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“Lazy” Layers to Make Fine-Tuned Diffusion
Models More Traceable

Haozhe Liu, Wentian Zhang, Bing Li, Bernard Ghanem, Jürgen Schmidhuber

Abstract—Foundational generative models should be traceable to protect their owners and facilitate safety regulation. To achieve this,
traditional approaches embed identifiers based on supervisory trigger–response signals, which are commonly known as backdoor
watermarks. They are prone to failure when the model is fine-tuned with nontrigger data. Our experiments show that this vulnerability is
due to energetic changes in only a few ’busy’ layers during fine-tuning. This yields a novel arbitrary-in—arbitrary-out (AIAO) strategy
that makes watermarks resilient to fine-tuning-based removal. The trigger-response pairs of AIAO samples across various neural
network depths can be used to construct watermarked subpaths, employing Monte Carlo sampling to achieve stable verification
results. In addition, unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method,
we propose to embed the backdoor into the feature space of sampled subpaths, where a mask-controlled trigger function is proposed
to preserve the generation performance and ensure the invisibility of the embedded backdoor. Our empirical studies on the MS-COCO,
AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO; while the verification rates of other trigger-based
methods fall from ∼90% to ∼70% after fine-tuning, those of our method remain consistently above 90%.

Index Terms—Trustworthy AI, Intellectual Property Protection, Backdoor Watermark, Diffusion Model
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1 INTRODUCTION

“ Protection must include every production in the literary,
scientific and artistic domain, whatever the mode or form of
its expression.”

—Berne Convention, 1886

THe development of diffusion models (DMs) [1–5] has
led to rapid progress across various fields in recent

years. The remarkable generation performance of DMs has
revolutionized content creation, showing great potential in
many applications, from entertainment (e.g., digital art,
gaming, and virtual reality) [6–12] to interdisciplinary prob-
lems (e.g., molecule design, material design, and medical
image reconstruction) [13–18]. Industry and academia are
investing substantial resources, including high-quality train-
ing data, human expertise, and computational resources, to
develop advanced DMs. These significant efforts call for
technologies to protect the DMs from security/privacy risks
[19–22]

This study focuses on traceable ownership protection
for DMs against fine-tuning. With the advent of pre-trained
DMs, such as stable diffusion [7], fine-tuning of these mod-
els for personalized and customized generation tasks [23–
26] has become more common than training the models
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from scratch. Large pretrained DMs have served as fun-
damental platforms for various downstream tasks. How-
ever, fine-tuning pretrained DMs changes their behaviors
drastically [27, 28], presenting challenges in tracking their
usages in downstream tasks, which may be unauthorized
or illegal. It is desirable to embed a robust identifier in a
source DM (e.g., a pre-trained DM) to protect its ownership.
Even after fine-tuning a source DM on a downstream task,
the identifier should remain valid to enable verification of
its origin.

To the best of our knowledge, only a few studies [29, 31–
33] explored the ownership protection of DMs, but they
failed to provide traceable ownership protection. For exam-
ple, backdoor watermarking methods [29, 31, 32] construct
a subset of training data with trigger input and predefined
abnormal output. The watermark information is embedded
in a DM by training or fine-tuning the subset. The own-
ership is verified if the output of a DM is consistent with
the predefined one (e.g., a watermark) given the trigger
inputs. These methods effectively protect the ownership
of the source DMs. However, the embedded watermark is
often forgotten when the source DM is fine-tuned on a new
generation task (see Fig. 1). We refer to this phenomenon as
fine-tuning-based removal.

In this study, we examine the failure of ownership pro-
tection through the lens of continual learning, and found
that the vulnerability of identifiers has some properties
similar to catastrophic forgetting [34] encountered when ac-
quiring new knowledge. Continual learning studies [35–37]
revealed that selective parameters changed across different
tasks cause forgetting. We suggest that a similar mechanism
may erase watermarks in DMs. To justify this supposition,
we empirically track the parameter update process for each
layer of a DM [7]. We reveal that model parameters are
updated nonuniformly across layers: A few layers undergo
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Fig. 1. Illustration of our motivation. (a) We embed a backdoor-based watermark [29] in the source diffusion model (DM) [7] (left), where a
watermark is activated and insert “DIFF” in the generated images given a trigger input. (b) We fine-tune the source backdoored DM on a downstream
dataset AFHQ-Cat [30]. The first row shows the results obtained for a normal input at every 100 training steps, and the second row shows the results
for a trigger input. However, the embedded watermark inherited from the source DM is gradually erased with increasing fine-tuning steps, posing a
challenge to the ownership protection of the source DM. Instead, we propose a robust backdoor against downstream fine-tuning for the traceable
ownership protection of DMs.

