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Abstract
As an essential tool of secure distributed machine learning, vertical
federated learning (VFL) based on homomorphic encryption (HE)
suffers from severe efficiency problems due to data inflation and
time-consuming operations. To this core, we propose PackVFL, an
efficient VFL framework based on packed HE (PackedHE), to accel-
erate the existing HE-based VFL algorithms. PackVFL packs multi-
ple cleartexts into one ciphertext and supports single-instruction-
multiple-data (SIMD)-style parallelism. We focus on designing a
high-performant matrix multiplication (MatMult) method since
it takes up most of the ciphertext computation time in HE-based
VFL. Besides, devising the MatMult method is also challenging for
PackedHE because a slight difference in the packing way could
predominantly affect its computation and communication costs.
Without domain-specific design, directly applying SOTA MatMult
methods is hard to achieve optimal.

Therefore, we make a three-fold design: 1) we systematically
explore the current design space of MatMult and quantify the com-
plexity of existing approaches to provide guidance; 2) we propose a
hybrid MatMult method according to the unique characteristics of
VFL; 3) we adaptively apply our hybrid method in representative
VFL algorithms, leveraging distinctive algorithmic properties to
further improve efficiency. As the batch size, feature dimension and
model size of VFL scale up to large sizes, PackVFL consistently deliv-
ers enhanced performance. Empirically, PackVFL propels existing
VFL algorithms to new heights, achieving up to a 51.52× end-to-
end speedup. This represents a substantial 34.51× greater speedup
compared to the direct application of SOTA MatMult methods.
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1 Introduction
Vertical federated learning (VFL) [69, 70] based on homomorphic
encryption (HE) [3] gradually becomes a trend of secure distributed
machine learning among data silos [16, 25, 49, 58]. VFL solves
the problem: multiple data owners, e.g., companies or institutions,
hold vertically partitioned data. They want to collaboratively train
models without leaking the original data. During the process of
HE-based VFL, raw data are maintained locally. Only intermediate
results for calculating model updates are encrypted by HE [78] and
exchanged among parties for further cryptographic computation.
HE-based VFL is crucial for legally enriching ML features in both
academia and industry.

However, state-of-the-art (SOTA) HE-based VFL algorithms [16,
18, 70, 77] suffer from severe efficiency issues, which hinder VFL’s
wider application. On the one hand, their adopted HE methods, e.g.,
Paillier [57], largely inflate data size to more than 40× [74], leading
to communication and memory overheads. On the other hand,
the adopted HE methods introduce time-consuming cryptographic
operations, dominating the training process. We dig into these
operations and find that matrix multiplication (MatMult) is the
efficiency bottleneck. Taking the VFL-LinR algorithm [70] as an
example, MatMult gradually occupies the majority of cryptographic
computation time, up to 99.23%, shown in Tab. 1.
Our Contribution. In this paper, we propose PackVFL, an ef-
ficient VFL framework to accelerate the existing HE-based VFL
algorithms. In detail, PackVFL is based on packed homomorphic
encryption (PackedHE) [9, 10, 19, 24] and packs multiple clear-
texts into one ciphertext to alleviate the data inflation problem
and support parallel computation, i.e., single-instruction-multiple-
data (SIMD), over the packed values. More specifically, we focus
on devising a high-performant MatMult method tailored for the
VFL scenario. Empirically, we show the superiority of PackVFL,
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Batch size VFL-LinR [70] Naively applying PackedHE

2 0.014s (10.14%) 0.037s (75.47%)
8 0.059s (29.29%) 0.227s (95.37%)
32 0.459s (65.19%) 0.834s (98.73%)
128 5.487s (87.66%) 4.079s (99.76%)
512 82.39s (96.71%) 20.73s (99.94%)
2048 1419s (99.23%) 111.1s (99.98%)

Table 1: Time consumed by cryptographic operations in one
training batch. Numbers in parentheses represent the pro-
portion of MatMult.

with 33.30×, 3.22×, 51.52× speedup over SOTA HE-based VFL algo-
rithms, i.e., VFL-LinR [70], CAESAR [16], VFL-NN [77] algorithms,
respectively, in the end-to-end experiment.

1.1 Our Techniques
As the most time-consuming cryptographic operation in HE-based
VFL,MatMult is also the design challenge of PackVFL.When PackedHE
MatMult is adopted in the VFL scenario, the way of packing clear-
texts primarily affects its computation and communication cost.
Without domain-specific design, MatMult still seriously slows down
the training process. For instance, we utilize the naive PackedHE
MatMult method [27] in VFL-LinR and find it even slower than
Paillier with small batch size, e.g., 32, as shown in Tab. 1. The rea-
son is the naive (row-order) method contains too many rotation
operations [27], causing a significant computation overhead. We
provide a detailed explanation in §3.

Besides, SOTA PackedHE MatMult methods proposed by [28, 31,
35, 50, 76] are also sub-optimal for the VFL scenario without do-
main specific designs. Among them, the methods of GAZELLE [35],
DELPHI [50] and GALA [76] cause extra computation overheads,
while the methods of Cheetah [31] and Iron [28] result in extensive
communication overheads in VFL. Based on this fact, we raise the
question: Can we design a PackedHE MatMult method that is ideally
tailored for the current HE-based VFL algorithms? As we will show,
the answer is yes. Our new MatMult method outperforms SOTA
PackedHE MatMult methods theoretically in §4 and empirically
in §7.

1.1.1 Systematical Exploration of Design Space. As one of the de-
sign emphases of PackedHE, the MatMult method has been con-
tinuously undergoing updates and iterations [27, 28, 31, 35, 50, 76].
Therefore, we provide a comprehensive analysis of the current de-
sign space and quantify the complexity of existing approaches to
guide our design of PackVFL in §3. Based on the main idea of pack-
ing cleartexts, we divide them into slot packing methods [27, 35,
50, 60, 67, 76] and coefficient packing methods [28, 31]. Taking the
MatMult between cleartext matrix 𝑿 and ciphertext vector J𝒚K as
as example, we compare their methodologies. Slot packing methods
follow the standard encoding procedure of PackedHE. It arranges
which cleartexts of𝑿 are encoded together into a plaintext and their
order. On the contrary, coefficient packingmethods deviate from the
standard procedure and directly map the cleartexts of 𝑿 to specific
coefficients of plaintext. The slot and coefficient packing methods
have pros and cons considering computation and communication
complexities. Thus, the challenge lies in selecting the appropriate
design path and further driving domain-specific innovations.

1.1.2 MatMult Design for VFL Characteristics. To overcome the
above challenge, we summarize three characteristics of the VFL’s re-
quired MatMult operation and design a hybrid MatMult method cor-
respondingly in §4. The first characteristic is that the two operands
of VFL MatMult are held by geo-distributed parties. One operand
is encrypted by one party and transmitted to another for Mat-
Mult computation. After that, the resulting ciphertext is sent back.
Through theoretical and empirical analyses of computation and
communication costs, we opt for the slot packing concept. As a re-
sult, we propose PackVFL’s diagonal method as the core component
of our hybrid approach, detailed in §4.1. The second characteristic
is wide-range operand size. In VFL, the operand size of MatMult
is related to batch size, feature dimension, and model architecture,
with a wide range from small to large. Hence, we design delicate in-
put packing and input partitioning techniques to further improve
efficiency, correspondingly for the small- and large-operand situ-
ation in §4.2. The third characteristic is that the MatMult result
is passively decrypted after transmission to the party with secret
key. No extra operation is conducted. Due to this characteristic,
we design the lazy rotate-and-sum (RaS) mechanism as the last
component of our hybrid method to eliminate the remaining time-
consuming ciphertext operation (rotation [27]) contained at the
end of MatMult in §4.3.

Till now, our hybrid method has already shown its superior-
ity over SOTA PackedHE MatMult methods, discussed in §4. For
the computation comparison in §7.2, our hybrid method performs
the best with the highest 846× and 1.24× speedup over the naive
method [27] and the SOTA method of GALA [76], respectively.

1.1.3 Adaption Design to SOTA VFL Algorithms. To further im-
prove the end-to-end training efficiency, we dig into the secure
protocols of three representative HE-based VFL algorithms, i.e.,
VFL-LinR [70], CAESAR [16], VFL-NN [77] 1 for illustration, and
adaptively apply our MatMult method in them with three extra
delicate mechanisms, leveraging their distinctive algorithmic prop-
erties, in §5. More detailedly, we design the multiplication level
reduction mechanism, which modifies CAESAR’s original compu-
tation process to use more efficient PackedHE parameters in §5.2.
To make the lazy RaS component of our hybrid method feasible
with this modification, we also design the cleartext inverse RaS
mechanism. In §5.3, focusing on VFL-NN, we encounter a new Mat-
Mult scenario between matrices 𝑿J𝒀 K. Rather than adhering to the
conventional approach to diagonally encode the cleartext matrix
𝑿 , we change our mind to diagonally encode the ciphertext ma-
trix J𝒀 K, significantly enhancing efficiency. Moreover, we develop
the transposed matrices’ diagonal conversion mechanism, enabling
conversion between two encrypted transposed matrices, further
halving the communication cost.

Together with the adaption optimization, PackVFL has more
speedup over VFL-LinR [70], CAESAR [16] and VFL-NN [77] than
the SOTA method of GALA by 9.02×, 0.91× and 33.1× respectively.
More details are shown in §7.1. Besisdes, we also show that none
of our designs harms the accuracy of VFL algorithms in §7.1.

1Our focus on VFL-LinR, CAESAR, and VFL-NN is due to their foundational status
and widespread recognition in HE-based VFL applications [69].
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1.1.4 PackVFL’s Innovations andNew Insights. As a cross-disciplinary
effort bridging federated learning (FL) and cryptography, PackVFL
makes significant contributions to both fields. For the FL commu-
nity, PackVFL stands as one of the pioneering works to demonstrate
the superiority of PackedHE over Paillier for VFL. We provide a
counter-intuitive result that PackedHE is more suitable for VFL
with our elaborate design. The VFL’s community has the intuition
that PackedHE is much slower than Paillier since PackedHE is more
complicated and supports more cryptographic operations. We are
the first to devise an efficient MatMult method tailored to meet
VFL’s specific requirements, showcasing its effectiveness across
various VFL algorithms.

