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ABSTRACT

Context. Bias models which relate the dark matter field to the spatial distribution of halos are widely used in current cosmological
analyses. Many such models predict halos purely from the local matter density, an assumption which has not been verified in a model-
agnostic setting. Bias models in perturbation theory require the inclusion of other local properties, but it is not clear whether this
extends to non-perturbative approaches.
Aims. We assess the validity of the assumption that only the local dark matter density can be used to predict the number density of
halos in a model-independent way and in the non-perturbative regime.
Methods. Utilising N-body simulations, we introduce a test wherein we study the properties of the halo counts field after spatial
voxels with near-equal dark matter density have been permuted. If local-in-matter-density biasing were valid, the statistical properties
of the permuted and un-permuted fields would be indistinguishable since both represent equally fair draws of the stochastic biasing
model.
Results. For voxels of side length ∼ 4 − 60 h−1 Mpc and for halos less massive than ∼ 1015 h−1 M⊙, we find that the permuted halo
field has significantly too much power on large scales compared to the un-permuted field. We interpret this as due to these bias models
removing small-scale power by not modelling correlations between neighbouring voxels. Since the permutation conserves the total
variance of the halo counts field, large-scale power is substantially boosted to compensate for the missing small-scale power. This
conclusion is robust to the choice of initial conditions and cosmology.
Conclusions. The assumption of local-in-matter-density halo biasing cannot, therefore, reproduce the distribution of halos across a
large range of scales and halo masses, no matter how complex the model. To reproduce this distribution accurately, one must either
allow the biasing to be a function of other quantities than the local matter density and/or remove the assumption that neighbouring
voxels are statistically independent.
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1. Introduction

Uncovering the statistical relation between the luminous tracers
of large scale structure and the underlying matter density field –
the “bias” – is a crucial part of cosmological analyses, since we
observe the former but wish to understand the properties of the
latter. It has long been known that clusters form at high density
peaks of the density field (Kaiser 1984), but an exact relation
between these two quantities at the field level remains unknown.

On the largest scales, one expects that the bias is linear,
namely the overdensity of tracers is proportional to the overden-
sity of matter. This approximation breaks down as one moves
from linear to quasilinear scales, and more general functional
relationships must be used. The simplest assumption one can
make is that the tracer number density depends solely on the lo-
cal dark matter density - the so-called “local-in-matter-density”
(LIMD) assumption (Desjacques et al. 2018) which, in a pertur-
bative analysis, allows one to write the tracer number density as
an expansion in the overdensity: the local bias expansion (Fry
& Gaztanaga 1993). More generally, one can express the bias
model as local in gravitational observables, namely not just the
density field but other terms related to the tidal field or higher
derivative terms (Mirbabayi et al. 2015; Desjacques et al. 2018).
⋆ deaglan.bartlett@iap.fr

One can enumerate such terms based on the order of perturba-
tion theory such that, if one goes to sufficiently high order and is
in the large-scale, perturbative regime, then the result converges
to the truth.

Relying on perturbation theory (Bernardeau et al. 2002) or
effective field theory (EFT) (Carrasco et al. 2012; Senatore &
Zaldarriaga 2014; Senatore 2015; Perko et al. 2016) inherently
limits our analysis to these quasi-linear scales. Although it is
possible to study higher order statistics (D’Amico et al. 2022)
or perform field-level analyses in these frameworks (Schmidt
et al. 2019; Elsner et al. 2020; Kostić et al. 2023; Stadler et al.
2023), to extract information on non-linear scales one may need
to go beyond such local bias expansions, although some studies
have shown that perturbative methods perform well when tested
against N-body simulations (Roth & Porciani 2011; Schmittfull
et al. 2019). Instead of relying of power series, many paramet-
ric forms for the biasing relation have been proposed in the lit-
erature based on the LIMD assumption (Szalay 1988; Matsub-
ara 1995, 2011; Frusciante & Sheth 2012; Neyrinck 2014; Ata
et al. 2015). As such, many reconstruction analyses typically as-
sume that the number density of halos is solely a function of the
smoothed density field (e.g. Schmoldt et al. 1999; Erdoǧdu et al.
2004, 2006; Kitaura et al. 2009; Jasche et al. 2010; Jasche &
Wandelt 2012, 2013; Jasche et al. 2015; Lavaux & Jasche 2016;
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Modi et al. 2018; Jasche & Lavaux 2019; Lavaux et al. 2019;
Ramanah et al. 2019; Kitaura et al. 2021). Alternatively, one can
utilise machine learning methods to map the dark matter den-
sity field (using both local and non-local information) to the halo
counts field (Charnock et al. (2020); see Dai & Seljak (2021) for
a Lagrangian approach).

