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Abstract

In this paper, we present a novel approach that com-
bines deep metric learning and synthetic data generation
using diffusion models for out-of-distribution (OOD) detec-
tion. One popular approach for OOD detection is outlier
exposure, where models are trained using a mixture of in-
distribution (ID) samples and “seen” OOD samples. For
the OOD samples, the model is trained to minimize the KL
divergence between the output probability and the uniform
distribution while correctly classifying the in-distribution
(ID) data. In this paper, we propose a label-mixup approach
to generate synthetic OOD data using Denoising Diffusion
Probabilistic Models (DDPMs). Additionally, we explore
recent advancements in metric learning to train our mod-
els.

In the experiments, we found that metric learning-based
loss functions perform better than the softmax. Further-
more, the baseline models (including softmax, and metric
learning) show a significant improvement when trained with
the generated OOD data. Our approach outperforms strong
baselines in conventional OOD detection metrics.

1. Introduction
Out-of-distribution (OOD) detection plays a critical role

in the development of robust machine learning models.
While accurate classification of known classes is important,
the ability to identify samples that deviate from the training
distribution is equally crucial. This paper presents a novel
approach that combines deep metric learning and synthetic
data generation using diffusion models to improve OOD de-
tection in classification models.

One popular approach for OOD detection is outlier expo-
sure [11], which involves training models using seen sam-
ples from out-of-distribution data.The model is trained to
output a low confidence on the training OOD data while
correctly classifying the in-distribution (ID) data. Outlier
exposure methods differ in how the OOD data is obtained
(real-world data vs. generated data).

[11] is the first successful work to train a classifier using
labeled ID data and a large set of unlabeled OOD data. The

method hypothesizes that training on a large and diverse
OOD data can help deep neural networks (DNNs) gener-
alize better to unseen OOD examples at test time. For ex-
ample, they train a CIFAR-10 vs. others OOD detector by
exposing the model with 80 Million Tiny Images dataset.
Outlier exposure outperforms several state-of-the-art OOD
detection methods on several benchmark datasets.

However, using a large unlabeled dataset as OOD train-
ing data introduces an unwanted problem. Ideally, the train-
ing OOD data is considered to have no semantic similarity
with the ID data. However, in practice, it is evident that
OOD datasets obtained from the wild may contain mixed ID
and OOD samples, thus introducing difficulty for outlier ex-
posure methods that use large unlabeled OOD data for train-
ing. If the unlabeled dataset contains samples with overlap-
ping semantics with the ID dataset, the network may just fo-
cus on minor statistical differences in the images and not the
semantic meaning of the images. This may not be desirable
as the model can easily overfit to the training ID and OOD
datasets. To address this issue, [36] trains an OOD detector
by removing any overlapping classes from the OOD dataset
by deep clustering [1]. [15] models the mixed dataset as
Huber contamination model [14], meaning it is considered
to be partially coming from ID and OOD distributions. The
model is trained to predict the mixing ratio. Another chal-
lenge of utilzing real-world OOD data for training is that
that data may not cover the full range of OOD examples that
the model may encounter in the real world. Thus, training
on OOD data may lead to overfitting on the specific OOD
examples used for training. Furthermore, collecting real-
world OOD data can be costly, for example, in case of rare
events.

Other works have tried to solve the issue of overlapping
training ID and OOD semantics and overfitting by gener-
ating synthetic OOD data that satisfy certain requirements
[18], [24]. The main idea is to generate samples that lie in
the low density areas of the training data distribution; i.e.,
the generated data should be neither too close nor too far
from the training data distribution. OOD data that is too
close to the training distribution can limit the classifier’s
closed-set classification accuracy, and data that is too far
from the training distribution expands the classifier’s deci-
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sion boundary, possibly classifying OOD datasets as ID.