For the cryptography community, our proposedMatMult method
exhibits potential advantages over state-of-the-art slot packing ap-
proaches, not only in VFL but also in other related domains such
as secure model inference [48]. Additionally, we extend the Mat-
Mult scenario from matrix-vector 𝑿J𝒚K to matrix-matrix 𝑿J𝒀 K and
design PackedHE techniques of the cleartext inverse RaS and trans-
posed matrices’ diagonal conversion, which is unprecedented in
earlier works.

1.2 Other Related Work
Several existing works [34, 46, 56, 60, 65, 67] also utilize PackedHE
to construct federated algorithms. However, [56, 65] provide no
design details about MatMult. [34, 46] designed multiplication be-
tween ciphertext vectors, which differs from our setting. [60, 67]
involve SOTA PackedHE MatMult designs. But, their target Mat-
Mult operation is a single-party continuous MatMult operation
without interaction, which is different from the requirements VFL.
Therefore, they cannot be adopted in the VFL scenario. Besides,
PackedHE hardware acceleration works, e.g., [59, 62, 75], can also
be utilized to improve our performance further since PackVFL is a
high-level application of PackedHE and changes no basic crypto-
graphic operations.

2 Background and Preliminaries
2.1 Vertical Federated Learning
Vertical federated learning (VFL) [69, 70] takes a significant part
of cross-silo distributed machine learning, whose participants are
business companies [25, 49]. Companies usually maintain different
portraits for common users, i.e., vertical data partition [16]. VFL
enables secure model training over these abundant distributed fea-
tures to achieve better prediction accuracy, complying with laws
and regulations such as GDPR 2. Therefore, VFL holds substan-
tial real-world importance. For example, [23] utilized VFL to help
prevent COVID-19 [32].

2.1.1 HE-based VFL is a Widely-Adopted and Practical Solution.
During the VFL training process, intermediate results instead of
original data are exchanged among parties. To further protect in-
termediate results from disclosing privacy [78], VFL adopts various
privacy-preserving methods, e.g., differential privacy (DP) [22],
secret sharing (SS) [6], and homomorphic encryption (HE) [3]. HE-
based VFL [13, 16, 18, 70, 77] turns out to be a practical solution since

2GDPR is a regulation in EU law on data protection and privacy in the European Union
and the European Economic Area. https://gdpr.eu/.
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Figure 1: Illustration of HE-based VFL. Some VFL protocols
may contain a trusted third party, which we omit to simplify.

DP-based VFL [66] and SS-based VFL [51, 52] suffer from either severe
accuracy loss [69] 3 or large communication overhead [16]. HE could
provide the homomorphism between calculation over ciphertext
and calculation over cleartext. HE-based VFL encrypts the transmit-
ted messages, conducts computations on the received ciphertext,
and decrypts the results to update the model.

Fig. 1 illustrates a two-party HE-based VFL scenario. Party A
(𝑃𝐴) owns a private dataset D𝐴 = (I𝐴, 𝑭𝐴), where I stands for
the sample identifiers and 𝑭𝐴 represents the features. Party B (𝑃𝐵 )
holds D𝐵 = (I𝐵, 𝑭𝐵, 𝒍𝐵), where 𝒍𝐵 means labels. The first step of
VFL is entity alignment, e.g., private set intersection (PSI) [41], to
securely find the samples with common identifiers between two
parties and use them as training data. The second step is federated
training. At each iteration, 𝑃𝐴 and 𝑃𝐵 first conduct cleartext cal-
culation over local data, then exchange encrypted ciphertext for
multiplication, e.g., matrix multiplication (MatMult), addition, and
decrypt gradients to update model weights𝑾𝐴,𝑾𝐵 .

2.1.2 Paillier’s Batching is Limited for VFL. Paillier [3] is VFL’s
most commonly adopted HE approach. It inflates data size and
introduces time-consuming operations due to limited support for
SIMD operations. Although Paillier’s batching techniques [33, 74]
tried to fill several cleartexts into one ciphertext, they do not support
the MatMult operation. As shown in Tab. 1, MatMult dominates
the cryptographic operations of the VFL training process with
up to 99.23% proportion. Therefore, Paillier’s batching techniques
cannot be utilized in VFL. Besides, Paillier is based on the decisional
composite residuosity assumption, which is vulnerable to post-
quantum attacks [61]. Yet, Paillier remains the predominant HE
technique in VFL.

2.2 Packed Homomorphic Encryption
Packed homomorphic encryption (PackedHE), e.g., BGV [10], BFV [24],
CKKS [19], and multiparty BFV [53], naturally supports more func-
tional and powerful SIMD-style batching than Paillier. As shown in

3DP is more adept at defending the adversarial attacks [39] and membership attacks [8],
which are orthogonal to the privacy leakage during the training process.
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Figure 2: Illustration of slot packing methods, i.e., the row-order (naive) method, column-order method, and our proposed
generalized diagonal method, for PackedHE MatMult operation 𝑿𝐴J𝒚𝐵K = J𝑿𝐴𝒚𝐵K. We set𝑚 = 𝑁 ′ = 4, 𝑛 = 2.

Fig. 1, PackedHE with the naive MatMult method has already out-
performed Paillier as the number of encrypted cleartexts increases.
Moreover, PackedHE is based on a variant of learning with errors
(LWE), i.e., ring LWE (RLWE) [47], which is quantum-resilient [55].

LWE encrypts a cleartext vector 𝒙 ∈ Z𝑁𝑞 into a ciphertext J𝒙K =
(𝒄0, 𝒄1) = (𝒙 − 𝑨𝒔 + 𝒆,𝑨), where 𝑁 stands for the vector length,
𝑞 is the cleartext modulus (large prime number), 𝑨 ∈ Z𝑁×𝑁

𝑞 is
uniformly sampled, 𝒔 ∈ Z𝑁𝑞 represents the secret key, and 𝒆 ∈ Z𝑁𝑞
is small noise to make the problem hard. The decryption can only
be conducted with 𝒔: 𝒄0 + 𝒄1𝒔 = 𝒙 −𝑨𝒔 + 𝒆 +𝑨𝒔 = 𝒙 + 𝒆 ≈ 𝒙 . One
disadvantage of LWE is that the size of matrix 𝑨 is quadratic with
the vector length 𝑁 , which will cause large communication costs
to transmit ciphertext.

PackedHE utilizes RLWE to solve this problem. For a cleartext
vector 𝒙 ∈ C𝑁 /2, before encryption, PackedHE encodes it to plain-
text, i.e., an integer polynomial 𝑥 ∈ Z𝑞 [𝑋 ]/(𝑋𝑁 + 1). For example,
the standard encoding of CKKS utilizes cyclotomic polynomial to
construct a one-to-one mapping between the cleartext vector and
plaintext polynomial [19]. Then, PackedHE encrypts plaintext 𝑥 to
ciphertext J𝒙K = (𝑐0, 𝑐1) = (𝑥 − 𝑎𝑠 + 𝑒, 𝑎). Values in the cleartext
vector can be regarded to be encoded/encrypted in the correspond-
ing position (slot) of plaintext/ciphertext with the same order. Slot
number 𝑁 ′ = 𝑁 /2 refers to how many cleartexts can be encrypted
in one RLWE ciphertext. The size of polynomial 𝑎 is linear with 𝑁 ,
which is much more efficient than LWE.

We conclude the basic RLWE operations that will be used in the
following sections:

• O1 (Add), which represents slot-wise addition, e.g., J𝒙K + J𝒚K =
J𝒙 +𝒚K or 𝒙 + J𝒚K = J𝒙 +𝒚K;

• O2 (Mult), which represents slot-wise multiplication, e.g., J𝒙K×
J𝒚K = J𝒙 ×𝒚K or 𝒙 × J𝒚K = J𝒙 ×𝒚K;

• O3 (Rot), which represents a rotation operation that shifts ci-
phertext slots in sequence. RotL/R(J𝒙K, 𝑖) denotes rotating J𝒙K
to the left/right for 𝑖 position. Rotation is the most costly basic

RLWE operation, which is more than 10× slower than O1 (Add)
and O2 (Mult);

• O4 (HstRot), which represents hoisting rotation that is a more
efficient optimization to conduct multiple rotation operations
over the same ciphertext [35]. HstRotL/R(J𝒙K, 𝑖) denotes 𝑖-position
left/right HstRot of J𝒙K.

2.2.1 Designing PackedHE MatMult is Non-Trivial. PackedHE has
already achieved good efficiency when conducting basic O1 (Add)
andO2 (Mult) operations with SIMD property. However, there exist
difficulties when designing a more complicated PackedHE MatMult
method [35]. The main reason is that PackedHE needs O3 (Rot)
operations to sum values in different slots of ciphertexts. Since matrix
multiplication needs a large number of vector inner sum operations,
PackedHE MatMult is inclined to be inefficient without proper designs.

3 Systematical Exploration of Design Space
The existing works [27, 28, 31, 35, 50, 76] have proposed SOTA
designs for PackedHEMatMult. Taking the VFL’s MatMult between
matrix and vector as an example, we introduce and compare their
methods to provide guidance for our design. The VFL’s MatMult is
formulated as:

𝑿𝐴J𝒚𝐵K = J𝑿𝐴𝒚𝐵K, (1)

where𝑿𝐴 ∈ R𝑚×𝑛 is held by 𝑃𝐴 ,𝒚𝐵 ∈ R𝑛×1 is held by 𝑃𝐵 . In VFL’s
process, 𝑃𝐵 encrypts 𝒚𝐵 as J𝒚𝐵K and sends it to 𝑃𝐴 for MatMult.
The resulting ciphertext is transmitted back to 𝑃𝐵 for decryption.
𝑿𝐴 should also be encoded to plaintexts before MatMult.

