupled to the Higgs that
describing the transition in terms of decoupling is not
reliable.

These scenarios have been analyzed perturbatively in
numerous previous studies, and we refer the reader to
Ref. [5] for a summary and references. For our present
purposes, we note that option (i) was studied in Ref. [59]
by perturbatively integrating out the singlet field and in-
ferring the phase diagram from existing lattice results for
the resulting SU(2) + Higgs effective theory (the U(1)
field was not considered). In this way regions of first-
order EWPT could be mapped out. However, the re-
duction to SU(2) + Higgs was found to be unreliable
particularly for stronger phase transitions. In the lat-
ter regime, associated with larger values of the effective
triscalar couplings, the Wilson coefficient of the gener-
ated (ϕ†ϕ)3 operator becomes significantly larger than in
the pure SM case, raising concerns about the reliability
of the SU(2) + Higgs EFT. Including the singlet field ex-
plicitly in the simulations, as we do here, overcomes this
limitation.

In the generic singlet model without Z2 symmetry, ef-
fect (ii) arises naturally through cubic interactions in
the tree-level potential. In the context of perturbation
theory, one may näıvely expect that a tree-level barrier
would guarantee a first-order EWPT. We now show that
this expectation is not realized in the nonperturbative
context. Letting θ denote the doublet-singlet mixing an-
gle, which becomes non-zero in the presence of the cu-
bic Higgs portal interaction Sϕ†ϕ, we find that for small
but nonzero | sin θ| the transition can remain crossover.
To study this situation we have performed simulations
at different sin θ with other parameters fixed according
to Eq. (20). We also repeated this analysis at different
a2 = 2.5, 3.0, 3.5.

Our results for the Higgs condensate discontinuity are
collected in Fig. 6 together with perturbative estimates

at 1- and two-loop order.12 For small | sin θ| we do
not observe discontinuous behavior in the order param-
eter (histograms do not develop two-peak structure as
in Fig. 2), indicating absence of a first-order transition.
These points are indicated by v/Tc = 0 in Fig. 6. The
EWPT strength is also seen to be quite sensitive to the
value of a2, with smaller | sin θ| being sufficient for first
order transition at larger a2. As a concrete example, the
näıve baryon number preservation criterion [3] v/T >∼ 1
for EW baryogenesis is satisfied for | sin θ| >∼ 0.08 at
a2 = 3.0, while at a2 = 3.5 already | sin θ| >∼ 0.03 is
sufficient. Results for Tc and the latent heat are shown
in Figures 7 and 8.
The crossover behavior at small | sin θ| is in stark con-

trast to perturbative results that always predict a first or-
der transition, although two-loop corrections do bring the
discontinuity closer to zero in the crossover region. In the
context of the dimensionally reduced effective field the-
ory, two-loop perturbation theory is qualitatively reliable
once the transition becomes first order. Indeed, figures
6-8 show that the two-loop EFT predictions agree fairly
closely with our nonperturbative results. Discrepancies
are, unsurprisingly, largest in the a2 = 3.5 case where
the difference from lattice results reaches 30% for L/T 4

c .
It is also clear that one-loop estimates for all quantities
differ significantly from the nonperturbative values.
We have also performed simulations at larger M2 =

600 GeV. One expects that as the BSM excitation be-
comes heavier, a compensating increase in | sin θ| or a2
is needed to prevent decoupling and remain in the first
order EWPT-viable parameter space. Previous studies
using conventional one-loop perturbative thermal com-
putations support this expectation [14, 16, 60]. Our lat-
tice results at M2 = 600 GeV and a2 = 4 are shown in
Fig. 9 where we again vary the mixing angle. The behav-
ior is similar to the M2 = 350 GeV scenarios above, and
the two-loop predictions once again agree closely with the
lattice results. However, we observe a a larger discrep-
ancy between 1- and two-loop calculations. A relatively
large | sin θ| >∼ 0.1 is needed for a first order transition,
beyond which the EWPT strength increases rapidly with
the mixing angle.
We point out that the M2 = 600 GeV case may be

pushing our high-T EFT approach to its limits. The
formal condition M2 ≤ πT is not satisfied. Thus, higher-
order corrections to the EFT, and consequently to the
lattice action, can become important (see discussions in
sections III and IV). A method for estimating accuracy
of the EFT, based on dimension five and six operators,
was outlined in ref. [10]. Using this approach, we have