In this paper, we propose a synthetic OOD data genera-
tion approach using denoising diffusion probabilistic Mod-
els (DDPMs) [13]. Although this is not the first time dif-
fusion models have been used for out-of-distribution de-
tection, our method differs from previous works in several
ways as will be explained next. [24] generates synthetic
OOD data by early stopping (i.e., before the model con-
verges) a diffusion model during training. The authors ar-
gue that the Fréchet Inception Distance (FID) [12], which
measures the quality of the generated image, has a direct
correlation to the number of training steps and therefore
early stopping ensures that the generated image doesn’t
fully converge to the training data distribution. The gen-
erated data is used to train a binary classifier and the near-
est neighbor distance [27] is used as the OOD score. [6]
proposed a reconstruction-based novelty detection by first
adding a range of noise levels to a given input and then re-
constructing it using a pre-trained DDPM. The reconstruc-
tion errors between the original and the reconstructed im-
ages are computed at several timesteps, and the average re-
construction error is used to classify an input as ID or OOD.
[23] used the image inpainting power of diffusion models
as the OOD score function. Specifically, a test image is first
corrupted by masking a large portion and a diffusion model
is used to reconstruct the corrupted image. In-distribution
samples have a small reconstruction error (because DDPMs
have the ability to inpaint) while the OOD samples typically
have a large reconstruction error. We propose a synthetic
OOD generation approach by interpolating the one-hot en-
coding of the target classes in a conditional diffusion model.
We refer to this approach as a label mixup. Suppose that
we want to a cat vs. dog classifier. First, we train a class-
conditional DDPM by giving the one-hot labels (i.e, [1, 0],
and [0, 1]) and a noise image to the DDPM. To generate a
synthetic OOD data, we mix the labels by interpolating the
one-hot encodings, i.e., [1, 1]. Since, the generative mod-
els has only seen [1, 0] or [0, 1] during training, [1, 1] input
generates data that lies between the two classes. See Fig-
ure 1. It is important to note the previous methods that use
DDPM treat OOD detection as a binary classification hence
do not train a multi-class classifier which is an important
distinction to our work.

It is a standard practice to train multi-class classification
models with the softmax loss function. In this work, we take
inspiration from the success of contrastive learning methods
in OOD detection to investigate alternative loss functions to
train our OOD detection models. Contrastive learning [8],
[29] trains a similarity function (e.g., cosine similarity [8],
[29]) to maximize the similarity between different (“weak”)
augmentations of a given sample, and minimize the similar-
ity with other samples (i.e., instance discrimination [34]).
Specifically, the goal in contrastive learning is to train an

encoder neural network such that different random augmen-
tations of the same image are close in the embedding space
but far from the embeddings of another image. CSI [29]
found that, in addition to pushing away different samples,
pushing “strong” augmentations of a sample (e.g., rotation)
away from the original sample improves OOD detection as
strong augmentation can shift the distribution of an input.
To train a model using a contrastive loss function, nega-
tive sample mining that chooses for the most useful sam-
ples is crucial. In CSI, positive samples of an input are
obtained with weak augmentations (e.g., cropping) while
negative samples include strong augmentations of the same
image as well as other images from the training dataset.
CADet [8] utilized the maximum mean discrepancy (MMD)
two-sample test [7] as a score function for models trained
with contrastive loss functions. Angle-based metric learn-
ing methods ([22],[32],[41],[2]), on the other hand, propose
a similarity learning mechanism without negative sample
mining. Metric (distance) learning techniques are com-
monly employed to increase inter-class variation and re-
duce intra-class variation in the feature space of deep neural
networks, especially in few-shot settings [28],[20],[40],[37]
and deep face recognition [22],[32],[41],[2]. In this work,
we regard state-of-the-art metric learning loss functions,
such as SphereFace [22], CosFace [32], AdaCos [41], and
ArcFace [2] as OOD score functions.

To evaluate the effectiveness of our method, we compare
it with well-known approaches in the field. Our results show
that our approach outperform baseline methods in conven-
tional OOD detection metrics (AUROC and AUPR). By
combining deep metric learning and synthetic data gener-
ation, our proposed method offers a promising solution for
improving OOD detection.

