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Abstract

We study all four-dimensional simply-connected indecomposable non-semisimple
pseudo-Riemannian symmetric spaces whose metric has signature (2, 2). We present
models and compute their isometry groups. We solve the problem of the existence
or non-existence of compact quotients by properly acting discrete subgroups of the
isometry group. This continues and completes earlier work by Maeta.
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1 Introduction

While Riemannian symmetric spaces are well known and intensely studied, much less
is known about pseudo-Riemannian ones. In the same way as Riemannian simply-
connected symmetric spaces, pseudo-Riemannian ones can be described purely alge-
braically by their associated infinitesimal objects, so-called symmetric triples. For this
description one uses the transvection group of the symmetric space, which is a partic-
ular subgroup of the isometry group. A symmetric triple consists of the Lie algebra ĝ

of the transvection group, an ad-invariant inner product 〈· , ·〉 on ĝ and an involution θ
of ĝ satisfying some compatibility conditions.

Pseudo-Riemannian symmetric spaces that have a semisimple transvection group were
classified by Berger [Br]. These symmetric spaces will be referred to as semisimple. The
classification problem for pseudo-Riemannian symmetric spaces that are not semisimple
is rather involved and is only solved for small index of the metric. Lorentzian symmetric
spaces with a solvable transvection group were classified by Cahen and Wallach [CW].
For signature (2, n), first classification results were obtained by Cahen and Parker
[CP1, CP2]. However, the results in [CP1] concerning the case of a solvable transvection
group were incomplete. This was observed by Neukirchner who revised the classification
[Ne]. In [KO1], a new and more structural approach to the classification problem was
developed. It was shown that every indecomposable non-semisimple symmetric triple
has the structure of a uniquely determined balanced quadratic extension. Extensions of
this kind can be described by a quadratic cohomology set. For small index of the metric,
or under additional assumptions on the metric, this cohomology set can be computed
explicitly. This leads to a classification of symmetric triples in these situations. In
[KO1] this method was applied to the classification in the case of signature (2, n),
where it turned out that also Neukirchner’s classification was not quite correct.

We have already explained that the classification of simply-connected symmetric spaces
is accomplished through the classification of symmetric triples. As a consequence, the
classification is presented in a purely algebraic form. Here, we aim to derive, in certain
cases, a geometric form from this algebraic representation. We want to find suitable
models of the symmetric spaces itself and describe their geometry. We will focus on
four-dimensional spaces with metrics of signature (2,2). However, the same methods
work also for certain families of higher-dimensional spaces.

As already noted, the classification of indecomposable non-semisimple symmetric triples
is based on their description as balanced quadratic extensions. More precisely, a sym-
metric triple (ĝ, θ, 〈· , ·〉) of this kind is a balanced quadratic extension of a Lie algebra
with involution (l, θl) by a semi-simple orthogonal (l, θl)-module. For signature (2, 2),
there are five possible isomorphism classes for (l, θl). This leads to five families of
symmetric triples, where one of these families will be divided into two subfamilies
which differ by the (l, θl)-module used in the extension. The corresponding families of
simply-connected symmetric spaces will be denoted by X1,X2, N, Y, Z and Z ′, together
with a specification of parameters. The spaces of type X1 and X2 have a solvable non-
nilpotent transvection group. Their symmetric triple are balanced quadratic extensions
of (l, θl) = (R,− id). The transvection group of spaces of type Y is also solvable and
non-nilpotent. For these spaces l is isomorphic to so(2) ⋉ R

2 or to so(1, 1) ⋉ R
2. On
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the other hand, the spaces of type N have a nilpotent transvection group, with their
symmetric triples being balanced quadratic extensions of (R2,− id). The transvection
groups of the spaces of type Z and Z ′ are not solvable but have a non-trivial Levi
factor. Here l is isomorphic to su(2) or sl(2,R) for the Z-spaces and to sl(2,R) with a
different involution for the Z ′-spaces.

Our goals in this paper are

(1) to find explicit models for the non-semisimple simply-connected symmetric spaces
of signature (2,2),

(2) to determine their isometry group,

(3) to decide whether these spaces admit compact quotients by discrete subroups of
their isometry group.

In the following, we will explain these items in more detail, and we will describe our
results.

(1) Explicit models From the symmetric triple (ĝ, θ, 〈· , ·〉) we obtain the associated
simply-connected symmetric space X as a homogeneous space Ĝ/Ĝ+. The inner prod-
uct 〈· , ·〉 gives us a Ĝ-invariant metric g on X. So, in principle, the symmetric space
X is known. Here we want to give an explicit description of the quotient Ĝ/Ĝ+ and
the metric.

For spaces in the families X1,X2, Y we obtain metrics on R
4 that behave similarly to

Lorentzian plane waves. They are of the form 2dudv + 〈· , ·〉 +H(u, x)du2, where 〈· , ·〉
is pseudo-Euclidean of signature (1, 1). There exists a non-zero parallel vector field V ,
which is unique up to multiplication by a scalar. The transvection group contains the
5-dimensional Heisenberg group, which acts transitively on each leaf of the integrable
distribution V ⊥.

The spaces of type N have a simple realisation by a metric on R
4. Since the action of

the isometry group looks rather complicated in this model, we will give two alternate
descriptions of N as an extrinsic symmetric space in R

5. However, we do not study
extrinsic symmetric spaces systematically here.

For the Z- and Z ′-spaces we also give a description using extrinsic symmetric spaces.
The spaces of type Z can be embedded in R

6 and interpreted as the tangent bundle of
the standard sphere S2 ⊂ R

3 or the tangent bundle of the Riemannian hyperbolic plane
H2 ⊂ R

1,2, depending on the parameters of the space Z. The spaces in the Z ′-family
are isometric to the universal cover of an extrinsic symmetric space in R

6, which can
be understood as the tangent bundle of the pseudo-Riemannian sphere S1,1 ⊂ R

1,2.

In order to obtain an embedding as an extrinsic symmetric space in the cases mentioned
above, the main tool is the use of pseudo- and para-Hermitian structures. For this
purpose we generalise the well-known fact that (Riemannian) Hermitian symmetric
spaces admit a realisation as extrinsic symmetric spaces. In the appendix, we will
prove the following: Let X be a symmetric space and (ĝ, θ, 〈· , ·〉) its symmetric triple.
If X admits a pseudo-Hermitian structure, then (up to a covering) X can be embedded
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extrinsically symmetric in (ĝ, 〈· , ·〉). If X admits a para-Hermitian structure, then X
can be embedded extrinsically symmetric in (ĝ,−〈· , ·〉) (again up to a covering).

(2) Isometry groups Isometry groups of Cahen-Wallach spaces, i.e. of solvable
Lorentzian symmetric spaces are determined in [KO3]. The same method can be ap-
plied to symmetric spaces of signature (2, n). This is done for some of the spaces of
signature (2, 2) in [M]. In this paper we will also compute the isometry groups of the
remaining spaces of signature (2, 2). The isometry group can be essentially larger than
the transvection group. For the spaces X1(ε,−ε, 1), ε = ±1, and the two spaces of
type N , this indeed happens. Their isometry group has a larger dimension than their
transvection group. In all other cases that we consider here, the transvection group has
finite index in the isometry group.

(3) Compact quotients By a compact quotient of a homogeneous space X = G/H
we mean a compact quotient manifold Γ\X, where Γ ⊂ G is a discrete subgroup of G
acting properly and freely on X. Compact quotients are also called compact Clifford-
Klein forms. Their existence or non-existence for a given homogeneous space has been
intensively studied for many years. A key aspect is whether the stabiliser H is compact;
if it is, then the action of any discrete subgroup of G on X is proper. Hence studying
compact quotients of X is essentially equivalent to studying discrete uniform subgroups
(also called cocompact lattices) of G. However, when dealing with homogeneous spaces
with a non-compact stabiliser, the action of a discrete group Γ ⊂ G on X is not
necessarily proper. In such cases, the question of the existence of compact quotients
becomes a more complicated problem and only partial answers are known.

Let us recall some important results, focusing on the case where G/H is a symmetric
space. If the metric is Riemannian, then H is compact. Using this fact Borel showed
that every simply-connected Riemannian symmetric space has a compact Clifford-Klein
form by proving that a connected semisimple Lie group always contains a discrete uni-
form subgroup [Bo]. This solves the problem in the Riemannian situation. Now, con-
sidering pseudo-Riemannian symmetric spaces, the isotropy group H is in general not
compact. Additionally, the isotropy representation may not be completely reducible.
Even for semisimple symmetric spaces the existence problem of compact quotients is
far from being solved. An exception to this are the semisimple groups, which admit
discrete uniform subgroups and thus compact quotients. Several partial results were
obtained by T. Kobayashi. He studied homogeneous spaces G/H of reductive type.
He characterised proper actions on spaces of this kind (see [Ko1]) and found sufficient
conditions for existence and non-existence of compact quotients (see e.g. [Ko1, Ko2]).
These results can be applied to semisimple symmetric spaces, which yields for example
tables of symmetric spaces admitting compact quotients. For detailed information and
further results, e.g. on tangential symmetric spaces see [KoY]. Now let us turn to non-
semisimple symmetric spaces. We will say that a pseudo-Riemannian symmetric space
is indecomposable if it is not a non-trivial product of pseudo-Riemannian symmetric
spaces. Lorentzian symmetric spaces which are indecomposable but not semisimple are
called Cahen-Wallach spaces. They have a solvable transvection group. The question
of which Cahen-Wallach spaces have compact quotients is studied in [KO3]. There are
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already some results for non-semisimple symmetric spaces with a metric of signature
(2, n). Namely, Maeta [M] studied indecomposable spaces with a metric of signature
(2, 2) whose transvection group is solvable. Among those whose transvection group
is not nilpotent, he determined all spaces that have compact quotients by a discrete
subgroup of the isometry group. These are exactly two spaces. In the notation of our
paper they correspond to X1(ε,−ε, 1) for ε = ±1. One of these spaces, X1(1,−1, 1), is
isometric to the hyperbolic oscillator group with its biinvariant metric, which is known
to have cocompact lattices. For the two spaces with a nilpotent transvection group, e.g.
those of type N , he proved that they do not admit compact quotients by discrete sub-
groups of the transvection group. As noted above, the isometry group of these spaces
is larger than the transvection group. It is not solvable and therefore the methods
used by Maeta do not apply to this case. So for spaces of type N the problem of the
existence of compact quotients by a discrete group of isometries remained open.

In the present paper we solve the existence problem of compact quotients by isometries
for all remaining symmetric spaces of signature (2, 2), i.e. for those with a nilpotent
or a non-solvable transvection group. We use classical methods like syndetic hulls and
the theory of subgroups of PSL(2,R). It turns out that all these spaces do not admit
compact quotients:

Theorem 1.1 If X is an indecomposable non-semisimple symmetric space of signature
(2, 2), then X admits a compact quotient by a discrete subgroup of the isometry group
if and only if X is isometric to one of the spaces X1(ε,−ε, 1), ε = ±1.

Although we defined quotients as quotients by discrete subgroups that act freely, the
freeness condition is not important for the spaces considered here. We will apply
Selberg’s Lemma to show that if Γ is a discrete subgroup of the isometry group of a
symmetric space X of signature (2, 2) acting properly and cocompactly, then Γ contains
a finite index subgroup that acts freely.

2 The transvection and the isometry group

LetX be a simply-connected semi-Riemannian symmetric space and Iso(X) its isometry
group. We choose a base point o ∈ X. For each p ∈ X let θp ∈ Iso(X) be the point
symmetry at p. Locally around p, this map is the geodesic reflection about p ∈ X.
The transvection group Ĝ of X is the normal subgroup of Iso(X) generated by all
compositions θp ◦ θq for p, q ∈ X. It is the smallest subgroup of Iso(X) that acts
transitively on X and is invariant under conjugation by θo . In particular, we obtain
a diffeomorphism Ĝ/Ĝ+ → X, where Ĝ+ ⊂ Ĝ denotes the stabiliser of o. We denote
by θ : Iso(X) → Iso(X) the conjugation by θo. It induces an involutive isomorphism
of the Lie algebra iso(X) of Iso(X), and of the Lie algebra ĝ of the transvection group
Ĝ. We denote these involutions by θ as well. For each θ-invariant subspace h of iso(X)
we denote by h+ and h− the eigenspaces of θ with eigenvalues 1 and −1, respectively.
In particular, h = h+ ⊕ h−. The subspace m := iso(X)− can be naturally identified
with the tangent space ToX at the base point. Indeed, if π denotes the projection

5



π : Iso(X) → X, g 7→ g(o), and e denotes the identity in Iso(X), then dπe : m → ToX
is an isomorphism. The Lie algebra ĝ equals ĝ = ĝ+ ⊕ ĝ− = [m,m] ⊕ m ⊂ iso(X), and
ĝ+ coincides with the Lie algebra of the stabiliser Ĝ+. By the natural identification
ToX ∼= m the metric on X defines a (non-degenerate indefinite) scalar product on m,
which extends to an ad(ĝ)-invariant scalar product 〈· , ·〉 on ĝ for which θ is an isometry.
The triple (ĝ, θ, 〈· , ·〉) is called a symmetric triple. It determines X completely.

Let us first recall how we recover the transvection group from the symmetric triple.
Denote by G̃ the simply-connected Lie group with Lie algebra ĝ and by G̃+ its connected
subgroup with Lie algebra ĝ+. Then X = G̃/G̃+. However, G̃ is not necessarily equal
to the transvection group since, in general, it does not act effectively. Let N ⊂ G̃
denote the set of elements that act trivially on X.

Lemma 2.1 The group N is discrete and normal in G̃. It equals the intersection of
G̃+ and the center of G̃.

Proof. An element g0 ∈ G̃ belongs to N if and only if g0 ∈ gG̃+g
−1 for all g ∈ G̃. Thus

N =
⋂

g∈G̃ gG̃+g
−1. In particular, N is normal in G̃ and contained in G̃+. It is discrete

since its Lie algebra n satisfies [n, ĝ−] ⊂ n ∩ ĝ− = 0, which implies n = 0 since ĝ+ acts
faithfully on ĝ−. As a normal discrete subgroup of G̃ it is contained in the centre Z(G̃).
Hence N ⊂ G̃+ ∩ Z(G̃). The converse inclusion is trivially satisfied. ✷

We put Ĝ := G̃/N and Ĝ+ := G̃+/N . Then, X = Ĝ/Ĝ+, and Ĝ is the transvection
group of X.

Let us now describe how we can determine the isometry group of X. We denote by
Iso(X)+ ⊂ Iso(X) the stabiliser of o ∈ X.

Lemma 2.2 The isometry group of X is isomorphic to (Ĝ ⋊ Iso(X)+)/Ĝ+.

Suppose that there is a subgroup P0 of Iso(X)+ such that Iso(X)+ = P0 · Ĝ+ and
Ĝ+ ∩ P0 = {e}, then Iso(X) ∼= Ĝ ⋊ P0, where P0 acts on Ĝ by conjugation.

Proof. The group Iso(X) acts on Ĝ by conjugation. The homomorphism Ĝ⋊Iso(X)+ →
Iso(X), (g, p) 7→ gp is surjective. Its kernel equals {(g−1, g) ∈ Ĝ ⋊ Iso(X)+ | g ∈ Ĝ}
∼= Ĝ+, where the latter isomorphism is given by (g−1, g) 7→ g. Hence we have Iso(X) ∼=
(Ĝ ⋊ Iso(X)+)/Ĝ+, where g ∈ Ĝ+ acts by (ĝ, p) 7→ (ĝpg−1p−1, pg). As for the second
statement, the map Ĝ ⋊ P0 → Iso(X), (g, p0) 7→ gp0 is an isomorphism. ✷

We denote by Aut(ĝ, θ, 〈· , ·〉) the group of automorphisms of the symmetric triple
(ĝ, θ, 〈· , ·〉), i.e., of isometric Lie algebra automorphisms of ĝ that commute with θ.
Similarly, let Aut(Ĝ, θ, 〈· , ·〉) be the group of Lie group automorphisms of Ĝ that com-
mute with the involution θ of Ĝ and preserve the biinvariant metric on Ĝ associated
with 〈· , ·〉. Since ĝ+ = [m,m], an element φ of Aut(ĝ, θ, 〈· , ·〉) is determined by its
restriction to m ⊂ ĝ.

6



Lemma 2.3 The following maps are isomorphism of Lie groups:

Ψ1 : Iso(X)+ −→ Aut(ĝ, θ, 〈· , ·〉), f 7−→ φ, φ|m = dfo, (1)

Ψ2 : Aut(Ĝ, θ, 〈· , ·〉) −→ Aut(ĝ, θ, 〈· , ·〉), ϕ 7−→ ϕ∗ = dϕe, (2)

Ψ : Iso(X)+ −→ Aut(Ĝ, θ, 〈· , ·〉), f 7−→ Cf , Cf (g) = fgf−1. (3)

Moreover, Ψ = Ψ−1
2 ◦Ψ1, and the inverse of Ψ is given by ϕ 7−→ fϕ, fϕ(gĜ+) = ϕ(g)Ĝ+.

Proof. The map Ψ1 is well defined. Indeed, dfo : m → m preserves 〈· , ·〉|m×m and the
Riemann curvature tensor, which is given by R(X,Y )Z = [[X,Y ], Z]. Hence it uniquely
extends to an automorphism φ of (ĝ, θ, 〈· , ·〉). Obviously, Ψ1 is injective.

Clearly, Ψ2 is an injective homomorphism. We show that it is also surjective. We con-
sider the universal cover G̃ of Ĝ. Let θ̃ be the involution of G̃ corresponding to θ : ĝ → ĝ

and 〈· , ·〉∼ the biinvariant metric on G̃ corresponding to 〈· , ·〉 on ĝ. Then Aut(ĝ, θ, 〈· , ·〉)
is isomorphic to Aut(G̃, θ̃, 〈· , ·〉∼). Furthermore, each element φ̃ of Aut(G̃, θ̃, 〈· , ·〉∼)
descends to an automorphism φ of Ĝ = G̃/N . Indeed, since φ̃ commutes with θ̃, it
preserves G̃+. Since it also preserves the centre of G̃, it preserves N . Of course, φ is
an isometry on (Ĝ, 〈· , ·〉) and commutes with θ : Ĝ → Ĝ since this is true on the Lie
algebra level. Consequently, Ψ2 is an isomorphism.