We mainly divide the existing MatMult methods of [27, 28, 31, 35,
50, 76] into two categories below and will show their advantages
and disadvantages in the following of this section:

• Slot packingmethods that follow the standard encoding proce-
dure of PackedHE, decide which cleartexts are encoded together
into a plaintext and arrange their order [27, 35, 50, 76];

4



Category Method Computation Complexity Communication complexity
# O1 (Add) # O2 (Mult) # O3 (Rot) # O4 (HstRot) 𝑃𝐵 to 𝑃𝐴 𝑃𝐴 to 𝑃𝐵

Slot
packing

Naive [27] 𝑚 log2 𝑛 +𝑚 − 1 2𝑚 𝑚 log2 𝑛 +𝑚 − 1 0 1 RLWE-ct 1 RLWE-ct
Column-order [27] 𝑛 − 1 𝑛 0 0 𝑛 RLWE-ct 1 RLWE-ct

GALA [76]’s Diagonal min(𝑚,𝑛) − 1 + log2 ⌈ 𝑛
𝑚

⌉ min(𝑚,𝑛) min(𝑚,𝑛) − 1 log2 ⌈ 𝑛
𝑚

⌉ 1 RLWE-ct 1 RLWE-ct
PackVFL’s Diagonal min(𝑚,𝑛) − 1 + log2 ⌈ 𝑛

𝑚
⌉ min(𝑚,𝑛) log2 ⌈ 𝑛

𝑚
⌉ min(𝑚,𝑛) − 1 1 RLWE-ct 1 RLWE-ct

GALA [76] ⌈𝑚𝑛
𝑁 ′ ⌉ − 1 ⌈𝑚𝑛

𝑁 ′ ⌉ ⌈𝑚𝑛
𝑁 ′ ⌉ − 1 0 1 RLWE-ct 1 RLWE-ct

PackVFL ⌈ mn
N′ ⌉ − 1 ⌈ mn

N′ ⌉ 0 ⌈ mn
N′ ⌉ − 1 1 RLWE-ct 1 RLWE-ct

Coefficient
packing Cheetah [31] 0 1 0 0 1 RLWE-ct 𝑚 LWE-ct

Table 2: Complexity of MatMult methods between matrix and vector. Computation complexity is mainly decided by the
numbers (#) of involved O3 (Rot) and O4 (HstRot) operations. Communication complexity contains messages from 𝑃𝐵 to 𝑃𝐴 and
from 𝑃𝐴 to 𝑃𝐵 . We assume 𝑁 is large enough with no need for matrix/vector partition operation.

• Coefficient packing methods that deviate from the standard
procedure and focus on designing novel mapping between clear-
texts to specific coefficients of plaintext [28, 31].

In the following of this paper, we mention GAZELLE [35], DEL-
PHI [50], GALA [76], Cheetah [31], and Iron [31] to only represent
their MatMult methods for simplicity. Since their primary focus
is on secure CNN inference, other technical contributions, e.g.,
secure convolution techniques, are not applicable in our VFL sce-
nario. Besides, we assume that𝑚,𝑛, 𝑁 are both power of two. In the
real-world scenario,𝑚,𝑛 are not always the power of two, we can
conduct the padding operation over 𝑿𝐴 and 𝒚𝐵 with zero [7]. We
set𝑚 = 4, 𝑛 = 2 for demonstration. Matrix 𝑿𝐴 has four rows, i.e.,
[𝐴0, 𝐴1], [𝐵0, 𝐵1], [𝐶0,𝐶1], and [𝐷0, 𝐷1], while column-vector 𝒚𝐵
contains two elements, i.e.,𝑀0 and𝑀1.𝐴𝑖 , 𝐵𝑖 , and𝑀𝑖 are scalars to
illustrate the computation process. Tab. 2 shows both the computa-
tion and communication complexity of the involved method. For a
clear comparison, we assume 𝑁 is large enough without needing
matrix/vector partition.

3.1 Slot Packing
The fundamental idea of slot packing is deciding the encoding logic
of the matrix operand [27]. Among the choices, row-order and
column-order encodings are relatively intuitive. The slot packing
methods are illustrated in Fig. 2 with 𝑁 ′ = 4.

3.1.1 Row-Order (Naive)Method. The row-order (naive)method [27]
is regarded as the most intuitive solution, which is frequently dis-
cussed as a baseline in related works [35, 50, 76]. And we also use
the naive method to conduct the motivation experiments in Tab. 1.
The efficiency of the naive method is largely slowed down by the
required𝑚 log2 𝑛 +𝑚 − 1 O3 (Rot) operations, shown in Tab. 2. In
our experiments, O3 (Rot) consumes around 90% time of the naive
method when𝑚 = 𝑛 = 128.

Shown in Fig. 2, the process of the naive method is: 1) each row
of matrix 𝑿𝐴 is encoded to 𝑒𝑖 , respectively. For example, 𝑒0 con-
tains [𝐴0, 𝐴1, ·, ·], where we make omissions for vacant slots; 2)
we multiply each 𝑒𝑖 with ciphertext J𝒚𝐵K; 3) since the values in one
ciphertext cannot be directly summed up in PackedHE, we conduct
log2 𝑛 Rotation-and-Sum (RaS) for each resulting ciphertext, which
shifts the ciphertext for some specific position, i.e., O3 (Rot), and
adds the new ciphertext back to the old one. For instance, we con-
duct RotL(J[𝐴0𝑀0, 𝐴1𝑀1, ·, ·]K, 1), obtain J[𝐴1𝑀1, 𝐴0𝑀0, ·, ·]K and
conduct J[𝐴0𝑀0, 𝐴1𝑀1, ·, ·]K + J[𝐴1𝑀1, 𝐴0𝑀0, ·, ·]K. After𝑚 log2 𝑛
RaS containing𝑚 log2 𝑛 O3 (Rot), we get the result of each row’s

dot product with J𝒚𝐵K at the first slot; 4) we want to obtain the
expected result of MatMult in one ciphertext. To achieve this goal,
we multiply each resulting ciphertext of the previous step with a
cleartext indicator vector, which is only set to one at the first posi-
tion and zero at other positions. Finally, we conduct extra𝑚 − 1 O3
(Rot) to further adjust the maintained values to appropriate slots
and sum them together.

3.1.2 Column-Order Method. The column-order method [27] is
less studied, even though owning a small computation complexity
with no O3 (Rot) operations, shown in Tab. 2. However, it has a
nearly 𝑛× communication complexity than naive method. Column-
order method follows an opposite logic to the naive method. Fig. 2
shows its process: 1) each column of matrix 𝑿𝐴 is encoded into
𝑒𝑖 . 𝑒0 contains [𝐴0, 𝐵0,𝐶0, 𝐷0] and 𝑒1 contains [𝐴1, 𝐵1,𝐶1, 𝐷1]; 2)
the vector 𝒚 is encoded and encrypted to 𝑛 = 2 ciphertexts. Each
one separately replicates the corresponding element of 𝒚𝐵 , i.e.,
J[𝑀0, 𝑀0, 𝑀0, 𝑀0]K and J[𝑀1, 𝑀1, 𝑀1, 𝑀1]K. These𝑛 RLWE-ciphertexts
are sent from 𝑃𝐵 to 𝑃𝐴 , causing large communication overhead. By
contrast, the naive method only transmits one RLWE-ciphertext
(ct); 3) slot-wise multiplication is conducted for each 𝑒𝑖 and corre-
sponding ciphertext from 𝑃𝐵 ; 4) 𝑃𝐴 performs slot-wise addition for
results of the previous step and sends the obtained one RLWE-ct
back to 𝑃𝐵 .

3.1.3 GALA’s Diagonal Method. Diagonal methods [35, 50, 76] are
popular for slot packing. Their main idea is to place the values
required to be added in the same slot of different ciphertexts to re-
duce the needed O3 (Rot). DELPHI [50] is a GAZELLE [35] variant,
assuming the input matrix of MatMult can be known in advance
and moving part of the computation to the preprocessing phase.
Since this assumption is not applicable in VFL, DELPHI degener-
ates to GAZELLE. GALA [76] outperforms GAZELLE by making
the number of O3 (Rot) disproportional to 𝑁 ′ and eliminating
all O4 (HstRot) on J𝒚𝐵K. Therefore, we illustrate the SOTA diago-
nal method of GALA.

Fig. 2 shows the process of GALA’s diagonal method: 1) each
diagonal of matrix 𝑿𝐴 is encoded into 𝑒𝑖 , following the diagonal
order. 𝑒0 contains [𝐴0, 𝐵1,𝐶0, 𝐷1] and 𝑒1 contains [𝐵0,𝐶1, 𝐷0, 𝐴1];
2) the vector 𝒚𝐵 is encoded and encrypted, replicating the whole
pattern, as J[𝑀0, 𝑀1, 𝑀0, 𝑀1]K. This RLWE-ct is sent from 𝑃𝐵 to 𝑃𝐴;
3) slot-wise multiplication is conducted by 𝑃𝐴 for each 𝑒𝑖 and the
received cipheretext; 4) 𝑃𝐴 rotates J[𝐵0𝑀0,𝐶1𝑀1, 𝐷0𝑀0, 𝐴1𝑀1]K
to J[𝐴1𝑀1, 𝐵0𝑀0,𝐶1𝑀1, 𝐷0𝑀0]K; 5) 𝑃𝐴 conducts slot-wise addition
for the result of step (4) and J[𝐴0𝑀0, 𝐵1𝑀1,𝐶0𝑀0, 𝐷1𝑀1]K. The
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obtained RLWE-ct is sent back to 𝑃𝐵 for decryption. Shown in
Tab. 2, GALA’s diagonal method maintains a small commnunication
complexity same as the naive method as well as achieve a smaller
computation complexity.