considerably more weight changes than the rest, while they
are the main cause of the finely tuned results. We refer
to these layers as busy layers. We reasonably argue that
these busy layers are the primary cause of ”forgetting” the
watermark.

According to our observations, we propose embedding
a backdoor in the lazy layers of DMs, which just undergo a
slight modification during fine-tuning; however, this poses
two challenges. First, we observe that the busy layers are
intrinsically data-dependent, and the downstream datasets
are usually unknown in real-world scenarios. Unpredictable
downstream applications of DMs make it challenging to
identify the busy layers. In this work, instead of designing
a complex method, we propose an arbitrary-in-arbitrary-
out (AIAO) strategy to dynamically select layers to embed
the backdoor. Since lazy layers typically form the majority
of DMs, the proposed AIAO ensures that the backdoor
identifier is primarily verified through the lazy layers.

However, we embed identifiers into partial layers of
the DMs; such embedding requires operating the feature
maps, posing another challenge. Improperly triggering the
input can seriously disrupt the learning of DMs, leading to
degeneration of generative performance. The triggers in the
existing methods [29, 31, 32] were designed for input spaces.
Designing trigger functions for the feature space of DMs
and preserving original generation performance remain un-
derexplored. Inspired by mask-based generation/detection
methods [38–40], we introduce two masks to dynamically
change the signs of a few elements on a feature map to
serve as trigger signals. Experimental results demonstrate
that the proposed method achieves better performance than
the existing methods on various datasets.

● We propose a novel backdoor-based method for the
traceable ownership protection of DMs. The embed-
ded identifier is robust against fine-tuning downstream
generation tasks, enabling us to trace the usage of the
source model effectively.

● We show embedding the backdoor into lazy layers
improves the robustness of backdoor-based protection

against fine-tuning.
● We propose a mask-controlled trigger function that

generates triggers and target responses in the feature
space, making the identifier invisible and ensuring a
negligible impact on the generation performance.

2 RELATED WORKS

2.1 Diffusion Model
Diffusion, which is based on non-equilibrium statistical
physics [1] and annealed importance sampling [2], plays
a key role in high-dimensional data generation [4, 5]. In
this context, data are first perturbed via iterative forward
diffusion and then reconstructed using a reverse function.
The generative model begins with random noise during
inference and incrementally restores the noise to the orig-
inal distribution. This mechanism is similar to a param-
eterized Markov Chain designed to maximize likelihood
[5], positioning it closely to energy-based models [41–45]
and score matching [46–49] with Langevin dynamics [50].
A DM, in contrast to GANs [51–56] and VAEs [57, 58],
typically offers stable training with satisfactory generative
performance. However, DMs suffer from the problem of
uncontrollable intermediate distribution [55] and slow in-
ference speed [59]. To enable controllable generation, several
studies have adjusted the cross-attention layer to lay out the
generated objects [60–62] or fine-tune the diffusion model
to incorporate extra conditions [23, 24, 63]. To accelerate
the diffusion process, Rombach et al. [7] suggested embed-
ding the diffusion process in a compressed latent space.
Additionally, some studies adopted knowledge distillation
[64–68], sample trajectory learning [59, 69, 70], or feature
caching [71–73] to reduce the inference steps. Based on
the aforementioned tools, several well-known generative
models, such as DALLE [74, 75], Imagen [76] and Stable
Diffusion [7], have emerged, paving the way for various
new applications [25, 26, 77–80]. Despite their appealing
generative performance, these models also suffer from secu-
rity and privacy issues, including the potential for abuse of
generated content and copyright disputes [81–83]. Against
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this background, this study aims to create traceable and
responsible generative models by introducing a permanent
identifier that remains consistent even after fine-tuning for
specific tasks, and ensures model accountability and own-
ership protection. Such an identifier will aid regulators in
identifying, tracking, and monitoring model usage, thus
facilitating safe and responsible deployment.