Let us first verify that Ψ = Ψ−1
2 ◦ Ψ1. We have to show that Ψ2(Ψ(f)) = Ψ1(f) ∈

Aut(ĝ, θ, 〈· , ·〉) holds for any f ∈ Iso(X)+. As explained above, it is sufficient to verify
Ψ2(Ψ(f))|m = Ψ1(f)|m. Since Ψ2(Ψ(f)) and Ψ1(f) preserve m, this is equivalent to
dπeΨ2(Ψ(f)) = dπeΨ1(f), where π denotes the projection π : Ĝ → X, g 7→ g(o). We
have dπeΨ2(Ψ(f)) = dπe ◦ (dCf )e = d(π ◦ Cf )e = d(f ◦ π)e since f(o) = o. Because
of d(f ◦ π)e = dfo ◦ dπe = dπeΨ1(f) we are done (note that in (1) we already used
the identification dπe : m → ToX). The map defined in the last line of the lemma is
a right inverse of Ψ. Indeed, the fact that Ψ(fϕ)(g) = fϕgf

−1
ϕ ∈ Ĝ, and the identity

fϕgf
−1
ϕ (g0Ĝ+) = fϕ(g(f

−1
ϕ (g0Ĝ+))) = fϕ(gϕ

−1(g0)Ĝ+) = ϕ(g)g0Ĝ+ for all g0 ∈ Ĝ,
prove that Ψ(fϕ)(g) = ϕ(g) holds for all g ∈ G+. This shows that Ψ is surjective,
which also implies the surjectivity of Ψ1. Since we already know that Ψ is injective, it
is an isomorphism and the right inverse discussed above equals Ψ−1. ✷

Under the isomorphism Ψ, the action of Iso(X)+ on Ĝ by conjugation turns into the
natural action of Aut(Ĝ, θ, 〈· , ·〉) on Ĝ. We want to use the isomorphisms from Lemma
2.3 to reformulate Lemma 2.2 such that it becomes more suitable for the computation
of the isometry group.

Corollary 2.4 Assume that there exists a subgroup P̄0 ⊂ Aut(ĝ, θ, 〈· , ·〉) such that
Aut(ĝ, θ, 〈· , ·〉) = P̄0 · Ad(Ĝ+) and P̄0 ∩ Ad(Ĝ+) = {e}. Then Iso(X) = Ĝ ⋊ P̃0 for
P̃0 := Ψ−1

2 (P̄0).

Proof. Note that Ψ1(Ĝ+) = (Ψ2 ◦ Ψ)(Ĝ+) = Ad(Ĝ+). Thus we can apply Lemma 2.2
to P0 := Ψ−1

1 (P̄0). Now we use the isomorphism Ψ to identify P0 with P̃0. ✷
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3 Symmetric spaces of signature (2,2)

3.1 Review of the classification result

The structure of pseudo-Riemannian symmetric spaces was studied in [KO1]. There,
a functorial assignment was constructed that associates with a pseudo-Riemannian
symmetric space X a triple consisting of a Lie algebra with involution, a semisimple
orthogonal module of the Lie algebra with involution, and a quadratic cohomology class
of this module. This led to a classification scheme for indecomposable non-semisimple
pseudo-Riemannian symmetric spaces. In the case of metrics of index two this scheme
gives an explicit classification in the form of a list. In the following we will specialise
this list to signature (2, 2). Let us first recall the notion of a quadratic extension.

Let (l, θl) be a Lie algebra with involution and let (ρ, a, 〈· , ·〉
a
, θa) be an orthogonal

(l, θl)-module, which means that

1. ρ is a representation of the Lie algebra l on the finite-dimensional real vector
space a,

2. 〈· , ·〉
a
is a scalar product on a which satisfies 〈ρ(l)a, a′〉a + 〈a, ρ(l)a′〉a = 0 for all

l ∈ l and a, a′ ∈ a,

3. θa is an involutive isometry of a such that θa ◦ ρ(θl(L)) = ρ(L) ◦ θa for all L ∈ l.

We consider the vector space
d := l

∗ ⊕ a⊕ l

and define an inner product 〈· , ·〉 and an involutive endomorphism θ on d by

〈z + a+ l, z′ + a′ + l′〉 := 〈a, a′〉a + z(l′) + z′(l)

θ(z + a+ l) := θ∗l (z) + θa(a) + θl(l)

for z, z′ ∈ l∗, a, a′ ∈ a and l, l′ ∈ l. Now we choose a 2-form α on l with values in a

and a 3-form γ on l with values in R such that (α, γ) is a (θl, θa)-invariant quadratic
cocycle, that is, dα = 0, dγ = 1

2 〈α∧α〉 and θa ◦ θ∗l α = α, θ∗l γ = γ. The map 〈· ∧ ·〉 used
in the condition for dγ denotes the composition of the usual wedge product and 〈· , ·〉

a
.

Then the bilinear map [· , ·] : d× d → d defined by [l∗, l∗ ⊕ a] = 0 and

[l, l′] = γ(l, l′, ·) + α(l, l′) + [l, l′]l (4)

[l, a] = ρ(l)a− 〈a, α(l, ·)〉 (5)

[l, z] = ad ∗(l)(z) (6)

[a, a′] = 〈ρ(·)a, a′〉 (7)

for z ∈ l∗, a, a′ ∈ a and l, l′ ∈ l is a Lie bracket and dα,γ(l, θl, a) := (d, θ, 〈· , ·〉) is a
symmetric triple.

Whenever we consider a vector space W with involution θ, we will denote by W± the
(±1)-eigenspace of θ. For elements w ∈ W , we will write w = w++w− where w+ ∈ W+,
and w− ∈ W−.
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Proposition 3.1 If (ĝ, 〈· , ·〉, θ) is a symmetric triple associated with an indecomposable
non-semisimple symmetric space of signature (2, 2), then it is isomorphic to dα,γ(l, θl, a)
for exactly one of the data in the following list (which contains only data giving rise to
such triples):

1. l = R
1 = R · e1, θl = − idl,

(i) a = R
4, θa = diag(1, 1,−1,−1), 〈· , ·〉

a
= diag(ε1, ε2,−1, 1), ε1, ε2 ∈ {1,−1},

ρ(e1)(a1, a2, a3, a4) = (ε1a3,−ε2λa4, a1, λa2), λ ∈ R>0,
α = 0, γ = 0;

(ii) a = R
4, θa = diag(1, 1,−1,−1), 〈· , ·〉

a
= diag(−1, 1,−1, 1),

ρ(e1)(a1, a2, a3, a4) = (−νa3 + a4, a3 + νa4, νa1 + a2, a1 − νa2), ν ∈ R>0,
α = 0, γ = 0;

2. l = R
2 = span{e1, e2}, θl = − idl,

a = R = R · a0, θa = ida, 〈a0, a0〉 = κ, κ = ±1,
ρ = 0,
α(e1, e2) = a0, γ = 0;

3. l = {[e1, e2]l = e3, [e1, e3]l = −εe2}, ε ∈ {1,−1},
∼=

{
so(2) ⋉ R

2, if ε = 1,
so(1, 1) ⋉ R

2, if ε = −1,

θl = diag(−1,−1, 1),

a = 0,
α = 0, γ(e1, e2, e3) = κ, κ ∈ {1,−1};

4. l = {[e1, e2]l = e3, [e1, e3]l = −e2, [e2, e3]l = εe1}, ε ∈ {1,−1}
∼=

{
su(2), if ε = 1,
sl(2,R), if ε = −1,

θl = diag(1,−1,−1),

a = 0,
α = 0, γ(e1, e2, e3) = c, c ∈ R.

5. l = sl(2,R) = {[e1, e2]l = e3, [e1, e3]l = −e2, [e2, e3]l = −e1},
θl = diag(−1, 1,−1),

a = 0,
α = 0, γ(e1, e2, e3) = c, c ∈ R.

Proof. We reduce [KO1, Theorem 7.10] to the case of signature (2, 2) using the notation
from [KO1].

If l = R, then a− is two-dimensional and the restriction of 〈· , ·〉
a
to a− has signature

(1, 1). So we have the following five cases:

• a = a
0,1
+ ⊕ a

1,0
− ⊕ a

1,0
+ ⊕ a

0,1
− , ρ = ρ̃−1 ⊕ ρ̃+λ for λ ∈ R>0,
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• a = a
0,1
+ ⊕ a

1,0
− ⊕ a

0,1
+ ⊕ a

0,1
− , ρ = ρ̃−1 ⊕ ρ+µ for µ ∈ R>0,

• a = a
1,0
+ ⊕ a

1,0
− ⊕ a

1,0
+ ⊕ a

0,1
− , ρ = ρ−1 ⊕ ρ̃+λ for λ ∈ R>0,

• a = a
1,0
+ ⊕ a

1,0
− ⊕ a

0,1
+ ⊕ a

0,1
− , ρ = ρ−1 ⊕ ρ+µ for µ ∈ R>0,

• a = a
1,1
+ ⊕ a

1,1
− , ρ = ρ′′1,ν , ν ∈ R>0.

The first four cases merge into item 1 (i) of the proposition. The fifth case is item 1 (ii).
Note that contrary to the claim in [KO1] the symmetric triples for the parameters ν
and −ν are isomorphic.

If dim l− = 2, then l is one of the Lie algebras R
2, n(2) ∼= so(2) ⋉ R

2, l = r3,−1
∼=

so(1, 1)⋉R
2, the 3-dimensional Heisenberg algebra h(1), su(2) or sl(2,R), where sl(2,R)

appears with two different involutions. In all cases a− must be trivial to obtain a four-
dimensional symmetric space. This excludes l = h(1). For l = R

2, the condition
a− = 0 reduces the possibilities for a in item (2) of [KO1, Theorem 7.10] to cases 2.
and 3. for p = q = 0. These two cases result in item 2 of the proposition. For the
remaining l, [KO1, Theorem 7.10] shows that the condition a− = 0 implies a = 0. The
cases l = so(2) ⋉ R

2 and l = so(1, 1) ⋉ R
2 merge into item 3 of the proposition. For

l ∈ {su(2), sl(2,R)}, we obtain the following. Cases (6) and (7) of [KO1, Theorem 7.10]
give item 4 of the proposition. Finally, case (8) of [KO1, Theorem 7.10] gives item 5.
above. ✷

Each of the triples in Proposition 3.1 corresponds to a simply-connected symmetric
space. Thus we obtain five families of symmetric spaces.

Definition 3.2 Let us denote the simply-connected symmetric spaces associated with
the symmetric triples occuring on the above list by

1. (i) X1(ε1, ε2, λ), ε1, ε2 ∈ {1,−1}, λ ∈ R>0,

(ii) X2(ν), ν ∈ R>0,

2. N(κ), κ ∈ {1,−1},

3. Y (ε, κ), ε, κ ∈ {1,−1},

4. Z(ε, c), ε ∈ {1,−1}, c ∈ R,

5. Z ′(c), c ∈ R,

according to their item in the list and the parameters on which they depend.

The classification in [KO1] is based on the fact that every symmetric triple (g, 〈· , ·〉, θ)
without simple ideals can be endowed with the structure of a quadratic extension.
In general, this can be done in several ways. There is, however, a canonical choice.
This is characterised by the additional condition that l∗ coincides with the canonical
isotropic ideal of g. A quadratic extension with this property is called balanced. The
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canonical isotropic ideal is uniquely determined by the Lie algebra structure of g [KO1,
Section 5]. In particular it is invariant under automorphisms of g. This leads to the
following remark, which will be useful later in the determination of the isometry group
of the symmetric spaces under consideration.

Remark 3.3 The data in the Theorem 3.1 are given in such a way that the canonical
isotropic ideal of g equals l∗. In particular, each automorphism of (g, 〈· , ·〉, θ) preserves
l∗ and its orthogonal complement l∗ ⊕ a.

In [KO1, Corollary 7.12] all symmetric triples (ĝ, θ, 〈· , ·〉) associated with an indecom-
posable pseudo-Hermitian symmetric space of (real) signature (2, 2q), q ≥ 0, were
determined. In [KO2, Theorem 4.1] this result was improved and also the complex
structures were classified. The complex structure corresponds to an anti-symmetric
derivation J on ĝ which satisfies Jθ = θJ , J2|ĝ− = − idĝ− and J |ĝ+ = 0. If we reduce
the list in [KO2, Theorem 4.1] to signature (2, 2), we obtain the following result.

Proposition 3.4 If X is a simply-connected indecomposable non-semisimple symmet-
ric space of signature (2, 2), then it is pseudo-Hermitian if and only if it is isometric
to N(κ) for κ = ±1 or to Z(ε, c) for ε = ±1 and c ∈ R.

If (ĝ, θ, 〈· , ·〉) is the associated symmetric triple given as in Proposition 3.1, then up to
an automorphism of (ĝ, θ, 〈· , ·〉) the derivation J corresponding to the complex structure
is equal to

1. (−J∗
l )⊕ 0⊕ Jl : l

∗ ⊕ a⊕ l → l∗ ⊕ a⊕ l for Jl defined by Jl(e1) = e2, Jl(e2) = −e1
if X = N(κ),

2. (−J∗
l )⊕ Jl : l

∗ ⊕ l → l∗ ⊕ l for Jl = adl(e1) if X = Z(ε, c).

Another structure on pseudo-Riemannian manifolds related to Kähler structures are
para-Kähler structures, also called bi-Lagrangian structures. A para-Kähler structure
on a pseudo-Riemannian manifold (M,g) is a parallel field J of skew-symmetric en-
domorphisms with J2 = id. The two eigenspaces of J are isotropic, i.e., the metric
restricted to these spaces is zero. A symmetric space X with para-Kähler structure
is also called para-Hermitian. Let (ĝ, θ, 〈· , ·〉) be the symmetric triple associated with
X. A para-Kähler structure on X is equivalent to an anti-symmetric derivation J on ĝ

which satisfies Jθ = θJ , J2|ĝ− = idĝ− and J |ĝ+ = 0.

Proposition 3.5 [KO2, Proposition 4.5] If X is a simply-connected indecomposable
non-semisimple symmetric space of signature (2, 2), then it admits a para-Kähler struc-
ture if and only if it is isometric to N(κ) for κ = ±1 or to Z ′(c) for some c ∈ R.

If (ĝ, θ, 〈· , ·〉) is the associated symmetric triple given as in Proposition 3.1, then up
to an automorphism of (ĝ, θ, 〈· , ·〉) the derivation J corresponding to the para-Kähler
structure is equal to

1. (−J∗
l )⊕ 0⊕Jl : l

∗⊕ a⊕ l → l∗⊕ a⊕ l for Jl = diag(1,−1) with respect to the basis
e1, e2 of l = R

2 if X = N(κ),

2. (−J∗
l )⊕ Jl : l

∗ ⊕ l → l∗ ⊕ l for Jl = adl(e2) if X = Z ′(c).
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3.2 Preparatory calculations

We will see that the transvection groups for the symmetric spaces X1(ε1, ε2, λ), X2(ν)
and Y (ε, κ) have a common structure. They are extensions of a Heisenberg group by
the real line. In this section we will consider more general extensions of this type.

Let a be a finite-dimensional vector space, and ω : a∧ a → R a 2-form on a. Moreover,
let L ∈ sp(a, ω).

Definition 3.6 We denote by H(ω) the Heisenberg group H(ω) = R × a with group
multiplication

(z, a) · (z′, a′) = (z + z′ + 1
2ω(a, a

′), a+ a′) (8)

and define the semidirect product H(ω) ⋊ R, where t ∈ R acts on H(ω) by

t.(z, a) = (z, etLa) . (9)

Now, suppose ĝ is a quadratic extension of (l, θl) = (R,− id) by an orthogonal (l, θl)-
module (ρ, a, 〈· , ·〉a, θa). Let R be spanned by the vector e1 and denote by L the map
ρ(e1) ∈ so(a). We define the 2-form ω on a by ω = 〈L · , ·〉. It satisfies ω(a+, a+) =
ω(a−, a−) = 0. We may form the Heisenberg group H(ω) = R × a ∼= l∗ × a, and the
semidirect product Ĝ = H(ω) ⋊ R as in Definition 3.6. Then, the Lie algebra of Ĝ is
equal to ĝ.
The elements of Ĝ are of the form (z, a, t) for (z, a) ∈ H(ω) and t ∈ R. When it is
more convenient, we will write just t for (0, 0, t) ∈ Ĝ and (z, a) for (z, a, 0) ∈ Ĝ. Then,
(z, a, t) may also be written as t · (z, a), and we will usually do so.

The set Ĝ+ := {(0, a, 0) | a ∈ a+} is an abelian subgroup of Ĝ with Lie algebra ĝ+.

Proposition 3.7 The map

Φ : X = Ĝ/Ĝ+ −→ R× a− × R

t · (z, a) · Ĝ+ 7−→ (v, x, u) := (z + 1
2ω(a+, a−), a−, t)

is a diffeomorphism with inverse map

Φ−1 : R× a− ×R −→ X = Ĝ/Ĝ+

(v, x, u) 7−→ u · (v, x) · Ĝ+.

Proof. The map Φ is defined such that Φ(t · (z, a) · Ĝ+) is the unique representative of
the coset t·(z, a)·Ĝ+ ∈ Ĝ/Ĝ+ that lies in R×a−×R ⊂ Ĝ. Therefore, Φ is a well-defined
section of the projection Ĝ → Ĝ/Ĝ+, and Φ is smooth. Then, Φ is a bijection onto
Φ(Ĝ/Ĝ+) = R× a− ×R, and its inverse is the restriction of the projection Ĝ → Ĝ/Ĝ+

to R× a− × R, which is smooth. This proves the claim. ✷

Via the diffeomorphism Φ, the left-action of Ĝ on Ĝ/Ĝ+ gives rise to a left-action of Ĝ
on R× a− × R, given by

lĝ(v, x, u) := Φ(ĝ · Φ−1(v, x, u)) (10)
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for ĝ ∈ Ĝ. In particular, (v0, x0, u0) = lu0·(v0,x0)(0, 0, 0). Next we compute the differen-
tial of lu0·(v0,x0) at (0, 0, 0). Since

lu0·(v0,x0)(v, x, u) = Φ
(
u0 · (v0, x0) · u · (v, x) · Ĝ+

)

=
(
v0 + v + 1

2ω(e
−uLx0, x) +

1
2ω((e

−uLx0 + x)+, (e
−uLx0 + x)−),

(e−uLx0 + x)−, u0 + u
)
,

=
(
v0 + v + ω((e−uLx0)+, x) +

1
2ω((e

−uLx0)+, (e
−uLx0)−),

(e−uLx0)− + x, u0 + u
)
,

we obtain

dlu0·(v0,x0)|(0,0,0) =




1 0 1
2ω(x0, Lx0)

0 ida− 0
0 0 1


 ∈ GL(R× a− × R). (11)

The inner product on g− gives rise to a metric on Ĝ/Ĝ+, which we pull back along Φ−1

to a metric on R× a− × R. We denote that metric by g. In (0, 0, 0), g is given by the
restriction of 〈· , ·〉 to g−

∼= T(0,0,0)R × a− × R, and in any point (v0, x0, u0), we obtain
g by left-translating g(0,0,0) via lu0·(v0,x0). Using equation (11), we obtain

g = 2dudv + 〈· , ·〉
a−

+ 〈L2x, x〉a · du2, (12)

where 〈· , ·〉a− denotes the restriction of 〈· , ·〉a to a− × a−.

