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Abstract—Quantum Approximate Optimization Algorithm
(QAOA) provides a way to solve combinatorial optimization
problems using quantum computers. QAOA circuits consist
of time evolution operators by the cost Hamiltonian and of
state mixing operators, and embedded variational parameter
for each operator is tuned so that the expectation value of the
cost function is minimized. The optimization of the variational
parameters is taken place on classical devices while the cost
function is measured in the sense of quantum. To facilitate
the classical optimization, there are several previous works on
making decision strategies for optimal/initial parameters and on
extracting similarities among instances. In our current work,
we consider simplified QAOA parameters that take linear forms
along with the depth in the circuit. Such a simplification, which
would be suggested from an analogy to quantum annealing,
leads to a drastic reduction of the parameter space from 2p
to 4 dimensions with the any number of QAOA layers p. In
addition, cost landscapes in the reduced parameter space have
some stability on differing instances. This fact suggests that an
optimal parameter set for a given instance can be transferred
to other instances. In this paper we present some numerical
results that are obtained for instances of the random Ising model
and of the max-cut problem. The transferability of linearized
parameters is demonstrated for randomly generated source and
destination instances, and its dependence on features of the
instances are investigated.

Index Terms—Optimization, Quantum Approximate Optimiza-
tion Algorithm, Parameter Transferability

I. INTRODUCTION

Quantum Approximate Optimization Algorithm
(QAOA) [1], [2] is an algorithm to approach combinatorial
optimization problems using quantum computers [3]. This
can be regarded as a quantum-classical hybrid algorithm; one
iteratively measures the cost Hamiltonian on a variationally
parametrized quantum circuit and tunes the parameters on
a classical computer so that the expectation value of the
cost Hamiltonian is minimized. Once the optimal parameters
are obtained, the solution of the problem is expressed as
the lowest energy state (or the energy itself) of the cost
Hamiltonian.

This work was performed for Council for Science, Technology and In-
novation (CSTI), Cross-ministerial Strategic Innovation Promotion Program
(SIP), “Promoting the application of advanced quantum technology platforms
to social issues” (Funding agency: QST).

QAOA has some advantages compared to other variational
quantum algorithms like VQE [4], e.g. relatively smaller
number of parameters and problem dependent construction of
ansatz state. Taking the optimization is, however, not a trivial
task, and there is an arbitrariness in optimizing the parameters
for a given Hamiltonian and circuit. As a typical situation, the
expression power of QAOA circuit depends on the number
of layers (whose detail is given later), but increasing layers
often makes the parameters being trapped at local optimal and
causes vanishing gradient. Against this fact, there are several
approaches to seek for the decision strategy of the parameters
in both theoretical and heuristic sense [5]–[10].

As well as the decision strategy of the parameters, there are
some motivations to consider transferring a set of parameters
tuned for a given instance to other instances [11]–[16]. Indeed,
some of previous works report the concentration phenomenon,
where optimized parameters take similar values regardless of
whatever the specific instance is [17]–[19]. When considering
applications on real devices, transferring the variational pa-
rameters is important as an economical approach to systems
with a large number of qubits. In such systems, even taking
a single sample costs much, so that it is not tolerable to
iteratively calculate the energy expectation value for the classi-
cal optimization of variational parameters, and thus parameter
transferring from a small instance to large instances will give
tremendous benefits. Also, in Reference [20], it is pointed
out that the parameter transferring is a promising approach
to avoid the notorious barren plateau problem.

In another context, parameter transferring will be useful
when considering relaxing constrained problems to Quadratic
Unconstrained Binary Optimization problems using e.g. the
penalty method [21]. In the penalty method, constraints are
converted to weighted penalties, where the optimal weights are
not always trivial; then one needs to take an optimization of the
weights. Therefore, when applying QAOA to such problems,
the optimization of the QAOA parameters and the optimization
of the weights of penalties form a nested structure, and the cost
of the optimization becomes multiplicatively severe.

Motivated both to decision strategy of the parameters and
to transferability, we consider simplified QAOA parameters
that take linear forms along with the depth of the QAOA

ar
X

iv
:2

40
5.