12 Our conventions for perturbative calculations are as in ref. [10]
In short, one-loop refers to O(g3) calculation and has thermal
masses only at one-loop, whereas two-loop is a full O(g4) calcu-
lation. For both computations we use same one-loop corrected
matching between input parameters and the MS renormalized
parameters in the zero-temperature theory.
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FIG. 6. Order parameter discontinuity, Eq. (17), as function of sin θ. For each a2 the transitions at small | sin θ| are of crossover
type as indicated by v/Tc = 0. The simulations at at β = 40, Ns = 803; for a2 = 3.0 we also show the β,Ns → ∞ extrapolations
at two values of sin θ. For very weak transitions we have utilized volumes up to 1283 to distinguish crossovers from weak first-
order transitions.
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FIG. 7. As in Fig. (6) but for the critical temperature.
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FIG. 8. As in Fig. (6) but for the latent heat. The majority of points here use the method of Eq. (18). Points obtained from
“cylindrical” lattices instead use Eq. (19).

verified that the error from neglecting these operators in
the EFT in our M2 = 600 GeV points is less than 5%
for | sin θ| < 0.1. At | sin θ| = 0.2 the error reaches 10%,
meaning that in these points, the 3D lattice approach is
an order of magnitude less accurate than in the minimal
SM [30].

Note that we have performed our perturbative calcu-
lations with the high-T effective potential constructed in
[10] that includes all two-loop diagrams within the 3D
EFT (III). The perturbative potential contains residual
dependence on the MS renormalization scale, formally a
three-loop effect. All our perturbative results have been
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FIG. 9. Effect of sin θ on the EWPT when the new particle is considerably heavier than the EW scale, M2 = 600 GeV.
Perturbative results (solid and dashed curves) are shown for comparison.

obtained at fixed scale µ̄ = T . It has recently been argued
that a reorganization of the loop expansion may be nec-
essary for consistently describing first order phase tran-
sitions [42, 43].13 Although our two-loop results are in
good agreement with the nonperturbative data, it would
certainly be interesting to repeat the perturbative anal-
ysis using these new methods.

Finally, we emphasize that that while in all cases stud-
ied here the | sin θ| → 0 limit shows an absence of first-
order EWPT, this behavior does not rule out first-order
transitions in the entire Z2 symmetric model. Indeed, our
| sin θ| = 0 case does not even correspond directly with
the Z2 limit because we retain the cubic S3 interaction.
We also have not varied the S4 coupling b4 that affects
two-step EWPT in particular [16] (see [8] for analogous
discussion in a triplet-Higgs extension).

X. SIMULATIONS WITH LIGHT SINGLET

It is interesting to consider whether the singlet-
extended model can accommodate a first-order EWPT
given a light BSM excitation, M2 ≤ M1/2 (M1 = 125
GeV is the SM Higgs mass). The presence of such light
scalar would open a new window for collider phenomenol-
ogy through “exotic” decays of the Higgs into two new
bosons, schematically h1 → h2h2. Phase transitions in
this small-mass region were studied in [17] at one-loop
level where it was argued that the EWPT strength is
predominantly controlled by the S2ϕ†ϕ interaction (see
also [19, 61]).

In the small-θ limit14 , a2 directly fixes also the inter-
action strength relevant for h1 → h2h2 decays [17]. The

13 This reorganization is in addition to standard thermal mass re-
summations that are handled in the 4D → 3D step. Our pertur-
bative approach corresponds to the direct minimization method
discussed in appendix B of [43].

14 The mixing angle in [17] is related to ours by cos θ → − sin θ,
and their h1 scalar is our h2.

argument set forth in [17] is that the requirement of a
successful strongly first-order EWPT sets a lower bound
on a2, while experimental searches for exotic Higgs de-
cays can set an upper bound.

According to one-loop scans [17, 61], the small-mass re-
gion can accommodate a strong first-order EWPT even
at exponentially small a2 coupling, ranging from 10−3

to 100 depending on the mass. This situation differs
starkly from the heavy-singlet region M2 > 125 GeV
where strong transitions are predominantly associated
with a2 > 1 [14, 16, 59, 60].