3.3 The spaces X1(ε1, ε2, λ), X2(ν) and Y (ε, κ)

Remark 3.8 The space X1(1,−1, 1) is equal to the hyperbolic oscillator group, also
called split oscillator group or Boidol’s group. This group admits a biinvariant metric
of signature (2,2). For more information see [GaK].

Let ω0 be the standard symplectic form on a = R
4, i.e.,

ω0(a, a
′) = a1a

′
3 − a3a

′
1 + a2a

′
4 − a4a

′
2. (13)

We denote by H5 the ‘usual’ 5-dimensional Heisenberg group H(ω0) and consider the
semidirect product

GL := H5 ⋊ R,

where the action of R on H5 is given by (9) for a map L ∈ sp(4,R). Recall that
a = a+ ⊕ a− = R

2 ⊕ R
2 = R

4 and that we denote by a+ and a− the components of
a ∈ a in a+ and a−. In particular,

ω0(a, a
′) = 〈a+, a′−〉2 − 〈a−, a′+〉2

holds for the standard scalar product 〈· , ·〉2 on R
2. It is well known that the map

M : H5 −→ Aff(R3) (14)

(z, a) 7−→ (A, b) =

(
1 a+ z + 1

2〈a+, a−〉2
0 I2 a−

)
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is an injective homomorphism.

In the following we give an explicit description of the transvection and isometry groups
of the spaces X1(ε1, ε2, λ), X2(ν) and Y (ε, κ). A slightly different description can
already be found in [M, Proposition 4.19].

Proposition 3.9 Let X be one of the spaces X1(ε1, ε2, λ) or X2(ν) for ε1, ε2 ∈ {1,−1}
and λ, ν ∈ R>0.

1. The transvection group Ĝ of X is isomorphic to GL for L ∈ sp(4,R) with

L(a) =

{
(−ε1a3,−ε2λ

2a4,−a1, a2), if X = X1(ε1, ε2, λ),

((ν2 − 1)a3 − 2νa4,−2νa3 − (ν2 − 1)a4,−a1, a2), if X = X2(ν).

The stabiliser is equal to the abelian group Ĝ+ = {0} × a+ ⊂ H5.

2. If X = X1(ε1, ε2, λ), then the isometry group of X is isomorphic to

Iso(X) =

{
Ĝ ⋊ (O(1, 1) × Z2), if λ = 1 and ε1 6= ε2,

Ĝ ⋊ (O(1)×O(1)× Z2), else.

Here O(1)×O(1) ∼= Z2×Z2 is understood as a subgroup of O(1, 1) and A ∈ O(1, 1)
acts on Ĝ by A.(z, a+ + a−, t) = (z, (A⊤)−1a+ + Aa−, t), where A⊤ denotes the
usual transposed of A. The remaining Z2-factor corresponds to the involution θ.

If X = X2(ν), then Iso(X) = Ĝ ⋊ (Z2 × Z2). One Z2-factor is generated by θ.
The other one acts by δ.(z, a, t) = (z, δa, t) for δ ∈ {±1} = Z2.

Proof. The symmetric triple of the space X is a quadratic extension of (l, θ) = (R,− id)
by a = R

4. As was discussed in Section 3.2, its transvection group is given as the
extension H(ω)⋊R, where R acts on H(ω) via t.(z, a) = (z, etLa). In this case the map
L : a → a and the 2-form ω on a = R

4 are given by

L(a) = (ε1a3,−ε2λa4, a1, λa2),

ω(a, a′) = a3a
′
1 − a1a

′
3 − λ(a4a

′
2 − a2a

′
4),

if X = X1(ε1, ε2, λ) and

L(a) = (−νa3 + a4, a3 + νa4, νa1 + a2, a1 − νa2),

ω(a, a′) = (νa3 − a4)a
′
1 + (a3 + νa4)a

′
2 − (νa1 + a2)a

′
3 + (a1 − νa2)a

′
4,

if X = X2(ν), where a = (a1, . . . , a4), a
′ = (a′1, . . . , a

′
4) ∈ R

4. Later on we will change
the basis to get L and ω as claimed in the proposition.

Recall that e1 spans l = R ⊂ ĝ and consider

P̄0 := {F ∈ Aut(ĝ, θ, 〈· , ·〉) | praF (e1) = 0}
= {Fr,S | S ∈ O(a), r = ±1, Sθa = θaS, SL = rLS},
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where
Fr,S : ĝ −→ ĝ, z + a+ l 7−→ rz + Sa+ rl

for z ∈ l∗, a ∈ a, l ∈ l. Obviously, P̄0 is a subgroup of Aut(ĝ, θ, 〈· , ·〉). We will show that
Aut(ĝ, θ, 〈· , ·〉) = P̄0 ·Ad(Ĝ+) holds. Take F ∈ Aut(ĝ, θ, 〈· , ·〉). Recall that F preserves
both l∗ and a ⊕ l∗, see Remark 3.3. We put S := pra ◦ F |a ∈ O(a) and a := praF (e1).
Then F ◦ Ad(L−1S−1a) is in P̄0 since

pra(F ◦ Ad(L−1S−1a))(e1) = praF (pra⊕l Ad(L
−1S−1a)(e1))

= praF (e1 − S−1a)

= a− S(S−1(a)) = 0.

Hence F ∈ P̄0 · Ad(Ĝ+) holds, which proves the claim. Furthermore, the intersection
P̄0 ∩Ad(Ĝ+) is trivial.

The group P̄0 is generated by θ and all automorphisms F1,S for some S satisfying

S ∈ O(a), SL = LS, Sθa = θaS. (15)

For X = X1(ε1, ε2, λ), this condition is equivalent to S± := S|a± ∈ O(a±) = O(1, 1)
and

S−

(
1 0
0 λ

)
=

(
1 0
0 λ

)
S+, S+

(
ε1 0
0 −λε2

)
=

(
ε1 0
0 −λε2

)
S−.

In particular, S− ∈ O(1, 1) commutes with diag(ε1,−λ2ε2). If λ = 1 and ε1 = −ε2,
then this is satisfied for arbitrary S− ∈ O(1, 1). If not, then the condition is equivalent
to S− = diag(δ1, δ2) for δ1, δ2 = ±1. Vice versa, every such matrix S− defines a unique
map S that satisfies (15). Thus P̄0 is isomorphic to O(1, 1)×Z2 if λ = 1 and ε1 = −ε2.
Otherwise, P̄0 is isomorphic to O(1) × O(1) × Z2

∼= Z2 × Z2 × Z2. In both cases,
A ∈ O(1, 1) acts on ĝ by A.(z + a+ l) = z +Aa+ +Aa− + l.

For X = X2(ν), the condition (15) is equivalent to S± := S|a± ∈ O(1, 1) and

S−

(
ν 1
1 −ν

)
=

(
ν 1
1 −ν

)
S+, S+

(
−ν 1
1 ν

)
=

(
−ν 1
1 ν

)
S−.

Hence S− ∈ O(1, 1) commutes with

(
a −b
b a

)
, where a = 1 − ν2 and b = −2ν 6= 0,

which is only possible for S− = ± ida− . Hence, P̄0 is isomorphic to Z2 × Z2, where one
Z2-factor is generated by θ and the other one by the map z + a+ l 7→ z − a+ l.

Now we change the coordinates in a in order to get the claimed expression for L and ω.

For X = X1(ε1, ε2, λ), we put â = (â1, . . . , â4) = (−a1, λa2, a3, a4). Then ω(a, a′) =
ω0(â, â

′). Moreover, we obtain L̂(â) = (−ε1â3,−ε2λ
2â4,−â1, â2) for the matrix L̂ of L

with respect to the new basis. Finally, we rename (â1, . . . , â4) back to (a1, . . . , a4) and
L̂ to L. For λ = 1 and ε1 = −ε2, we have also to determine the transformation of the
action of O(1, 1) on a. Take A ∈ O(1, 1). Then A.(z + a + l) = z + Aa+ + Aa− + l
becomes A.(z+a+ l) = z+ Âa++Aa−+ l for Â = diag(−1, 1)Adiag(−1, 1) = (A⊤)−1.
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For X = X2(ν), we use the coordinate transformation â = (â1, . . . , â4) = (−νa1 − a2,
a1 − νa2, a3, a4) and proceed as above.

By applying Corollary 2.4 we obtain the assertion of the proposition. ✷

Proposition 3.10 1. The transvection group Ĝ of Y (ε, κ) is isomorphic to GL for
L ∈ sp(4,R) with

L(a) = (a4, a3 − κa4, εκa1 − εa2,−εa1) (16)

The stabiliser is equal to the abelian group Ĝ+ = {0} × a+ ⊂ H5.

2. The isometry group of Y (ε, κ) is equal to Ĝ⋊(Z2×Z2). One Z2-factor is generated
by θ. The other one acts by δ.(z, a, t) = (z, δa, t) for δ ∈ {±1} = Z2.

Proof. ad 1: First, we show that the transvection algebra ĝ is isomorphic to a semi-
direct algebra of a Heisenberg group with the real line. This allows us to apply the
results of our preparatory calculations from Section 3.2.

We consider the Lie algebra ĝ as the quadratic extension of

l = {[e1, e2]l = e3, [e1, e3]l = −εe2} (17)

by a = 0 with γ(e1, e2, e3) = κ ∈ {1,−1}, see Section 3.1. We denote by σ1, σ2, σ3 ∈ l∗

the dual basis of e1, e2, e3. We define a new basis of ĝ:

b1 := σ1, b2 := −e3 +
κ
2σ

3, b3 := σ3, b4 := εσ2, b5 := −e2 +
εκ
2 σ

2, b6 := e1.

The non-vanishing commutators between these basis vectors are

[b2, b4] = b1, [b3, b5] = b1, (18)

[b6, b2] = −εb5 + εκb4, [b6, b3] = −εb4, [b6, b4] = b3, [b6, b5] = b2 − κb3. (19)

Let â denote the subspace spanned by b2, . . . , b5, and 〈· , ·〉â denote the restriction of
the inner product on ĝ to â. Furthermore, let L ∈ so(â) be the restriction of ad(b6) to
â. Let l̂ denote R · b6 ∼= R. We make â an orthogonal (̂l,− id

l̂
)-module by introducing

the representation ρ : l̂ → so(â), l = te1 7→ tL, and the involution θâ which is the
restriction of the involution on ĝ to â. This shows that ĝ can also be considered as the
quadratic extension of (̂l,− id

l̂
) by (ρ, â, 〈· , ·〉

â
, θâ) with γ̂ = 0 and α̂ = 0.

Now, ĝ has the form of the Lie algebras considered in Section 3.2 (in that section, â was
denoted by a, and l̂ was denoted by l). Thus the transvection group Ĝ is isomorphic to
the semidirect product H(ω) ⋊ R, where H(ω) is the Heisenberg group defined by the
2-form ω : â ∧ â → R, ω(a, a′) := 〈La, a′〉â and the action of R on H(ω) is given as in
Definition 3.6. If we identify â with R

4 using the basis b2, . . . , b5, then (18) and (19)
imply that L is given by (16) and ω equals the standard symplectic form ω0 defined
in (13).

ad 2: Here we use the description of g as a balanced quadratic extension as given in
Proposition 3.1. Let A be an automorphism of (g, θ, 〈· , ·〉). Then A preserves the centre
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of g. Furthermore, l∗+ := l∗ ∩ ĝ+ and l∗− := l∗ ∩ ĝ− are invariant under A since l∗ is
the canonical isotropic ideal of ĝ, see Remark 3.3. If σ1, σ2, σ3 denotes the basis of l∗

that is dual to e1, e2, e3, this implies that A preserves R · σ1, R · σ3 and span{σ1, σ2}.
By Eqs. (17) and (6), the group {Ad(exp te3)|l∗+ | t ∈ R} consists of linear maps A0

satisfying A0(σ
1) = σ1 and A0(σ

2) = σ2 + sσ1, s ∈ R. Therefore, A = A′A0, where
A0 ∈ Ad(Ĝ+) and A′|l∗ = diag(a−1, b−1, c−1), a, b, c ∈ R, with respect to the basis
σ1, σ2, σ3. Since A′ is an isometry, we obtain Ā′ := prlA

′|l = diag(a, b, c). Since A
is a Lie algebra automorphism, also the map Ā′ ∈ End(l) is an automorphism and
preserves γ. Using (17) and the fact that γ is a non-vanishing 3-form on l, we obtain
a, b, c ∈ {1,−1} and abc = 1. Now we consider the inner automorphisms Ad(exp tσ3).
They are the identity on l∗ ⊕Re3 and map

e1 7−→ e1 + tσ2, e2 7−→ e2 − tσ1, e3 7−→ e3.

Hence A′ = A′′A1 for some A1 ∈ Ad(Ĝ+) and A′′ = diag(a−1, b−1, c−1, a, b, c) with
respect to the basis σ1, σ2, σ3, e1, e2, e3. Now we apply Corollary 2.4 to

P̄0 = {diag(a−1, b−1, c−1, a, b, c) | a, b, c = ±1, abc = 1} ∼= Z2 × Z2

and we obtain the assertion. ✷

Recall, that elements of Ĝ = GL = H5 ⋊ R are of the form (z, a, t) for (z, a) ∈ H5 =
R×R

4 and t ∈ R and that we also write just t for (0, 0, t) ∈ Ĝ and (z, a) for (z, a, 0) ∈ Ĝ.
Then, (z, a, t) = t · (z, a) and we will usually write elements of Ĝ in the latter way.

Proposition 3.11 For X = X1(ε1, ε2, λ), X2(ν), or Y (ε, κ) the map

Φ : X = Ĝ/Ĝ+ −→ R
4

t · (z, a) · Ĝ+ 7−→ (v, x, u) := (z + 1
2ω0(a+, a−), a−, t)

is a diffeomorphism. The action of the transvection group is given by

t · (z, a) · (v, x, u) =
(
M(z, e−uLa)(v, x), u + t

)

for t·(z, a) ∈ R⋉H5, where the map M : H5 → Aff(R3) is defined in (14). In particular,
the Heisenberg group H5 acts by affine transformations on each u-level.

(i) For X = X1(ε1, ε2, λ), the metric is given by

2dudv − dx21 + dx22 + (−ε1x
2
1 − ε2λ

2x22)du
2

An isometry (δ1, δ2, δ3) ∈ O(1)×O(1)× Z2 acts by

(δ1, δ2, δ3) · (v, x, u) = (δ3v, δ1δ3x1, δ2δ3x2, δ3u).

If, moreover, λ = 1 and ε1 = −ε2, then A ∈ O(1, 1) acts by

A · (v, x, u) = (v,Ax, u).
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(ii) For X = X2(ν), the metric is given by

2dudv − dx21 + dx22 + ((ν2 − 1)(x21 − x22)− 4νx1x2)du
2

An isometry (δ1, δ2) ∈ Z2 × Z2 acts by

(δ1, δ2) · (v, x, u) = (δ2v, δ1δ2x, δ2u).

(iii) For X = Y (ε, κ), the metric is given by

2dudv − ε(2dx1dx2 + κdx22) + (2x1x2 − κx22)du
2

An isometry (δ1, δ2) ∈ Z2 × Z2 acts by

(δ1, δ2) · (v, x, u) = (δ2v, δ1δ2x, δ2u).

Proof. The symmetric space X is of the form considered in Section 3.2. That the
map Φ is a diffeomorphism and the claimed form of the metric therefore follows
from Proposition 3.7 and equation (12) respectively. The image of X under the dif-
feomorphism Φ may be identified with a subspace of the transvection group Ĝ via
R
4 = R × R

2 × R ∼= R × a− × R (or rather R × â− × R in the case X = Y (ε, κ)).
Equation (10) then describes the action of the transvection group on X under this
identification, while the action of the isometry group on X follows from Propositions
3.9 and 3.10. ✷

Remark 3.12 The metrics of the families X1,X2, Y behave similarly to Lorentzian
plane waves. They are of the form 2dudv + 〈· , ·〉 +H(u, x)du2, where 〈· , ·〉 is pseudo-
Euclidean of signature (1, 1). There exists a non-zero parallel vector field V , which is
unique up to multiplication by a scalar. Indeed, the holonomy representation is given
by the adjoint representation of Ĝ+ on ĝ−. If X belongs to one of the families X1,X2

or Y , then the space of invariants of this representation is exactly l∗−
∼= R or l̂∗−

∼= R,
respectively. We have also seen that the transvection group contains the 5-dimensional
Heisenberg group, which acts transitively on each leaf of the integrable distribution V ⊥.

Proposition 3.13 [M] The space X1(ε1, ε2, λ) admits a compact quotient if and only
if λ = 1 and ε1 6= ε2. Compact quotients can be obtained by discrete subgroups of the
transvection group. The spaces X2(ν) and Y (ε, κ) do not admit compact quotients by
discrete subgroups of their isometry groups.

Proof. The spaces X1(ε1, ε2, λ), X2(ν), and Y (ε, κ) correspond to the symmetric spaces
of Case (B) in [M]. In the notation of [M] the transvection group of X1(1,−1, 1) is equal
to GI1,1,I1,1 and the one ofX1(−1, 1, 1) equals G−I1,1,I1,1 . The assertion now follows from
[M, Theorem 1.7]. ✷

The following proposition shows that the conditions for the action of the discrete sub-
group may be relaxed, it is not necessary to assume that it acts freely. We will show
that the isometry groups of symmetric spaces of type X1, X2 and Y are linear and
apply Selberg’s Lemma.
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Proposition 3.14 Let X be one of the spaces X1(ε1, ε2, λ), X2(ν), and Y (ε, κ). Every
discrete subgroup of the isometry group of X acting properly and cocompactly on X
admits a finite index subgroup that also acts freely.

Proof. We want to apply Selberg’s Lemma. Let us therefore first prove that the
isometry group of X is virtually linear, i.e. that it contains a finite index subgroup for
which there is an injective homomorphism into a matrix group. By Proposition 3.9,
the isometry group contains a connected finite index subgroup of the form H5 ⋊ρ Q,
where Q = R or Q = R × SO0(1, 1). In particular, Q is a matrix group. We define
a homomorphism ϕ : H5 ⋊ρ Q → H5 ⋊ Aut(H5) by ϕ(h, q) = (h, ρ(q)). Since the
representation ρ is faithful, ϕ is injective. Now we use that H5 ⋊ Aut(H5) is linear.
Indeed, the adjoint representation of this group on its Lie algebra h̃ is faithful since
the centre of H5 ⋊ Aut(H5) is trivial. Thus it defines an injective homomorphism into
GL(h̃). Consequently,

H5 ⋊ρ Q ∋ (h, q) 7−→ (q,Ad(ϕ(h, q))) ∈ Q×GL(h̃)

is an injective homomorphism into a matrix group.