00
65

5v
1 

 [
qu

an
t-

ph
] 

 1
 M

ay
 2

02
4



layers. Indeed, an analogy to the trotterized quantum annealing
suggests the linear initial QAOA parameters [7]; on the other
hand, in the current work we fix the parameters to be linear in-
stead of using them as initial values for the optimization. Such
simplification drastically reduces the dimension of parameter
space, and, in the reduced parameter space, cost landscapes
show a similarity among instances as shown in the following
sections. Moreover, although one would expect that simpli-
fying parameters contaminates the performance of QAOA, it
surprisingly turns out that there exists a set of parameters that
performs well regardless of what the instance to be solved is.
This fact suggests that the optimal linear parameters have some
transferability among different instances, and indeed we check
the performance of a transferred parameter set that is found for
a specific instance. It will be found in the numerical section
that many instances are actually solvable by the transferred
linear parameter set without any fine-tuning for each instance
while the quality of parameter transferring depends on specific
features of the transfer destination.

This paper is organized as follows. In Secs. II–III we
describe QAOA and the detail of the model dealt with. The
numerical results are shown in Sec. IV, and some remarks that
are mainly suggested from previous other works are given in
Sec. V. Finally in Sec. VI we summarize this paper and give
future outlook.

II. METHOD

A. Quantum Approximate Optimization Algorithm

We assume we want to minimize a given cost function
C (z) that takes an n-length bit string z = z1z2 · · · zn as
an argument. In principle, one can construct a Hamiltonian
whose expectation value in the calculation basis denotes the
cost function, and, in this sense, solving the combinatorial
optimization problem is to obtain the lowest energy state of the
Hamiltonian. Locating the lowest energy state in the Hilbert
space is, however, not always a trivial task for generic Hamil-
tonians 1. Here, and in this paper, we do not in terminology
distinguish the energy and the cost function.

Quantum Adiabatic Algorithm (QAA) [23], [24] is an
algorithm to get the target state by considering an adiabatic
evolution of time dependent Hamiltonian that starts from a
trivial Hamiltonian, whose ground state is known, to the
target Hamiltonian, whose ground state is unknown. QAOA
is derived from a trotterization of QAA and turns to QAA in
the p → ∞ limit, where p is the number of QAOA layers.
Despite the equivalence in the limit, there are some known
classes of problems where QAOA outperforms QAA 2; thus
QAOA is mentioned as a promising approach to combinatorial
problems.

A QAOA circuit is an iteration of layers that consist of
a time evolution operator by the cost Hamiltonian e−iγlC

and of a state mixing operator e−iβlHmix for each, where l

1Rigorously speaking, locating the ground state for a k-local Hamiltonian
belongs to QMA-hard [22].

2For example, QAA does not improve the accuracy always by extending
the adiabatic transition time [25].

denotes the depth of the layer. Hmix, which is called the
mixer Hamiltonian, generically takes the form Hmix =

∑
j Xj

so that every qubit is flipped independently 3. As the initial
state, the superposition of all possible state |+⟩⊗n is taken. By
applying e−iγlCe−iβlHmix repeatedly for each l to the initial
state, one obtains the final state |γ,β⟩ that depends on the
parameters and can measure the expectation value of the cost
function as ⟨γ,β |C |γ,β⟩. This procedure is iterated with
tuning the variational parameters so that the expectation value
converges to the minimum. The observation of cost function
is taken place on a quantum computer, and the optimization of
parameters is taken place on a classical computer, so that this
algorithm is classified in quantum-classical hybrid algorithms.

Note that the elements of γ and β are independent of those
for each other layer, and then a p-layer QAOA circuit has
2p parameters. The sufficient number of layers is not trivial,
and also there is an arbitrariness in how to choose initial
parameters and how to take the optimization. In principle, the
more the number of layers is, the richer expression power the
circuit has; however increasing the number of layers makes
the numerical complexity more demanding in both quantum
and classical side. Also, when having a deep circuit on a real
device, there should be a large number of noise sources in the
system. Thus, in practical uses of QAOA, one needs to fix the
minimum sufficient number of layers and the suitable decision
strategy for the parameters γ, β; this point is a motivation to
consider the simplified decision strategy and transferability at
once in our current work.