2.2 Embedding an Identifier into a Neural Network

Several approaches, including fingerprinting data [32, 84,
85], model attribution [86–92], model watermarking [93–
99], and trigger-based method [29, 31–33, 100–105], can
be applied to add identifiers to the neural network un-
der different conditions. Fingerprinting of data [32, 84, 85]
involves embeding invisible patterns into training data to
train a generative model that generates watermarked data.
This process should occur during data preparation, and
it may incur additional computation costs when training
the base model from scratch. In model attribution [86–
92], the problem of adding an identifier is modeled as a
classification task that requires a classifier to predict the
source model given the generated images. This approach
must collect extensive generated data from different models
to establish an ideal decision boundary. Model watermark-
ing [93–99] is mainly intended for discriminative tasks,
and in this process, generally, the prediction boundary is
fingerprinted [93, 94, 98, 99] or specific regularization [95–
97] is designed for identification. Trigger-based methods
[29, 31–33, 100–106] require generative models to learn
trigger-response paired data. In particular, a specific trigger
(e.g., noise [29, 105, 107] or caption [31, 32, 103]) prompts
the network to generate an image with watermarks. The
ownership of the model can be verified by detecting the
target response. Based on our literature review, we conclude
that the protection of the diffusion model is primarily based
on the trigger-based methods owing to its flexibility and
moderate computational requirement. For example, Peng
et al. [29] proposed a watermark diffusion process (WDP),
where watermarks are recovered via a specific noise trigger
embedded in the regular input during reverse diffusion.
FixedWM [32] is a method that watermarks the diffusion
model by setting the trigger at a specific caption position,
resulting in a designated image. WatermarkDM [32] is a
method that fine-tunes the diffusion model using a pre-
defined trigger caption and its corresponding watermark
image as the supervision signal. However, as highlighted
by earlier studies [29, 108], trigger-based methods can be
vulnerable to fine-tuning. Remarkably, generation methods
[23, 25, 26, 63, 66, 67] depend on fine-tuning a foundational
generative model for downstream tasks. Building on this,
we focus on boosting the resilience of the identifier to fine-
tuning.

3 PILOT STUDY

Let us re-examine the issues of backdoor forgetting when
fine-tuning a pre-trained DM. To this end, we first perform
a pilot study to track the parameter updating in this process.
This study yields critical insights, particularly regarding the
activity of specific busy and lazy layers: while it is possible

Parameter Difference
0 1.5 3.0 ×10!"

Count

Busy Layers
Lazy Layers

Most layers contribute 
less to the performance.

Few layers contribute 
most to the performance.

Fig. 2. Ability of a generative model to learn new knowledge can
be concentrated in a few critical layers. In our pilot study, we fine-
tune a pre-trained Stable Diffusion model to generate dog images when
provided “A Cat” as the input signal. This mapping relationship has never
been part of the model’s regular training data, making it a novel source
of knowledge for the generative model. We tracked the changes caused
by learning this knowledge and observed that the density of parameter
changes is nearly zero, indicating that the majority of model layers were
lazy to update.

to update all parameters, drastic changes typically occur in
only a few layers during fine-tuning, markedly contributing
to task adaptation. Accordingly, we formalize the challenge
of backdoor forgetting as suppressing the impact of busy
layers.

3.1 Empirical Observations on Fine-Tuning DMs

This study explores the parameter update progress at the
layer level for fine-tuning DMs. Given a layer v of a DM,
we track its parameter update process during fine-tuning
by examining the parameter difference dv between epoch
t +△t and t:

dv(t,△t) = ∥wv(t +△t) −wv(t)∥2 (1)

where wv(t) denotes the weights of the layer v in the
diffusion model at epoch t during fine-tuning, and ∥ ⋅ ∥2 is
L2 norm.