Now, let Γ be a discrete subgroup of the isometry group of X acting properly and
cocompactly. We may assume that Γ is contained in the linear finite index subgroup
of the isometry group. Then, Selberg’s Lemma provides a torsion-free subgroup of Γ
with finite index, which then acts freely, see Lemma A.3. ✷

3.4 The spaces N(κ)

The underlying Lie algebra of the symmetric triple is nilpotent and equals ĝ = l∗⊕a⊕l =
R⊕R

2 ⊕R as a vector space. As usual we write the elements of l∗ ⊕ a⊕ l as z + a+ l,
with z ∈ l∗, a ∈ a, l ∈ l. The two-form α used to define the Lie bracket is equal to the
canonical symplectic form on R

2, i.e. α(l, l̂) = l1l̂2− l2l̂1 for l = (l1, l2), l̂ = (l̂1, l̂2) ∈ R
2.

First we will determine the transvection group Ĝ of N(κ) by integrating the Lie bracket
of ĝ. The resulting form of the group multiplication has the advantage that the group
SL±(2,R) acts on Ĝ in a natural way. This leads to a workable description of the
full isometry group. Later, in Corollary 3.18, we will obtain an alternate description
of Ĝ as a subgroup of stricly upper triangular matrices of rank 6. Then the group
multiplication is easier to understand. However, the action of SL±(2,R) takes a more
complicated form.

It would be possible to write Ĝ in the form (H3 ×R)⋊R, where H3 denotes the three-
dimensional Heisenberg group. Similar calculations as in Section 3.2 would then again
lead to a metric of the form 2dudv+〈· , ·〉+H(u, x)du2, where 〈· , ·〉 is pseudo-Euclidean
of signature (1, 1). However, doing so seems unnatural. Indeed, an analogous argument
to that in Remark 3.12 shows that the spaces N(κ) admit a two-dimensional space of
parallel vector fields, since l∗− = R

2 is the space of invariants of Ad(Ĝ+)|ĝ− . Writing Ĝ
as (H3 × R) ⋊ R would then arbitrarily distinguish one of the parallel vector fields.

A description of the isometry group of N(κ) can already be found in [M, Proposi-
tion 4.16].

19



Proposition 3.15 1. The transvection group Ĝ of N(κ) is isomorphic to the group
R
2 × R× R

2 with multiplication

(z, a, l) · (ẑ, â, l̂ ) =
(
z + ẑ + κ

3α(l, l̂ )(l +
1
2 l̂) + κâl, a+ â+ 1

2α(l, l̂ ), l + l̂
)
. (20)

Under this isomorphism, the stabiliser Ĝ+ is equal to {(0, â, 0) | â ∈ R}.

2. The isometry group of N(κ) is isomorphic to Ĝ ⋊ SL±(2,R). The action of
S ∈ SL±(2,R) on Ĝ is given by (z, a, l) 7→ (|S|Sz, |S|a, Sl).

Proof. ad 1. For z ∈ l ∼= R
2, we define z♭ := α(z, ·). Using a (pseudo-) unit vector we

identify a ∼= R. Moreover, we identify l ∼= l∗, z 7→ −z♭, thus l∗ ⊕ a⊕ l ∼= l⊕ a⊕ l. Then

[z + a+ l , ẑ + â+ l̂ ] = κ(â · l − a · l̂) + α(l, l̂ ) ∈ l⊕ a ⊂ l⊕ a⊕ l, (21)

〈z + a+ l , ẑ + â+ l̂ 〉 = −α(z, l̂ )− α(ẑ, l) + κaâ. (22)

We describe the associated simply-connected Lie group. The underlying set is equal to
l× a× l. If we put h(z, a) := (z, a, 0) and λ(l) := (0, 0, l), then [K2, Lemma 2.3] gives

h(z, a) · h(ẑ, â) = h(z + ẑ, a+ â)

λ(l) · λ(l̂ ) = h
(
κ
3α(l, l̂ )(l +

1
2 l̂ ),

1
2α(l, l̂ )

)
· λ(l + l̂),

λ(l) · h(z, a) · λ(l)−1 = h(z + κal, a),

which implies (20). The claimed expression for Ĝ+ is clear. The group Ĝ indeed acts
effectively on Ĝ/Ĝ+. Hence Ĝ is the transvection group of N(κ).

ad 2. Let us first remark that

Ad(h(0, â))(z + a+ l) = (z − κâl) + a+ l ∈ l⊕ a⊕ l

implies
Ad(Ĝ+) = {z + a+ l 7→ (z − rl) + a+ l | r ∈ R}. (23)

An endomorphism F of g is a Lie algebra automorphism preserving θ if and only if

F (z + a+ l) = (|S|−1 · Sz + T ′l) + |S|a+ Sl ∈ l⊕ a⊕ l

for some S ∈ GL(l) ∼= GL(2,R) and T ′ ∈ End(l).

If, in addition, F is an isometry, then |S| = ±1. In particular, |S|−1 = |S|. Hence F
equals the composition F1 ◦ F2, where

F1(z + a+ l) = (z + T l) + a+ l, F2(z + a+ l) = |S|Sz + |S|a+ Sl,

where T = T ′S−1. The map F2 is an automorphism of (ĝ, θ, 〈· , ·〉), in particular it is an
isometry. Hence F1 is also an isometry. Consequently, F1(l) = T l+ l ∈ l⊕ l is isotropic,
which implies α(T l, l) = 0. Thus, T l is a multiple of l, and since T is linear, it follows
that T is a multiple of the identity. Consequently, F1 is an element of Ad(Ĝ+) by (23).
Set

P̄0 := {z + a+ l 7→ |S|Sz + |S|a+ Sl | S ∈ SL±(2,R)} ⊂ Aut(ĝ, θ, 〈· , ·〉). (24)
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We have seen that Aut(ĝ, θ, 〈· , ·〉) = Ad(Ĝ+) · P̄0. Moreover, the intersection of P̄0 and
Ad(Ĝ+) is trivial. Corollary 2.4 therefore yields that the isometry group of N(κ) equals
Ĝ ⋊ P̃0 for P̃0 := Ψ−1

2 (P̄0). Clearly, P̃0
∼= SL±(2,R) and the action is as claimed in the

proposition. ✷

Proposition 3.16 The map

Φ : N(κ) = Ĝ/Ĝ+ −→ R
2 × R

2

(z, a, l)Ĝ+ 7−→ (v, u) := (z − κal, l).

is a diffeomorphism. Under this diffeomorphism the metric on N(κ) becomes

−κ
3 (u2du1 − u1du2)

2 + 2(du1dv2 − du2dv1).

The action of the isometry group Ĝ ⋊ SL±(2,R) is given by

(z, a, l) · S · (v, u) =
(
|S|Sv + z − κ

3α(l, Su)(Su + 1
2 l)− κa(Su+ l), Su+ l

)
.

Proof. Two elements (z, a, l), (ẑ, â, l̂) ∈ Ĝ lie in the same coset in Ĝ/Ĝ+ if and only
if there exists an a′ ∈ R such that (ẑ, â, l̂) = (z, a, l)(0, a′, 0) = (z + κa′l, a + a′, l). It
follows that the map

Ĝ/Ĝ+ −→ Ĝ , (z, a, l)Ĝ+ 7−→ (z − κal, 0, l)

is a well-defined section of the quotient map Ĝ → Ĝ/Ĝ+. In particular, it is injective,
and thus a diffeomorphism onto its image R2×{0}×R

2 ⊂ Ĝ. Identifying R2×{0}×R
2 ∼=

R
2 × R

2 gives the first claim.

Let us now turn to the metric. The identity element of Ĝ is e = (0, 0, 0). The metric of
Ĝ/Ĝ+ is left-invariant and at eĜ+ given by the restriction of 〈· , ·〉 to ĝ−

∼= TeĜ+
(Ĝ/Ĝ+).

This metric is then pushed forward along Φ to obtain a metric on R
2 ×R

2. According
to Proposition 3.15, we have coordinates (z1, z2, a, l1, l2) on Ĝ. The coordinate vector
fields ∂z1 , ∂z2 , ∂l1 , ∂l2 at the identity e span ĝ−. We use the same notation for their
projection to TeĜ+

(Ĝ/Ĝ+). By (22), we have

〈∂zj , ∂zk〉 = 〈∂lj , ∂lk〉 = 〈∂zj , ∂lj 〉 = 0, 〈∂z2 , ∂l1〉 = 1 = −〈∂z1 , ∂l2〉

at eĜ+.

On R
2 × R

2 with coordinates (v1, v2, u1, u2), we have the vector fields ∂vj and ∂uj
,

j = 1, 2. Fix a point (v, u) ∈ R
2 × R

2. We may write (v, u) = Φ((v, 0, u)Ĝ+). Then,
the metric at (v, u) is determined by the requirement that D := d(Φ ◦ l(v,0,u)) be an

isometry from TeĜ+
(Ĝ/Ĝ+) to T(v,u)(R

2 ×R
2). From (20), compute that

D∂zj = ∂vj

D∂lj = −(−1)j κ6uj+1(u1∂v1 + u2∂v2) + ∂uj
.
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The subscript in uj+1 is to be taken modulo 2.

Combining the formulae for the inner product on TeĜ+
(Ĝ/Ĝ+) and the differential

D = d(Φ ◦ l(v,0,u)), the metric g on R
2 × R

2 can be obtained. We have

0 = 〈∂zj , ∂zk〉 = g(D∂zj ,D∂zk) = g(∂vj , ∂vk) ,

thus
1 = 〈∂zj , ∂lk〉 = g(D∂zj ,D∂lk) = g(∂vj , ∂uk

) .

Furthermore,

0 = 〈∂l1 , ∂l1〉 = g(D∂l1 ,D∂l1) =
κ
3u

2
2g(∂v2 , ∂u1

) + g(∂u1
, ∂u1

) .

Hence
g(∂u1

, ∂u1
) = −κ

3u
2
2g(∂v2 , ∂u1

) = −κ
3u

2
2 .

The metric coefficients g(∂u1
, ∂u2

) and g(∂u2
, ∂u2

) are computed analogously. This leads
to the claimed expression of the metric.

To compute the action of the isometry group, consider (v, u) = Φ((v, 0, u)Ĝ+) and take
S ∈ SL±(2,R). Then

Φ
(
S · (v, 0, u)Ĝ+

)
= Φ

(
(|S|Sv, 0, Su)Ĝ+

)
= (|S|Sv, Su)

and similarly

Φ
(
(z, a, l) · (v, 0, u)Ĝ+

)
= Φ

(
v + z + κ

3α(l, u)(l +
1
2u), a + 1

2α(l, u), u + l
)

=
(
v + z − κ

3α(l, u)(u + 1
2 l)− κa(u+ l), u+ l

)

by (20). ✷

Remark 3.17 We know from Proposition 3.4 that N(κ) is a pseudo-Hermitian sym-
metric space. We can find complex coordinates ξ1, ξ2 on N(κ) = C

2 such that

g = dξ1dξ̄2 + dξ2dξ̄1 − κ
2 |ξ2|2dξ2dξ̄2.

A suitable coordinate transformation is given by ξ1 = x1 + iy1, ξ2 = u1 + iu2, where

x1 = v2 +
κ
12u1|u|2, y1 = −v1 +

κ
12u2|u|2.

Besides a Hermitian structure, N(κ) also admits a para-Hermitian one, see Proposi-
tion 3.5. Each of these structures leads to a representation of N(κ) as an extrinsic
symmetric space. This means that N(κ) can be embedded into a pseudo-Euclidean
space V such that the geodesic reflection sx through each x ∈ N(κ) is the restriction
of a reflection s̃x of the ambient space V through the normal space at x. The group
generated by all isometries s̃xs̃y : V → V , x, y ∈ N(κ), is called extrinsic transvection
group. Isometries of N(κ) are called extrinsic if they extend to isometries of V . More
detailed information on extrinsic symmetric spaces can be found in Appendix B. In the
following, we will determine these extrinsic symmetric spaces, as well as their extrinsic
transvection and isometry groups.
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Corollary 3.18 The space N(κ) is isometric to the extrinsic symmetric space

M := {(η1,−1
2 |η2|2, η2) | η1, η2 ∈ C} ⊂ C⊕R⊕ C, (25)

where the scalar product 〈· , ·〉 on C⊕ R⊕ C with coordinates η1, x, η2 is given by

dη1dη̄2 + dη̄1dη2 + κdx2. (26)

An isometry from the pseudo-Hermitian symmetric space N(κ) = C
2 onto this extrinsic

symmetric space is obtained by

ι : N(κ) = C
2 −→ M ⊂ C⊕ R⊕ C,

(ξ1, ξ2) 7−→ (ξ1 − κ
4 |ξ2|2ξ2,−1

2 |ξ2|2, ξ2).

If we identify C ∼= R
2, then the extrinsic transvection group of this space becomes the

subgroup







I κX −κ
2XX⊤ + Y Z

0 1 −X⊤ −1
2X

⊤X
0 0 I X




∣∣∣∣∣∣
X,Z ∈ R

2, Y =

(
0 −y
y 0

)
, y ∈ R





of the group of affine isometries of (C⊕R⊕C, 〈· , ·〉) and is isomorphic to the (ordinary)
transvection group Ĝ of N(κ). The group of all extrinsic isometries is equal to O(2)⋉Ĝ,
where O(2) is understood as {diag(S, 1, S) | S ∈ O(2)} ⊂ SO(C⊕ R⊕C, 〈· , ·〉).

Proof. We already observed that N(κ) is a pseudo-Hermitian symmetric space. Hence,
up to a covering map, it can be embedded into V := ĝ as an extrinsic symmetric space.
This is a general fact, which we explain in Proposition B.1. In the following we will apply
the general procedure explained there to the special case of N(κ). We consider ĝ in the
form described in Proposition 3.1, i.e., ĝ = l∗⊕a⊕l ∼= C⊕R⊕C as a vector space endowed
with the scalar product (26). The Kähler structure corresponds to the derivation
J = (−J∗

l ) ⊕ 0 ⊕ Jl of ĝ, where Jl was introduced in Proposition 3.4. If we identify
l and l∗ with C, then −J∗

l and Jl are just the multiplication by i. Let K denote the
connected subgroup of SO(V )⋉V with Lie algebra k := {φ(u) := (ad(u),−Ju) | u ∈ ĝ}.
Then M := K(0) := {k(0) | k ∈ K} is an extrinsic symmetric space with (exterior)
transvection group K. According to Proposition B.1, up to a covering map, it is
isometric to N(κ) as a symmetric space. We will show that M is simply-connected and
therefore isometric to N(κ).

Let us first compute the Lie algebra k. If we use the Lie bracket of ĝ as given in
Prop. 3.1, we obtain that φ(z + a+ l) equals




0 κX Y Z ′

0 0 −X⊤ 0
0 0 0 X


 , X =

(
l2
−l1

)
, Z ′ =

(
z2
−z1

)
, Y =

(
0 −κa
κa 0

)

for z = (z1, z2) ∈ l∗ = R
2, a ∈ a = R and l = (l1, l2) ∈ l = R

2. To obtain K, we take
the exponential of φ(z + a + l). This exponential has the claimed form for a suitable
Z ∈ R

2.
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Having calculated K, it is obvious that the orbit M = K(0) is the set given by (25).
Obviously, M is simply-connected thus isometric to N(κ). It is a direct computation
that the map ι is an isometry.

If M is considered as an ordinary symmetric space, the Lie algebra of its (ordinary)
transvection group is isomorphic to k, see Appendix B. Since, moreover, both K and Ĝ
are simply connected, they are isomorphic.

The group of all extrinsic isometries is contained in the normaliser of K in O(V ) ⋉ V .
Since K acts transitively on M , each extrinsic isometry can be written as a product
f · f0, where f is a transvection and f0 is an extrinsic isometry that fixes the base
point 0 ∈ M . In particular, f0 is a linear map. Since it normalises K, f0 preserves
W := C ⊕ 0 ⊕ 0 ⊂ C ⊕ R ⊕ C and therefore also W⊥ = C ⊕ R ⊂ C ⊕ R ⊕ C. On the
one-dimensional space W⊥/W the isometry acts by ±1. Hence f0 has the block form

f0 =



T ∗ ∗
0 ±1 X⊤

0 0 S




with respect to C ⊕ R ⊕ C. Since f0 is an isometry, we obtain T = (S⊤)−1. Now we
use that f0 preserves M , which yields

∓1
2 |η2|2 +X⊤η2 = −1

2 |Sη2|2

for all η2 ∈ C ∼= R
2. If we apply this identity to η2 = X, we obtain X = 0. This implies

that S is an orthogonal map and that f0 acts by +1 on W⊥/W . Consequently,

f0 =



I 0 Y
0 1 0
0 0 I


 · diag(S, 1, S), Y =

(
0 −y
y 0

)

where we used that f0 is an isometry in order to determine Y . Since the first matrix is
in K, the assertion follows. ✷

Corollary 3.19 The space N(κ) is isometric to the extrinsic symmetric space

M := {(p, q1q2, q) | p = (p1, p2), q = (q1, q2) ∈ R
2} ⊂ R

2 ⊕ R⊕ R
2 = R

5, (27)

where the scalar product 〈· , ·〉 on R
5 with coordinates p1, p2, x, q1, q2 is given by

−2(dp1dq1 + dp2dq2)− κdx2. (28)

The extrinsic transvection group of this space becomes the subgroup of the group of
affine isometries of (R5, 〈· , ·〉) consisting of matrices




I κX −κ
2XX⊤ + Y Z

0 1 −X⊤ x1x2
0 0 I X̄


 ,
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where

X,Z ∈ R
2, X =

(
x1
x2

)
, X̄ =

(
x2
x1

)
, Y =

(
0 −y
y 0

)
, y ∈ R.

It is isomorphic to the (ordinary) transvection group Ĝ of N(κ). The group of all
extrinsic isometries is equal to Ĝ ⋊ (O(1, 1) × Z2), where O(1, 1) is understood as
{diag((S−1)⊤, 1, S) | S ∈ O(1, 1)} ⊂ SO(R2 ⊕ R ⊕ R

2, 〈· , ·〉) and Z2 is generated by
diag(1,−1,−1, 1,−1) ∈ O(R5).