B. Linearly simplification of QAOA parameters

As well as analytical studies conducted to find out the
optimal parameters [5], [6], there are also heuristic approaches
like layer by layer determination [28] and inter(extra)polation
strategy [29]. While some previous works attempt to reduce
the 2p dimensional (γ, β) parameter space by imposing some
constraints or modifications [30], the simplest assumption
would be a linear form

γl = γslope
l

p
+ γintcp.,

βl = βslope
l

p
+ βintcp.,

(1)

where l (0-based) is an index that denotes the depth of the
layer. In Reference [7], the authors consider a linear choice
of the initial parameters in an analogy to time scheduling for
quantum annealing, and then they take an optimization where
the resulting parameters are not necessarily linear; on the other
hand, in our current work, we constrain the depth dependence
of the parameters to be strictly linear. Under this constraint,

3The mixer Hamiltonian Hmix in the main body of text does not depend on
the detail of the problem to be solved and is designed to explore the solution
space blindly. Indeed an improvement of this part is proposed in several
contexts. One of them is Reference [26], where a problem dependent mixer
Hamiltonian is designed so that the constraints in the problem are always
satisfied; this algorithm is called Quantum Alternating Operator Ansatz.
Another example is the Grover mixers [27].



the dimension of the parameter space is reduced from 2p to 4
for the any number of layers p.

In Sec. IV, with taking the advantage of the reduced
parameter space, we show cost landscapes, find the optimal
slopes and intercepts, and investigate the transferability among
randomly generated instances.

III. MODEL

For a given undirected graph G = (V,E), an Ising
model [31], [32] where the weights ±1 are randomly assigned
on each edge is defined by

H =
∑

(i,j)∈E

Jijsisj . (2)

Throughout this paper we consider only connected graphs.
Jij denotes the weight that is assigned on the edge (i, j).
For the random Ising model we do not assume any biased
distribution of the signs in J , so that the positive and the
negative signs appear in the equal probability. Here we do
not include external fields to the Hamiltonian for simplicity.
si = ±1 is a spin variable on the node i; therefore, the system
that is described by this Hamiltonian takes 2|V | states.

Standing away from the purely random case above, one can
impose other types of condition to the distribution of signs
(cf. the Sherrington–Kirkpatrick model [33]), and indeed if
we limit the signs in J to be positive, Eq. (2) coincides to the
Hamiltonian of max-cut problem

Hmaxcut = −1

2

∑
(i,j)∈E

(1− sisj) (3)

up to the constant term and factor. Thus we can consider the
max-cut problem as a special case of Eq. (2).

In later of this paper we consider finding the minimum
energy state of the random Ising model by QAOA. We simply
assign each spin variable to each qubit, so that the number of
qubits nqubits in later sections is identical to the number of
nodes |V | of the given graph. Also, for later use, we define the
density of edges by the number of edges over the maximum
possible number of edges in the graph: dedges = |E| /|V |C2.

IV. RESULT

In this section, the measurements of energy (cost function)
are taken place on an ideal simulator without any noise source.
As the ideal simulator we use Qulacs [34]. Throughout this
(and next) section, the number of QAOA layers is taken to be
p = 8 unless otherwise declared.

A. Search for optimal linear parameters

If we assume the variational parameters of a p-layer
QAOA circuit take the form in Eq. (1), the parame-
ter space to be explored reduces to the four dimensional
(γslope, γintcp., βslope, βintcp.)-space regardless of the number
of layers p. Then, we consider finding the optimal slopes and
intercepts by searching the four dimensional parameter space
for a fixed instance of the random Ising model. Here we adopt
a Bayesian estimation by Optuna [35] (rather than the grid

search with a fixed resolution or any other optimizer) to find
the parameter set that gives the minimum energy 4.

The important features that characterize an instance of
random Ising model are the number of nodes |V | (= nqubits)
and the density of edges dedges

5. As the fixed instance that
is used for the parameter search, we generate a graph with
(nqubits, dedges) = (16, 0.6). With fixing the number of layers
p to 8 and the number of shots to 214, the obtained values are

γl = −0.376
l

p
− 0.165,

βl = −0.881
l

p
+ 0.913.

(4)

One may notice that βslope takes a close value to −βintcp.. In
the analogy to the annealing time schedule, it is quite natural
to set β so that the effect of the mixer Hamiltonian vanishes
at the end of circuit.

We have conducted the same experiment for instances with
other choices of (nqubits, dedges). As a result, while nqubits-
dependence is not so obvious, we observe that the convergence
of the Bayesian estimation gets worse for dedgess that are
close to 1 (complete graph). For instances with dedges = 1 the
ground states have some degeneracy, so a possible scenario is
that in such a situation there would be multiple quasi-optimal
parameters.