To assess the light M2 regime we have simulated the
EWPT at M2 = 25 GeV and studied the effect of a2;
the results for one such benchmark scenario are shown
in Fig. 10. The transition is a crossover for a2 <∼ 0.015
and first order for larger a2. Perturbation theory again
becomes reliable once the transition becomes first order,
and the agreement with lattice data is even better than
in the benchmark cases presented earlier. One-loop re-
sults become increasingly unreliable as a2 increases, even
though a2 here is small compared to other relevant pa-
rameters such as gauge and top Yukawa couplings.

The two-loop analysis is notably unreliable in the re-
gion where lattice simulations reveal a crossover transi-
tion. This situation – visible as “jagginess” in the two-
loop curves for EWPT strength – is likely caused by IR
divergent scalar loops (which are absent at one-loop or-
der) invalidating the minimization of the effective poten-
tial near Tc; see [8, 23, 43, 62] for related discussions.
However, we do not have a clear understanding of why
the issue is more predominant here than in our other
parameter-space points.

The simulations at small M2 turned out to be techni-
cally challenging. For instance, in the a2 = 0.02 case on
a β = 40, Ns = 80 lattice, the probability boost from the
multicanonical algorithm had to be of order e190 for the
simulation to tunnel, and obtaining a good weight func-
tion for this took over 10000 CPU hours. The mixed-
phase method (described at the end of section VI) was
numerically more manageable, and we used it for col-
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FIG. 10. Simulation results for Tc and phase transition strength at M2 = 25 GeV and different a2. The other parameters were
sin θ = 0.01, b4 = 0.0015, b3 = 1 GeV. We have not studied the region a2

>∼ 0.03 as there the T = 0 EW vacuum is not stable
with respect to another, deeper minimum where the Higgs mechanism is absent.

lecting the final data. We also attempted simulations
at a2 = 0.025 which presumably yields a much stronger
transition. Unfortunately both methods failed to give a
reliable estimate for the transition temperature in this
point. Choosing a more optimized order parameter - e.g.
a linear combination of ϕ and S condensates - for the mul-
ticanonical algorithm could make the simulations easier
in this region, but we have not attempted this. See [36]
for related considerations. We defer a more comprehen-
sive treatment of the light M2 region to future work.

XI. MODEL-PHENOMENOLOGICAL
CONSIDERATIONS

Thus far, we have utilized lattice simulations to
(a) identify the parameter space boundary between a
crossover and first-order EWPT and (b) assess the quan-
titative reliability of perturbative computations in the
first-order EWPT region. We now consider the phe-
nomenological implications when the singlet-like scalar
h2 is either heavier or lighter than the SM-like scalar h1.
For the heavy h2 regime, figures 6 and 9 show that, in the
parameter space studied here, first-order transitions are
associated with nonzero value of the mixing angle θ and
that the transition grows stronger when | sin θ| increases.
At the same time, collider measurements for Higgs bo-
son signal strengths put upper bounds on | sin θ| (see for
instance [13]).

It is interesting to assess the present and future col-
lider sensitivities to sin θ in light of our lattice results. To
that end, we illustrate these sensitivities in Fig. 11 for the
M2 = 350 GeV, a2 = 2.5 case from Fig. 6.The vertical
black and green lines indicate, respectively, the present
LHC bounds and prospective future circular e+e− col-
lider reach. We obtain the former from a combined fit
to The current experimental restrictions on the mixing
angle from Higgs boson signal strengths (µ) are derived
from the combined fit to the latest ATLAS [63] and CMS
[64] results, which are µ = 1.05± 0.06 and µ = 1.02+0.07
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FIG. 11. Higgs condensate discontinuity as a function of sin θ,
with M2 = 350 GeV, a2 = 2.5, b3 = 40 GeV, b4 = 0.3. Red
dashed and blue curves give one-loop and two-loop pertur-
bative results, respectively. Lattice results are obtained at
β = 40 and a volume of 803. Points at small | sin θ|, where the
order parameter discontinuity vanishes, indicate a crossover
transition. Sensitivities of current and future Higgs measure-
ments are indicated by vertical lines. The current limit from
LHC-Run2 is shown by the black solid lines. The projected
constraint from

√
s = 240 GeV, 5.6 ab−1 CEPC or

√
s = 240

GeV, 5 ab−1 FCC-ee is given by the green solid lines.