In summary the contributions of this paper are,

• We introduce a synthetic out-of-distribution data gen-
eration using denoising diffusion models.

• We adapt popular loss functions in deep metric learn-
ing for out-of-distribution detection.

• We show that models trained with the proposed outlier
exposure outperform the regular softmax and metric
learning loss function.

• To the best of our knowledge this is the first time diffu-
sion models have been used to generate synthetic OOD
data by label mixup and used to train a multi-class clas-
sifier.

2. Related Work
Maximum-Softmax Probability (MSP) [10]. This base-

line method uses the highest output probability as the score
function. The intuition is that a classifier should be more



confident about in-distribution inputs than OOD inputs. The
MSP score function is defined as follows:

sθ(x) = max
c∈C

pθ(y = c|x). (1)

Energy-Based OOD Detection (EBO) [21]. In EBO, an en-
ergy score is derived as the ‘logsumexp’ of the output pre-
dictions scaled by a temperature T :

sθ(x) = T log

C∑
i

exp (fθ(x; i)/T ) (2)

where fθ(x; i) is the logit value corresponding the i − th
class of the classifier fθ.

Mahalanobis Distance [19]. The Mahalanobis distance
measures of how far a point is from the mean of a dis-
tribution. Firstly, class-conditional Gaussian distributions
are formed from the features of the penultimate layer, with
µc = 1

Nc

∑Nc

i:yi=c

fθ(xi), for c = 1, . . . , C, a covariance ma-

trix, Σ = 1
Nc

∑C

c=1

∑
i:yi=c

(fθ(xi)− µc)(fθ(xi)− µc)
T . Then

the OOD score function, sθ(x), is defined as the negative
of the minimum distance from each conditional Gaussian
distribution:

sθ(x) = −min
c∈C

(fθ(xi)− µc)Σ
−1(fθ(xi)− µc)

T (3)

Outlier Exposure. [11] trains a classifier using labeled
ID data and a large set of unlabeled OOD data. The mod-
els have better calibration and OOD detection ability. The
problem of overlapping semantics between the training ID
data and OOD data has been studied in [36]. The method
uses deep clustering [1] to filter out the semantically over-
lapping samples from the unlabeled OOD data. [15] mod-
els the training OOD dataset as Huber contamination model
[14], meaning it is considered to be partially coming from
ID and OOD distributions. The model is trained to pre-
dict the mixing ratio. [4] studies the effectiveness of pre-
trained transformer models for out-of-distribution detec-
tion. Their findings demonstrate that large scale pre-trained
transformer models fine-tuned on the ID data have excellent
discriminative ability, but not a well-separated boundary for
OOD detection. To improve the OOD detection capabil-
ity of such models the authors fine-tune the model on seen
OOD samples. The key takeway is that setting aside a train-
ing OOD data is important to detect OOD samples at test
time.

Synthetic Data Outlier Exposure. Synthetic outlier ex-
posure uses generated data as the seen OOD data. [18]
jointly trains a classifier and a generative adversarial net-
work (GAN) [5] where the classifier is trained to correctly
classify the ID dataset but output a low confidence for the
generated dataset. The generator is supervised not only by

the discriminator but also by the classifier. This ensures
that the generated dataset is neither too far nor too close
to the training distribution. This is generally the essence
of a synthetic OOD data; i.e., the generated data should
approach the training distribution but not too close. [31]
generates two types of OOD data using a conditional varia-
tional autoencoders (VAEs) [16]: samples that are close to
the in-distribution but outside the in-distribution manifold
and samples are in the in-distribution manifold but near the
in-distribution boundary. The method trains a K +1 classi-
fier, where K is the number of classes and the K + 1 − th
class represents the OOD class. Virtual outlier synthesis
(VOS) [3] proposes to dynamically generate virtual out-
liers from low-likelihood region of the Gaussian distribu-
tion formed from the empirical means and standard devia-
tions of the features in the penultimate layer of the classifi-
cation model. Another closely related work [33] generates
synthetic data by linearly interpolating the one-hot encod-
ings of target classes in the training data to form pseudo
class embeddings and generate an image by feeding the re-
sulting embedding to the decoder network of a variational
autoencoders (VAEs) [16]. This is similar to our data gener-
ation approach except we use diffusion models as opposed
to VAEs.