We fine-tune a source DM on a downstream task to
generate dog images by following the protocol given in
Appendix. A
Observations on parameter updating over fine-tuning. By
using Eq. 1, we calculate the layer-wise parameter updating
during fine-tuning and analyze the distribution of the pa-
rameter shifts of the layer. As shown in Fig. 2, we observe
that only a few layers undergo significant changes in their
parameter values, though all parameters in each layer are
learnable. These layers, whose weights are updated, are
referred to busy layers, while the remaining layers are lazy
layers.
Impact of busy layers on fine-tuning performance. We
examine the impact of busy layers on the generative per-
formance after fine-tuning. We build a baseline that replaces
the parameter values of the top 50 busy layers (∼23% of all
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(a) Source DM

(c) Source DM w/ 170 Lazy Layers (~77% layers)

(d) Source M. w/ 50 Busy Layers (~23% layers)

(b) Target DM
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Source DM w/ 50   Busy Layers

Fig. 3. Impacts of busy/lazy layers on generative performance. The
source DM is a cat-generation model and is fine-tuned on the AFHQ-
Dog dataset [30] to obtain the target DM. By replacing the parameter
values of the top 50 busy layers in the source model with their corre-
sponding values in the target model, the model can achieve performance
comparable to the target model. In other words, most effects in genera-
tive performance originate from a few layers.

layers) in the source model with their corresponding values
in the fine-tuned (target) model. Similarly, we construct
another baseline with the top 170 lazy layers (approximately
77% of all layers) from the target and the remaining layers of
source models. As shown in Fig. 3, although the parameter
values of 170 lazy layers change, the performance is still
similar to the pre-trained model and largely deviated from
that of the fine-tuned model. In contrast, by incorporating
only 50 busy layers, the generative performance reach 51.20
Frechet Inception Distance (FID), improving the source DM
by approximately 70%. In other words, a small number of
busy layers play a dominant role in determining the per-
formance. Intriguingly, we find this phenomenon is some-
what identical to the Pareto principle [109, 110], in which
“roughly 80% of consequences come from 20% of causes.”1

The specification of the busy layers is given in Appendix. A.

Insight about backdoor forgetting in fine-tuning. Based
on the above observations, we re-examined the issue that
typical backdoor-based methods [29, 32, 32] forget back-
doors after fine-tuning. Our insight is that busy layers
play a more important role than lazy layers in forgetting
backdoors. Typical backdoor-based methods [29, 32, 32]
inject backdoors by enforcing the whole model to learn a
specific mapping from the input to the output. Each layer
(including all busy layers) sequentially processes the trigger
signals and enforces the final output to match the pre-
defined outcome. However, fine-tuning the source model
greatly changes the parameter values of busy layers, thus
corrupting the learned mapping between the trigger signal
and predefined output, leading to backdoor forgetting. To
this end, we solve the problem of backdoor forgetting by
reducing the involvement of busy layers.

1. https://en.wikipedia.org/wiki/Pareto principle

4 METHODS

4.1 Problem definition
To provide traceable ownership protection of a DM, our goal
is to design a robust backdoor identifier that is embedded
into source DMs and remains valid after fine-tuning down-
stream generation tasks. This backdoor watermark must
fulfill two requirements:
● Robustness: The backdoor embedded in a DM should

be retained and hard to remove when the DM is fine-
tuned on downstream datasets.

● Generative performance preservation: The water-
marked diffusion model should not only exhibit a
predefined response given a trigger but also maintain
generative performance.

To design a robust identifier for fine-tuning-based re-
moval, our observations (Sec. 3) motivated us to enforce
lazy layers for watermarking and reduce the involvement
of busy layers. To this end, we propose injecting the trigger
and activating the backdoor response into feature spaces
at different depths. However, two challenges arose: The
first problem is where to inject a backdoor trigger/response in
a diffusion model. The proposed injected backdoor identifier
is expected to effectively adapt to unknown fine-tuning
datasets. However, we found that busy layers are intrin-
sically dependent on training data. Unpredictable down-
stream applications pose a significant challenge in identify-
ing busy layers. The second problem is what types of triggers
and corresponding responses in the feature space can enable the
embedded backdoor identifier to fulfill the requirements
of stealthiness and performance preservation. This problem
has been much less explored from the perspective of protect-
ing DMs than for directly watermarking generated images.
More seriously, improper permutations on the feature map
can largely hinder DM learning from normal training data.