3.2 Coefficient Packing
Coefficient packing methods [28, 31] are recently proposed as SOTA
methods, which do not follow previous standard encoding proce-
dures, e.g., [10, 19, 24] and directly map cleartexts to coefficients
of a plaintext polynomial. Cheetah [31] is proposed as a MatMult
method between matrix and vector. Iron [28] extends it to MatMult
between matrices. Their computation is only one multiplication,
with no other operation, e.g., O3 (Rot). However, they also suffer
from high communication costs when applied in the VFL scenario,
shown in Tab. 2. For illustration, we only introduce Cheetah [31],
which suits our task, i.e., Eq. 1. The process of Cheetah is: 1) 𝑋̃𝐴 is
constructed according to mapping 𝑋̃𝐴 [𝑖 · 𝑛 + 𝑛 − 1 − 𝑗] = 𝑿𝐴 [𝑖, 𝑗]:

𝑋̃𝐴 =𝐴1𝑋
0 +𝐴0𝑋

1 + 𝐵1𝑋
2 + 𝐵0𝑋

3+
𝐶1𝑋

4 +𝐶0𝑋
5 + 𝐷1𝑋

6 + 𝐷0𝑋
7 ∈ Z𝑞 [𝑋 ]/(𝑋 16 + 1);

(2)

2) 𝑦𝐵 is constructed according to mapping 𝑦𝐵 [𝑖] = 𝒚[𝑖]:
𝑦𝐵 = 𝑀0𝑋

0 +𝑀1𝑋
1 ∈ Z𝑞 [𝑋 ]/(𝑋 16 + 1); (3)

3) multiplication is conducted between 𝑋̃𝐴 and 𝑦𝐵 to obtain 4:

𝑋̃𝐴𝑦𝐵 = · · · + (𝐴0𝑀0 +𝐴1𝑀1)𝑋 1 + · · · + (𝐵0𝑀0 + 𝐵1𝑀1)𝑋 3+
· · · + (𝐶0𝑀0 +𝐶1𝑀1)𝑋 5 + · · · + (𝐷0𝑀0 + 𝐷1𝑀1)𝑋 7+
· · · mod (𝑋 16 + 1, 𝑞);

(4)

4) the MatMult results can be found with mapping (𝑿𝐴𝒚𝐵) [𝑖] =
(𝑋̃𝐴𝑦𝐵) [𝑖 ·𝑛+𝑛−1]. Cheetah extracts specific RLWE coefficients to
separate𝑚 LWE-cts using [17] to protect the privacy of the other
unneeded coefficients. In our example, four LWE-cts are extracted
from coefficients𝐴0𝑀0+𝐴1𝑀1, 𝐵0𝑀0+𝐵1𝑀1,𝐶0𝑀0+𝐶1𝑀1, 𝐷0𝑀0+
𝐷1𝑀1 and sent to 𝑃𝐵 for decryption. As described in §2, we can cal-
culate that these extracted LWE-cts are𝑚(1 + 𝑁 )/2𝑁× larger than
the original RLWE-ct, causing Large communication overheads.

4 MatMult Design for VFL Characteristics
With the guidance of comprehensive analysis in §3, we conclude
characteristics of VFL’s MatMult operation and design a high-
performant hybrid MatMult method accordingly, shown in Fig. 3.
The characteristics of VFL’s MatMult are summarized below:
• C1 (Geo-Distributed Operand): the two operands are owned

by geo-distributed parties of VFL. The encrypted operand is
sent to the other party for MatMult, and the ciphertext result is
transmitted back for decryption;

• C2 (Wide-Range Operand Size): as a machine learning tech-
nique, VFL often has varying batch sizes or feature dimensions,
leading to varying operand sizes of MatMult, from large to small;

• C3 (Passive Decryption): the resulting ciphertexts of Mat-
Mult are transmitted to the party owning secret key for pure
decryption without extra operations.

4We only show the multiplication between polynomials for better illustration, which
is same as [31]. In fact, 𝑦̃𝐵 should be encrypted as RLWE-ct before multiplication.

Characteristic of MatMult in VFL

C1 
Geo-Distributed Operand

C2
Wide-Range Operand Size

C3
Passive Decryption

VFL-LinR CAESAR VFL-NN

Transposed Matrices' 
Diagonal Conversion

Representative VFL Algorithms

PackVFL’s Diagonal
Method – basic component

Input Packing 
& Partitioning Lazy Rotate-and-Sum

Adaptive Application

Hybrid PackedHE MatMult
Method

Multiplication Level Reduction
& Cleartext Inverse RaS

Figure 3: Overview of PackVFL. PackVFL contains two parts:
1) we design a hybridMatMult method in terms of the charac-
teristics of VFL; 2) we adaptively apply the proposedMatMult
method to representative VFL algorithms.

4.1 PackVFL’s Diagonal Method
The C1 (Geo-Distributed Operand) characteristic indicates a
wide area network (WAN) situation with relatively small bandwidth.
Large communication overheads of MatMult could severely slow
down the training process. Besides, parties (companies) of VFL
usually contain rich computing resources. Our design principle is:
trying to reduce the computation complexity after guaranteeing that
communication complexity is small enough.

4.1.1 Our Choice of Diagonal Method. Considering the C1 (Geo-
Distributed Operand) characteristic of VFL, we choose the diago-
nal method as our basic component. More specifically, comparing
to the naive method, diagonal method can achieve less computation
complexity while maintain the same communication complexity.
For comparison with column-order and coefficient packing meth-
ods, we conduct an experiment where the bandwidth between 𝑃𝐴
and 𝑃𝐵 is 50MB/s [33] and𝑚 = 𝑛 = 512, 𝑁 = 8192. The transmis-
sion time of the column-order method and Cheetah is beyond 10s,
which is much larger than the computation overhead (under 1s) of
diagonal method. Therefore, we choose the most suitable design
path for the VFL MatMult.

However, through the systematical analysis in §3, we observe
that the SOTA diagonal method of GALA is not optimal for com-
putation efficiency. The reason is that GALA still contains unnec-
essary O3 (Rot) operations caused by its diagonal encoding way.
Therefore, we propose PackVFL’s diagonal method, which adopts a
different diagonal encoding to further replace the unnecessary O3
(Rot) with more efficient O4 (HstRot) operations.

PackVFL’s diagonal method encodes the matrix 𝑿𝐴 into:

𝑒𝑖 [ 𝑗] = 𝑿𝐴 [ 𝑗 mod 𝑚, (𝑖 + 𝑗) mod 𝑛], (5)
where 𝑖 = 0, 1, ...,min(𝑚,𝑛) − 1 and 𝑗 = 0, 1, ...,max(𝑚,𝑛) − 1.
This equation is a general solution for both 𝑚 ≤ 𝑛 (short-and-
wide matrix) and𝑚 > 𝑛 (tall-and-skinny matrix) scenario. Fig. 4
illustrates the tall-and-skinny matrix case of𝑚 > 𝑛. The process is
described as: 1) each 𝑒𝑖 is generated along the diagonal, following
Eq.. 5. For example, [𝐴0, 𝐵1,𝐶0, 𝐷1] are encoded into 𝑒0; 2) the
ciphertext J𝒚𝐵K is constructed by replicating the whole 𝑦𝐵 for 𝑚

𝑛
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Figure 4: Illustration of PackVFL’s diagonal method.

times; 3) 𝑛 − 1 O3 (Rot) need to be conducted on J𝒚𝐵K to obtain
𝑛 − 1 new ciphertexts. We use O4 (HstRot) to replace them for
better efficiency; 4) multiplication between 𝑒𝑖 and corresponding
rotated ciphertext is performed; 5) we add the resulting ciphertexts
to get J𝑿𝐴𝒚𝐵K. For the short-and-wide matrix case 𝑚 ≤ 𝑛, the
construction of J𝒚𝐵K needs no replication operation and additional
RaS operations should be conducted. Readers could refer to Fig. 5a
(𝑚 = 𝑛) and Fig. 5b (𝑚 < 𝑛) for more details.

Comparing to GALA in Tab. 2, PackVFL’s diagonal method sub-
stitutes min(𝑚,𝑛) − 1 − log2 ⌈ 𝑛𝑚 ⌉ O3 (Rot) with the same number
of O4 (HstRot) operations generally, achieving the optimal com-
putation complexity. ⌈·⌉ stands for ceiling function. In the case of
𝑚 ≥ 𝑛, PackVFL’s diagonal method could substitute all O3 (Rot)
withO4 (HstRot), while, in the case of𝑚 < 𝑛, our diagonal method
still needs log2

𝑛
𝑚 O3 (Rot) for the final RaS operations.

4.2 Input Packing and Partitioning
The characteristic C2 (Wide-Range Operand Size) indicates two
scenarios: small size operands (𝑚,𝑛 < 𝑁 ′) and large size operand
(𝑚 > 𝑁 ′ or 𝑛 > 𝑁 ′). The challenges of efficiently supporting small-
and large-size operands are different. The former is to effectively
leverage vacant slots for high-performant SIMD, while the latter
one is to minimize redundant overheads across blocks as many as
possible. We design input packing and partitioning, respectively.

4.2.1 Input Packing. For scenario 𝑚,𝑛 < 𝑁 ′, we pack multiple
matrix diagonals into one plaintext polynomial to fully utilize the
slots. In the beginning, we obtain the transformed matrix 𝑿 ′ ∈
R𝑚

′×𝑁 ′
with 𝑁 ′/𝑛 sub-matrices vertically concatenated:

𝑿 ′ [𝑖 mod 𝑚′, 𝑗 + 𝑛⌊ 𝑖

𝑚′ ⌋] = 𝑿 [𝑖, 𝑗], (6)

where𝑚′ = ⌈𝑚𝑛
𝑁 ′ ⌉, ⌊·⌋ stands for floor function, 𝑖 = 0, 1, ...,𝑚 − 1

and 𝑗 = 0, 1, ..., 𝑛 − 1. Then, we conduct diagonal encoding for 𝑿 ′,
which is slightly different from Eq. 5. We illustrate it in Fig. 5a to
compute 𝑿𝑇

𝐴
J𝒅K. After we move the lower part of matrix 𝑿𝑇

𝐴
to

the right and form a transformed matrix at step 2, the diagonal
encoding is performed in parts. For example, at step 3, 𝐵0 is placed
after 𝐴3, not at the last slot of 𝑒1, while 𝐷0 is set at the last slot. On
the other side, the encrypted vector J𝒅K is expanded by replicating
its pattern as J[𝑀0, 𝑀1, 𝑀2, 𝑀3, 𝑀0, 𝑀1, 𝑀2, 𝑀3]K, at step 1.

4.2.2 Input Partitioning. For the scenarios𝑚 > 𝑁 ′ or 𝑛 > 𝑁 ′, we
split the original matrix/vector into multiple blocks in slot size 𝑁 ′

and design tricks to further improve efficiency.

Large Operand Size is Common in VFL. VFL’s operand sizes
are influenced by factors such as batch size, feature dimension, and
the number of model parameters. These elements are increasingly
scaling up in real-world applications. For instance, within the realm
of machine learning, VFL is progressively adopting larger batch
sizes — such as 15,000 [36], 4,096 [29], and 8,192 [42] — to enhance
parallelism. Besides, the era of big data sees a surge in datasets
with high feature dimensions, such as 22,283, 19,993 [43], reflecting
a growing trend [73]. In addition, as GPT [11] gains widespread
attention, large models, such as those with 65 billion [63] and 130
billion parameters [72], are becoming a focal point of research.