Diffusion models for OOD detection. Recently, diffusion
models have been used for unsupervised anomaly detection
[24], [6], [23]. [24] generates synthetic OOD data by early
stopping, [6] used the reconstruction error of a noised im-
age as the score function, and [23] intentionally corrupts the
input image by cutting out a large portion of the image and
reconstruct it using a pre-trained DDPM. The L2 distance
between the original image and the reconstructed image is
used as the OOD detection score function.

3. The Proposed Method

Let fθ(x) be a multi-class classification model where it
takes an input x ∈ Rd, and predicts a vector of probabilities
pθ(y|x) ∈ [0, 1]C , where d is the number of features and
C is the number of classes. Deep neural networks trained
on a dataset X = {x1, . . . , xn} ∼ pdata(x) tend to make
an overconfident prediction when exposed to previously un-
seen distribution, pOOD(x). Out-of-distribution detection
aims to detect whether an input x comes from pdata(·) or
pOOD(·).

Let sθ(x) ∈ R be a score function that assigns a higher
value to in-distribution (ID) inputs and a lower value to out-
of-distribution (OOD) inputs. The score function is used to
measure how likely an input x is to come from the training
data distribution. If the score sθ(x) is low, then the input x
is likely to be OOD data.



Figure 1: Synthetic OOD data generated using label mixup between CIFAR-10 “airplane” and “automobile” classes. The
generated data have a significant diversity and meaningful mixup semantics. For example, a mixup between an airplane class
and a automobile class results in an object with features from airplane and automobile.

3.1. Out-of-Distribution Data Generation using Dif-
fusion Models

To generate OOD data, we interpolate between the one-
hot encoding vectors of any two different classes, which we
refer to as label mixup. By doing so, we create new pseudo
class embeddings that represent OOD data. These em-
beddings represent images that contain features from both
classes and can be used to generate high-quality synthetic
data. The resulting vector is mapped to the pixel space us-
ing a conditional DDPM pre-trained on the in-distribution
data.

To explain why this works, we present an analogy be-
tween our proposed label mixup and mixup training [39].
Mixup training is a regularization (data augmentation) tech-
nique that trains a neural network on the convex combina-
tions of pairs of examples and their labels. By doing so,
mixup regularizes the neural network to favor simple linear
behavior between training examples. The decision bound-
ary in a model trained with mixup regularization smoothly
decays from one class to another, thus predicting low con-
fidence for data that lies in between. It has been shown that
mixup training generalizes to out-of-distribution and adver-
sarial examples. Similarly, label mixup can be considered
as a form of mixup but in the label space instead of the im-
age space.

To this end, we select any two different classes and add
their one-hot encodings element-wise, and input the re-
sulting label (in addition to a noise input sampled from a
uniform distribution) to a pre-trained DDPM. To train the
DDPM we use the pipieline from Hugging Face diffusers
library1. Interested readers can refer to [13] for more de-
tails about diffusion models. See Figure 1 for a snapshot
of the generated data. The training scheme for the OOD
detector will follow next.