B. Cost landscapes in linearized parameter space

Here we try to discover a similarity among instances of
the model by seeing cost landscapes in the linearized QAOA
parameter space. With the linearization, each of γ and β
can be expressed by the two parameters (slope and intercept)
regardless of the number of layers, respectively, so that one
can draw a cost landscape as a heatmap that contains all layer
information for γ with fixing β and vice versa 6.

Figure 1 shows cost landscapes in the (γslope, γintcp.)-
space. For all panels β is fixed to that in Eq. (4) 7. Even
though each instance is generated at random, we can observe
a common structure among the instances. Also, in Fig. 2
that shows the landscapes in the (βslope, βintcp.)-space in
the same manner, we can find a common structure that is
independent of instance as in the case of (γslope, γintcp.)-space.
The landscapes are shown for the instances with different three
choices of (nqubits, dedges); of course the structure is common

4Note that one has to be careful to use the terms like “optimal” parameters
and “minimum” energy since constraining the parameters to take the form (1)
may limit the expression power of the circuit. Thus, we emphasize that the
minimum energy obtained by the linearized parameters is not necessarily
identical to the minimum energy that would be found by the original QAOA
without any constraint.

5Other important features would be the regularity and the parity of
graph [11]; however, in this section we do not limit the graphs to be regular
and do not fix the parity.

6In original QAOA without any simplification of parameters, one can draw
a heatmap layer by layer with assigning γ to an axis and β to the other.
Note that, on the other hand, the heatmaps in this paper contains all layer
information.

7Of course one can retake the Bayesian estimation for β for each instance
instead of adopting Eq. (4). Even in that case the rough structure of landscapes
is not affected much.
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Fig. 1. Cost landscapes in (γslope, γintcp.)-space. Each panel shows the cost landscape of the Ising model on a graph that is randomly generated for
(nqubits, dedges) = (5, 0.42) (left), (9, 0.61) (center), (21, 0.73) (right). We point a position that corresponds to Eq. (4) for a reference.
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Fig. 2. Cost landscapes in (βslope, βintcp.)-space. Each panel shows the cost landscape of the Ising model on a graph that is randomly generated for
(nqubits, dedges) = (5, 0.42) (left), (9, 0.61) (center), (21, 0.73) (right). We point a position that corresponds to Eq. (4) for a reference.

for randomly generated instances with fixed (nqubits, dedges)
even though they are not shown here.

Thus one can expect that the optimal set of slopes and inter-
cepts for a instance stands close to those for other instances.
This result suggests that one can transfer the optimal set of
parameters from and to each other instance. Indeed in the next
subsection we examine the transferability of the set of linear
parameters in Eq. (4) to other instances.

C. Parameter transfer to other instances

Figure 3 shows the distribution of the expectation value
of energy for randomly generated Ising models with some
choices of (nqubits, dedges). The energies are measured on
8-layer QAOA circuits where the variational parameters are
fixed to those in Eq. (4). When one considers transferring
the optimal parameters for an instance to another instance,
there are two ways to do that: (i) reusing the completely
same parameters at the destination instance and (ii) using
the parameters as initial values for rerunning QAOA at the
destination (imagine the transfer learning in terms of machine
learning), where “destination” means an instance to where a
given parameter set is transferred. On the other hand, we call
an instance where an optimal set of parameters is searched
“source”. In this paper we define the parameter transferring
as just reusing the parameters without any fine-tuning for
destination instances (i.e. (i) in the above). Thus, for the
destination instance we just measure the expectation value of
energy. From the figure it is found out that there are solvable,

in the sense that the minimum energy state is most frequently
observed and that the ratio of the expectation to the exact
values of energy ⟨E⟩ /Eexact is greater than 0.8, instances by
the set of linear parameters in Eq. (4) that is found for an
instance where (nqubits, dedges) = (16, 0.6).

D. Dependence on features of destination instance

Figure 4 shows nqubits- and dedges-dependence of
⟨E⟩ /Eexact. They are scattering plots of ⟨E⟩ /Eexact for
1024 samples of destination instances for each panel. From
Fig. 4 (a), one can observe that the variance grows in the
small nqubits region. In Fig. 4 (b), ⟨E⟩ /Eexact is greater than
0.6 for all samples in 0.1 ≤ dedges ≤ 1 although the accuracy
gets slightly worse around dedges = 0.1.