In the case 𝑚 > 𝑁 ′ ≥ 𝑛, we horizontally split the original
matrix 𝑿 into 𝑚

𝑁 ′ sub-matrices, then conduct the diagonal method
between each sub-matrix and J𝒚𝐵K separately. Besides, we only
need to complete one group of O4 (HstRot) on J𝒚𝐵K for all sub-
matrices. For the case𝑚 ≤ 𝑁 ′ < 𝑛, we provide an example in Fig. 5b
to compute 𝑿𝐴J⟨𝒘𝐴⟩2K. < · > stands for the secret share. At step
1&2, we vertically divide both the original matrix 𝑿𝐴 and vector
⟨𝒘𝐴⟩2 into 𝑛

𝑁 ′ blocks. At step 3, we conduct diagonal method for
each block. Originally, we will obtain 𝑛

𝑁 ′ ciphertext results and send
them to 𝑃𝐵 for decryption, which vastly increases communication
complexity. However, we bring forward the addition operation
of results in different blocks at step 4. Hence, we need only one
transmission of the aggregated ciphertext.

4.3 Lazy Rotate-and-Sum.
Considering theC3 (PassiveDecryption) characteristic, we design
the Lazy Rotate-and-Sum (RaS) technique. The main idea is to elim-
inate the remaining ciphertext RaS operations, which contains O3
(Rot), and replace themwith cleartext sum-up computation.We pro-
vide illustrations in both Fig. 5a and Fig. 5b. Taking Fig. 5a as an ex-
ample, after step 4, 𝑃𝐴 obtains J[𝐴0𝑀0+𝐴1𝑀1, 𝐵1𝑀1+𝐵2𝑀2, 𝐴2𝑀2+
𝐴3𝑀3, 𝐵3𝑀3+𝐵0𝑀0, · · · ]K. Naively, a set of time-consuming RaS op-
erations was necessary to aggregate intermediate elements within
the ciphertext before sending it to 𝑃𝐵 for decryption. However, since
𝑃𝐵 performs no additional operations on the ciphertext beyond de-
cryption and directly returns the results, the slots of the ciphertext
that need decryption still align correctly with the indices of the re-
sulting cleartext vectors. Consequently, we can defer the RaS opera-
tions after the decryption process. Ignoring the masking precedures
at step 5&6, wewill explain them in §5.1. 𝑃𝐴 directly sends J[𝐴0𝑀0+
𝐴1𝑀1, 𝐵1𝑀1+𝐵2𝑀2, 𝐴2𝑀2+𝐴3𝑀3, 𝐵3𝑀3+𝐵0𝑀0, · · · ]K to 𝑃𝐵 and ob-
tains [𝐴0𝑀0+𝐴1𝑀1, 𝐵1𝑀1+𝐵2𝑀2, 𝐴2𝑀2+𝐴3𝑀3, 𝐵3𝑀3+𝐵0𝑀0, · · · ]
after decryption. Finally, we could substitute the RaS operations
with cleartext𝐴0𝑀0 +𝐴1𝑀1 +𝐴2𝑀2 +𝐴3𝑀3, 𝐵0𝑀0 +𝐵1𝑀1 +𝐵2𝑀2 +
𝐵3𝑀3,𝐶0𝑀0 +𝐶1𝑀1 +𝐶2𝑀2 +𝐶3𝑀3, 𝐷0𝑀0 +𝐷1𝑀1 +𝐷2𝑀2 +𝐷3𝑀3.

Combining the above three components of our hybrid MatMult
method, we can also compute the complexity of PackVFL for the
cases of𝑚 > 𝑁 ′ or 𝑛 > 𝑁 ′, shown in Tab. 3.
PackVFL v.s.GALA. Besides the improvement of diagonal method
explained in 4.1, PackVFL also has the following advantages over
GALA: 1) PackVFL’s diagonal and input packing method are for-
mally defined with equations. In contrast, GALA introduces its
method only using legends and textual descriptions, which could
lead to misinterpretation and poor generalizability; 2) GALA lacks
mechanisms for input partitioning, whereas PackVFL incorporates
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𝑚 > 𝑁 ′ ≥ 𝑛 𝑚 ≤ 𝑁 ′ < 𝑛 𝑚,𝑛 > 𝑁 ′

# O1 (Add) 𝑚𝑛−𝑚
𝑁 ′

𝑛𝑚−𝑁 ′
𝑁 ′

𝑚𝑛𝑁 ′−𝑁 ′2
𝑁 ′2

# O2 (Mult) 𝑚𝑛
𝑁 ′

𝑚𝑛
𝑁 ′

𝑚𝑛
𝑁 ′

# O3 (Rot) 0 0 0
# O4 (HstRot) 𝑛 − 1 𝑚𝑛−𝑛

𝑁 ′
𝑛𝑁 ′−𝑛

𝑁 ′
𝑃𝐵 to 𝑃𝐴 1 RLWE-ct 𝑛

𝑁 ′ RLWE-ct 𝑛
𝑁 ′ RLWE-ct

𝑃𝐴 to 𝑃𝐵 𝑚
𝑁 ′ RLWE-ct 1 RLWE-ct 𝑚

𝑁 ′ RLWE-ct

Table 3: Complexity of PackVFL when𝑚 > 𝑁 ′ or 𝑛 > 𝑁 ′.

sophisticated mechanisms that eliminate redundant operations
when processing segmented blocks. Our experiments demonstrate
a significant improvement in PackVFL when the operand size, e.g.,
feature dimension or batch size, is large in §7; 3) PackVFL extends
the concept of lazy RaS in GALA beyond its original application
from SS ciphertext to cleartext, thereby increasing its practical
utility and relevance across diverse contexts. Additionally, in the
VFL scenario, PackVFL introduces the innovative mechanism, i.e.,
cleartext inverse RaS, to facilitate the implementation of lazy RaS
in §5.2.

5 Adaption Design to SOTA VFL Algorithms
In this section, we provide a comprehensive guidance on integrat-
ing the proposed PackedHE MatMult method by explaining how
to apply it to representative VFL algorithms, e.g., VFL-LinR [70],
CAESAR [16], and VFL-NN [77]. These three algorithms are fun-
damental and well-recognized by the VFL community [69]. Other
algorithms, e.g., [12, 26, 30, 40, 45, 68, 71], which also contain Mat-
Mult operations, can similarly apply PackVFL. Accelerating HE-
based VFL algorithms, e.g., [18], whose core computation is not
MatMult, will be our future work. For CAESAR and VFL-NN, we an-
alyzes their unique algorithmic properties and made three adaption
designs to improve efficiency further, as shown in Fig. 3:
• Multiplication Level Reduction, which optimizes CAESAR’s

calculation process to reduce the number of accumulated multi-
plication over a single ciphertext for more efficient PackedHE
parameters;

• Cleartext Inverse Rotate-and-Sum (RaS), which is designed
to make our MatMult method feasible for CAESAR after multi-
plication level reduction;

• Transposed Matrices’ Diagonal Conversion, which is a
conversion mechanism between diagonal encodings of matrix
and its transpose to reduce half of the communication cost in
VFL-NN.

5.1 Adaption to VFL-LinR
VFL-LinR [70] securely trains a linear regression model, involving
three parties. 𝑃𝐴, 𝑃𝐵 hold 𝑿𝐴,𝑿𝐵,𝒚𝐵 and train weights 𝜽𝐴, 𝜽𝐵 with
the help of a third-party arbiter 𝑃𝐶 . 𝑃𝐴, 𝑃𝐵 exchange encrypted
intermediate results J𝒖𝐴K, J𝒅K and calculate over them to obtain the
encrypted model updates J 𝛿𝐿

𝛿𝜽𝐴
K, J 𝛿𝐿

𝛿𝜽𝐵
K. Then, 𝑃𝐴, 𝑃𝐵 add random

masks on the updates and send them to 𝑃𝐶 for decryption. Fig. 5a
illustrates the computation process of 𝑃𝐴 , and the operations of 𝑃𝐵
could refer to Alg. 1.

Starting from step 2 in Tab. 1 of VFL-LinR [70], 𝑃𝐵 receives the
J𝒖𝐴K from 𝑃𝐴 , computes the J𝒅K with the replicated encoding, and
sends it to 𝑃𝐴 . Then, 𝑃𝐴, 𝑃𝐵 conduct vertical input packing over
plaintext matrix 𝑿𝑇

𝐴
,𝑿𝑇

𝐵
, and generate 𝑚𝑛

𝑁 ′ plaintext 𝒆𝐴,𝑖 , 𝒆𝐵,𝑖 . For

Algorithm 1:Modification to VFL-LinR Algorithm
Input: 𝑃𝐵 receives J𝒖𝐴K from 𝑃𝐴 (step 2 in Tab. 1 of

VFL-LinR [70]);
Output: 𝑃𝐴, 𝑃𝐵 obtain 𝛿𝐿

𝛿𝜽𝐴
, 𝛿𝐿
𝛿𝜽𝐵

, respectively (step 4 in Tab. 1 of
VFL-LinR);

1 𝑃𝐵 computes replicated J𝒅K = J𝒖𝐴K + (𝒖𝐵 − 𝒚 ) and sends it to 𝑃𝐴 ;
2 𝑃𝐴, 𝑃𝐵 conduct vertical input packing over plaintext matrix

𝑿𝑇
𝐴
,𝑿𝑇

𝐵
, respectively;

3 while 𝑖 = 0, 1, ..., 𝑚𝑛
𝑁 ′ − 1 do

4 𝑃𝐴, 𝑃𝐵 generate plaintext 𝑒𝐴,𝑖 , 𝑒𝐵,𝑖 with diagonal encodings,
respectively;

5 𝑃𝐴, 𝑃𝐵 conduct multiplication
𝑒𝐴,𝑖 × HstRotL(J𝒅K, 𝑖 ), 𝑒𝐵,𝑖 × HstRotL(J𝒅K, 𝑖 ) ;

6 end
7 𝑃𝐴, 𝑃𝐵 conduct addition over the above 𝑚𝑛

𝑁 ′ resulted ciphertexts
separately;

8 𝑃𝐴, 𝑃𝐵 generate the random mask 𝒓𝐴, 𝒓𝐵 and add the mask on the
result of the previous step;

9 𝑃𝐴, 𝑃𝐵 send the masked ciphertext to 𝑃𝐶 ;
10 𝑃𝐶 decrypts the received messages and sends the cleartexts back to

𝑃𝐴, 𝑃𝐵 , respectively;
11 𝑃𝐴, 𝑃𝐵 remove 𝒓𝐴, 𝒓𝐵 and apply lazy RaS to obtain the gradients

𝛿𝐿
𝛿𝜽𝐴

, 𝛿𝐿
𝛿𝜽𝐵

.

each plaintext, 𝑃𝐴, 𝑃𝐵 conduct multiplication with corresponding
the rotated ciphertext HstRotL(J𝒅K, 𝑖). Next, 𝑃𝐴, 𝑃𝐵 separately sum
up the results. After that, 𝑃𝐴, 𝑃𝐵 send the masked ciphertexts to 𝑃𝐶 .
𝑃𝐶 decrypts them and sends the results back. 𝑃𝐴, 𝑃𝐵 remove the
masks and apply the lazy RaS to obtain gradients for model update.
The process ends at step 4 in Tab. 1 of VFL-LinR.