1https://huggingface.co/docs/diffusers/index

3.2. Deep Metric Learning

The objective is to learn an encoder neural network fθ
such that samples of the same class are close in the embed-
ding space while samples of different classes are far in the
embedding space. In other words, we require small intra-
class and a large inter-class variance. Suppose we have a
neural network fθ(xi) → zi ∈ Rd, where xi is an input im-
age and zi represents the features in the penultimate layer.
Normally a fully connected layer with weights W ∈ Rd×C

and biases b ∈ RC is used to project zi into the logit space
and the softmax (cross-entropy) loss is derived as follows:

Lsoftmax = − 1

N

N∑
i=1

log
eW

T
yi

zi+byi∑C
j=1 e

WT
yj

zi+byj
, (4)

where Wyi
, byi

are the weights and the bias associated with
the class yi, and C is the number of classes. If we fix
byi

= 0 and normalize the weights s.t. |Wyi
| = 1, we

can rewrite WT
yj
zi + byj as |zi| cos(θj,i), where θj,i is the

angle between the feature vector zi and the class weights
Wyj

. |zi| cos(θj,i) is the projection of zi onto the class
weights Wyj

. xi is classified as class yi if cos(θi,i) >
cos(θj,i),∀j ∈ 1, . . . , C. SphereFace [22] introduces a
margin m s.t. xi is classified as class yi if cos(mθi,i) >
cos(θj,i),∀j ∈ 1, . . . , C. This encourages a larger inter-
class distance as it moves the decision boundary from a bi-
sector between Wi and Wj to an angular margin m. The
softmax loss with the proposed angular margin becomes:

Langular = − 1

N

N∑
i=1

log
e|zi| cos(mθi,i)

e|zi| cos(mθi,i) +
∑
j ̸=i

e|zi| cos(θj,i)
,

(5)
In this work, we regard state-of-the-art metric learning loss
functions, such as SphereFace [22], CosFace [32], ArcFace
[2], and AdaCos [41] as OOD score functions. We will
briefly describe each loss function. A comprehensive anal-



ysis of each loss function is beyond the scope of this pa-
per, and readers are encouraged to refer to the respective
papers for detailed derivations. For our purposes, we treat
the loss functions the same; we use the maximum cosine
similarity between the features zi and the weight vectors
Wi,∀i ∈ 1, . . . , C, as the OOD score function. In addition
to normalizing the weight vectors Wyi ,∀i = 1, . . . , C, Cos-
Face [32] normalizes the features vectors zi s.t. |zi| = 1.
The CosFace loss function is defined as follows:

LCosFace = − 1

N

N∑
i=1

log
es(cos(θi,i)−m)

es(cos(θi,i)−m) +
∑
j ̸=i

es cos(θj,i)
,

(6)
where s is a scaling factor and m is the margin. ArcFace [2],
like CosFace, normalizes both the weights and the features.
However, the angular margin is defined in the angle space
as given in the following equation:

LArcFace = − 1

N

N∑
i=1

log
es cos(θi,i+m)

es cos(θi,i+m) +
∑
j ̸=i

es cos(θj,i)
,

(7)
Adacos [41] proposed a fixed scaling parameter s defined
by the following equation:

s ≈
√
2 log(C − 1), (8)

where C is the number of classes. The loss function remains
the sames as Eqn. (7).

3.3. OOD Detector Training

In addition to the synthetic data generation approach, our
contribution is using the deep metric learning loss functions
for training OOD detectors. We train two types of mod-
els: with and without synthetic outlier exposure. Both types
of models are trained with the vanilla softmax loss func-
tion (Eqn. (4)) and the metric learning-based loss functions
(e.g., Eqn. (5)).

Metric learning-based OOD detection have been stud-
ied before in [26], and [30]. [30] uses the scaled cosine
similarity as the score function. Specifically, the weights
and features are normalized to be a unit vector and their
dot product scaled by a learnable parameter s is used as
the score function, i.e., cos(θi,j) = WT

yj
zi/|Wyj ||zi|, and

L = − 1
N

∑N
i log es cos(θi,i)∑C

j=1 s cos(θi,j)
, where zi represents the

features of input xi and Wyj
are the weights of the class

j − th class. In this study, we aim to explore more met-
ric learning loss functions including the scaled cosine loss
function and compare their OOD detection performance be-
fore and after the proposed outlier exposure.