As an extreme example for comparison, Fig. 5 shows a
scattering plot with varying dedges, where ⟨E⟩s are measured
with a set of linear parameters γl = −0.790l/p − 0.259,
βl = −0.697l/p + 0.792 that is found for an instance where
(nqubits, dedges) = (16, 0.1). From this result, the worsening
of transferability seems to be associated with the distance
of dedgess between the source and destination instances. In
References [15], [16], where transferring of generic (not
linearized) QAOA parameters is studied for the weighted max-
cut problem, it is claimed that one needs a shift of parameters
according to the difference of energy scales between the source
and destination instances. Even in the case of random Ising
model, the typical energy of a system depends on the number
of edges |E|, so the behavior in Fig. 5 seems to reflect this
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Fig. 3. Results of transferring the parameter set in Eq. (4) to randomly
generated instances. (nqubits, dedges) = (8, 0.69) (top), (16, 0.67) (middle),
(24, 0.59) (bottom). For each instance, the left panel shows the generated
graph, and the right panel shows the frequency of energy value observed. In
the graphs, the difference of edge colors corresponds to the difference of signs
of weights (+1 or −1).

point. In conclusion, the linear parameters do not always
show high transferability, and the transferability in terms of
⟨E⟩ /Eexact can get worse depending on the features of the
source and destination instances. In such cases, cost landscapes
like in Figs. 1–2 would show some shifts of bottoms and
distortions. Indeed, one can see that zooming in and out of
the (γslope, γintcp.)-space changes with decreasing/increasing
energy scale that would roughly correspond to the difference
between the highest and lowest energies 8. This point will be
seen a bit more concretely in later section V-A.
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(a) nqubits-dependence. 1024 samples are generated with fixed dedges =
0.6.
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(b) dedges-dependence. 1024 samples are generated with fixed nqubits = 16.

Fig. 4. (a) nqubits- and (b) dedges-dependence of ⟨E⟩ /Eexact. In both
cases Eq. (4) is used as the variational parameters in the QAOA circuits.

8On the other hand, zooming in/out of the (βslope, βintcp.)-space is stable.
This would be because the elements of β are the coefficients of Hmix and
do not depend on the problem in a sense.
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Fig. 5. dedges-dependence of ⟨E⟩ /Eexact. 1024 samples are generated
with fixed nqubits = 16. The optimal set of linear parameters found for
an instance where (nqubits, dedges) = (16, 0.1) is used as the variational
parameters in the QAOA circuits.

E. Parameter transferring from random Ising model to max-
cut problem

Even though there is some instance dependent tendency,
high transferability of the set of linear parameters in Eq. (4)
is demonstrated in previous subsection. In this subsection,
to check the capability of Eq. (4) a bit more radically, we
show an experiment where parameter transferring from the
random Ising model to the max-cut problem is taken place.
Figure 6 shows the result of transferring Eq. (4) to a randomly
generated instance of the max-cut problem. In this case,
although the minimum energy state is not most frequently
observed, ⟨E⟩ /Eexact marks a value greater than 0.9, and it
is suggested that there may be some transferability between
problems even under different Hamiltonians.

To be a bit more concrete, we transferred Eq. (4) to ran-
domly generated 128 instances of the max-cut problem where
dedges ∈ [0.4, 0.8] with fixed nqubits = 16 and calculated the
average of ⟨E⟩ /Eexact; the result is 0.893± 0.023.

V. REMARKS

A. Dependence on energy scale

As seen in the previous section, there is a dedges-dependence
of the transferability of linear parameters, and this would be
related to a dependence on the difference of energy scales
between the source and destination instances. To confirm this
point, in this subsection we turn to the weighted max-cut
problem Hweight = −(1/2)

∑
(i,j)∈E wJij(1 − sisj), where

each element of J is uniformly sampled in (0.1, 1) and where
the energy scale is tunable via the weight factor w.