respectively. Employing the χ2 method described in [13],
the 95% C.L. limit on mixing angle is | sin θ| <∼ 0.23.
We also collect the associated uncertainties in projected
Higgs signal rate of various future e+e− colliders from
[65]. We use the same χ2 fit method to determine the
corresponding projected limits on sin θ, which are listed
in table II. As the sensitivities of CEPC and FCC-ee are
similar, we use “e+e− circular” as a reference for both
collider options. The arrows pointing to the left and right
indicate the corresponding prospective 95% C.L. e+e−

circular collider sensitivity region.
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Note that these projections do not include constraints
from electroweak precision observables (EWPO). As il-
lustrated in [66], EWPO yield constraints in the sin θ-M2

plane, whereas the Higgs signal strength sin θ sensitivities
are M2-independent for a heavy singlet-like scalar. Thus,
the location of the vertical lines in Fig. 11 will be the
same for any of the other heavy singlet-like scalar bench-
mark cases discussed above. Importantly, we observe
that prospective future circular colliders will achieve sen-
sitivity most of the first-order EWPT-viable sin θ param-
eter space15. Moreover, one- and two-loop perturbative
results indicate the existence of such parameter space
beyond the future e+e− circular collider reach, whereas
our lattice results indicate much, if not most, of this
sin θ-inaccessible region is associated with crossover tran-
sitions. In short, our study indicates that the future
circular colliders will be sensitive to a relatively greater
portion of the first-order EWPT parameter space than
implied by previous perturbative studies.

√
s Lint P[e−/e+] Sensitivity

CEPC 240 GeV 5.6 ab−1 0%/0% | sin θ| <∼ 0.0726

CLIC 380 GeV 1.0 ab−1 −80%/0% | sin θ| <∼ 0.1155

3.0 TeV 5.0 ab−1 −80%/0% | sin θ| <∼ 0.0541

FCC-ee 240 GeV 5.0 ab−1 0%/0% | sin θ| <∼ 0.0728

ILC 250 GeV 2.0 ab−1 −80%/+ 30% | sin θ| <∼ 0.1098

TABLE II. Sensitivity to sin θ from selected e+e− colliders.
The respective center-of-mass energy

√
s, integrated luminos-

ity Lint, and polarization P are provided.

We now consider the light h2 regime. In section X
we discussed simulations in parameter space where de-
cay channel h1 → h2h2 is kinematically allowed. The
condition for this decay is roughly M2

<∼ 60 GeV. We
currently have nonperturbative results only at M2 = 25
GeV, which is not sufficient for making generic state-
ments about the phase transition in this region. However,
our lattice data strongly suggests that the two-loop effec-
tive potential is a valid tool for qualitatively describing
the EWPT when the transition is strongly first-order.
For M2 = 25 GeV the two-loop predictions shown in
Fig. 10 display excellent quantitative as well as qualita-
tive agreement with nonperturbative results. Motivated
by this situation, we now take a somewhat distinct ap-
proach from rest of this paper and perform a broader
perturbative study of the M2 ≤ 60 GeV region.
In this context, our main interest focuses on the

strength of the EWPT in (M2, a2) as these parame-
ters have a decisive impact on exotic Higgs decay rate
Γ(h1 → h2h2). Following [17], we consider small mixing
angle | sin θ = 0.01| and perform a logarithmic scan over

15 The projected linear e+e− collider sensitivities are somewhat
weaker, as indicated in Table II.
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FIG. 12. Result of a parameter scan over M2, a2, b3, b4, and
fixed | sin θ| = 0.01, using two-loop perturbation theory. We
show a projection to (M2, a2) plane with each bin denoting
the strongest transition found in the larger scan. The solid red
curve is taken from the one-loop analysis of [17] and denotes
a boundary of successful nucleation as described in the text.
For points under the curve the cosmological phase transition
never completes. As discussed in section X, lattice simulations
at M2 = 25 GeV indicate that for some parameter choices,
the EW transition may be crossover even for values of a2 that
lie above the nucleation lower bound.