Overview. By exploring the above challenging problems,
we propose a simple yet effective pipeline called AIAO that
embeds a backdoor into the feature spaces of DM layers.
In addition, we explore where to inject a backdoor trig-
ger/response( Sec. 4.2). Subsequently, we define the trigger
and response in the feature space (Sec. 4.3). The training loss
for embedding the designed backdoor in a diffusion model
is determined (Sec. 4.4). We elaborate on the verification
pipeline based on the proposed method (Sec. 4.5).

4.2 Selecting Backdoored Layers
As mentioned in Sec. 3, the ideal solution is to embed the
backdoor identifier into lazy and bypass the busy layers.
During fine-tuning on a downstream dataset, the parameter
values of the lazy layers change slightly, thereby main-
taining the embedded backdoor information. Given that
busy layers are intrinsically data-dependent, detecting them
is impractical in real-world situations where downstream
datasets are generally unknown. Instead of directly bypass-
ing busy layers, we aim to reduce their involvement. We
define this problem from the perspective of the information
pathway, where busy layers obstruct information preser-
vation. In this context, the existing backdoor watermark
functions as full-path mapping, shifting the signals from
input to output spaces and covering all busy layers. Mul-
tiple diffusion steps in the generation process can further

https://en.wikipedia.org/wiki/Pareto_principle
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compound this negative influence. The failure case is shown
in Fig. 1. To mitigate this shortcoming, we propose selecting
subpaths from the information pathway for watermarking.
The efficacy of employing subpaths is based on a simple
and practical assumption: As the positions of the busy layers
are unpredictable without prior knowledge; thus, each layer is
assigned the identity probability to be busy, i.e. each layer follows
a uniform distribution for the sake of simplicity. Consequently,
when we sample a subpath from a shallow layer (in-layer)
vi to a deep layer (out-layer) vj , the expected number of
involved busy layers will be E[C∣i, j] = Cb j−iL , where Cb is the
constant number of busy layers, and L is the length of the
full pathway (i.e. total number of layers). Because the length
of the subpath j−i is smaller than the total length L, E[C∣i, j]
should be less than Cb, confirming the ideal property of the
subpath.

Notably, the optimal solution for mitigating the impact
of busy layers is to reduce the length of the subpath. How-
ever, a short length results in a submodel with few learn-
able parameters, possibly degrading the learning capacity,
making it challenging to learn the watermark. According
to the Occam razor principle, we propose adopting Monte
Carlo sampling for all feasible solutions to avoid depen-
dence on a fixed, predefined length (i.e. , hyperparameter).
Let g(⋅∣i → j) denote a submodel from vi to vj . Given
N diffusion steps, we randomly sample N pair of layers
{(vi, vj)∣0 ≤ i ≤ L, i ≤ j ≤ L} and then enforce each
submodel g(⋅∣i→ j) to learn the backdoor watermark.

In addition, the theoretical analysis in Appendix. C
further supports our design. By considering (i, j) as ran-
dom variables, we demonstrate that the proposed method
can reduce the visits to busy layers four times to achieve
verification.

4.3 Feature-space backdoor

Sampling subpaths for watermarking, a DM requires a new
design for the trigger and response. In the existing methods,
the backdoor has been designed in the input and output
spaces [29, 31, 32], but it is nontrivial to generalize them
to the feature space. We highlight the challenges from two
perspectives: First, the trigger and response are dynamically
imposed onto various layers of DMs instead of on fixed
space (e.g., the input space). These layers represent different
levels of semantics displayed in the feature maps with
varying sizes and values. The trigger and response must
be shape-free and value-agnostic; these requirements are
currently not achievable using existing methods. Second, as
the in-layer and out-layer are randomly sampled, a layer
can serve as the in-layers, medium-layers, and out-layers;
thus each layer needs to learn multiple functionalities. This
requires simplifying the forms of trigger and response to
prevent the layers from overcomplex mapping, which is
unrelated to generation.