3.4. Detecting OOD samples

A test sample x is predicted as OOD if the maximum co-
sine similarity between the normalized features and weights

is less than a threshold τ , otherwise it is predicted as ID. The
threshold is computed from a validation set at 95% true pos-
itive rate (TPR). If x is predicted as ID, we predict its class
as the index with the maximum cosine similarity scaled by
s and m. For example, when using the SphereFace loss
function (Eqn. (5)), the index with the highest cos(mθi,i)
becomes the predicted class. For models trained with the
softmax loss function, the maximum probability used to de-
cide if x is ID or OOD.

4. Experiments

We use the ResNet-50 [9] architecture to train all mod-
els. We use CIFAR-10 datasets as the in-distribution dataset
for all experiments and we use CIFAR-100, Tiny Ima-
geNet [17], SVHN [25], iSUN [35], LSUN [38] as out-of-
distribution datasets.

4.1. Experimental Results

We compare the AUROC, AUPR-In (when the in-
distribution data is the positive class) and AUPR-Out (when
the OOD data is the positive class) results of the baseline
models and our models in Table 1. We use the model trained
with the softmax loss function and the MSP [10] score func-
tion as a baseline and compare it against our models trained
with the metric learning-based loss functions. In Table 1
(top), we show the models before using synthetic outlier
exposure and the performance after synthetic outlier expo-
sure in Table 1 (bottom). The models with the synthetic data
show a significant performance gain in both the vanilla soft-
max and the metric learning loss functions. Notably, when
the baseline models including the softmax loss function and
the metric loss functions struggle with certain datasets such
as Gaussian noise, uniform noise, and Tin (R), the models
with the outlier exposure produce consistent results across
all datasets. Furthermore, the scaled cosine (which is also
metric learning-based loss function) outperforms the soft-
max based training.

In summary, the results show that the proposed data
generation approach generalizes across several training loss
functions, usually with a significant improvement.

Closed-Set Accuracy We compare the in-distribution
classification accuracy of the baseline models (i.e., trained
on ID data only) and their performance after synthetic out-
lier exposure. Table 2 illustrates that the OOD detectors’
closed-set accuracy is comparable to that of the baseline
classifiers. Our models have the ability to detect out-of-
distribution samples with a small drop in closed-set classi-
fication accuracy.
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e Method Softmax Scaled Cosine AdaCos (ours) ArcFace (ours) CosFace (ours) SphereFace (ours)

CIFAR-100 0.913/0.896/0.892 0.869/0.871/0.868 0.885/0.868/0.884 0.878/0.858/0.878 0.844/0.806/0.856 0.874/0.851/0.879
LSUN (C) 0.937/0.917/0.928 0.977/0.977/0.978 0.969/0.965/0.970 0.966/0.963/0.967 0.965/0.960/0.968 0.974/0.973/0.975
LSUN (R) 0.962/0.967/0.949 0.961/0.963/0.961 0.942/0.939/0.942 0.937/0.931/0.939 0.943/0.945/0.942 0.941/0.935/0.946
Tin (C) 0.960/0.964/0.945 0.965/0.968/0.963 0.928/0.928/0.927 0.912/0.898/0.920 0.931/0.921/0.934 0.934/0.929/0.938
Tin (R) 0.950/0.952/0.932 0.945/0.950/0.942 0.880/0.872/0.883 0.858/0.833/0.873 0.895/0.885/0.896 0.886/0.874/0.896
iSun 0.963/0.971/0.944 0.956/0.961/0.952 0.925/0.925/0.920 0.919/0.915/0.917 0.940/0.946/0.932 0.934/0.935/0.932
SVHN 0.955/0.925/0.973 0.966/0.930/0.986 0.978/0.951/0.991 0.968/0.943/0.986 0.951/0.853/0.982 0.968/0.947/0.985
Gaussian Noise 0.837/0.878/0.700 1.000/1.000/1.000 0.999/0.999/0.998 0.999/0.999/0.997 1.000/1.000/1.000 0.999/0.999/0.997
Uniform Noise 0.923/0.951/0.847 1.000/1.000/1.000 1.000/1.000/1.000 0.999/0.999/0.996 1.000/1.000/1.000 1.000/1.000/0.998