the following parameters ranges:

a2 ∈ [10−4, 1], 40 points

b3/v0 ∈ [10−4, 1], 50 points

b4 ∈ [10−5, 1], 50 points, (21)

with v0 = 246 GeV. We vary the mass M2 over the range
[5, 60] GeV with uniform spacing of 5 GeV for total of
2.4 million points. For M2 = 5 GeV, we extend the lower
bound for b4 was extended to 106.5. For each point, we
increase the temperature in steps of 0.5 GeV until the
global minimum of the two-loop effective potential shifts
to 0 in the Higgs direction. Details of our potential are
as in ref. [10]. At the critical temperature we compute
the condensate discontinuity ∆⟨ϕ†ϕ⟩ and the “physical”
Higgs VEV as defined in Eq. (17). We then project the
results to (M2, a2) plane, keeping only the largest v/Tc

value for each M2, a2 pair. The results appear in Fig. 12,
where we only show transitions with v/Tc > 1. We have
also excluded points where the EW minimum is not the
global minimum of the T = 0 potential (at one-loop).
The authors of Ref. [17] performed an analogous scan

using one-loop perturbation theory in the high-T expan-
sion. Our Fig. 12 extends this analysis to two-loop order,
with the limitation that our results do not include con-
straints from requiring successful nucleation. This dis-
tinction has important consequences for cosmology: if
the nucleation rate is slow compared to the Hubble rate,
the phase transition may never complete, leaving the uni-
verse stuck in the metastable high-temperature phase.
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The analysis in Ref. [17] indicates that requiring that the
transition completes implies a lower bound on a2. The
corresponding boundary is shown as a solid line in our
Fig. 12, sampled with M2 spacing of 5 GeV.16 The curve
is parametrically less accurate than our parameter scan
due to absence of two-loop contributions but we never-
theless expect it to be qualitatively correct, showing that
points at too small a2 do not correspond to a realistic
cosmological phase transition.

The main message of Fig. 12 is that the nucleation
condition typically puts a more stringent lower bound
on the a2 parameter than simply the requirement of a
strong EWPT. This conclusion was also reached in [17].
One may consider our results as a two-loop confirmation
of this result, with one caveat: Being a two-dimensional
projection of a five-dimensional parameter-space scan,
Fig. 12 effectively hides the effects of other parameters,
especially b3, b4, on the EWPT. Indeed, as shown by our
lattice results in Fig. 10, not all points for a2 below the
nucleation curve even lead to a first-order EWPT. In the
perturbative computation, the successful nucleation con-
dition, for M2 = 25 GeV, sin θ = 0.01, b4 = 0.0015,
b3 = 1 GeV, is a2 >∼ 0.0106. Our lattice study indicates
the transition is crossover for a2 <∼ 0.015.

As discussed in Ref. [17], for M2
<∼ 60 GeV the a2

parameter cannot be arbitrarily large without violating
experimental bounds on the Higgs decay width. A strong
EWPT, in contrast, requires a sufficiently large a2. This
combination of considerations makes exotic Higgs decays
a promising experimental probe of a singlet-catalyzed
EWPT, particularly at small values of the mixing an-
gle, a scenario that is otherwise hard to constrain exper-
imentally. Our extended analysis here supports this key
finding of Ref. [17].

XII. CONCLUSIONS

In this paper, we have performed a detailed study of
phase transition thermodynamics in the real-singlet ex-
tension of the Standard Model using nonperturbative lat-
tice simulations. This nonperturbative method allows for
a robust treatment of high-temperature IR physics rele-
vant for the electroweak phase transition that can other-
wise invalidate perturbative approaches. We hope that
our overview of lattice concepts and techniques in sec-
tions IV - VIII and the Appendices is useful for inter-
ested readers who are not already familiar with lattice
field theory.

The numerical cost of lattice simulations generally lim-
its their utility for BSM models with many free parame-
ters. Here we have studied the phase transition as a func-
tion of the three parameters for collider phenomenology:

16 We thank Yanda Wu for providing the data for the boundary
curve from his reproduction of results of Ref. [17].

the singlet-like scalar mass, M2; doublet-singlet mixing
angle, θ; and doublet-singlet quartic coupling, a2. Our
key findings include:

• As illustrated in Figs. 6 through 9 and 11, for the
heavy M2 regime there exists a minimum value of
| sin θ| for which a first order EWPT occurs. For
smaller values of | sin θ| the transition is a smooth
crossover. Importantly, this situation contrasts
from the conclusion that one would infer from per-
turbative computations, which allow for a first or-
der EWPT for arbitrarily small | sin θ|. The phe-
nomenological implications are significant, partic-
ularly for precision studies of Higgs boson prop-
erties: future Higgs factories will access a greater
portion of the first order EWPT-viable parameter
space than previously inferred from one-loop per-
turbative results.