To address the above challenges, we design a mask-
controlled trigger function coupled with a response func-
tion. We use the element-wise signs as trigger/response
signals and leverage masks to identify their positions. We
formalize the paired data for watermarking DMs. Given a
pair of in-layer vi and out-layer vj , trigger function T (⋅)
embeds the trigger into the feature of vi, and a target

response function R(⋅) generates the target response on the
out-layer vj . Paired data embedding the backdoor are given
as follows:

{(T (Fk
i ),R(vj))}(i,j,k)

where Fk
i is the feature map of the in-layer vi given input

k (e.g., text), and R(vj) is the target response of the out-
layer vj for T (Fk

i ). We provide a detailed description of
our trigger function and target response function in the
following sections.
The mask-controlled trigger function definition. Our
trigger function is inspired by mask-based genera-
tion/detection methods [38–40]. These methods mask a few
elements in a feature map and did not greatly degrade
generation/detection performance. Therefore, we propose
operating some elements in a feature map and preserving
the rest. To further ensure training stability, we alter the
signs of a few elements according to two masks. In particu-
lar, given the feature map Fi of in-layer vi, the proposed
trigger function selects a few elements in a feature map
via a mask named the spatial mask and specifies the signs
of selected elements according to another mask called sign
mask. The trigger function T (⋅) is defined as follows:

F̃i = T (Fi) =MS
i ○MI

i ○ ∣Fi∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Trigger Part

+ (1 −MS
i ) ○Fi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Non-Trigger Part

, (2)

where ○ is the element-wise production, and ∣⋅∣ calculates
the element-wise absolute values. MS

i and MI
i denote

the spatial and sign masks repsectively, which share the
same shape as Fi. Spatial mask MS

i is a 0-1 mask that
selects elements in Fi. Sign mask MS

i , consisting of values
{−1,+1}, is a binary mask for mapping the signs of the
selected element. Both spatial and sign masks are randomly
initialized before watermarking the DM. We provide more
details in Appendix. A to further explain these two masks.
Target response function definition. Given a sub-path vi →
vj , we define the target response of vj as follows:

R(vj) =MS
j ○MI

j (3)

Similar to our trigger function, the response function selects
a few elements and specifies their signs. To simplify the
learning objective, MS

j and MI
j are identical for both R(⋅)

and T (⋅). In other words, when vj is in-layer, MS
j and MI

j

are used for trigger. If vj works as the out-layer, these masks
will serve for the response.

4.4 Training Loss

The learning objective is to embed the backdoor into DMs
while reducing the negative impact on generation perfor-
mance. We define three losses, namely, generation loss Lg ,
backdoor embedding loss Lb, and reverse loss Lr to achieve
this goal:

minE
k
[Lg] − E

vi,vj

E
k
[Lb +Lr] (4)

where Lg uses the same loss in the latent DM [7] for
both conditional and unconditional generative tasks. We
then separately elaborate on backdoor embedding loss and
reverse loss.
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Diffusion Model

Backdoor Layer Selection

In-Layer Out-Layer

1 element 0 element Sign (+) Sign (-)

Feature Map
Trigger 
Function

Response Predefined 
Response

Similarity

Sub-Path

Fig. 4. Pipeline of the proposed method. Our method randomly se-
lects two layers for trigger embedding and response activation. The
trigger function maps the selected elements of the feature to pre-defined
signs. Note that we only changed the signs rather than the absolute
values.

Backdoor Embedding Loss. Given an input k (image/text),
our method selects a pair of layers {vi, vj} to create feature-
space training data (T (Fk

i ),R(vj)), and encourage the
submodel g(⋅∣i → j) to learn. However, we find that di-
rectly constraining the output g(F̃i∣i → j) may degrade the
generation performance since this loss covers the nonwater-
marked elements in the feature map. Hence, we alternately
impose the sign of elements masked by MS

j to ensure
consistency with the target response.