Unlike in the perturbative regime, we do not have theoretical
guarantees that any of these bias models are accurate and so this
must be tested empirically. Mirbabayi et al. (2015) argue that,
at any order in perturbation theory, the bias can be expressed in
terms of locally measurable observables, and that this argument
is closed under renormalisation. However, it could be (as is of-
ten assumed (Szalay 1988; Matsubara 1995, 2011; Frusciante &
Sheth 2012; Neyrinck 2014; Ata et al. 2015)) that the only im-
portant observable is the local dark matter density field. Testing
this assumption is the subject of this letter. There is an impor-
tant distinction, however, between testing the assumptions of the
halo biasing model (i.e. which variables are needed to predict
the tracer number density) and the particular model chosen (i.e.
what is the functional form of the bias or the stochasticity in the
tracer-matter relation). In this letter we study the former issue in
the fully non-linear regime.

We present a model-independent test of the assumption of
LIMD halo biasing. Our test is independent of the functional
form of the biasing model, but simply tests whether halo biasing
can be a stochastic function of only the local matter density. We
find that LIMD halo biasing cannot reproduce the distribution of
halos less massive than ∼ 1015 h−1 M⊙ when applied to gridded
dark matter fields with voxels of size less than ∼ 60 h−1 Mpc.
We demonstrate that this conclusion is robust across initial con-
ditions and cosmology by utilising the quijote suite of N-body
simulations. We conclude that no LIMD biasing model, however
complex, should be used if one wishes to accurately predict the
spatial distribution of halos given a matter density field.

Our test also provides a method for testing the convergence
of halo catalogues from N-body simulations; we find that the
minimum mass for which the catalogues are converged for qui-
jote is ∼ 1013.1 h−1 M⊙.

In Section 2 we explicitly define LIMD biasing, introduce
our model-independent test and describe the simulations used to
perform this test. Our results are presented in Section 3, where
we demonstrate that our conclusions are highly robust to the one
free parameter in our test, as well as cosmology and initial con-
ditions, and investigate the adequacy of LIMD biasing as a func-
tion of scale and halo mass. Section 4 discusses these results and
presents our conclusions.

2. Methods

2.1. Assessing the assumption of local biasing

We define local-in-matter-density (LIMD) halo biasing to be the
assumption that the number of halos in a given region of co-
moving space (voxel) is drawn from any probability distribution
under the assumptions:

1. The parameters of this distribution in a given voxel are only
functions of the dark matter density in that voxel.

2. Each voxel is statistically independent.

Note that we will not make any assumptions about the type of
distribution (e.g. Poisson) nor the functional form of its param-
eters (e.g. the mean for a Poisson distribution) other than we
expect that this function should be a continuous function of the
local dark matter density.

Under these assumptions, if we identify several voxels which
have the same dark matter density and then permute the number
of halos in these voxels, we should end up with an equally likely
draw from the underlying distribution. If the statistical proper-
ties of the halo-count field are noticeably different after this per-
mutation, then at least one of the assumptions of LIMD biasing
cannot be true.

Since the dark matter density field takes continuous values,
instead of performing permutations on voxels which have ex-
actly equal dark matter density, we first sort the voxels into nbin
bins of dark matter density, and consider two voxels equivalent
if they fall within the same bin, namely if their density is approx-
imately equal. In our fiducial analysis, we choose to use adaptive
bin widths so that each bin has approximately the same number
of voxels and use nbin = 1000. We demonstrate that our results
are highly robust to this choice in Section 3.

To assess the level of agreement between the permuted and
un-permuted fields, we compute the power spectrum, Pcounts(k),
of the counts field using the pylians library (Villaescusa-Navarro
2018). We perform 100 permutations and report the mean and
standard deviation at each wavenumber, then compare this to the
true Pcounts(k).