• Also in the heavy M2 regime, two-loop perturba-
tive computations agree remarkably well with the
nonperturbative results for sufficiently strong tran-

sitions, (
√
2∆ϕ†ϕ/T >∼ 1). In many points the two-

loop results are even good within 5%, not includ-
ing perturbative uncertainty due to residual higher-
order effects that we have not estimated.

This behavior supports the intuitive picture that
genuine nonperturbative effects related to the
gauge sector become less important once the
EWPT is strongly first-order. Perhaps surprisingly,
perturbative convergence appears to be excellent
despite our benchmark points involving a rather
large coupling: a2 ∼ 2.5− 4.0.

• Results from one-loop perturbative computations
compare rather poorly with the nonperturbative re-
sults, and should, therefore, be considered a quali-
tative estimator of phase transition thermodynam-
ics at best. Furthermore, use of perturbation the-
ory alone in general never allows one to identify
parameter space regions associated with crossover
transitions, and even two-loop perturbative compu-
tations fail to yield the correct qualitative behavior
for weakly first order transitions in the vicinity of
the first order/crossover boundary.

Given that the phase transition phenomenology in
many BSM models is only understood at one-loop
level, we believe our lattice results provide strong
motivation for (a) extending these phenomenolog-
ical analyses to at least the two-loop level and (b)
comparing with lattice results for weak first order
transitions.

• We also briefly discussed phase transitions with a
light BSM scalar, in parameter space that carries
phenomenological importance for precision studies
of Higgs boson decays. We verified with simula-
tions that a strongly first-order EWPT can occur
in this parameter space. For this regime, the first
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order EWPT can occur at considerably smaller por-
tal couplings than for the heavy M2 regime.

Nevertheless, the transition can become crossover
for sufficiently small a2. We, thus, performed a per-
turbative two-loop scan of this region to map out
strong transitions in the (M2, a2) plane, extending
the earlier one-loop work of ref. [17]. As in the lat-
ter study, we find that the criteria that a transition
occurs is decisive in setting a lower bound on a2
and, thus, the exotic Higgs decay rate.

Simulation results for figures 6 through 10 is avail-
able on Zenodo [67]. The simulation code is available

at https://github.com/niemilau/su2higgs.
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Appendix

Appendix A: Lattice-continuum relations

This Appendix collects the expressions needed to convert between 3D continuum and lattice actions, Eqs. (9) and
(11). The 4D → 3D matching relations give the continuum parameters in MS scheme, and in 3D the only parameters
requiring renormalization are b̄1, m̄

2
ϕ, m̄

2
S . Furthermore, they are divergent only up to two-loop order. We therefore

write the bare lattice parameters as m2
ϕ,L = m̄2

ϕ(µ̄) + δm2
ϕ,L etc, and fix the counterterm by computing a physical

quantity in both schemes (here µ̄ is the MS scale). The result is exact at two-loop order, up to corrections that vanish
as a → 0.
Following Ref. [45], the physical quantity of our choice is the value of the effective potential Veff in its minimum.

The difference

∆Veff = V lattice
eff − V MS

eff (A1)

is insensitive to IR physics and can thus be calculated safely in perturbation theory, as the two schemes can differ
only in the UV region. If the fields are shifted as

ϕ → ϕ+ φ = ϕ+
1√
2

(
0

v

)
, S → S + s, (A2)

the required counterterms can be extracted directly from coefficients of s, s2 and v2 in ∆Veff. We also compute a
vacuum counterterm δV so that the mass-dependent part of the vacuum energy agrees in both schemes. δV relates
quadratic scalar condensates on lattice and in MS through

⟨ϕ†ϕ⟩MS = ⟨ϕ†ϕ⟩L +
∂(δV )

∂m̄2
ϕ

, ⟨S2⟩MS = ⟨S2⟩L + 2
∂(δV )

∂m̄2
S

(A3)

where the lattice condensates are computed in the theory without δV (i.e. Eq. 11). The linear singlet condensate ⟨S⟩
does not require renormalization.