Lb = Scos(MS
j ○ g(F̃i∣i→ j),R(vj) ○C), (5)

where Scos(⋅, ⋅) measures the cosine similarity and C =
∣g−(F̃i∣i→j)∣

∣∣g−(F̃i∣i→j)∣∣
is a constant vector for normalizing based on the

stop-gradient model g−. We adopt cosine similarity instead
of the L1 or L2 norm since the purpose of the loss is to
enforce sign consistency. We elaborate on the rationale of C
in Appendix. B.
Reverse Loss Additionally, to differentiate between trig-
gered and normal states, we introduce a constraint called
reverse loss Lr for cases without triggers:

Lr = Scos(MS
j ○ g(Fi∣i→ j),−J ○R(vj) ○C), (6)

where J denotes the matrix populated entirely with value
1. Here, the inverse symbol is used as the ground truth to
maximize similarity when the trigger is not activated. This
constraint prevents the model from a trivial solution for Lb,
where each layer outputs the predefined response regardless
of whether the trigger is activated. In this trivial solution,

DM just memorizes the predefined output instead of truly
learning the trigger-response relationships. As the out-layer
does not rely on the trigger signal, the trivial solution cannot
benefit from sampling different in-layers and thus should be
prevented.

4.5 MC-Sampling Trigger-Response Pairs for Owner-
ship Verification

Here, we present the verification process based on our
method. Given an input signal k, DM constructs multiple
diffusion steps to generate image. In each diffusion step, we
sample a pair of {vi, vj} (see Sec. 4.2). We embed the trigger
to vi through Eq. 2 and compute the similarity score in vj
based on Eq. 5. By averaging these similarity scores, we can
finally predict the ownership with a threshold.

One may argue the verification pipeline requires ac-
cessibility to the feature map. Although the pipeline does
not require access to model parameters, it is still some-
what limited to open-source or semi-open-source scenarios.
However, copyright/ownership disputes require arbitration
by courts or third-party institutions. In this sense, models
are reasonably open to these departments for high-accuracy
and robust verification. Moreover, we further highlight the
potential value of our research (see Sec. 6): our design is flex-
ible and can be integrated with existing backdoor method
to further improve its performance when parameters and
feature maps are inaccessible.

5 EXPERIMENTAL RESULTS

5.1 Evaluation Metrics

A good ownership protection method should cause less
degradation of generation quality, offer effective protection
for ownership, and be very robust against fine-tuning on
downstream datasets. We adopt the FID [111] and CLIP
scores [112] to evaluate the fidelity of generated images. The
evaluation details of FID and CLIP are described as follows:
● The FID score [111] measures quality of the generated

images. For a text-conditioned DM, we use an LMSD
Scheduler [113] with 20 steps and a classifier-free guid-
ance scale of 5.0 to generate 5k images using captions
from the validation set. We then calculate the FID score
with respect to these generated images and the original
images in the validation set. For an unconditional DM,
we generate 5k images with random noise inputs and
compute the FID score by comparing these images with
5k real samples.

● The CLIP score [112] measures the semantic consistency
between the input caption and generated image.

For ownership protection performance, we evaluate the
methods using two metrics, called, response success rate and
verification success rate.
● Response success rate (RS-Rate) measures the accuracy of

the response of a watermarked model given the trigger.
● Verification success rate (VS-Rate) calculates the rate of

successfully identifying the watermarked model from
the independent models.
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TABLE 1
Text-to-image generation performance of diffusion model [7] on MS-COCO dataset with in-distribution fine-tuning protocol, where the DM is

incorporated by watermarkDM, FixedWM, and AIAO, and FID↓ and CLIP↑ scores measure the generation performance. The baseline refers to the
original DM [7].

Method Source model Finetuning-based Removal

1k steps 2k steps 3k steps 6k steps

Baseline 15.63/26.55 15.30/26.54 15.20/26.51 15.75/26.58 15.73/26.61
WatermarkDM (caption-watermark) [31] 14.66/26.42 15.11/26.53 15.49/26.49 15.48/26.66 15.10/26.64
FixedWM (caption-watermark) [32] 14.90/26.43 14.98/26.50 15.17/26.58 15.02/26.63 15.46/26.57
AIAO (Ours) 15.08/25.45 15.81/26.12 15.59/26.37 15.66/26.51 15.16/26.54

RS-Rate (%)

WDP AIAO (Ours)WatermarkDM FixedWM Stable Signature

99.05

75.48
87.51

100.00 99.9699.97

79.14 85.63
99.58 98.87

0

50

100

VS-Rate (%)

Fig. 5. Verification success rate (VS-rates) and response success
rate (RS-rate) of different methods in protecting source DMs before
fine-tuning on downstream generation task. The base model is set
to the text-to-image DM [7].