Proof. It was noted already that N(κ) is para-Hermitian as well. This leads to another
embeddeding of N(κ) into V = ĝ as an extrinsic symmetric space, see Proposition B.2.
The extrinsic symmetric space M and its extrinsic transvection group can be deter-
mined analogously as in the proof of Corollary 3.18, where we now use Proposition B.2.
We turn to the extrinsic isometry group. Again, any extrinsic isometry may be written
as f · f0, where f is a transvection, and f0 is a linear isometry of the form

f0 =



(S⊤)−1 ∗ ∗

0 ±1 X⊤

0 0 S


 .

The isometry f0 must preserve M , which yields the condition that

±q1q2 +X⊤q = q̃1q̃2

where (q̃1, q̃2) := Sq. The term X⊤q, which is linear in q, must therefore be equal to
the term ±q1q2 − q̃1q̃2, which is quadratic in q. This is only possible if both terms are
zero. On the one hand, this implies X⊤ = 0. On the other hand, S has to satisfy
b(Sq) = ±b(q) for all q, where b denotes the quadratic form b(q) := q1q2. Up to a factor
and a change of basis, b coincides with the standard Lorentz inner product on R

2. In
the case that b(Sq) = b(q), S must therefore lie in O(1, 1). If b(Sq) = −b(q), then S
must be of the form diag(1,−1)S′ for S′ ∈ O(1, 1). The claim now follows. ✷

We turn to the existence of compact quotients of N(κ). It is again possible to relax
the condition that a discrete subgroup of the isometry group acts freely. Indeed, Sel-
berg’s lemma allows us to deduce freeness of the action (up to passing to a finite index
subgroup) from its properness and cocompactness.

Proposition 3.20 There exists no discrete subgroup of the isometry group of N(κ)
that acts properly and cocompactly on N(κ).

In order to prove this, we consider the connected component G of the isometry group
of N(κ). We denote by cg : G → G the conjugation by g ∈ G. Then

c(0,0,l̂ )
(
(z, a, l)S

)
= (∗, 12α(l + l̂, l − Sl̂ ), l − Sl̂ + l̂ )S, (29)

c(ẑ,0,0)
(
(z, a, l)S

)
= (z + ẑ − Sẑ, a, l)S, (30)

where the exact value of the first component ∗ in (29) will not be needed later.
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Lemma 3.21 If a discrete subgroup Γ ⊂ G acts freely on X, then it is contained in a
simply-connected nilpotent subgroup of G that contains Ĝ.

Proof. Assume that there exists an element γ0 = (z0, a0, l0)S0 ∈ Γ such that 1 is not
an eigenvalue of S0. After possibly conjugating Γ according to (29) and (30), we may
assume z0 = l0 = 0. Then (v, u) = 0 is a fixed point of γ0, which is a contradiction.
Hence Γ̂ := prSL(2,R)(Γ) consists of maps for which 1 is an eigenvalue (of multiplicity

2). Therefore also the Zariski closure Z of Γ̂ contains only such maps. By the Lie-
Kolchin Theorem, Z is contained in a subgroup that is conjugate to the group of
unipotent upper triangular matrices, thus dimZ ≤ 1. Consequently, Γ is contained in
the nilpotent subgroup Ĝ ⋊ Z of G. ✷

Proof of Proposition 3.20. Let Γ be a discrete subgroup of the isometry group act-
ing properly and cocompactly. We may assume that Γ is contained in the connected
component G of the isometry group. The group G = Ĝ ⋊ SL(2,R) is linear, since it
has a trivial center, hence its adjoint representation is faithful. By Lemma A.3 we
may therefore assume that Γ acts freely. By Lemma 3.21, Γ is contained in a simply-
connected nilpotent subgroup N ′ containing Ĝ. Let U be the syndetic hull of Γ, which
exists by Proposition A.4, and let u be its Lie algebra. The Lie group U acts properly
and cocompactly on N(κ) by Proposition A.5. Hence u is a vector space complement
of ĝ+ = a in the Lie algebra n′ of N ′, see Proposition A.6. In particular, any element
x ∈ ĝ ⊂ n′ can be written as x = a+ u for unique a ∈ a and u ∈ u, and u = x− a lies
in u ∩ ĝ. Thus, u′ := u ∩ ĝ would be a complement of a in ĝ. We will show that this is
impossible. Assume that ĝ = a⊕ u′. Then the projection of u′ to l would be equal to l.
But this would imply that the projection of u′ ⊂ u to a ⊕ l contains a, see (21). Thus
the projection of u′ to a ⊕ l is equal to a ⊕ l. Now we use again (21) and see that u′ is
equal to l⊕ a⊕ l = ĝ, which is a contradiction. ✷

3.5 The spaces Z(ε, c)

The spaces Z(ε, c) are pseudo-Hermitian symmetric spaces. In particular, they are
universal covers of spaces that can be embedded as extrinsic symmetric spaces, see
Appendix B for this general fact. Here we will determine these extrinsic symmetric
spaces explicitly. It will turn out that they are simply-connected, thus diffeomorphic
to Z(ε, c).

Take l ∈ {su(2), sl(2,R)}, a = 0, and let the involution θl and the 3-form γ be given
as in item 4 in the list in Subsection 3.1. We denote the symmetric triple obtained by
these data by dc = (dc, θ, 〈· , ·〉). Note that the underlying vector space, the involution
θ and the inner product 〈· , ·〉 do not change with c.

We define
βl := −ε12κl,

where κl is the Killing form of l.
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Remark 3.22 The inner product βl is positive definite for l = su(2), and has signature
(1, 2) if l = sl(2,R). The basis e1, e2, e3 is orthonormal with respect to βl. For
l = sl(2,R), the vector e1 is time-like and e2 and e3 are space-like. Using this, we
will often identify the inner product space (l, βl) with the standard (pseudo-)Euclidean
space (R3,diag(ε, 1, 1)). The notation ‘⊥’ will always mean orthogonal with respect to
βl or the standard inner product, depending on the context.

We identify
l ∼= l∗, l 7−→ zl := βl(l, ·). (31)

Then Al 7→ (A∗)−1zl for any automorphism A of l and Dl 7→ −D∗zl for any derivation
D of l.

Lemma 3.23 The symmetric triple dc is isomorphic to (l⋊ l, θl ⊕ θl, 〈· , ·〉′c), where the
first summand l of l ⋊ l is considered as an abelian subalgebra on which the second
summand l acts by the adjoint representation and the inner product 〈· , ·〉′c is given by

〈(l1, l′1), (l2, l′2)〉′c = βl(l1, l
′
2) + βl(l2, l

′
1)− 2cβl(l

′
1, l

′
2). (32)

Proof. The proof is carried out in two steps. First we will prove that the symmetric
triple dc is isomorphic to (d0 = l∗⋊ l, θ, 〈· , ·〉c), where l acts on l∗ by the coadjoint action
and 〈· , ·〉c = 〈· , ·〉 − 2cβl. It is easy to check that γ(e1, e2, e3) = cβl([e1, e2], e3). Hence

F1 : dc −→ d0, z + l 7−→ z + cβl(l, ·) + l

for z ∈ l∗ and l ∈ l is an isomorphism of Lie algebras, which commutes with θ. Moreover,

〈F1(z1 + l1), F1(z2 + l2)〉c = 〈z1 + cβl(l1, ·) + l1, z2 + cβl(l2, ·) + l2〉c
= z1(l2) + z2(l1)

= 〈z1 + l1, z2 + l2〉 .

In the second step we show that (d0 = l∗⋊ l, θ, 〈· , ·〉c) is isomorphic to (l⋊ l, θl⊕θl, 〈· , ·〉′c)
using (31). Indeed,

F2 : l ⋊ l −→ l∗ ⋊ l, (l, l′) 7−→ zl + l′

is an isomorphism of Lie algebras since the Killing form is invariant under the adjoint
representation. Contrary to our usual notation, we write the elements of l ⋊ l as pairs
here to distinguish the two l-components. The map F2 is also an isometry since

〈F2(l1, l
′
1), F2(l2, l

′
2)〉c = 〈zl1 + l′1, zl2 + l′2〉c

= zl1(l
′
2) + zl2(l

′
1)− 2cβl(l

′
1, l

′
2)

= βl(l1, l
′
2) + βl(l2, l

′
1)− 2cβl(l

′
1, l

′
2)

= 〈(l1, l′1), (l2, l′2)〉′c.

Moreover, F2 ◦ (θl ⊕ θl) = θ ◦ F2. ✷

We denote by O+(1, 2) ⊂ O(1, 2) the subgroup of elements that preserve the time
orientation, and by O−(1, 2) ⊂ O(1, 2) the subset of elements that reverse it.
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Proposition 3.24 1. The transvection group Ĝ of the symmetric space Z(ε, c) is
isomorphic to R

3
⋊SO(3) if ε = 1 and to R

3
⋊SO0(1, 2) if ε = −1. In both cases,

the stabiliser Ĝ+ is isomorphic to R× SO(2).

2. The isometry group of Z(ε, c) is isomorphic to R
3
⋊ O(3) if ε = 1 and to R

3
⋊

O+(1, 2) if ε = −1, where an element A of the (pseudo-)orthogonal group acts on
R
3 by x 7→ |A|Ax.

Proof. ad 1. In Lemma 3.23 we proved that the symmetric triple (ĝ, θ̂, 〈· , ·〉) is isomor-
phic to (l⋊ l, θl⊕θl, 〈· , ·〉′c), and in this proof we will identify the former with the latter.

We understand Ĝ as a Lie group with Lie algebra l ⋊ l. First we consider the case
ε = 1, i.e., l ⋊ l = su(2) ⋊ su(2). The simply-connected Lie group associated with this
Lie algebra equals su(2) ⋊ SU(2), where SU(2) acts on su(2) by the adjoint representa-
tion. The connected subgroup with Lie algebra ĝ+ equals so(2) × SO(2), where SO(2)
is considered as a subgroup of SU(2) via its natural embedding. Its intersection with
the centre of su(2)⋊ SU(2) consists of the identity (0, I) and the element (0,−I). Since
SU(2)/{±I} ∼= SO(3) and su(2) ∼= so(3), the transvection group of Z(1, c) is isomorphic
to so(3) ⋊ SO(3), see Section 2. We identify l ∼= R

3 using the basis e1, e2, e3, which
is orthonormal with respect to βl. Then the adjoint representation of SO(3) becomes
the natural representation of SO(3) on R

3 and the claim follows. Moreover, the Lie
algebra of the stabiliser equals Re1 ⋊Re1. Its connected subgroup equals Re1 ⋊ SO(2),
where SO(2) = {A ∈ SO(3) | Ae1 = e1}. Thus Ĝ+

∼= Re1 ⋊ SO(2). The case ε = −1
is treated in the same way. Now the simply-connected Lie group with Lie algebra l ⋊ l

equals sl(2,R) ⋊ S̃L(2,R). The connected subgroup with Lie algebra ĝ+ is given by

Re1 ⋊ R, where R ⊂ S̃L(2,R) is the preimage of SO(2) ⊂ SL(2,R) under the covering

map S̃L(2,R) → SL(2,R). This subgroup contains the centre Z of sl(2,R) ⋊ S̃L(2,R).

We have S̃L(2,R)/Z ∼= PSL(2,R) ∼= SO0(1, 2). Moreover, we again identify l ∼= R
3

using the basis e1, e2, e3. We obtain Ĝ ∼= R
3
⋊SO0(1, 2) and Ĝ+

∼= R ·e1⋊SO(2), where
SO(2) = {A ∈ SO0(1, 2) | Ae1 = e1}.
ad 2. Let us consider the case ε = 1. First we determine the automorphism group of
(ĝ, θ, 〈· , ·〉) ∼= (l ⋊ l, θl ⊕ θl, 〈· , ·〉′c). If ϕ ∈ Aut(l ⋊ l, θl ⊕ θl, 〈· , ·〉′c), then necessarily

ϕ =

(
(ϕ̄−1)∗ R

0 ϕ̄

)
: l ⋊ l −→ l ⋊ l, (33)

where ∗ denotes the adjoint with respect to the inner product βl. The map ϕ̄ has to
be an automorphism of (l, θl). The automorphism group of l = su(2) ∼= so(3) equals
SO(3), which acts by conjugation. The subgroup of elements that commute with θl
equals {diag(|A|, A) | A ∈ O(2)} ∼= O(2) with respect to the basis e1, e2, e3 of l. On the
other hand, for ϕ̄ ∈ O(2), the map ϕ̄⊕ ϕ̄ : l ⋊ l ∋ (l, l′) 7→ (ϕ̄l, ϕ̄l′) is an automorphism
of (l ⋊ l, θl ⊕ θl, 〈· , ·〉′c). Thus it remains to determine those automorphisms ϕ of (l ⋊
l, θl ⊕ θl, 〈· , ·〉′c) for which ϕ̄ = idl. Then, by (33), ϕ(l, l′) = (l + R(l′), l′). Since ϕ is a
Lie algebra automorphism, R has to be a derivation of l. All derivations of l are of the
form ad(l) for some l ∈ l. Since, moreover, ϕ has to commute with θl ⊕ θl, the vector l
has to be in l+, thus l = re1 for some r ∈ R. Consequently, ϕ(l, l′) = (l + r[e1, l

′]l, l
′).

In particular, ϕ can be considered as the adjoint action of an element of Ĝ+, namely
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of exp(re1, 0) ∈ Ĝ+. Furthermore, {ϕ̄ ⊕ ϕ̄ | ϕ̄ = diag(|A|, A) for A ∈ O(2)} ∩ Ad(Ĝ+)
is equal to {ϕ̄⊕ ϕ̄ | ϕ̄ = diag(1, A) for A ∈ SO(2)}.
In summary, if P̄0 denotes the subgroup of Aut(l⋊ l, θl ⊕ θl, 〈· , ·〉′c) generated by ϕ̄⊕ ϕ̄
for ϕ̄ = D := diag(−1,−1, 1), then every automorphism of (l⋊ l, θl ⊕ θl, 〈· , ·〉′c) is of the
form ϕ′ ·Ad(g+) for some ϕ′ ∈ P̄0 and g+ ∈ Ĝ+. Since in addition P̄0 ∩Ad(Ĝ+) = {e},
we can apply Corollary 2.4 to P̄0 = 〈D⊕D〉 ∼= Z2. This yields that the isometry group
of Z(1, c) is isomorphic to Ĝ ⋊ Z2. For the description of the Z2-action we use the
isomorphism Ĝ ∼= R

3
⋊ SO(3). Then the generator D ⊕ D of Z2 maps (b,A) ∈ Ĝ to

(Db,DAD−1). Finally we use that (R3
⋊SO(3))⋊Z2 is isomorphic to R

3
⋊O(3), where

O(3) acts as claimed in item 2 of the proposition. The isomorphism is given by

(R3
⋊ SO(3)) ⋊ Z2 −→ R

3
⋊O(3)

(b,A, id) 7−→ (b,A) (34)

(b,A,D ⊕D) 7−→ (b,−AD).

The proof for ε = −1 follows the same lines. Here we obtain again that P̄0 is generated
by ϕ̄⊕ϕ̄, where ϕ̄ = diag(−1,−1, 1). Now we get an isomorphism Ĝ⋊Z2 → R

3
⋊O+(1, 2)

in the same way as in (34). ✷

Definition 3.25 We define an antisymmetric bilinear map ×ε : R
3 × R

3 → R
3 by

e1 ×ε e2 = e3, e2 ×ε e3 = εe1, e3 ×ε e1 = e2.

If ε = 1, this is the standard cross product, and we will simply write ×. If ε = −1, we
will write ×′ instead of ×−1.

Proposition 3.26 The set

M = {(v, u) ∈ R
3 × R

3 | εu21 + u22 + u23 = ε, εu1v1 + u2v2 + u3v3 = 0}

is an extrinsic symmetric space in

(
R
3 × R

3, 〈· , ·〉 = 2(εdu1dv1 + du2dv2 + du3dv3)− 2c(εdu21 + du22 + du23)
)
.

For ε = 1, this extrisic symmetric space is isometric to Z(1, c). For ε = −1 it consists
of two connected components, each of which is isometric to Z(−1, c).

The group of extrinsic isometries of M is isomorphic to R
3
⋊ O(3) if ε = 1, and to

R
3
⋊ O(1, 2) if ε = −1, where O(3) and O(1, 2) act on R

3 by b 7→ |A|Ab. An extrinsic
isometry (b,A) acts on R

3 × R
3 by

(b,A)(v, u) = (Av + b×ε Au,Au). (35)

In particular, for ε = 1, the isometry group of Z(1, c) is isomorphic to the extrinsic
isometry group of M . For ε = −1, it is only isomorphic to the subgroup R

3
⋊O+(1, 2),

whereas the action of O−(1, 2) interchanges the connected components of M .
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Remark 3.27 Proposition 3.26 shows that Z(ε, c) is diffeomorphic to the tangent bun-
dle of the standard sphere S2 ⊂ R

3 if ε = 1. If ε = −1, it is diffeomorphic to the tangent
bundle of H2 ⊂ R

1,2, where H2 is one sheet of the two-sheeted hyperboloid. When
endowed with the metric induced by the ambient Lorentzian inner product, H2 is a
model for the Riemannian hyperbolic plane.

Alternatively, the extrinsic symmetric space M can be identified with the extrinsic
symmetric space

{x ∈ R
6 | εx24 + x25 + x26 = ε, εx1x4 + x2x5 + x3x6 = −cε}

in
(
R
6, 〈· , ·〉 = 2(εdx1dx4+ dx2dx5+ dx3dx6)

)
. An isometry is given by R

3×R
3 → R

6,
(v, u) 7→ x := (v − cu, u).