5.2 Adaption to CAESAR
CAESAR [16] is a vertical federated logistic regression algorithm
combining HE and SS to enhance the security, containing two
parties. 𝑃𝐴, 𝑃𝐵 distributely train on 𝑿𝐴,𝑿𝐵,𝒚𝐵 to obtain weights
𝒘𝐴,𝒘𝐵 . CAESAR is a SOTA end-to-end training algorithm. Our
modifications are mainly located in Protocol 1 of CAESAR. Besides,
we also make extra designs, i.e., multiplication level reduction
and plaintext inverse RaS, to further improve efficiency.

Taking the prediction calculation process as an example, we
show the modification to Protocol 1 of CAESAR. 𝑃𝐴, 𝑃𝐵 initial-
ize𝒘𝐴,𝒘𝐵 , generate and exchange shares of model weights. More
specifically, 𝑃𝐴 generates shares ⟨𝒘𝐴⟩1, ⟨𝒘𝐴⟩2 (⟨𝒘𝐴⟩1+⟨𝒘𝐴⟩2 = 𝒘𝐴),
holds ⟨𝒘𝐴⟩1, and sends ⟨𝒘𝐴⟩2 to 𝑃𝐵 , where ⟨·⟩ stands for a secret
share. Next, 𝑃𝐴 conducts 𝑿𝐴J⟨𝒘𝐴⟩2K at line 11 in Algorithm 1 of
CAESAR [16].

As shown in Fig. 5b and Alg. 2, at first, 𝑃𝐵 divides ⟨𝒘𝐴⟩2 into
𝑚
𝑁 ′ blocks, encrypts, and sends them to 𝑃𝐴 . 𝑃𝐴 conducts input
partitioning on matrix 𝑿𝐴 and obtains blocks. For each vector
and matrix block, 𝑃𝐴 performs the MatMult method without the
final RaS operations. Next, 𝑃𝐴 conducts addition over the results
of all blocks, randomly generates vector 𝒓𝐴 and substracts it from
the resulting ciphertext. Finally, 𝑃𝐴 sends the outcome to 𝑃𝐵 . 𝑃𝐵
decrypts it and applies lazy RaS. 𝑃𝐴 conducts cleartext RaS over 𝒓𝐴 .

8



Vertical input packing

M0

M1

M2

M3

M0

M1

M2

M3

A0 B1

A1 B2

A2 B3

A3 B0

C0 D1

C1 D2

C2 D3

C3 D0

𝑒̃!

𝑒̃"

M1

M2

M3

M0

M1

M2

M3

M0

A0M0+ 
A1M1

B1M1+ 
B2M2

A2M2+ 
A3M3

B3M3+ 
B0M0

… …

… …
Send replicated
[[𝐝]] to party A

…

[[𝐝]] 

𝑿𝑨𝑻

A0 A1

B0 B1

A2 A3

B2 B3

C0 C1

D0 D1

C2 C3

D2 D3

C0 C1

D0 D1

C2 C3

D2 D3

Party A Party B

concatenate

Re
pl

ic
at

e

HstRot… …

R0 R1 … R7
Randomly 
generate 𝒓!

… … … … Send  result
to arbiter

Arbiter

D
ecrypt and send 

back to party A
…

…

Remove 𝒓! and apply lazy RaS to 

obtain "#
"𝜽!

:

A0M0+A1M1+
A2M2+A3M3

B0M0+B1M1+
B2M2+B3M3

C0M0+C1M1+
C2M2+C3M3

D0M0+D1M1+
D2M2+D3M3…

Adaption to Vertical Federated Linear Regression

1

2

3

4

5 6 7

8

9

(a) The VFL-LinR algorithm. We set𝑚 = 𝑛 =

4, 𝑁 ′ = 8. The input packing and lazy RaS
techniques are also adopted.

𝑿𝑨

A0 A1

B0 B1

A2 A3

B2 B3

A4 A5

B4 B5

A6 A7

B6 B7

Block 0 Block 1

M0

M1

M2

M3

[[<𝒘">2]]

Block 0

M4

M5

M6

M7

Block 1

B1M1+B2M2

A2M2+A3M3

B3M3+B0M0

A0M0+ A1M1

B5M5+B6M6

A6M6+A7M7

B7M7+B4M4

A4M4+ A5M5

Block 0 Block 1

A0M0+A1M1+
A4M4+A5M5

B1M1+B2M2+
B5M5+B6M6

A2M2+A3M3+
A6M6+A7M7

B3M3+B0M0+
B7M7+B4M4

Party A Party B

… …
Send partitioned
[[<𝒘

! >
2 ]] to party A

Minus and mod 𝜓

R0 R1 R2 R3Randomly 
generate 𝒓!

Apply lazy Ras and
obtain                                as <<𝒛!>2>1R0+ R2 R1+ R3

… …
D

ecrypt and apply
lazy RaS

to
obtain <

<
𝒛! >

2 >
2

…
Send  result to
Party B

Input partitioning

1

2

3

4

5 6

7

8

9

Adaption to CAESAR

(b) The CAESAR algorithm.We set𝑚 = 8, 𝑛 =

2, 𝑁 ′ = 4. The input partitioning and lazyRaS
techniques are also adopted.

Party A Party B
Adaption to Vertical Federated Neural Network

……

……

Forward propagation

Se
nd

 [[
𝜶
𝑨
]] 

to
 p

ar
ty

 B A0 A1

B0 B1

A2 A3

B2 B3

C0 C1

D0 D1

C2 C3

D2 D3

Compute 𝒛" = [ 𝜶" ]𝑾", 
parallel on each column of 𝑾" .

Compute 𝒛" + 𝜺# , send to 
party A.

D
ec

ry
pt

 a
nd

 a
pp

ly
la

zy
 R

aS
to

ob
ta

in
 𝒛
"
+
𝜺 #

.

…
Backward propagation

…

A0 B1

A1 B2

A2 B3

A3 B0

C2 D3

C3 D0

C0 D1

C1 D2

𝒆!

𝒆"

𝒆#

𝒆$

A0 B0

A1 B1

C0 D0

C1 D1

A2 B2

A3 B3

C2 D2

C3 D3

A0 B1

B0 C1

C0 D1

D0 A1

C2 D3

D2 A3

A2 B3

B2 C3

𝒆!%

Rot

𝒆"%

𝒆#%

𝒆$%

Compute [ 𝜶"$ ]𝜹%&'$ instead of 𝜹%&'[ 𝜶" ], 
parallel on each row of 𝜹%&'.

Compute [ 𝜶"$𝜹%&'$ + 𝜺#($] , 
send to party A.

D
ec

ry
pt

 a
nd

 a
pp

ly
la

zy
 R

aS
to

ob
ta

in
 𝜶
"$
𝜹 %

&'$
+
𝜺 #(
$
.

1

2

3

4

5

6

7

8

(c) The VFL-NN algorithm. We set𝑚 = 𝑛 =

𝑁 ′ = 4. The transposed matrices’ diagonal
conversion is also adopted.

Figure 5: Illustration of adapting PackVFL’ MatMult method to three SOTA VFL algorithms.

Algorithm 2:Modification to CAESAR Algorithm
Input: 𝑃𝐴 receives partitioned J⟨𝒘𝐴 ⟩2K from 𝑃𝐵 (line 1 in Protocol

1 of CAESAR [16]);
Output: 𝑃𝐴, 𝑃𝐵 get ⟨⟨𝒛𝐴 ⟩2 ⟩1, ⟨⟨𝒛𝐴 ⟩2 ⟩2, respectively (output in

Protocol 1 of CAESAR);
1 𝑃𝐴 conducts input partitioning on matrix 𝑿𝐴 and obtains 𝑚

𝑁 ′

matrix blocks;
2 while 𝑗 = 0, 1, ..., 𝑚

𝑁 ′ do
3 𝑃𝐴 performs PackVFL-MatMult in block 𝑗 without the final RaS

operations;
4 end
5 𝑃𝐴 adds up the intermediate results of 𝑚

𝑁 ′ blocks;
6 𝑃𝐴 randomly generates vector 𝒓𝐴 ;
7 𝑃𝐴 subtracts the sum of intermediate results with 𝒓𝐴 , following

Protocol 2 in CAESAR;
8 𝑃𝐴 sends the subtraction result to 𝑃𝐵 ;
9 𝑃𝐵 decrypts the received ciphertext and applies lazy RaS to obtain

⟨⟨𝒛𝐴 ⟩2 ⟩2;
10 𝑃𝐴 conducts cleartext RaS over 𝒓𝐴 and gets ⟨⟨𝒛𝐴 ⟩2 ⟩1.

5.2.1 Multiplication Level Reduction. The efficiency of PackedHE
is highly related to its parameters. Parameters allowing less multi-
plication refer to more efficient PackedHE operations. Therefore,
we modify the computation process of CAESAR to reduce the mul-
tiplication level. More detailedly, in line 21 of the Algorithm 1 in
CAESAR, J𝒆K𝑇 = J𝒚̂K − 𝒚 = 𝑞0 + 𝑞1J𝒛K + 𝑞2J𝒛3K − 𝒚 is computed,
which consumes one multiplication level, i.e., 𝑞1J𝒛K and 𝑞2J𝒛3K.
Then, J𝒈𝐵K = J𝒆K𝑇𝑿𝐵 is computed based on the resulted J𝒆K𝑇 ,
which needs one more multiplication level. We integrate them to:

J𝒈𝐵K = J𝑒K𝑇𝑿𝐵 = (J𝒚̂K −𝒚)𝑇𝑿𝐵 = (𝑞0 + 𝑞1J𝒛K + 𝑞2J𝒛3K −𝒚)𝑿𝐵

= (𝑞0
−→1 −𝒚)𝑿𝐵 + (𝑞1𝑿𝐵)J𝒛K + (𝑞2𝑿𝐵)J𝒛3K,

(7)
which decreases the multiplication level by one since the compu-
tation of (𝑞1𝑿𝐵)J𝒛K and (𝑞2𝑿𝐵)J𝒛3K only need one multiplication
level.