The calculation of ∆Veff proceeds largely as outlined in Refs. [45, 46], from where one can find all required loop
integrals and lattice vertices associated with the SU(2) + Higgs sector (in Feynman-’t Hooft gauge with ξ = 1).
Extension to the SU(2)+U(1) case is straightforward, and the singlet field brings no qualitatively new features. We note
that in the two-loop part, we may neglect quadratic mixing among the different fields and work with undiagonalized
propagators, somewhat simplifying the calculation. This is possible because two-point vertices that mix propagators
are associated with reduced UV sensitivity and contribute only O(a) corrections to the Veff difference. Note also that
expanding the U(1) lattice action produces a four-photon vertex whose contribution to ∆Veff is −ḡ′4r2Σv2T 2/(192π),
where Σ is given in Eq. (A8), plus an irrelevant vacuum divergence.

We omit further details of the calculation as it is a straightforward application of the methods described in Refs. [45,
46]. The resulting expressions for lattice parameters read

m2
ϕ,L = m̄2

ϕ(µ̄)−
ΣT

8πa

(
3ḡ2 + ḡ′2 + 12λ̄+ ā2

)
+

T 2

(4π)2

[(
− 51

16
ḡ4 +

5

16
ḡ′4 +

9

8
ḡ2ḡ′2 − 3(3ḡ2 + ḡ′2)λ̄+ 12λ̄2 +

1

2
ā22

)(
ln

6

aµ̄
+ ζ
)

+ 3λ̄
(
3ḡ2 + ḡ′2

)(
δ − 1

4
Σ2

)
+ ḡ4

(
− 15

16
− 45

64
Σ2 − π

4
Σ +

33

8
δ +

9

2
ρ− 3κ1 +

3

2
κ4

)
+ ḡ′4

( 1

16
− 1

64
Σ2 − πr2

6
Σ +

1

8
δ +

1

2
ρ
)
+ ḡ2ḡ′2

(3
8
− 3

32
Σ2 +

3

4
δ
)]

(A4)

m2
S,L = m̄2

S(µ̄)−
ΣT

4πa
(2ā2 + 3b̄4)

+
T 2

(4π)2

[(
2ā22 + 6b̄24 − ā2

(
3ḡ2 + ḡ′2

) )(
ln

6

aµ̄
+ ζ
)
+ ā2

(
3ḡ2 + ḡ′2

)(
δ − 1

4
Σ2

)]
(A5)
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b1,L = b̄1(µ̄)−
ΣT

4πa

(
ā1 + b̄3

)
+

T 2

(4π)2

[(
ā1ā2 + 2b̄3b̄4 −

ā1
2

(
3ḡ2 + ḡ′2

) )(
ln

6

aµ̄
+ ζ
)
+

ā1
2

(
3ḡ2 + ḡ′2

)(
δ − 1

4
Σ2

)]
. (A6)

The vacuum counterterm is

δV = −ΣT

4πa

(
1

2
m̄2

S + 2m̄2
ϕ

)
+

T 2

(4π)2
(
3ḡ2 + ḡ′2

)
m̄2

ϕ

[
−
(
ln

6

aµ̄
+ ζ
)
+

(
δ − 1

4
Σ2

)]
+ (independent of masses and b̄1). (A7)

We stress once more that because of super-renormalizability, these relations are exact in the a → 0 limit. As a
cross-check, we may decouple the singlet to find agreement with the SU(2)×U(1) + Higgs counterterms given in [46]
(in their notation γ = r−1). The pure singlet limit agrees with [27].
Various constants appearing in the counterterms above are [46]

Σ = 3.175911535625, δ = 1.942130(1), ρ = −0.313964(1)

ζ = 0.08849(1), κ1 = 0.958382(1), κ4 = 1.204295(1). (A8)

These quantities originate from numerical evaluation of loop integrals on the lattice. The parentheses represent
uncertainty in the last digit.