Proof of Proposition 3.26. Consider V = l⊕l as a vector space with inner product 〈· , ·〉′c
defined by (32). Elements of the vector space V are denoted by (v, u). The symmetric
space Z(ε, c) is pseudo-Hermitian, as was noted in Proposition 3.4. The symmetric
triple of Z(ε, c) is isomorphic to (l ⋊ l, θl ⊕ θl, 〈· , ·〉′c) by Lemma 3.23, and the pseudo-
Hermitian structure on this latter symmetric triple is given by J0 = ad((0, e1)). Thus
there is an extrinsic symmetric space in V associated with this symmetric triple. We
will follow the general procedure described in Appendix B to determine this extrinsic
symmetric space. We need to compute the connected subgroup K ′ ⊂ SO0(V ) with Lie
algebra ad(l⋊ l) ⊂ so(V ). To this end, recall that the embedding ad(0⋊ l) ∼= so(l, βl) ⊂
so(l⊕ l) = so(V ) is given by A(v, u) = (Av,Au) for A ∈ so(l, βl) and (v, u) ∈ l⊕ l = V .
Furthermore, ad((b, 0))(v, u) = ([b, u]l, 0). We put K ′

0 := {ead(b,0) | b ∈ l}, which
consists of maps (v, u) 7→ (v + [b, u]l, u) for b ∈ l. Then K ′ = K ′

0 ⋊ SO0(l, βl). Using
(41), the desired extrinsic symmetric space is given by

K ′
(
(0, e1)

)
= K ′

0

(
SO0(l, βl)

(
(0, e1)

))

=

{
K ′

0({0} × {u ∈ l | βl(u, u) = 1}), if ε = 1,
K ′

0({0} × {u ∈ l | βl(u, u) = −1, u1 > 0}), if ε = −1,

=

{
{(v, u) | βl(u, u) = 1, βl(v, u) = 0}, if ε = 1,
{(v, u) | βl(u, u) = −1, βl(v, u) = 0, u1 > 0}, if ε = −1.

This space is simply-connected, hence isometric to Z(ε, c). Finally, we identify l ∼= R
3

according to Remark 3.22. Then (V, 〈· , ·〉′c) becomes isometric to
(
R
3 × R

3, 〈· , ·〉 =
2(εdu1dv1 + du2dv2 + du3dv3) − 2c(εdu21 + du22 + du23)

)
. Under this identification,

K ′((0, e1)) coincides with the space M for ε = 1, and for ε = −1 it is one of the
two connected components of M .

We already computed that the isometry group of Z(ε, c) is isomorphic to R
3
⋊O(3) if

ε = 1, and to R
3
⋊O+(1, 2) if ε = −1. So if ε = 1, the group of extrinsic isometries of M

is contained in R
3
⋊O(3). Analogously, if ε = −1, then the group of extrinsic isometries

of M preserving the connected components of M is a subgroup of R3
⋊O+(1, 2). On the

other hand, the action of R3
⋊O(3) or R3

⋊O(1, 2) on R
3×R

3 given by (35) is isometric
with respect to the inner product 〈· , ·〉, and maps the subspace M to itself, hence is
an extrinsic isometry. Obviously, the action of diag(−1, 1, 1) ∈ O−(1, 2) interchanges
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the connected components of M . This proves the claim about the extrinsic isometry
group. ✷

We turn to the existence question for compact quotients of the spaces Z(ε, c). As a
first observation, we prove that in the case ε = 1, no element of the transvection group
is fixed point free.

Lemma 3.28 Every element of the transvection group of Z(1, c) has a fixed point on
Z(1, c). In particular, no (discrete) subgroup of the transvection group acts freely.

Proof. Recall that an element (b,A) of the transvection group R
3
⋊ SO(3) of Z(1, c)

acts on a point (v, u) ∈ Z(1, c) via (b,A)(v, u) = (Av + b × Au,Au), where ‘×’ is the
usual cross product on R

3. In order to find a fixed point on Z(1, c), we have to solve
two equations:

Au = u (36)

Av + b× u = v (37)

for u, v ∈ R
3 with ‖u‖ = 1 and u ⊥ v with respect to the standard Euclidean product.

Assume first that A = I is the identity matrix. If b = 0, then (b,A) is the identity in
R
3
⋊ SO(3), thus it fixes every element of Z(1, c). If b 6= 0, then put u := b/‖b‖ ∈ S2.

In this case, e.g., (0, u) is a solution of (36) and (37).

Now suppose that A 6= I. Equation (36) always has a solution. We fix such a solution
u ∈ S2 with Au = u. Then A maps u⊥ to u⊥. Let A′ denote the restriction of A to u⊥.
Equation (37) now reduces to the equation

(A′ − I)v = −b× u (38)

in u⊥. Since A ∈ SO(3) fixes u but is not the identity, A′ is a non-trivial rotation in
u⊥. In particular, 1 is not an eigenvalue of A′. Hence Equation (38) has a solution
v ∈ u⊥ for every b. Thus (b,A) has a fixed point. ✷

The symmetric space Z(ε, c) has no compact quotients by discrete subgroups of its
isometry group. In fact, as in the previous sections the condition that the action
providing the compact quotient be free may be dropped.

Proposition 3.29 There exists no discrete subgroup of the isometry group of Z(ε, c)
that acts properly and cocompactly on Z(ε, c).

Proof. Let Γ be a discrete subgroup of the isometry group of Z(ε, c), and assume that
Γ acts properly and cocompactly. The isometry group contains an affine subgroup of
finite index, namely R

3
⋊ SO(3) for ε = 1 and R

3
⋊ SO0(1, 2) for ε = −1. We may

assume that Γ is contained in this affine subgroup. Since affine groups are linear, we
may therefore assume that Γ acts freely by Lemma A.3. If ε = 1, the assertion then
follows from Lemma 3.28. Indeed, each non-finite subgroup of the isometry group
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contains elements of the transvection group different from the identity, thus it does not
act freely.

Now let Γ be a discrete subgroup of the isometry group of Z(−1, c) acting freely and
properly on Z(−1, c). As above we assume that Γ is contained in R

3
⋊ SO0(1, 2). We

define
Γ0 := Γ ∩ R

3, Γ̂ = {A ∈ SO0(1, 2) | ∃ b ∈ R
3 : (b,A) ∈ Γ}.

The set Γ0 is a discrete subgroup of R3, and Γ̂ is a subgroup of SO0(1, 2), which need
not be discrete. Since SO0(1, 2) ∼= PSL(2,R), results and terminology for elements and
subgroups of PSL(2,R) can also be applied to elements and subgroups of of SO0(1, 2).
We will do so in the following, see Appendix C for a summary of the relevant definition
and facts.

Step 1: Γ̂ ⊂ SO0(1, 2) does not contain elliptic elements.

Assume that A 6= I were an elliptic element in Γ̂, and choose b ∈ R
3 such that (b,A) ∈ Γ.

We will construct a fixed point of (b,A) on Z(−1, c), which will be a contradiction to the
freeness of the action of Γ. Because A is elliptic, it admits a fixed point u ∈ H2 ⊂ R

1,2.
Then A ∈ SO0(1, 2) maps u⊥ to u⊥. Let A′ denote the restriction of A to u⊥. Note that
the restriction of the metric on R

1,2 to u⊥ ⊂ R
1,2 is positive definite. Since A ∈ SO(1, 2)

fixes u but is not the identity, A′ is a non-trivial rotation in u⊥. In particular, 1 is
not an eigenvalue of A′. Thus (A′ − I)v = −b ×′ u has a solution v in u⊥. Hence
(b,A)(v, u) = (Av + b×′ Au,Au) = (v, u).

Step 2: The elements of Γ̂ ⊂ SO0(1, 2) do not have a non-vanishing common fixed
vector in R

3.

Assume that f ∈ R
3, f 6= 0, were fixed by all A ∈ Γ̂. Then F : Γ\Z(−1, c) → R,

Γ · (v, u) 7→ βl(u, f) would be a well-defined continuous map, because βl(Au, f) =
βl(Au,Af) = βl(u, f) for (v, u) ∈ Z(−1, c), A ∈ Γ̂. The map F has non-compact
image, which is a contradiction to the compactness of Γ\Z(−1, c).

Step 3: Γ0 ⊂ R
3 does not contain time-like elements.

Let (b, I) ∈ Γ0. If b were time-like, then u := b/(−〈b, b〉)1/2 would be in H2. But since
b×′ u = 0, the point (0, u) ∈ Z(−1, c) would then be a fixed point of (b, I), which is a
contradiction.

Step 4: dim span
R
(Γ0) < 2

It is clear from Step 3 that dim span
R
(Γ0) 6= 3. Suppose V0 := span

R
(Γ0) were two-

dimensional. Each A ∈ Γ̂ satisfies A(V0) = V0 and preserves the lattice Γ0 of V0. If
the indefinite scalar product on R

3 restricted to V0 were positive definite, this would
imply that Γ̂ is finite. But then Γ\Z(−1, c) would not be compact. Hence the scalar
product on V0 is not positive definite. Also, V0 cannot contain a time-like vector because
otherwise Γ0 would also contain a time-like vector, which contradicts Step 3. Thus there
is a basis b1, b2 of V0 such that b1 ⊥ V0 and b2 is space-like and belongs to Γ0. Any
element of A ∈ Γ̂ maps V0 to V0 thus also V ⊥

0 to V ⊥
0 . Hence A(b1) = ab1 for some

a ∈ R. We have a > 0 because b1 is light-like and A ∈ SO0(1, 2) preserves the time
orientation and hence each half of the light cone. Furthermore, A(b2) = ±b2+µb1 since
A is an orthogonal map. On the other hand, A(Γ0) = Γ0, hence the matrix of A|V0
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with respect to a basis consisting of elements of Γ0 is an integer matrix. Consequently,∣∣A|V0

∣∣ = ±1. This implies a = 1. Thus Ab1 = b1 for all A ∈ Γ̂. This is impossible by
Step 2.

Step 5: Γ0 = {0}
Assume that Γ0 = Zf . The elements of Γ̂ restrict to automorphisms of Γ0, hence map
f to ±f . Those elements (b,A) ∈ Γ that satisfy Af = f form a subgroup of index
at most 2 in Γ, whence we may assume that f is a common fixed point of Γ̂. This is
impossible by Step 2.

Step 6: Γ̂ is not discrete.

If Γ̂ were discrete, it would act properly on the hyperboloid H2 by Proposition C.3. By
Step 1 no element of Γ̂ has a fixed point on H2, so the action on H2 is also free. We will
show that the map Γ\Z(−1, c) → Γ̂\H2 induced by the projection Z(−1, c) → H2 is a
locally trivial fibration with fibre R

2. Since the fibre is non-compact, this contradicts
the assumed compactness of Γ\Z(−1, c). Take Γ · u in Γ̂\H2. Since Γ̂ acts freely
and properly on H2, we can choose an open neighbourhood U of u in H2 such that
{γ̂ ∈ Γ̂ | γ̂U∩U 6= ∅} = {I}. Now we consider the preimage Ũ of U under the projection
Z(−1, c) → H2. Since Γ0 is trivial, the set {γ ∈ Γ | γŨ ∩ Ũ 6= ∅} also contains only
the identity. Consequently, the restriction of the projection H2 → Γ̂\H2 to U as well
as the restriction of the projection Z(−1, c) → Γ\Z(−1, c) to Ũ are homeomorphisms.
So we may consider U and Ũ as subsets U ⊂ Γ̂\H2, Ũ ⊂ Γ\Z(−1, c). Then Ũ is the
preimage of U under Γ\Z(−1, c) → Γ̂\H2. Since Ũ ∼= U × R

2, the claim follows.

Step 7: Up to conjugation, Γ̂ is virtually contained in the parabolic subgroup P ⊂
SO0(1, 2).

Recall the definition of P from equation (42) in Appendix C. By Step 1, Γ̂ does not
contain elliptic elements, and it is not discrete by Step 6. Hence it is elementary [Bn,
Theorem 8.3.1], see also Proposition C.2. The claim follows now from the description
of the elementary groups, see Proposition C.1. Indeed, this is immediate if Γ̂ falls into
cases (b) or (c) of Proposition C.1. If Γ̂ falls into case (a), it is abelian and purely
parabolic or purely hyperbolic. In either case, one may pick a non-identity element
A ∈ Γ̂. This element is conjugate to an element of P, i.e. there exists B ∈ SO0(1, 2)
such that BAB−1 ∈ P. Since Γ̂ is abelian, any element of BΓ̂B−1 commutes with
BAB−1. Now, any element of SO0(1, 2) that commutes with a non-trivial element of
P is itself in P. It follows that BΓ̂B−1 ⊂ P.

Step 8: Z(−1, c) = (R3
⋊ P)/R.

It can be shown easily that P acts simply transitively on the hyperboloidH2. Moreover,
(b, I)(0, u) = (b ×′ u, u) for b ∈ R

3. Now the identity u⊥ = {b ×′ u | b ∈ R
3} proves

that R3
⋊ P acts transitively on Z(−1, c). In order to compute the stabiliser group we

consider the base point (0, e1) ∈ Z(−1, c), where e1 = (1, 0, 0) ∈ H2 ⊂ R
3. Since P acts

freely on H2, the stabiliser of this point is equal to {(b, I) | (b ×′ e1, e1) = (0, e1)} =
Re1 × {I} ⊂ R

3
⋊ P.

Step 9: Final contradiction.

By the above steps, we may assume that Γ ⊂ R
3
⋊ P. Instead of the standard basis
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e1, e2, e3 of R3 we will use here the basis f1, e2, f3, where f1 = (e1 + e3)/
√
2 and f3 =

(−e1 + e3)/
√
2. This is exactly the basis that we used to define P in (42). Since R3

⋊P

is completely solvable, Γ has a unique syndetic hull S ⊂ R
3
⋊ P, which acts properly

and cocompactly on Z(−1, c) = (R3
⋊ P)/R, see Appendix A. From Proposition A.6 it

follows that R3
⋊p = R⊕s as vector spaces (where p and s are the Lie algebras of P and S,

respectively, and R is spanned by f1− f3 ∈ R
3). We denote by q : s → p the projection

onto p. Note that this is a Lie algebra homomorphism. Because R⊕s = R
3
⋊p, the map

q is surjective. For dimensional reasons its kernel is two-dimensional. Moreover, as the
kernel of a Lie algebra homomorphism, ker(q) is an ideal in s. Since both ker(q) and
the vector f1 − f3 lie in the abelian subalgebra R

3, it holds that [f1 − f3, ker(q)] = 0.
We obtain that ker(q) is an ideal in R

3
⋊ p = R ⊕ s. It follows that ker(q) is a two-

dimensional P-invariant subspace of R3, hence ker(q) = span{f1, e2}. The Lie algebra
p has a basis (X,Y ) such that

[X, f1] = f1 , [X, e2] = 0 , [Y, f1] = 0 , [Y, e2] = f1.

In particular, [X,Y ] = Y . We have s = span{f1, e2, X̃, Ỹ }, where q(X̃) = X and
q(Ỹ ) = Y . Here X̃ and Ỹ act on span{f1, e2} in the same way as X and Y . The nil
radical of s is spanned by f1, e2 and Ỹ . Thus the maximal connected normal nilpotent
Lie subgroup N of S is isomorphic to the three-dimensional Heisenberg group. The
group S is solvable and Γ is a lattice in S. Hence, the intersection of Γ with N is a
lattice in N , see [R, Corollary 3.5]. Now we use that N is isomorphic to the Heisenberg
group. Since the projection of Γ∩N to N/[N,N ] is a lattice in N/[N,N ] ∼= R

2 [R, proof
of Theorem 2.21], the commutator group [N ∩ Γ, N ∩ Γ] ⊂ Γ is a non-trivial subgroup
of the centre of N . The centre of N equals R · f1 ⊂ R

3. Thus Γ∩ (R · f1) is a lattice in
R · f1. But this contradicts Γ0 = {0}. ✷

3.6 The space Z ′(c)

Denote by d′c the symmetric triple obtained from the data given in item 5 in the list from
subsection 3.1. Observe that the Lie algebra and inner product of the symmetric triple
d′c coincide with those of the symmetric triple dc from item 4 for the case ε = −1, only
the involution θl now has e2 as fixed vector as opposed to e1. Hence, we again introduce
the inner product βl =

1
2κl, and identify l∗ ∼= l via this inner product. Moreover, in the

same way as in Lemma 3.23, one can prove:

Lemma 3.30 The symmetric triple d′c is isomorphic to (l⋊ l, θl ⊕ θl, 〈· , ·〉′c), where the
first summand l of l ⋊ l is considered as an abelian subalgebra on which the second
summand l acts by the adjoint representation and the inner product 〈· , ·〉′c is given by

〈(l1, l′1), (l2, l′2)〉′c = βl(l1, l
′
2) + βl(l2, l

′
1)− 2cβl(l

′
1, l

′
2). (39)

The following description of the transvection group of Z ′(c) will make use of the

universal cover S̃O0(1, 2) of SO0(1, 2). Let p : S̃O0(1, 2) → SO0(1, 2) be the cov-
ering map. We consider SO0(1, 1) as subgroup of SO0(1, 2) that stabilises the vec-
tor e2. Then p−1(SO0(1, 1)) has a component group that is isomorphic to Z. Let
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(p−1(SO0(1, 1))0 ∼= SO0(1, 1) ∼= R denote the identity component. Furthermore, let
Õ(1, 2) be the universal cover of O(1, 2) and denote the covering map by p as well.

Proposition 3.31 1. The transvection group Ĝ of the symmetric space Z ′(c) is

isomorphic to R
3
⋊ S̃O0(1, 2). The stabiliser Ĝ+ is isomorphic to the subgroup

Re2 × (p−1(SO0(1, 1))0 ∼= R×R.

2. The isometry group of Z ′(c) is isomorphic to R
3
⋊ Õ(1, 2), where an element A

of Õ(1, 2) acts on R
3 by x 7→ |p(A)| · p(A)(x).

Proof. The Lie algebra of the transvection group of Z ′(c) can be identified with l ⋊ l.
As in the case of Z(−1, c) we have l ⋊ l ∼= R

3
⋊ so(1, 2). Under this isomorphism,

ĝ+ corresponds to the Lie subalgebra Re2 × so(1, 1). The simply-connected Lie group

with Lie algebra R
3
⋊ so(1, 2) equals R3

⋊ S̃O0(1, 2). The connected subgroup with Lie
algebra Re2 × so(1, 1) is equal to Re2 × (p−1(SO0(1, 1))0. It does not contain elements

of the centre of R3
⋊ S̃O0(1, 2) besides the identity. Thus the group R

3
⋊ S̃O0(1, 2) acts

effectively on Z ′(c), and is therefore isomorphic to the transvection group. This proves
the first assertion.

In order to determine the isometry group, we proceed as in Proposition 3.24. We
identify (ĝ, θ, 〈· , ·〉) with (l ⋊ l, θl ⊕ θl, 〈· , ·〉′c). The automorphism group of (l ⋊ l, θl ⊕
θl, 〈· , ·〉′c) consists of maps of the form

ϕ =

(
ϕ̄ R
0 ϕ̄

)
: l ⋊ l −→ l ⋊ l,

where ϕ̄ ∈ {A ∈ SO(1, 2) | Ae2 = ±1} ∼= O(1, 1) and R = ad(te2) for some t ∈ R. A
map of this kind belongs to Ad(Ĝ+) if and only if ϕ̄ is in SO0(1, 1) ⊂ O(1, 1). Now we
define P̄0 to apply Corollary 2.4. For D = diag(δ1, δ2, δ3) ∈ SO(1, 2), let ϕD denote the
automorphism ϕ̄D ⊕ ϕ̄D : l⋊ l → l⋊ l, where ϕ̄D is given by the matrix D with respect
to the basis e1, e2, e3. Now we put

P̄0 = {ϕD | D = diag(δ1, δ2, δ3) ∈ SO(1, 2)} ∼= Z2 × Z2.