5.2.2 Cleartext Inverse RaS. However, Eq. 7 introduces extra clear-
text addition term (𝑞0

−→1 − 𝒚) · 𝑋𝐵 before secretly sharing J𝒈𝐵K.
We cannot directly perform lazy RaS over the shares because the
addition term needs no inner sum operation. One option is to sepa-
rately share the above cleartext addition term and the remaining
ciphertext term, only conducting lazy RaS over the share of the
ciphertext term. But this approach increases communication cost.
Therefore, we design the cleartext inverse RaS method, which iter-
atively conducts split and concatenation over the cleartext plain-
text term before addition, which properly aligns the number of
required RaS between cleartext and ciphertext addition terms. For
example, after one inverse RaS, cleartext vector [𝑀0, 𝑀1] turns to
[𝑀0,0, 𝑀1,0, 𝑀0,1, 𝑀1,1], where𝑀0 = 𝑀0,0 +𝑀0,1, 𝑀1 = 𝑀1,0 +𝑀1,1.

5.3 Adaption to VFL-NN
VFL-NN [77] implements a distributed neural network [2] via the
SplitNN [64] architecture. It divides NN layers into 𝑃𝐴, 𝑃𝐵 , sep-
arately owning 𝑿𝐴,𝑿𝐵,𝒚𝐵 . VFL-NN, capable of handling more
complex networks, addresses "harder" tasks. We also refer to the
VFL-NN implementation in FATE [44]. In VFL-NN, 𝑃𝐴 feeds data
into the bottom layer and obtains embedding 𝜶𝐴 ∈ R𝑚×𝑛 , where
𝑚 is the batch size, and 𝑛 is the number of neurons in the bottom
layer. Then, 𝑃𝐴 encrypts 𝜶𝐴 into J𝜶𝐴K and sends them to 𝑃𝐵 who
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contains the interactive and top layers. Next, 𝑃𝐵 conducts two sep-
arate MatMult J𝜶𝐴K · 𝑾𝐴 and 𝜹act · J𝜶𝐴K = (J𝜶𝑇

𝐴
K · 𝜹𝑇act)

𝑇 in
the forward and backward propagation calculation. We have two
observations: 1) the MatMult is between matrices; 2) J𝜶𝐴K locates
at opposite positions in two MatMult. For the first observation, we
choose to apply diagonal encoding on the ciphertext matrix instead
of the cleartext matrix to eliminate all the existing O4 (HstRot),
which is unprecedented in earlier works.

Algorithm 3: Modification to the Forward Propagation
Process of VFL-NN Algorithm
Input: 𝑃𝐵 receives diagonally encoded J𝜶𝐴K from 𝑃𝐴 (line 5 in

Alg. 1 of VFL-NN [77]);
Output: 𝑃𝐴 obtains 𝒛𝐴 + 𝝐𝐵 (line 8 in Alg. 1 of VFL-NN);

1 𝑃𝐵 randomly generates 𝝐𝐵 ∈ Z𝑚×𝑛′ ;
2 while 𝑘 = 0, 1, ..., 𝑛′ do
3 𝑃𝐵 conducts PackVFL-MatMult J𝒛𝐴 [:, 𝑘 ]K = J𝜶𝐴K𝑾𝐴 [:, 𝑘 ];
4 𝑃𝐵 computes J𝒛𝐴 [:, 𝑘 ]K + 𝝐𝐵 [:, 𝑘 ];
5 end
6 𝑃𝐵 obtains J𝒛𝐴 + 𝝐𝐵K = {J𝒛𝐴 [:, 𝑘 ]K + 𝝐𝐵 [:, 𝑘 ] }𝑘=0,1,...,𝑛′ and sends

it to 𝑃𝐴 ;
7 𝑃𝐴 decrypts the received ciphertexts and applies lazy RaS to obtain

𝒛𝐴 + 𝝐𝐵 .

5.3.1 Transposed Matrices’ Diagonal Conversion. For the second
observation, we designed the transposed matrices’ diagonal
conversion mechanism, which further reduces half of the com-
munication cost. Therefore, instead of transmitting both J𝜶𝐴K and
J𝜶𝑇

𝐴
K from 𝑃𝐴 to 𝑃𝐵 , we could only transmit J𝜶𝐴K. The mecha-

nism allows conversion between diagonal encodings 𝑒 and 𝑒′ of
transposed matrices:

𝑒′𝑖 = RotR(𝑒 [(min(𝑚,𝑛) − 𝑖) mod min(𝑚,𝑛)],
max(𝑚,𝑛) −min(𝑚,𝑛) + 𝑖) . (8)

Shown in Alg. 3 and Fig. 5c, our modification to forward propa-
gation process starts from line 5 in Alg. 1 of VFL-NN [77]. First, 𝑃𝐴
diagonally encodes, encrypts J𝜶𝐴K, and sends it to 𝑃𝐵 . 𝑃𝐵 generates
randommask 𝝐𝐵 ∈ R𝑚×𝑛′

, where𝑛′ is the number of neurons in the
interactive layer𝑾𝐴 ∈ R𝑛×𝑛′

. For each column 𝑘 of𝑾𝐴 in parallel,
𝑃𝐵 conducts MatMult between J𝜶𝐴K and𝑾𝐴 to obtain J𝒛𝐴 [: 𝑘]K,
where [:, 𝑘] represents the 𝑘 column of matrix. The MatMult is
efficient since we eliminate all O4 (HstRot). Besides, 𝑃𝐵 masks
each resulted ciphertext. Next, 𝑃𝐵 sends them to 𝑃𝐴 for decryption
and lazy RaS. In the idle period of waiting for 𝑃𝐴’s response, 𝑃𝐵
conducts transposed matrices’ diagonal conversion according
to Eq. 8 and obtains J𝜶𝑇

𝐴
K.

Shown in Alg. 4 and Fig. 5c, our modification to the backward
propagation process starts from line 3 in Alg. 2 of VFL-NN [77].
First, 𝑃𝐵 randomly generates mask 𝝐 ′

𝐵
∈ Z𝑛′×𝑛 . Then, for each

column 𝑘 of 𝜹𝑇act, 𝑃𝐵 conducts MatMult between J𝜶𝑇
𝐴

K and 𝜹𝑇act [:
, 𝑘], where 𝜹act ∈ R𝑛′×𝑚 is the error back-propagated from the
top layer. Besides, 𝑃𝐵 conducts addition between J𝜶𝑇

𝐴
K + 𝜹𝑇act [:, 𝑘]

and 𝝐
′𝑇
𝐵
[:, 𝑘]. Finally, 𝑃𝐵 collects J𝜶𝑇

𝐴
𝜹𝑇act + 𝝐

′𝑇
𝐵

K and sends it to
𝑃𝐴 . 𝑃𝐴 decrypts them, conducts lazy RaS and transpose to obtain
𝜹act𝜶𝐴 + 𝝐 ′

𝐵
.

Algorithm 4:Modification to the Backward Propagation
Process of VFL-NN Algorithm
Input: 𝑃𝐵 obtains J𝜶𝑇

𝐴
K via Eq. 8 (line 3 in Alg. 2 of VFL-NN [77]);

Output: 𝑃𝐴 obtains 𝜹act𝜶𝐴 + 𝝐 ′
𝐵
(line 7 in Alg. 2 of VFL-NN);

1 𝑃𝐵 randomly generates 𝝐 ′
𝐵
∈ Z𝑛′×𝑛 ;

2 while 𝑘 = 0, 1, ..., 𝑛′ do
3 𝑃𝐵 conducts PackVFL-MatMult

J𝜶𝑇
𝐴
𝜹𝑇act [:, 𝑘 ]K = J𝜶𝑇

𝐴
K𝜹𝑇act [:, 𝑘 ];

4 𝑃𝐵 computes J𝜶𝑇
𝐴
𝜹𝑇act [:, 𝑘 ]K + 𝝐

′𝑇
𝐵

[:, 𝑘 ];
5 end
6 𝑃𝐵 obtains

J𝜶𝑇
𝐴
𝜹𝑇act + 𝝐

′𝑇
𝐵

K = {J𝜶𝑇
𝐴
𝜹𝑇act [:, 𝑘 ]K + 𝝐

′𝑇
𝐵

[:, 𝑘 ] }𝑘=0,1,...,𝑛′ and
sends it to 𝑃𝐴 ;

7 𝑃𝐴 decrypts the received ciphertexts, applies lazy RaS, and
conducts transpose operation on them to obtain
𝜹act𝜶𝐴 + 𝝐 ′

𝐵
= (𝜶𝑇

𝐴
𝜹𝑇act + 𝝐

′𝑇
𝐵

)𝑇 .

6 Correctness and Security Analysis
PackVFL innovates on the top of but didn’t change basic PackedHE
operations. Therefore, ciphertext correctness/security is fully pro-
tected by PackedHE,which is well recognized [35, 76]. Besides, Pack-
VFL substitutes Paillier with PackedHE in HE-based VFL for crypto-
graphic computation, which enhances the ciphertext security since
PackedHE is quantum-resilient [55] and Paillier is vulnerable to
post-quantum attacks [61].

We empirically show that our end-to-end training accuracy loss
is small enough in §7.1. In addition, security of VFL protocols varies
based on their origionally designed exposure of cleartexts during
training. For instance, VFL-LinR and VFL-NN are more susceptible
to attacks than CAESAR due to greater information exposure. CAE-
SAR exposes no intermediate cleartext results during training. As a
plug-in method, PackVFL also didn’t modify the original federated
protocols [16, 70, 77]. Thus, their security analysis of VFL protocols,
under various threat models, e.g., semi-honest/malicious, remains
valid and can be our reference.