Appendix B: Reweighting

Suppose we run a simulation at fixed temperature T and obtain the probability distribution (normalized histogram)
of an observable A, pT (A). Its functional form is

pT (A
′) ∝

∫
[dφ] δ(A(φ)−A′)e−S(T ), (B1)

where φ collectively denotes all fields in the action and S(T ) is the 3D lattice action from Eq. (11) evaluated at
temperature T . The corresponding distribution at any other temperature T ′ can be written as

pT ′(A′) ∝
∫
[dφ] δ(A(φ)−A′)e−S(T ′) =

∫
[dφ] δ(A(φ)−A′)WT,T ′e−S(T ), (B2)

where

WT,T ′ = e−(S(T ′)−S(T )) (B3)

is the reweighting factor. The histogram at temperature T ′ can therefore be obtained using data from a simulation
performed at a different temperature T by weighting the measurements of A by the factor WT,T ′ . This is the basic
idea of histogram reweighting [55]. We demonstrate below how the temperature dependence of the action can be
expressed in terms of easily measurable quantities, providing a convenient way of computing the reweighting factor.

To make use of reweighting, we must know WT,T ′ for each field configuration from which measurements are taken.
The temperature dependence of the lattice action is complicated because the 4D → 3D mapping makes all 3D
parameters T dependent. Their temperature dependence can nevertheless be found by following the steps described
in sections III and IV. The factor WT,T ′ can then be constructed from volume averages of local operators appearing
in the action. In practice it is useful to scale out the lattice spacing a and the temperature by defining

ϕ̂ =
√
aT−1ϕ, Ŝ =

√
aT−1S,

m̂2
ϕ,L = a2m2

ϕ,L, m̂2
S,L = a2m2

S,L, λ̂ = aT λ̄, b̂4 = aT b̄4, â2 = aT ā2,

b̂1,L = T−1/2a5/2b1,L, b̂3 =
√
Ta3/2b̄3, â1 =

√
Ta3/2ā1 (B4)

and perform a change of field variables to ϕ̂, Ŝ in the functional integral.
Denoting volume-averaged operators as (O)V ≡ a3

∑
x O(x)/V , the lattice action is

a3SL(T )/V = β(T )

∑
i<j

[
1− 1

2
ReTrPij(x)

]
V

+ β′(T )

∑
i<j

[
1− Re prij(x)

]
V
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FIG. 13. Testing our reweighting routine in the benchmark point (20) with β = 12, Ns = 18. We have performed separate
simulations at temperatures, T1 being close to the critical temperature, then reweighted the histogram of ϕ†ϕ from T2 to T1

(at T2, the input β is adjusted so that the spacing a has same physical value as at T1). Left-hand plot has |T2 − T1| = 1 GeV
while the plot on the right uses a more aggressive reweighting range of |T2 − T1| = 1.75 GeV. Statistical errors are shown by
shaded bands. As expected, the reweighted histogram(s) agree well with the original histogram at T1, although the right-hand
plot shows some loss in accuracy due to the larger temperature difference. Curves labeled “linearized” are reweighted using
the approximate formula Eq. (B6) instead of Eq. (B3); difference between the two methods is negligible.

+ m̂2
ϕ,L(T )(ϕ̂

†ϕ̂)V + λ̂(T )(ϕ̂†ϕ̂)2V + b̂1,L(T )(Ŝ)V +
1

2
m̂2

S,L(T )(Ŝ
2)V +

1

3
b̂3(T )(Ŝ

3)V

+
1

4
b̂4(T )(Ŝ

4)V +
1

2
â1(T )(Ŝϕ̂

†ϕ̂)V +
1

2
â2(T )(Ŝ

2ϕ̂†ϕ̂)V + (scalar kinetic terms). (B5)

Our simulation program separately measures and stores the volume averages appearing in this expression. It is then
straightforward to calculate the reweighting factors WT,T ′ in post process stage without having to store the field
configurations. In the parametrization used here, the lattice scalar kinetic terms have no explicit T -dependence and
do not contribute to WT,T ′ .
For numerical analysis we find it useful to expand the difference S(T ′)−S(T ) in small (T ′−T )/T and approximate

WT,T ′ ≈ exp[−S′(T )(T ′ − T )]. (B6)

We utilize this “linearized” form over the full expression (B3) throughout the paper as it was simpler to implement
in our existing tool set. This is an excellent approximation: In Fig. 13, we show reweighting of example order
parameter histograms from T2 to T1 using either (B3) or (B6). The difference between the two methods is almost
indistinguishable.
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