Then P̄0 satisfies the assumptions in Corollary 2.4. Each map ϕD defines an automor-
phism FD of R3

⋊SO0(1, 2) with differential (FD)∗ = ϕD by FD(b,A) = (DA,DAD−1).
Let P̂0 denote the group of all these automorphisms FD. Note that FD lifts to an au-
tomorphism F̃D of Ĝ = R

3
⋊ S̃O0(1, 2). These lifts constitute the group P̃0 = Ψ−1

2 (P̄0).
The map

(R3
⋊ SO0(1, 2)) ⋊ P̂0 −→ R

3
⋊O(1, 2)

(b,A, FD) 7−→ (b, δ2AD)

for D = diag(δ1, δ2, δ3) is an isomorphism, where an element A of O(1, 2) acts on
R
3 by x 7→ |A| · A(x). This implies that also the universal coverings Iso(Z ′(c)) =

(R3
⋊ S̃O0(1, 2)) ⋊ P̃0 and R

3
⋊ Õ(1, 2) are isomorphic. ✷
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Proposition 3.32 The set

M = {(v, u) ∈ R
3 × R

3 | −u21 + u22 + u23 = 1, −u1v1 + u2v2 + u3v3 = 0}

is an extrinsic symmetric space in

(
R
3 × R

3, 〈· , ·〉 = −2(−du1dv1 + du2dv2 + du3dv3) + 2c(−du21 + du22 + du23)
)
.

The universal cover of M is isometric to Z ′(c). The group of extrinsic isometries of
M is isomorphic to R

3
⋊O(1, 2), where O(1, 2) acts on R

3 by b 7→ |A|Ab. An extrinsic
isometry (b,A) acts on R

3 × R
3 by

(b,A)(v, u) = (Av + b×′ Au,Au).

Remark 3.33 Proposition 3.32 shows that Z ′(c) is diffeomorphic to the tangent bun-
dle of the universal cover S̃1,1 of the pseudo-Riemannian sphere S1,1 ⊂ R

1,2. An element
(b,A) ∈ R

3
⋊ Õ(1, 2) of the isometry group of Z ′(c) acts on Z ′(c) = {(v, u) ∈ R

3× S̃1,1 |
v ⊥ π(u) in R

1,2} by

(b,A)(v, u) = (p(A)v + b×′ π(Au), Au),

where π : S̃1,1 → S1,1 denotes the covering map.

Alternatively, the extrinsic symmetric space M can be identified with the extrinsic
symmetric space

{x ∈ R
6 | −x24 + x25 + x26 = 1, −x1x4 + x2x5 + x3x6 = −c}

in
(
R
6, 〈· , ·〉 = 2(dx1dx4 − dx2dx5 − dx3dx6)

)
. An isometry is given by R

3 ×R
3 → R

6,
(v, u) 7→ x := (v − cu, u).

Proof of Proposition 3.32. The symmetric space Z ′(c) is para-Hermitian by Proposition
3.5. Thus, the symmetric triple (l⋊ l, θl ⊕ θl, 〈· , ·〉′c), being isomorphic to that of Z ′(c),
admits a para-Kähler structure, namely J = ad ((0, e2)). According to Appendix B,
there is an extrinsic symmetric space with (l ⋊ l, θl ⊕ θl, 〈· , ·〉′c) as its symmetric triple.
To construct that extrinsic symmetric space, let V be the vector space l ⊕ l, endowed
with the inner product −〈· , ·〉′c. We define K ′ to be the closed connected subgroup of
SO0(V ) whose Lie algebra is ad(l⋊ l) ⊂ so(V ). Precisely as in the proof of Proposition
3.26, one determines that K ′ = K ′

0 ⋊ SO0(l, βl), where K ′
0 consists of maps V = l⊕ l ∋

(v, u) 7→ (v + [b, u]l, u) for b ∈ l, and A ∈ SO0(l, βl) acts as (v, u) 7→ (Av,Au). By (41),
the extrinsic symmetric space is given by

K ′
(
(0, e2)

)
= K ′

0 (SO0(l, βl)) ((0, e2))

= K ′
0 ({0} × {u ∈ l |βl(u, u) = 1})

= {(v, u) |βl(u, u) = 1, βl(u, v) = 0} .

Under the identification l ∼= R
3, βl is identified with 〈· , ·〉1,2 and K ′

(
(0, e2)

)
becomes

M = {(v, u) ∈ R
3 × R

3 | 〈u, u〉1,2 = 1, 〈u, v〉1,2 = 0} .
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This space is extrinsic symmetric in
(
R
3×R

3, 〈· , ·〉 = −2(−du1dv1+du2dv2+du3dv3)+
2c(−du21 + du22 + du23)

)
. Note that M is not simply connected, thus Z ′(c) is not given

by M itself, but its universal covering. The claim is proved. ✷

We turn to the existence of compact quotients of Z ′(c). As for Z(−1, c), our arguments
use concepts and results regarding elements and subgroups of PSL(2,R) ∼= SO0(1, 2).
These are recalled in Appendix C.

Recall that p : S̃O0(1, 2) → SO0(1, 2) and π : S̃1,1 → S1,1 denote the respective

covering maps. Let Hyp ⊂ SO0(1, 2) denote the set of hyperbolic elements, and H̃yp ⊂
S̃O0(1, 2) its preimage in the universal cover. Elements of H̃yp will also be called

hyperbolic. The subset H̃yp is open, and has a countably infinite number of connected
components. There is exactly one connected component, denote it by H̃yp0, which

has the identity I ∈ S̃O0(1, 2) as an accumulation point. A hyperbolic element A ∈
S̃O0(1, 2) belongs to A ∈ H̃yp0 if and only if there is a one-parameter subgroup in

S̃O0(1, 2) containing A. For any hyperbolic A ∈ S̃O0(1, 2) there exists a unique k ∈ Z

such that z−kA ∈ H̃yp0, in this case we write A ∈ H̃ypk. The subsets H̃ypk, k ∈ Z, are

precisely the connected components of H̃yp [Go]. Every element A of H̃yp0 has a fixed
point on S̃1,1: Since p(A) is hyperbolic, it has a fixed point x ∈ S1,1. In fact, x is a
common fixed point of a one-parameter subgroup through p(A). That one-parameter
subgroup lifts to a one-parameter subgroup A(t) through A. Then, A(t) preserves
π−1{x}. Because the preimage of x is discrete, it follows for any x̃ ∈ π−1{x} that
Ax̃ = A(0)x̃ = x̃.

In Appendix C we introduce subgroups N, H, P of SO0(1, 2), which we will use in
the following. We denote by Ñ, H̃, P̃ the preimages of N, H, P in the universal cover
S̃O0(1, 2). We again use the standard basis e1, e2, e3 of R

3 and the basis f1, e2, f3, where
f1 = (e1 + e3)/

√
2 and f3 = (−e1 + e3)/

√
2.

Proposition 3.34 There exists no discrete subgroup of the isometry group of Z ′(c)
that acts properly and cocompactly on Z ′(c).

Proof of Prop. 3.34. Let Γ be a discrete subgroup of the isometry group of Z ′(c) acting
properly and cocompactly on Z ′(c). In Proposition 3.31 it was shown that this isometry
group is isomorphic to R

3
⋊ Õ(1, 2). We may assume that Γ is contained in the finite

index subgroup R
3
⋊ S̃O0(1, 2). We may also assume that Γ acts freely: Denote by Γ′

the projection of Γ to R
3
⋊ SO0(1, 2). By Lemma A.2, Γ is finitely generated, hence so

is Γ′. Since the affine group R
3
⋊ SO0(1, 2) is linear, we may apply Selberg’s lemma to

obtain a torsion-free finite index subgroup of Γ′. The preimage of this subgroup in Γ is
still torsion-free and has finite index. The proper action of a torsion-free group is free,
see the proof of Lemma A.1.

Again, we define

Γ0 := Γ ∩R
3, Γ̂ := {A ∈ S̃O0(1, 2) | ∃ b ∈ R

3 : (b,A) ∈ Γ} .

Recall that p : S̃O0(1, 2) → SO0(1, 2) and π : S̃1,1 → S1,1 denote the respective

covering maps, and that π(Au) = p(A)π(u) for all A ∈ S̃O0(1, 2) and u ∈ S̃1,1.
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Step 1: There is no non-zero element f ∈ R
3 such that p(Γ̂)(f) ⊂ {±f}, i.e., the

elements of p(Γ̂) do not have a common non-zero fixed point up to sign in R
3.

If f ∈ R
3 satisfied p(Γ̂)(f) ⊂ {±f}, then Γ \ Z ′(c) → [0,∞), Γ · (v, u) 7→ |βl(π(u), f)|

would be a continuous surjection. Because [0,∞) is non-compact, the quotient Γ\Z ′(c)
could not be compact either, contradicting our assumption.

Step 2: If A ∈ Γ̂ is hyperbolic, then A has no fixed point on S̃1,1.

Let A ∈ Γ̂, and (bA, A) be a corresponding element of Γ. Suppose u ∈ S̃1,1 were a fixed
point of A. Then π(u) is an eigenvector of p(A) with eigenvalue 1, and p(A) preserves
the two-dimensional subspace π(u)⊥. Since the metric on π(u)⊥ has signature (1, 1),
p(A) cannot have a further fixed vector on π(u)⊥. Otherwise p(A) would be the identity,
which would contradict the hyperbolicity of A. Thus the restriction of p(A)−I to π(u)⊥

is bijective. In particular there exists a solution v ∈ π(u)⊥ of (p(A)− I)v = π(u)×′ bA,
since the right side of this equation is an element of π(u)⊥. The point (v, u) ∈ Z ′(c)
would then be a fixed point of (bA, A) since (bA, A)(v, u) = (p(A)v + bA ×′ π(u), Au) =
(v, u). We obtain a contradiction.

Step 3: The closure C of p(Γ̂) in SO0(1, 2) is neither discrete nor equal to SO0(1, 2).

Here we view C as a subgroup of PSL(2,R), and Γ̂ as a subgroup of P̃SL(2,R).

There is a subset H̃yp0 ⊂ P̃SL(2,R) consisting of those elements whose projection
to PSL(2,R) is hyperbolic, and which belong to a one-parameter subgroup. The
isomorphism PSL(2,R) ∼= SO0(1, 2) induces an isomorphism between the universal

covers P̃SL(2,R) and S̃O0(1, 2), and this isomorphism identifies the subsets H̃yp0 in

P̃SL(2,R) and S̃O0(1, 2). Thus, if there existed an element of Γ̂ ⊂ P̃SL(2,R) that lies in

H̃yp0 ⊂ P̃SL(2,R), that would contradict Step 2, because elements of H̃yp0 ⊂ S̃O0(1, 2)
have fixed points on S̃1,1.

Assume first that C is discrete. We apply Proposition C.4. Obviously, C cannot
be finite. Furthermore, we can also exclude the possibilities in items (b) and (c) of
Proposition C.4. Indeed, up to conjugation p(Γ̂) would be contained in N or H. For
each of these groups, there exists a vector f ∈ R

3 that gets mapped to ±f by each group
element. This is impossible by Step 1. Hence C contains a subgroup which is isomorphic
to a free group with two generators, and consists of hyperbolic elements only. Let B1, B2

be the two hyperbolic generators of this free subgroup. Let B̃1, B̃2 ∈ Γ̂ ⊂ P̃SL(2,R)
be preimages of B1, B2 ∈ C. The following arguments can be found in the paper [Fa],
which includes a review of results by Goldman and by Matelski. The commutator
[B1, B2] is again hyperbolic. Thus, either tr[B1, B2] > 2, which implies [B̃1, B̃2] ∈ H̃yp0
[Fa, Corollary 2.19], or otherwise tr[B1, B2] < −2. In the latter case, tr[B1, [B1, B2]] > 2

[Fa, Lemma 2.10 and Lemma 2.8]. Thus [B̃1, [B̃1, B̃2]] ∈ H̃yp0 again by [Fa, Corollary
2.19]. In either case, we get a contradiction to Step 2. Consequently, C is not discrete.
The group C cannot be equal to PSL(2,R) since otherwise we would find two hyperbolic

elements A1, A2 ∈ p(Γ̂) with tr[A1, A2] > 2. If Ã1 and Ã2 are elements of Γ̂ ⊂ P̃SL(2,R)

with p(Ãj) = Aj, j = 1, 2, then [Ã1, Ã2] belongs to H̃yp0 [Fa, Corollary 2.19]. Again
we get a contradiction to Step 2.

Step 4: C is conjugate to a subgroup of P.
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If C is two-dimensional, it is conjugate to P. So it remains to consider the case where
C is one-dimensional. Then the identity component C0 of C is conjugate to one of the
groups SO(2), N, H0. If C0 is conjugate to N, then C is contained in P and we are
done. Otherwise C is conjugate to one of the groups SO(2), H0 or H. Again, each of
these groups has a fixed point in R

3 up to a sign, which is impossible by Step 1.

Step 5: Final contradiction.

The result of Step 4 implies that Γ may be assumed to be contained in l∗ ⋊ P̃. We
consider the submanifold Y = (l∗ ⋊ P̃)/(R × R) of Z ′(c), where R × R is the stabilizer
of a point in Z ′(c) as explained in Proposition 3.31. The connected component Y0 of Y
containing the base point is given by (l∗ ⋊ P̃0)/(R × R), where P̃0 denotes the identity
component of P̃. The subgroup Γw := Γ∩ (l∗ ⋊ P̃0) of Γ acts properly and cocompactly
on Y0. Because l∗⋊P̃0 is completely solvable, Γw has a unique syndetic hull S0 ⊂ l∗⋊P̃0,
see Prop. A.4, which also acts properly and cocompactly on Y0. Proposition A.6 then
implies that l∗ ⋊ p = s⊕ (R · e2 ⊕ h), where s is the Lie algebra of S0, and h ⊂ p is the
lie algebra of H0.

Let p̂ : l∗ ⋊ P̃0 → P̃0 and q : l∗ ⋊ p → p denote the projections of the groups and Lie
algebras, respectively. Then q(s) is a subalgebra of p. Since l∗ ⋊ p = s ⊕ (R · e2 ⊕ h),
the sum q(s) + h must equal p. There are two cases: Either p̂(S0) contains hyperbolic
elements, or q(s) = n. In the case that q(s) = n, the kernel of q restricted to s is
a two-dimensional n-invariant subspace of l∗, hence equal to span{f1, e2}. This is a
contradiction, because e2 is also contained in the direct summand R · e2 ⊕ h. Thus
it is left to exclude the case that p̂(S0) contains hyperbolic elements. Since S0 is the
syndetic hull of Γw, the quotient Γw\S0 is compact. Then p̂(Γw)\p̂(S0) is also compact.
It follows that if p̂(S0) contains hyperbolic elements, then p̂(Γw) contains hyperbolic
elements as well. Indeed, were p̂(Γw) ⊂ P̃0 to only contain elements of Ñ0, then the
continuous map p̂(S0) → R, Ã 7→ 〈f3, p(Ã)f1〉 would descend to a well-defined map
p̂(Γw)\p̂(S0) → R. If p̂(S0) contains hyperbolic elements, these maps have unbounded
image, as can be seen by examining the images of Ãn for n ∈ Z and p(Ã) = P (a, b) with
a 6= 1. This contradicts the compactness of p̂(Γw)\p̂(S0). Now, any element in P̃0 is

part of a one-parameter family in P̃0, in particular P̃0∩H̃yp is contained in H̃yp0. Thus,

if p̂(S0) contains hyperbolic elements, then Γ̂ contains elements of H̃yp0, contradicting
Step 2. Overall, we conclude that Γ cannot be contained in l∗⋊ P̃, which gives the final
contradiction. ✷

A Proper actions and syndetic hulls

Recall that the action of a topological group Γ on a space X is proper if for every
compact K ⊂ X, the set {γ ∈ Γ | γK ∩K 6= ∅} is compact in Γ. In particular, if Γ is a
discrete group, then its action is proper if for every compact subset K ⊂ X the set of
γ ∈ G such that K ∩ γ(K) 6= ∅ is finite.

In the context of this paper, X is a smooth manifold. We consider a Lie group G
acting smoothly on X by diffeomorphisms. If Γ is a discrete subgroup of G such that
the induced action of Γ is proper, free, and cocompact, then Γ\X is compact manifold
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and is called compact quotient of X. The assumption that the Γ-action be free is
necessary for the quotient Γ\X to be a manifold. Often, however, this assumption
is not essential if we are only interested in the existence or non-existence of compact
quotients. In favorable circumstances, the freeness of the action is in fact a consequence
of properness, at least up to passing to a finite index subgroup. This is the content of
the next lemmas.

Before we do so, let us note some simple facts that will be used implicitly throughout
this paper. In the situation above, suppose that Γ is a discrete subgroup of the Lie
group G. Let g be in G. Then Γ acts properly, freely and cocompactly on X if and
only if gΓg−1 does. Moreover, suppose Γ′ ⊂ Γ is a finite-index subgroup. Then, Γ′\X
is a finite cover of Γ\X, thus Γ′ acts cocompactly if and only if Γ does.

We turn to the aforementioned fact that the freeness of a group action is implied by
properness in some cases, at least up to passing to a finite index subgroup. This is
essentially due to Selbergs’s lemma. Though well known, we give the arguments for
convenience.

We call a group Γ linear if there exists an injective homomorphism Γ → GL(n,R) for
some n ∈ N.

Lemma A.1 Let Γ be a linear finitely generated discrete group, which acts properly on
a Hausdorff space X. Then, Γ has a finite-index subgroup that acts freely.

Proof. Suppose x ∈ X is a fixed point of γ ∈ Γ. Then, x is also fixed by γk for all
k ∈ N. By properness of the action, the stabiliser Γx ⊂ Γ of x is finite. Thus, γ must
be a torsion element. The claim now follows from Selberg’s lemma, which states that
every finitely generated linear group has a torsion-free subgroup of finite index. ✷

Lemma A.2 Let Γ be a discrete group acting properly on a locally compact, connected
space X by homeomorphisms, such that the quotient Γ/X is compact. Then, Γ is finitely
generated.