We randomly generate 1024 instances of the weighted max-
cut problem with |V | ∈ [5, 12], dedges ∈ (0.1, 1), Jij ∈
(0.1, 1) ∀ (i, j) ∈ E, and w ∈ [0.1, 1, 10, 100, 1000], and for
each instance we estimate the optimal slopes and intercepts
of γ and β by Optuna as done in the previous section. The
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Fig. 6. The result of transferring Eq. (4) to an instance of the max-cut
problem. (nqubits, dedges) = (16, 0.68).

optimal (γslope, γintcp.) and (βslope, βintcp.) for each instance
are shown in Fig. 7. While (βslope, βintcp.) does not depend
on the weight factor w, there is a clear w-dependence of
(γslope, γintcp.). This tendency is somewhat natural since the
elements of γ are the coefficients of problem Hamiltonian.
Thus a consistency of the QAOA circuit over drastic changes
of the energy scale is retained by absorbing the overall factor
in the Hamiltonian into γ. Indeed, the success ratio of QAOA
⟨E⟩ /Eexact is not so affected and keeps being better than 0.8
for most cases as seen in Fig. 8.

Concerning parameter transferring, one can conclude that
the shift of γ is required in inverse proportion to the energy
scale as is also discussed in References [15], [16] for the
generic (not linearized) QAOA. For general models apart from
the weighted max-cut problem, determining the energy scale
of given system is not usually a trivial task, so that in such
cases dedges or the most significant weight among the edges
would be used alternatively.

B. Dependence on the number of layers p

The results shown in Sec. IV are provided with the fixed
number of layers p = 8 that might be seen to be somewhat
large. In this subsection, we show cost landscapes for instances
of the random Ising model with smaller choices p = 1 and 4.

Indeed, the parameter transferability has been intensively
studied for p = 1 QAOA in Reference [11] with putting the
focus on the parity of (sub)graph. In the paper, it is conjectured
and verified for the max-cut problem that (i) transferring
between regular graphs with the same degree is successful,
(ii) transferring between regular graphs with same parity is
successful, and (iii) transferring between regular graphs with
different parity is NOT successful.

Figures 9–10 show the cost landscapes measured on p = 1
and 4 QAOA circuits, respectively. To make a connection
to the previous work by others, the instance graphs are
generated with fixed degrees for each in this subsection. In
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Fig. 7. w-dependence of (a) (γslope, γintcp.) and (b) (βslope, βintcp.).
Note that the optimal values are searched for each instance; in other words
any parameter is not transferred among them. p = 8.

the p = 1 case, one can find parity dependent patterns in
the (γslope, γintcp.)-space as pointed out in Reference [11]
while the landscapes in the (βslope, βintcp.)-space is stable.
On the other hand, in the p = 4 case, such a parity dependent
behavior disappears, and actually the landscapes show the
similar structure to those in the p = 8 case shown in Sec. IV-B.

C. Instance dependence of final states

When transferring (fixing) parameters, a possible concern is
that similar superposition states are produced regardless of the
detail of instance. To visualize the tendency of resulting super-
position states of QAOA, we check the fidelity |⟨src. | dest.⟩|,
where |src.⟩ and |dest.⟩ are the QAOA states for the source and
destination instances, respectively. 1024 samples are generated
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Fig. 8. w-dependence of success ratio of QAOA ⟨E⟩ /Eexact. p = 8.

as the destination instances, where nqubits is fixed to be 8 9.
On the other hand, dedges is taken from (0.1, 1) at uniformly
random for the destination instances while dedges = 0.6 for
the source instance.

First, for a reference, Fig. 11 shows the dedges-dependence
of the fidelity. There is not a clear dedges-dependence of the
fidelity. Note that there is a point with |⟨src. | dest.⟩| = 1;
this corresponds to transferring from the source to the source
instance, which is shown as a reference level.

Figure 12 shows the fidelity dependence of the transfer-
ability in terms of ⟨E⟩ /Eexact. As seen from the figure,
high transferability is not necessarily associated with high
fidelity between the QAOA states for the source and desti-
nation instances. Indeed, one can find the instances that mark
⟨E⟩ /Eexact greater than that for the source instance (see the
point with |⟨src. | dest.⟩| = 1). To answer the concern given
in the beginning of this subsection, the features of problem
Hamiltonian is embedded to the QAOA circuit, and thus the
amplitude of the final state depends on instance even with
parameters fixed to a certain choice.