2.2. Simulations

To test the assumption of LIMD biasing, we utilise the quijote
suite of N-body simulations. These simulations were run in a
periodic box of length L = 1 h−1Gpc using the gadget-iii code
(Springel 2005). We focus on the high-resolution suite which
contain N3

p = 10243 particles, as opposed to the standard resolu-
tion of N3

p = 5123.
For our fiducial analysis, we consider simulation number 0

from the fiducial cosmology, which matches the Planck 2018
cosmological parameters (Planck Collaboration 2020): Ωm =
0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624, σ8 = 0.834. In
Section 3 we verify that our conclusions are robust if we chose
different initial conditions (i.e. for different simulation numbers
in the suite). We also study the sensitivity of our conclusions to
the choice of cosmological parameters by performing our analy-
sis with the (high-resolution) Latin-hypercube suite of quijote
simulations, consisting of 2000 dark-matter-only simulations
with cosmological parameters arranged on a Latin hypercube in
the range: Ωm ∈ [0.1, 0.5], Ωb ∈ [0.03, 0.07], h ∈ [0.5, 0.9],
ns ∈ [0.8, 1.2], σ8 ∈ [0.6, 1.0].

We make all our comparisons at redshift zero, where we
use the positions and masses of halos from the pre-computed
Friends-of-Friends (FoF) (Davis et al. 1985) halo catalogues,
which were obtained using a linking length of b = 0.2. For
brevity, throughout this letter we only report results using FoF
halos, but we have verified that our conclusions are robust to this
choice by rerunning our analysis with the Rockstar halofinder
(Behroozi et al. 2013), and found consistent conclusions.

Since one would expect halos of different masses to be dis-
tributed differently in space, we binned these halos into nine log-
arithmically spaced mass bins in the range 1013.1−1015.8 h−1 M⊙,
and performed our test separately for each bin. For halos within
this mass range, we find that our results are consistent between
the standard and high-resolution quijote simulations, whereas
this is not true for lower masses. We therefore cannot be con-
fident that the halo catalogues are converged for halos which are
less massive than this, so simply discard them in our analysis.
Our test, therefore, additionally acts as a method of determin-
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Fig. 1. Power spectrum of the halo counts field before and after per-
muting voxels with approximately equal density, for halos of mass
1013.7 − 1014.0 h−1 M⊙ . The permuted fields have significantly greater
power on large scales, thus LIMD halo biasing cannot reproduce the
distribution of halos. The mean and standard deviation are computed
over 100 permuations. The vertical coloured lines correspond to the
wavenumbers used to characterise this discrepancy in later plots.

ing the minimum mass for which the halo catalogues from these
simulations are converged.

We divide the simulation volume into N3 cubic voxels and
compute the density field in each voxel using a cloud in cell
(CIC) estimator. For our fiducial analysis we used N = 128,
corresponding to voxels with a side length of 7.8h−1Mpc, but we
show that our results are insensitive to this choice (and thus to
the smoothing scale of the density field) in Section 3.

3. Results

3.1. LIMD halo biasing cannot reproduce the halo distribution

In Fig. 1 we plot Pcounts(k) for our fiducial setup for halos in the
mass range 1013.7 − 1014.0 h−1 M⊙, both before and after permut-
ing voxels with equal dark matter density. When compared to
the truth, we see that the permuted fields have very different halo
distributions than the original field on all scales. In particular, we
observe a significant excess of power on scales k ≲ 0.3 h Mpc−1

and too little power on smaller scales. We infer that this is due to
removal of small-scale power, due to LIMD models ignoring lo-
cal correlations, which then requires an overestimation of large-
scale power, to respect the conservation of the field-variance un-
der voxel permutations. This represents the main conclusion of
this letter: the assumption of LIMD halo biasing cannot produce
the correct distribution of halos.

The vertical dashed lines in Fig. 1 correspond to four char-
acteristic wavenumbers which we use for the remainder of the
analysis to quantify the level of discrepancy, corresponding to
approximately 0.01, 0.03, 0.1 and 0.5 h Mpc−1. For our fiducial
analysis, we find that Pcounts(k) is a factor of 2.3 ± 0.3, 1.6 ± 0.1,
1.36±0.03 and 0.93±0.01 times the true Pcounts(k), respectively,
for these wavenumbers. It is therefore clear that the discrepancy
is significant for this simulation, with the true power spectrum at
approximately the 12σ value for k = 0.1 h Mpc−1.
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Fig. 2. Fractional error on the power spectrum after permuting equal-
density voxels as a function of halo mass. Significant discrepancies are
seen for a wide range of scales for halo masses below 1015 h−1 M⊙,
hence LIMD halo biasing is invalid in this regime. The points and error
bars give the mean and standard deviation of the discrepancy across 100
permutations, respectively.
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Fig. 3. Fractional error on the power spectrum for halos of mass
1013.7 − 1014.0 h−1 M⊙ after permuting equal-density voxels as a func-
tion of voxel size. The black dashed line indicates the value of N where
we have as many voxels as density bins. For N ≥ 25 we find signifi-
cant disagreement on large scales, suggesting that one must smooth the
density field over at least 60 h−1 Mpc for LIMD halo biasing to be valid.
We do not plot values for wavenumbers beyond the Nyquist frequency,
hence some lines are truncated.