Proof. Let A ⊂ X be such that Γ · A = X and ΓA · A is a neighborhood of A, where
ΓA = {γ ∈ Γ | γ ·A∩A 6= 0}. It is proved in [Ks] that ΓA then generates Γ. We will show
that there exists a set A of this kind such that ΓA is finite. Cover X by open subsets
Uα with compact closure. Denote by π : X → Γ\X the quotient map. The sets π(Uα)
form an open cover of Γ\X, hence there exists a finite subcover π(Uα1

), · · · , π(Uαk
).

Let A := Uα1
∪ · · · ∪ Uαk

. Because π(Uα1
), · · · , π(Uαk

) is an open cover of Γ\X, every
point in X lies in the orbit of some point in A, hence Γ · A = X. Moreover, ΓA · A is
the union of the open sets γ · A for γ ∈ ΓA, and because A = e · A ⊂ ΓA · A, the set
ΓA ·A is a neighborhood of A. Thus, ΓA generates Γ. To see that it is finite, note that
ΓA is a subset of ΓĀ. The closure Ā is compact by assumption. Because Γ is discrete
and acts properly, ΓĀ and thus ΓA is finite. ✷

We summarize our discussion in the following lemma. Note that it applies to connected
manifolds in particular.
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Lemma A.3 Let Γ be a linear discrete group that acts properly and cocompactly on a
connected, locally compact Hausdorff space X by homeomorphisms. Then, Γ contains
a finite index subgroup that acts freely on X.

Next, we recall the notion of a syndetic hull. It is one of the main technical tools in
our study of the existence of compact quotients. Let Γ be a closed subgroup of a Lie
group G. A connected Lie subgroup S of G with Γ ⊂ S and Γ\S compact is called a
syndetic hull of Γ in G. In general, syndetic hulls do not need to exist or be unique
if they do. However, for completely solvable Lie groups existence and uniqueness is in
fact guaranteed:

Proposition A.4 [S] Every closed subgroup of a completely solvable Lie group pos-
sesses a unique syndetic hull.

The properness of the action of a discrete subgroup is equivalent to the properness of
the action of its syndetic hull, as implied by the following proposition.

Proposition A.5 [Ko1] Suppose a locally compact group S acts on a locally compact
Hausdorff space X. Let Γ be a co-compact discrete subgroup of S. Then the S-action
on X is proper if and only if the Γ-action on X is proper.

Lastly, we state a condition for the compactness of a quotient of a G-homogeneous
space for solvable G.

Proposition A.6 [M, Prop. 3.7] Let G be a simply-connected solvable Lie group and
L and H be connected closed subgroups of G. Assume that the L-action on G/H is
proper. Then the following conditions are equivalent:

(i) the space L\G/H is compact,

(ii) G = LH,

(iii) g = l⊕ h as a linear space.

B Extrinsic symmetric spaces

Let (V, 〈· , ·〉) be a pseudo-Euclidean vector space and M →֒ V be a non-degenerate
submanifold. Here ‘non-degenerate’ means that the restriction of 〈· , ·〉 to each tangent
space TxM , x ∈ M , is non-degenerate, where we understand TxM as a linear subspace
of V . For x ∈ M , we denote byNxM the normal space at x, this space being understood
as an affine subspace of V . The reflection sx of V at NxM is the affine map sx : V → V
defined by

dsx|TxM = − id, sx|NxM = id . (40)

A non-degenerate submanifold M →֒ V is called extrinsic symmetric or symmetric
submanifold if sx(M) = M for all x ∈ M . Such manifolds were introduced and first
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studied by [Fe] in the Euclidean context. Later on the notion was generalised to the case
of a pseudo-Euclidean ambient space by Naitoh [Na], and Kim and Eschenburg [KiE].
In the pseudo-Euclidean case, the infinitesimal object that is related to an extrinsic
symmetric space is a so-called weak extrinsic symmetric triple. A detailed study of the
correspondence between extrinsic symmetric spaces and their infinitesimal objects can
be found in [K1]. Here we will only need the following part of the results of that paper.

An extrinsic symmetric triple (g̃, 〈· , ·〉̃,Φ) consists of a metric Lie algebra (g̃, 〈· , ·〉̃ ) and
a pair Φ = (D, θ̃), where θ̃ ∈ Aut(g̃) is an isometric involution, and D ∈ so(g̃) is an
anti-symmetric derivation satisfying Dθ̃ = −θ̃D, D3 = −D and [k−, k−] = k+, where

k = {X ∈ g̃ | θ̃(X) = X}, k+ := k ∩ kerD, k− := {X ∈ k | D2(X) = −X}.

Let (g̃, 〈· , ·〉̃,Φ) be an extrinsic symmetric triple with Φ = (D, θ̃). We consider

V := {X ∈ g̃ | θ̃(X) = −X}

together with the restriction of 〈· , ·〉̃ to V as a pseudo-Euclidean space. The isometry
group of V equals Iso(V ) = O(V ) ⋉ V . Let φ be the homomorphism from k to the Lie
algebra iso(V ) = so(V ) ⋉ V of Iso(V ) defined by

φ(u) =
(
(ad u)|V ,−D(u)

)
, u ∈ k.

Note that φ is injective. Let K ⊂ Iso(V ) be the connected Lie subgroup with Lie
algebra φ(k). Then the submanifold

Mg̃,Φ := K(0) = {k(0) | k ∈ K} ⊂ V

is extrinsic symmetric in V and K is the group of its extrinsic transvections, i.e. the
subgroup of Iso(V ) generated by all compositions sx ◦sy for x, y ∈ Mg̃,Φ [K1, Prop. 4.5].
Of course it is also an ordinary symmetric space. The Lie algebra of its (ordinary)
transvection group coincides with k, see [K1, Remark 4.6]. The decomposition k =
k+ ⊕ k− defines an involution τ by τ |k+ = id, τ |k− = − id. Together with the restriction
of 〈· , ·〉̃, these objects constitute the symmetric triple (k, τ, 〈· , ·〉̃ |k) of the (ordinary)
symmetric space Mg̃,Φ.

If D = ad(ξ) is an inner derivation, then we can also proceed as follows. Let K ′ ⊂
SO(V ) be the connected Lie subgroup with Lie algebra {ad(u)|V | u ∈ k} ⊂ so(V ).
Then the submanifold

Mg̃,ξ := K ′(ξ) = {k′(ξ) | k′ ∈ K ′} ⊂ V (41)

is extrinsic symmetric in V . It differs from Mg̃,Φ by a translation by ξ.

Let X be a pseudo-Hermitian symmetric space and and (g, θ, 〈· , ·〉) its symmetric triple.
The Kähler structure on X corresponds to an antisymmetric derivation J of g such that
θJ = Jθ and J2|g− = − id and J |g+ = 0. We will show that, up to a covering map,
X is extrinsic symmetric in V := g. This is well known for (Riemannian) Hermitian
symmetric spaces, see for example [E] and references therein. As we shall see, this is
also true in the pseudo-Riemannian case, where J is not necessarily an inner derivation.
Moreover, we will obtain a similar statement for para-Hermitian spaces.
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Proposition B.1 Let X be a pseudo-Hermitian symmetric space and (g, θ, 〈· , ·〉) its
symmetric triple. Let J ∈ der(g) be the derivation corresponding to the Kähler structure
on X. If K denotes the connected subgroup of SO(g)⋉g with Lie algebra {(ad(u),−Ju) |
u ∈ g} ⊂ so(g)⋉g, then M := K(0) is extrinsic symmetric in (g, 〈· , ·〉), and the universal
covers of M and X are isometric.

Suppose that the derivation J is given by J = ad(ξ) for some ξ ∈ g. Let K ′ ⊂ SO(g) be
the connected subgroup with Lie algebra ad(g) ⊂ so(g). Then, M ′ := K ′(ξ) is extrinsic
symmetric in (g, 〈· , ·〉), and the universal covers of M ′ and X are isometric.

Proof. From the given data we will construct an extrinsic symmetric triple. We define
g̃ as the Lie algebra direct sum g ⊕ g, and endow g̃ with the inner product 〈· , ·〉̃ =
(1/2) ·

(
〈· , ·〉 ⊕ 〈· , ·〉

)
, and with the involution θ̃ ∈ Aut(g̃) defined by θ̃(u, v) = (v, u).

Lastly, define the derivation D via D(u, v) := (Ju,−Jv). The triple (g̃, 〈· , ·〉̃,Φ) with
Φ = (D, θ̃) constitutes an extrinsic symmetric triple. Then, V = V+ ⊕ V− for V± =
{(u,−u) | u ∈ g±}, and k = k+ ⊕ k− for k± = {(u, u) | u ∈ g±}.
The subspace V is isometrically isomorphic to g via the map V → g, (u,−u) 7→ u.
Under this isomorphism, the group K ⊂ SO(g) ⋉ g defined in the proposition becomes
the connected subgroup of SO(V ) ⋉ V with Lie algebra {(ad(ū),−Dū) | ū = (u, u) ∈
k} ⊂ so(V )⋉V . Therefore, the extrinsic symmetric spaceMg̃,Φ is mapped toM := K(0)
by the linear isometry V ∼= g. Thus, M is extrinsic symmetric in (g, 〈· , ·〉). The
symmetric triple of the symmetric space M is equal to (k, τ, 〈· , ·〉̃ |k), with the involution
τ determined by the decomposition k = k+ ⊕ k−. This symmetric triple is isomorphic
to the symmetric triple (g, θ, 〈· , ·〉) of X via k → g, (u, u) 7→ u. Thus the symmetric
spaces M and X have the same universal cover.

Moreover, if J = ad(ξ), then D = ad(ξ,−ξ). The extrinsic symmetric space Mg̃,(ξ,−ξ)

is mapped to M ′ := K ′(ξ) via the same linear isometry V ∼= g, again implying that M ′

is extrinsic symmetric and has the same symmetric triple as X. ✷

Similarly, if M is a para-Hermitian symmetric space with symmetric triple (g, θ, 〈· , ·〉),
then the para-Kähler structure on M corresponds to an anti-symmetric derivation J of
g such that θJ = Jθ and J2|g− = id and J |g+ = 0. We will show that, up to a covering
map, M is extrinsic symmetric in (g,−〈· , ·〉).

Proposition B.2 Let X be a para-Hermitian symmetric space and (g, θ, 〈· , ·〉) its
symmetric triple. Let J ∈ der(g) be the derivation corresponding to the para-Kähler
structure on X. If K denotes the connected subgroup of SO(g) ⋉ g with Lie alge-
bra {(ad(u),−Ju) | u ∈ g} ⊂ so(g) ⋉ g, then M := K(0) is extrinsic symmetric in
(g,−〈· , ·〉), and the universal covers of M and X are isometric.

Suppose that the derivation J is given by J = ad(ξ) for some ξ ∈ g. Let K ′ ⊂ SO(g) be
the connected subgroup with Lie algebra ad(g) ⊂ so(g). Then, M ′ := K ′(ξ) is extrinsic
symmetric in (g,−〈· , ·〉), and the universal covers of M ′ and X are isometric.

Proof. Analogously to the case of pseudo-Hermitian symmetric spaces, we will con-
struct an extrinsic symmetric triple out of the given data. Now g̃ = gC equals the
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complexification of g. The inner product 〈· , ·〉̃ on g̃ is equal to the real part of the
complex bilinear extension of 〈· , ·〉. The involution θ̃ equals the complex conjugation
on gC. Thus k = g and V = ig. The complex linear extension of J to g̃ is also called
J . We define D := iJ . Then k± = g± and V± = ig±. The triple (g̃, 〈· , ·〉̃,Φ) with
Φ = (D, θ̃) constitutes an extrinsic symmetric triple.

Here, V is isometrically isomorphic to (g,−〈· , ·〉) via the map V → g, iu 7→ u. Under
this isomorphism K ⊂ SO(g) ⋉ g becomes the connected subgroup with Lie algebra
{(ad(u),−Ju) | u ∈ g} ⊂ so(V ) ⋉ V , and K ′ ⊂ SO(g) the connected subgroup with
Lie algebra ad(g) ⊂ so(V ). As above one concludes that the extrinsic symmetric space
Mg̃,Φ is isometric to M := K(0), and Mg̃,ξ to M ′ := K ′(ξ), that M and M ′ are also
extrinsic symmetric, and that their symmetric triples are isomorphic to the one of X,
meaning that they have the same universal cover as X. ✷

C Subgroups of PSL(2,R) and SO0(1, 2)

The group PSL(2,R), its elements and subgroups have been studied extensively in the
context of hyperbolic geometry. The Lie groups SO0(1, 2) and PSL(2,R) are isomorphic,
whence these results may be translated to results on SO0(1, 2). The transvection and
isometry groups of some of the spaces examined in this paper are extensions of SO0(1, 2).
Subgroups of SO0(1, 2) thus appear naturally in the study of compact quotients of these
spaces. In this appendix we recall some relevant notions for elements and subgroups
of PSL(2,R), and translate them to statements for SO0(1, 2) as they will be needed in
the paper.

Recall that PSL(2,R) is the quotient of SL(2,R) by the subgroup {±I}. It acts as
the connected component of the isometry group of the hyperbolic plane H via Möbius
transformations. Consider the Lie algebra sl(2,R) ∼= so(1, 2). Its Killing form has
signature (1, 2), and is preserved by the adjoint action of PSL(2,R). The mapping
A 7→ Ad(A) establishes an isomorphism from PSL(2,R) to the connected component
SO0(1, 2) of the Lorentz group.

Elements of PSL(2,R) are categorised according to their trace. Namely, A ∈ PSL(2,R)
is called elliptic if | tr(A)| < 2, parabolic if | tr(A)| = 2, and hyperbolic if | tr(A)| > 2.
Moreover, the absolute value of the trace is closely tied to conjugacy classes: If two
elements of PSL(2,R) are conjugate, then the absolute value of their trace is equal. If
A ∈ PSL(2,R) is hyperbolic, then the conjugacy class of A is determined by | tr(A)|, i.e.
| tr(B)| = | tr(A)| implies that B and A are conjugate. There are three conjugacy classes
of parabolic elements, one of them containing only the identity. If A ∈ PSL(2,R) is
elliptic, then the set of B ∈ PSL(2,R) with | tr(B)| = | tr(A)| consists of two conjugacy
classes.

We will can an element of SO0(1, 2) elliptic/parabolic/hyperbolic if its image under the
isomorphism SO0(1, 2) ∼= PSL(2,R) is elliptic/parabolic/hyperbolic. Elliptic elements
correspond to rotations, hyperbolic ones to hyperbolic rotations. Elliptic elements have
a fixed point in the hyperbolic plane H2 ⊂ R

1,2, hyperbolic elements have a fixed point
on the hyperboloid S1,1 ⊂ R

1,2. Parabolic elements fix a light-like vector.
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The action of PSL(2,R) on H can be extended to an action on Ĥ = H ∪ ∂H ∪ {∞}.
A subgroup Γ of PSL(2,R) is called elementary if the action of Γ on Ĥ has a finite
orbit. We call a subgroup Γ ⊂ SO0(1, 2) elementary if its image under the isomorphism
SO0(1, 2) ∼= PSL(2,R) is elementary. Elementary subgroups are classified, indeed any
elementary subgroup of PSL(2,R) is of one of the following forms:

(a) abelian, and containing only elliptic, or only parabolic, or only hyperbolic ele-
ments,

(b) conjugate in PSL(2,R) to a subgroup of the image of the subgroup

{(
a b
0 a−1

)
| a ∈ R \ {0}, b ∈ R

}
⊂ SL(2,R) .

in PSL(2,R),

(c) or conjugate in PSL(2,R) to a subgroup of the image of the subgroup

{(
a 0
0 a−1

)
| a ∈ R \ {0}

}
∪
{(

0 a
−a−1 0

)
| a ∈ R \ {0}

}
⊂ SL(2,R)

in PSL(2,R).

A proof can be found in [Bn, Section 5.1]. The corresponding statement in SO0(1, 2)
is as follows:

Proposition C.1 Any elementary subgroup of SO0(1, 2) is of one of the following
forms:

(a) abelian, and containing only elliptic, or only parabolic, or only hyperbolic ele-
ments,

(b) conjugate in SO0(1, 2) to a subgroup of

P :=



P (a, b) :=



a2 −

√
2ab −b2

0 1
√
2ba−1

0 0 a−2


 | a 6= 0, b ∈ R



 ⊂ SO(1, 2)0 , (42)

(c) or conjugate in SO0(1, 2) to a subgroup of

H := H0 ∪ H0 ·




0 0 −1
0 −1 0
−1 0 0




for H0 := {P (a, 0) = diag(a2, 1, a−2) | a 6= 0}.

Here, the matrices are represented with respect to a basis (f1, e2, f3) of R1,2, where
f1, f3 are isotropic and 〈f1, f3〉1,2 = 1, and e2 is spacelike and orthonormal to f1, f3.
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Indeed, if (e1, e2, e3) denotes the standard orthonormal basis, we let f1 = (e1 + e3)/
√
2

and f3 = (−e1 + e3)/
√
2. We also need the subgroup

N := {P (1, b) | b ∈ R} ⊂ SO(1, 2)0 .

The elements of N are parabolic, and any parabolic element of SO0(1, 2) is conjugate
to an element of N. The elements of P are either hyperbolic or in N. Any hyperbolic
element of SO0(1, 2) is conjugate to an element of P, in fact even conjugate to an
element of the subgroup H0 ⊂ P.

The following proposition describes subgroups of SO0(1, 2), which contain no elliptic
elements.

Proposition C.2 [Bn, Thm. 8.3.1] If a subgroup Γ of SO0(1, 2) contains no elliptic
elements, then it is discrete or elementary.

Any discrete subgroup of PSL(2,R) acts properly on the hyperbolic plane H [Bn,
Thm. 8.4.1]. Under the isomorphism PSL(2,R) ∼= SO0(1, 2), the action of PSL(2,R)
on H is translated to the natural action of SO0(1, 2) on the hyperboloid H2 ⊂ R

1,2.
Thus, the following holds:

Proposition C.3 Any discrete subgroup of SO0(1, 2) acts properly on the hyperboloid
H2 ⊂ R

1,2.

Moreover, the following can be said about discrete subgroups.

Proposition C.4 [H, Proposition 3.1.2] For any discrete subgroup Γ ⊂ SO0(1, 2), one
of the following holds:

(a) Γ is finite and consists only of elliptic elements.

(b) Γ is infinite cyclic generated by a parabolic element.

(c) Γ is infinite cyclic generated by a hyperbolic element, or Γ contains an infinite
cyclic subgroup of index 2 generated by a hyperbolic element.

(d) Γ contains a subgroup consisting entirely of hyperbolic elements, which is isomor-
phic to the free group on two generators.

In the cases (a), (b) and (c), Γ is elementary.

Note that in case (b) of the above proposition, Γ is conjugate to a subgroup of N. In
case (c), it is conjugate to a subgroup of H.
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