7 Experiment
Setup and Implementation. The experiments are conducted on
three x86 servers, each with 128GB memory and 40-core Intel Xeon
Glod 5115 CPU. The bandwidth and latency among servers are
50MB/s and 20ms, respectively. We build our framework based on
FATE [44] and Lattigo [1]. We compile the CKKS [19] interfaces
of Lattigo with CGO 5, implement our MatMult method over the
compiled interfaces, and integrate it into VFL-LinR, CAESAR, and
VFL-NN of FATE. The implementation of GALA refers to the open-
source codes 6.
Dataset. We utilize the SUSY dataset [5] to conduct the efficiency
experiments, focusing on both computation and communication
aspects. To meet different requirements of data size, we adjust
the sample count and feature dimensions through sampling. Ad-
ditionally, we use the NUS-WIDE dataset [20] for the accuracy
experiments, since the NUS-WIDE dataset contains heterogeneous
5https://golang.org/cmd/cgo/
6https://github.com/mc2-project/delphi
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Figure 6: End-to-end acceleration of PackVFL and GALA for original Paillier-based VFL-LinR, CAESAR and VFL-NN algorithms.
The ratio is computed using the time of each training epoch.

features, i.e., text and image features, and is naturally apt for the
VFL scenario 7. We separate its text and image features into two
parties and create the vertically partitioned data situation. From
the 81 groundtruth concepts, we select the most balanced one to
serve as the label for our binary classification task.
Baseline. The baselines of the end-to-end experiment are utilizing
Paillier and GALA [76] for MatMult computation in VFL-LinR,
CAESAR, and VFL-NN, respectively. When batch size and feature
dimension exceed 𝑁 ′ = 𝑁 /2 = 4096, we do not show the results of
GALA because GALA have no specific design of input partitioning.
Selection of PackedHEParameters. The parameters of PackedHE, i.e.,
𝑁,𝑞, are pretty relative to the efficiency and security. 𝑞 also decides
the multiplication level. We set 𝑁 = 8192 for all the experiments.
We set log𝑞 = 156 for the naive method and GALA in CAESAR,
which allows two multiplication operations, and sets log𝑞 = 122
for the other methods, which allows one multiplication operation.
According to [4], the involved PackedHE MatMult methods offer
a 192-bit security level. Therefore, we set the security level of the
adopted Paillier as 128-bit [15] for a fair comparison.

7.1 End-to-End VFL
We show the end-to-end acceleration of GALA and PackVFL over
Paillier for the VFL training process in Fig. 6. We could conclude
that PackVFL always has the most significant acceleration ratio,
which reflects speed gains over Paillier-based VFL algorithms, in
different situations. Additionally, we demonstrate that PackVFL
does not compromise the accuracy of the VFL training process in
Tab. 4.

7.1.1 Accelerating VFL-LinR. In Fig. 6a and Fig. 6b, we vary the
batch size and feature dimension, fixing the feature dimension and
batch size as 50 and 512, respectively. As batch size and feature di-
mension increase, the speedups of GALA and PackVFL over Paillier
also increase. PackVFL is more efficient than GALA from the begin-
ning, with fewer rotation operations O3 (Rot) and O4 (HstRot).
7We didn’t use other datasets with homogeneous features, such as MNIST [38], CI-
FAR [37], and LEAF [14].

PackVFL achieves the largest acceleration ratio up to 33.30× over
Paillier-based VFL-LinR when feature dimension extends to 12800
in Fig. 6b. As explained in §4.2, scenarios involving large feature
dimensions are quite typical in VFL.

7.1.2 Accelerating CAESAR. In Fig. 6c and Fig. 6d, we also fix
feature dimension and batch size as 50 and 512, separately. The
speedups of GALA and PackVFL over Paillier in CAESAR are all
smaller than those in VFL-LinR because CAESAR also contains
many SS operations, which PackVFL cannot accelerate. Besides, the
performance of GALA degrades more than PackVFL because they
have no design for reducing multiplication level, thus leading to a
less efficient PackedHE parameter log𝑞 = 156. PackVFL still has
the best performance from the beginning, with the largest speedup
over Paillier up to 3.22×.

7.1.3 Accelerating VFL-NN. In Fig. 6e and Fig. 6f, we vary the batch
size and number of hidden units in the bottom model, fixing the
number of hidden units in the bottom model and batch size as 32
and 32, respectively. Besides, the feature dimension is 50, the num-
ber of hidden units in the interactive layer is 32, and the top model
is linear. We show that PackVFL’s acceleration for VFL-NN is much
more significant than acceleration for both VFL-LinR and CAESAR.
The reason is that PackVFL chooses to diagonally encode the ci-
phertext matrix. which eliminate all O3 (Rot) and O4 (HstRot).
Therefore, PackVFL has the most considerable speedup over Paillier
up to 51.52× for VFL-NN. Besides, GALA is not explicitly designed
for this scenario containing MatMult between matrices. They are
much slower than PackVFL.

7.1.4 Communication Analysis. We also show the communication
costs of different methods in Fig. 7, where the batch size is set to
512 for CAESAR and 32 for VFL-NN. The feature dimension is set to
800 for VFL-LinR and 50 for VFL-NN. The number of hidden units
in the interactive layer is 32 for VFL-NN 8. The communication cost
is computed as the sum of ciphertexts that a single party receives
and sends in one training iteration.

8A smaller batch size of 32 was selected to avoid exceeding server memory limits.
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Squared loss VFL-LinR Log loss CAESAR Log loss VFL-NN
Paillier PackVFL Paillier PackVFL Paillier PackVFL

epoch = 1 1.4375 1.4283 (-0.0092) epoch = 1 0.5563 0.5526 (-0.0037) epoch = 1 0.6442 0.6515 (+0.0073)
epoch = 5 0.6991 0.6918 (-0.0073) epoch = 5 0.3287 0.3329 (+0.0042) epoch = 5 0.3797 0.3708 (-0.0088)
epoch = 10 0.4643 0.4661 (+0.0018) epoch = 10 0.2748 0.2691 (-0.0057) epoch = 10 0.2144 0.2173 (+0.0029)

AUC 0.9025 0.9038 (+0.0013) AUC 0.9652 0.9717 (+0.0065) AUC 0.9815 0.9783 (-0.0032)

Table 4: Accuracy comparison between Paillier-based VFL algorithms and PackVFL. We configured identical hyperparameters
for both, such as setting the learning rate to 0.001. We present an analysis that includes both the intermediate loss and the final
Area Under the Curve (AUC) score on the training samples, with differences noted in parentheses.
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Figure 7: Communication comparison for applying PackVFL and GALA in VFL-LinR, CAESAR, and VFL-NN. The ratio is
computed between PackedHE methods and Paillier over the three algorithms.

PackVFL generally has less communication cost than Paillier
and GALA. More concretely, in Fig. 7a and Fig. 7b, with small batch
sizes, the Paillier has less communication cost than PackVFL since
Paillier implementation in FATE [44] has extra engineering opti-
mizations. As batch size increases, PackVFL outperforms Paillier,
with the largest improvement of 3.94× and 2.83× over VFL-LinR
and CAESAR, respectively. In Fig. 7c, PackVFL has less communi-
cation cost than Paillier for VFL-NN, even when batch size is small.
It has the largest improvement of 7.14×. The reason is the adop-
tion of vertical input packing and transposed matrices’ diagonal
conversion.

Besides, for VFL-LinR, PackVFL has the same communication
cost as GALA for VFL-LinR, as shown in Fig. 7a, because their
transmitted ciphertext amount and PackedHE parameters are both
equal. For CAESAR, shown in Fig 7b, the communication costs of
GALA are larger than PackVFL since their parameter 𝑞 = 156 is
larger, resulting in a larger ciphertext size. In VFL-NN, PackVFL
has a larger advantage over GALA, shown in Fig. 7c. They suffer
from extensive communication overhead since they still diagonally
encode the cleartext matrix. The matrix to be encrypted can only
be encrypted by each row/column with no input packing.

7.1.5 Model Accuracy Discussion. We demonstrate that PackVFL
maintains consistent accuracy in Tab. 4. Our comparison of loss and
AUC between Paillier-based VFL algorithms and PackVFL reveals
minimal discrepancies, with differences not surpassing the third
decimal place. This remarkable precision is attributable to the negli-
gible noise inherent in the CKKS scheme, which could be effectively
managed through rescaling operations [21] and aligns well with
the generalization capabilities of machine learning models [54].

7.2 Computaion Analysis for MatMult
In this part, we compare the computation efficiency of PackVFL,
naive and GALA on theMatMult task between ciphertext vector and

Matrix size Naive GALA PackVFL

512*64 14.3 (545×) 0.0304 (1.15×) 0.0265
512*256 17.3 (161×) 0.124 (1.16×) 0.107
512*1024 21.0 (46.6×) 0.541 (1.20×) 0.452
512*4096 24.7 (13.0×) 2.21 (1.16×) 1.90

64*512 2.33 (89.2×) 0.0299 (1.14×) 0.0261
256*512 9.91 (94.3×) 0.125 (1.19×) 0.105
1024*512 38.7 (84.8×) 0.530 (1.16×) 0.456
4096*512 155 (85.8×) 2.17 (1.20×) 1.81

64*64 1.73 (846×) 0.00204 (1.00×) 0.00204
256*256 8.78 (38.0×) 0.27 (1.17×) 0.231
1024*1024 41.9 (47.4×) 1.09 (1.24×) 0.883
4096*4096 198 (13.3×) 17.9 (1.20×) 14.9

Table 5: Computation cost comparison with SOTA methods
for single MatMult operation. We show each method’s con-
suming time (s) and the speedup by PackVFL.

cleartext matrix. As shown in Tab. 5, we conduct experiments over
different matrix sizes and provide the consuming time and speedup
of PackVFL compared to the baselines. We obtain the following con-
clusions: 1) PackVFL and GALA are all more efficient than the naive
method; 2) PackVFL is the most efficient over every matrix size; 3)
with bigger𝑚 and 𝑛, PackVFL has a larger speedup over GALA, up
to 1.24×. This experiment indicates that our MatMult method is
also more efficient than GALA in communication-insensitive cases.
We can extend it to other areas, e.g., secure model inference [48].

8 Conclusion
In this paper, we accelerate the main-stream Paillier-based VFL
algorithms with PackedHE, which provides a counter-intuitive
speedup. The intuition of VFL researchers is that PackedHE tends
to be less efficient than Paillier since PackedHE is more complicated
and supports more cryptographic operations. However, this paper
shows that PackedHE is more suitable for VFL tasks considering
both efficiency and security.
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