In Fig. 2 we investigate how this conclusion changes as a
function of halo mass. One observes that the fractional difference
remains relatively constant until ∼ 1015 h−1 M⊙, indicating that
LIMD halo biasing is invalid for all masses below this point. For
the largest halo masses, we find that the power spectrum of the
permuted field is consistent with the truth. The number density of
these objects is low – there are only 381 halos above 1015 h−1 M⊙
in the fiducial simulation – and these can only exist at the ex-
treme peaks of the density field. Hence, given that these objects
cannot exists in low density environments, it is perhaps unsur-
prising that their number density can be well-predicted by just
the local density field. We therefore conclude that LIMD halo bi-
asing is a reasonable assumption for halos above ∼ 1015 h−1 M⊙,
but, for the majority of objects in the simulation, this framework
cannot be used.

Halo biasing is not just a function of halo mass, but also
depends on the grid used to discretise the dark matter den-
sity field, or equivalently the smoothing scale of the field. In
Fig. 3 we investigate how the error on Pcounts(k) varies as a
function of this grid size. One observes that the level of dis-
agreement is relatively unchanged on the largest scales as one

Article number, page 3 of 5



A&A proofs: manuscript no. main

100 101 102 103 104 105

Number of Bins

−0.5

0.0

0.5

1.0

1.5

F
ra

ct
io

na
l

E
rr

or
on

P
co

u
n
ts

(k
)

k = 0.01hMpc−1

k = 0.03hMpc−1

k = 0.10hMpc−1

k = 0.50hMpc−1

Fig. 4. Fractional error on the power spectrum of halo counts after per-
muting voxels within the same density bin as a function of the number
of bins. We consider halos of mass 1013.7 − 1014.0 h−1 M⊙ and choose
a binning scheme such that each bin contains approximately an equal
number of voxels. After an initial transient behaviour, we find constant
biases in the power spectrum across many order of magnitude, hence
our conclusion is robust to the choice of nbin.

changes the voxel size from ∼ 4h−1 Mpc to ∼ 30h−1 Mpc, in-
dicating that LIMD biasing is inappropriate for density fields
smoothed on these scales. As one further increases the voxel size
to ∼ 60h−1 Mpc, the bias starts to diminish, with a bias of ∼ 4σ
at k = 0.03 h Mpc−1. In this regime the number of voxels is sim-
ilar to the number of density bins (as indicated by the black line
in Fig. 3), but we have verified that similar behaviour is seen if
we reduce nbin to 100. Thus, the LIMD halo biasing is invalid
for smoothed density fields with a smoothing scale smaller than
∼ 60h−1 Mpc, although it may be an acceptable approximation
on larger scales.

3.2. Sensitivity to binning scheme

If one did not bin the density sufficiently finely, then one would
expect that this shuffling procedure would not reproduce the cor-
rect distribution of halos even if LIMD halo biasing were correct,
since voxels with very different densities would be considered
equivalent and therefore permuting their halos would not repre-
sent any realistic biasing model. To test this, in Fig. 4 we plot
the fractional error on the power spectrum as a function of nbin.
When one has only one density bin, the permuted-halo power
spectrum is consistent with random noise. As we increase nbin,
one sees an initial transient behaviour, where the fractional error
becomes positive on large scales at approximately nbin = 10 and
then increases to a constant level by approximately nbin = 30.
Beyond this point, the fractional error on Pcounts(k) is indepen-
dent across orders of magnitude of nbin suggesting that our con-
clusions are robust to this choice.

We have verified that our results are unchanged if we con-
sider equally spaced bins in both density and the logarithm of
density, instead of enforcing each bin to have approximately an
equal number of voxels. The transient behaviour disappears at
nbin ≈ 30 when using logarithmic bins and at nbin ≈ 300 for the
linear binning scheme. Above these values, we again find that
the bias is insensitive to the choice of nbin.