W
ith
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r
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ur

e CIFAR-100 0.919/0.919/0.902 0.934/0.935/0.929 0.894/0.885/0.883 0.902/0.895/0.891 0.902/0.906/0.891 0.888/0.885/0.879
LSUN (C) 0.975/0.980/0.970 0.983/0.985/0.982 0.972/0.975/0.971 0.976/0.978/0.974 0.974/0.976/0.973 0.969/0.972/0.968
LSUN (R) 0.984/0.986/0.983 0.990/0.991/0.990 0.978/0.981/0.975 0.981/0.984/0.980 0.972/0.975/0.970 0.973/0.975/0.972
Tin (C) 0.974/0.979/0.968 0.985/0.987/0.983 0.955/0.960/0.948 0.967/0.973/0.962 0.961/0.966/0.957 0.944/0.945/0.942
Tin (R) 0.973/0.977/0.968 0.984/0.985/0.983 0.953/0.956/0.948 0.965/0.969/0.960 0.952/0.958/0.947 0.935/0.933/0.935
iSun 0.980/0.985/0.975 0.988/0.990/0.987 0.968/0.976/0.960 0.974/0.980/0.967 0.965/0.972/0.958 0.962/0.968/0.957
SVHN 0.962/0.943/0.978 0.985/0.974/0.993 0.964/0.936/0.983 0.979/0.957/0.957 0.969/0.944/0.986 0.976/0.954/0.989
Gaussian Noise 0.976/0.985/0.951 0.999/0.999/0.999 0.999/0.999/0.999 0.999/0.999/0.996 0.999/0.999/0.995 0.999/0.999/0.997
Uniform Noise 0.985/0.991/0.968 0.999/1.000/0.999 0.999/0.999/0.999 0.999/0.999/0.996 0.999/0.999/0.999 0.999/0.999/0.997

Table 1: Out-of-distribution detection evaluation results before and after outlier exposure. The numbers separated by /
indicate AUROC/AUPR-In/AUPR-Out. Boldface indicates the best approach and underline ( ) indicates the second best.
The amount of increase/decrease from the baseline (without outlier exposure) to the models trained with outlier exposure is
indicated in the last section (difference) of this table.

Softmax Scaled Cosine [30] AdaCos [41] ArcFace [2] CosFace [32] SphereFace [22]
Standard 96.98 92.28 96.39 96.41 96.08 96.21
Outlier Exposure (ours) 96.54 96.78 95.80 95.81 95.61 95.70

Table 2: Our proposed outlier exposure has minimal impact on the in-distribution classification accuracy as it remains largely
unchanged. We highlight in bold the model with the higher in-distribution accuracy for each loss function.

5. Conclusion

In conclusion, this paper introduced a novel method for
out-of-distribution (OOD) detection in classification mod-
els by combining deep metric learning and synthetic data
generation using diffusion models. The approach employs
outlier exposure, a popular technique for OOD detection,
where models are trained using known OOD samples. Dur-
ing training, the model low confidence for the training OOD
data, while accurately classifying the in-distribution (ID)
data. To generate synthetic OOD data, we proposed a label-
mixup approach using Denoising Diffusion Probabilistic
Models (DDPMs), and we utilize recent advancements in
metric learning to train our models.

The experimental results demonstrate that our method,
employing outlier exposure with metric learning, outper-
forms softmax training in most settings. Moreover, all loss
functions including the vanilla softmax and metric learning-
based loss functions show a significant improvement after
the proposed outlier exposure.

The experimental results demonstrate that our method,
employing outlier exposure shows a significant improve-
ment across a range of loss functions and datasets compared

to the baseline models that do not have access to a training
OOD data.
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