VI. SUMMARY

In this paper, the behavior of linearized QAOA parameters
and their transferability are investigated. Surprisingly, cost
landscapes in the (slope, intercept)-spaces take a similar shape
regardless of the detail of instance. From this fact, it is
suggested that the optimal set of linear parameters found for
an instance can be transferred to other instances, and indeed
we demonstrated that many instances are solvable, in terms
of the distribution of observed energy states and the ratio of
the expectation to the exact values of energy, without instance
dependent fine-tuning.

9Note that this means we use another parameter set instead of Eq. (4).
Indeed, we have observed clear nqubits-dependence of the fidelity; if we
take larger nqubits = 16, the fidelity decreases in an order of magnitude.
Thus we take nqubits = 8 in this subsection to roughly fit the range of
fidelity to (0, 1).
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(a) Landscape for 3-regular graph.
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Fig. 9. Landscapes measured on p = 1 QAOA circuits. The instance
graphs are chosen to be (a) 3-, (b) 4-, (c) 5-, and (d) 6-regular. To draw
a landscape in (γslope, γintcp.)-space, the fixed β is determined by Optuna
for each instance, and vice versa. Note that, in p = 1 circuits, we cannot
define the slopes of γ and β, so that the horizontal axis is indeed irrelevant.
However we show the landscapes in the same format as those with other ps
for comparison.

The set of linear parameters in Eq. (4) that is used for
the experiments is found by a Bayesian estimation for an
instance where (nqubits, dedges) = (16, 0.6). This parameter
set performs high transferability so that ⟨E⟩ /Eexact is over
0.6 for every destination instance, while the transferability
gets worse when the difference of dedgess between the source
and destination instances is large. For example, when we
transfer an optimal set of linear parameters that is found for
an instance where (nqubits, dedges) = (16, 0.1) to an instance
on the complete graph i.e. dedges = 1, ⟨E⟩ /Eexact gets as bad
as 0.3.

While most of the experiments in this paper are taken place

3 2 1 0 1 2 3
slope

3

2

1

0

1

2

3

in
tc

p.

10

5

0

5

3 2 1 0 1 2 3
slope

3

2

1

0

1

2

3

in
tc

p.

10

5

0

5

(a) Landscape for 3-regular graph.

3 2 1 0 1 2 3
slope

3

2

1

0

1

2

3

in
tc

p.

5

0

5

10

3 2 1 0 1 2 3
slope

3

2

1

0

1

2

3

in
tc

p.

5

0

5

10

(b) Landscape for 4-regular graph.
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Fig. 10. Landscapes measured on p = 4 QAOA circuits. The instance
graphs are chosen to be (a) 3-, (b) 4-, (c) 5-, and (d) 6-regular. To draw a
landscape in (γslope, γintcp.)-space, the fixed β is determined by Optuna for
each instance, and vice versa.

for the random Ising model, we have also tried transferring to
the max-cut problem that can be regarded as a special case of
the former model. As a result, there are instances of the max-
cut problem where the set of parameters in Eq. (4) achieves
⟨E⟩ /Eexact > 0.9 even though Eq. (4) is found for an instance
of the random Ising model.

In this paper we exclusively use a noiseless simulator,
so that the verification on real devices is remaining as a
future work. Simplifying parameters and not taking instance
dependent fine-tuning, we, in a sense, ignore the detail of
instances. Thus, if the rough structure of cost landscapes like
in Figs. 1–2 has some stability against the strength of noises,
we can expect a transferability from ideal simulators to noisy
real devices. This point should depend on the detail of devices,
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Fig. 12. Fidelity dependence of transferability. p = 8.

so extensive trials and errors on many types of devices will
provide some insight towards practical uses.

Most results we report in this paper are provided with fixed
p = 8 QAOA, but in actual use cases the number of layers
should be determined in response to the accuracy, complexity,
and noises (on real devices). The smaller numbers of layers
would be interesting towards practical uses. Indeed, for p ≤ 2,
the linearized QAOA is equivalent to the original QAOA; thus
studying how it transits between p = 2 and 3 would be the
most important.

In practical point of view, solving penalized constrained
problems with parameter transferring QAOA and checking
how it is tolerable would be an interesting direction. Thanks
to the transferring, one can omit (or reduce) the optimization
for QAOA parameters, so that the total cost gets significantly
milder. Thus we believe that transferring linearized parameters
(with combined to a shift technique) contributes to actual use
cases of QAOA.
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