Of course, if one as many bins as number of voxels (nbin =
N3), then (assuming no voxels have identically equal densities)
there would be only one voxel per bin and thus the permuted halo
field is equal to the unpermuted field. For N = 128 this corre-
sponds to nbin ≈ 106.3. Since our conclusion holds at nbin = 105,

even with an average of just 21 voxels per bin we cannot repro-
duce the halo distribution. A LIMD halo biasing model which
varies that rapidly with density seems implausible and highly
fine-tuned. We have verified that using nbin = 100 for a mock
halo counts field generated from a Poisson distribution with a
mean which depends on density according to a power law (with
parameters optimised to fit the quijote simulations using a Pois-
son loss function in each voxel) yields unbiased Pcounts(k) upon
shuffling, again indicating that our fiducial choice of nbin = 103

is sufficient.

3.3. Sensitivity to cosmology and initial conditions

To test the robustness of our conclusion to the initial conditions,
we repeated our analysis across the 100 high-resolution quijote
simulations at the fiducial cosmology. We find biases (mean di-
vided by standard deviation across 100 permutations) of 2.5±1.0,
7.9±1.0, 13.1±1.2 and −8.7±1.1 at the wavenumbers shown in
Fig. 1, indicating that our conclusion is insensitive to the initial
white noise field.

Similarly, to investigate the sensitivity of the result to the
cosmological parameters, we ran our analysis for all 2000 high-
resolution simulations in the Latin hypercube suite. We find that,
averaging over cosmological parameters, the biases for these
wavenumbers are 2.9 ± 1.6, 7.4 ± 1.4, 12.8 ± 1.7 and −8.8 ± 1.7,
demonstrating that LIMD halo biasing does not hold for any of
the cosmologies considered.

4. Discussion and conclusion

In this letter we have shown that the distribution of halos cannot
be modelled according to LIMD biasing: the assumption that the
number of halos in a given voxel is drawn from a probability dis-
tribution which depends solely on the local dark matter density
and where each voxel is statistically independent. At least one of
these assumptions must be broken to accurately model the dis-
tribution of halos in the Universe when averaging over scales of
∼ 4 − 60 h−1 Mpc.

We have demonstrated this in a model-independent way,
without considering a particular choice of probability distribu-
tion nor the dependence of its parameters on the local dark mat-
ter density. By permuting the number of halos found in voxels of
approximately equal density, we showed that the permuted field
has too much power on large scales, whereas this would be sta-
tistically indistinguishable from the un-permuted field if LIMD
biasing were true. This conclusion is robust to the definition of
“approximately equal density” as well as voxel size, cosmology
and initial conditions. We find that the most massive halos can
be modelled under these assumptions, but this breaks down for
halos less massive than ∼ 1015 h−1 M⊙.

This conclusion is particularly important as the use of higher-
order statistics and field-level approaches become increasingly
popular in cosmological analyses, since it is no longer sufficient
to tune a bias model to only reproduce the power spectrum or
other low-order statistics; one must be able to reproduce all mo-
ments of the field. In field-level studies, the initial conditions
of the Universe are free parameters, so using a LIMD biasing
model implies inferring an incorrect density field to obtain a pre-
dicted galaxy (or whichever tracer is used in the analysis) field
which reasonably matches observations. Although the inferred
galaxy field at the redshift of the observations would be trustwor-
thy, extrapolating to other redshifts could be problematic and the
the underlying density field and its initial conditions would have
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artefacts. Given that it is often these initial conditions which one
is interested in, it is imperative that future studies move beyond
the LIMD halo biasing assumption to avoid these problems.

If the issue causing the deficiency of LIMD models was
chiefly the dependence on local density (i.e. independent draws
is a reasonable approximation), then one could apply a simi-
lar permutation technique to identify whether other halo biasing
schemes are valid in a model-independent fashion. For example,
by binning in multiple dimensions, one could assess whether the
variables used in EFT based approaches are sufficient in the non-
perturbative regime. Alternatively, one could search for trans-
formations of the density field for which the permuted and un-
permuted halo number counts are indistinguishable when binned
in this variable and then construct bias models with these new
parameters.

We conclude that number of halos in a given region of space
is a stochastic function of the local dark matter density field, but
it cannot depend solely on this quantity. Models which rely on
this assumption, no matter how complex, cannot reproduce the
distribution of halos and thus must be superseded by more ac-
curate models. This letter not only disproves the LIMD assump-
tion of halo biasing, but provides a framework to aid the design
of future approaches by testing their assumptions in a model-
independent manner.
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Erdoǧdu, P., Lahav, O., Huchra, J. P., et al. 2006, MNRAS, 373, 45
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