TABLE 2
RS-Rate(%)↑ of backdoor-based methods in protecting the ownership

of backdoored DMs against in-distribution fine-tuning, where the
validation data are MS-COCO Validation Set.

Method Fine-tuning on Downstream Task

1k steps 2k steps 3k steps 6k steps

FixedWM [32] 58.21 53.15 51.73 49.80
Stable Signature∗ [33] 65.02 54.94 60.66 59.72
WatermarkDM [31] 67.52 60.71 56.70 57.00

AIAO (Ours) 99.87 99.79 99.80 99.68

∗We report the result of the official watermarked model from the
original study [33], which is based on SD-2.1.

5.2 Protection Performance for Text-to-Image DM

We randomly divide the MS-COCO dataset [114] into two
subdatasets of the same size, namely COCO-A and COCO-
B. COCO-A is used to embed our backdoor into a source
DM. We then evaluate the effectiveness of our method
in protecting the source DM on downstream generation
tasks, where COCO-B and CUB-200 (Caltech-UCSD Birds-
200) [115] are used as downstream datasets. Note that CUB-
200 is rather different from COCO-A, while COCO-B has a
distribution similar to that of COCO-A. We refer to the fine-
tuning of COCO-A as In-distribution Fine-tuning, and that
of the fine-tuning on CUB-200 as Out-of-distribution Fine-
tuning. Please refer to Appendix D and A for more details of
the training protocol, dataset statistics, and baseline meth-
ods implementation.

We use the stable-diffusion-1.4 (SD-1.4) model [7] as our
source model. There are only a few backdoor-based owner-
ship protection methods for text-to-image DM. We hereby
compare the proposed method with backdoor-based wa-

TABLE 3
VS-Rate(%)↑ of backdoor-based methods in protecting the ownership

of backdoored DMs against in-distribution fine-tuning, where the
validation data are MS-COCO Validation Set, and the independent

model is SD-1.4 w/o watermarking.

Fine-tuning on Downstream Task
Method 1k steps 2k steps 3k steps 6k steps

FixedWM [32] 60.24 59.51 59.40 58.72
Stable Signature [33] 53.94 50.02 51.79 51.29
WatermarkDM [31] 73.19 69.88 70.49 71.81

AIAO (Ours) 95.71 94.03 92.07 91.08

TABLE 4
RS-Rate(%)↑ of backdoor-based methods in protecting the ownership

of backdoored DMs against out-of-distribution fine-tuning on CUB
Dataset [115], where the validation data are MS-COCO Validation Set.

Fine-tuning on Downstream Task
Method 0.5k steps 1k steps 1.5k steps 2k steps

FixedWM [32] 54.23 53.00 53.60 53.58
Stable Signature [33] 90.32 83.32 72.38 74.36
WatermarkDM [31] 64.96 66.08 67.00 64.20

AIAO (Ours) 99.95 99.78 99.76 99.46

termark methods (WatermarkDM [31] and FixedWM [32])
and image-based watermark method, Stable Signature [33].
In addition, we build a reference model by training/fine-
tuning the DM [7] without any watermarking for evaluating
image fidelity. From Table 1, we see that although the DM
is integrated with different ownership protection methods,
these methods have negligible influence on the DM. The
generated performance of all integrated DMs is similar to
that of the reference model. The generated samples of our
model are shown in Fig. 6.

Fig. 5 showcases the performance of competing methods
in protecting the ownership of DMs. When watermarked
DMs are not fine-tuned on a new downstream generation
dataset, all ownership protection methods preserve the
ownership of the DMs. However, as shown in Table 3 and
Table 2, the performance of WatermarkDM [31], FixedWM
[32], and Stable Signature [33] deteriorates greatly in protect-
ing the ownership of the DMs, as the number of fine-tuning
steps increases in downstream tasks. For example, the RS-
Rate of FixedWM decreases from 87.51% to 49.80%. On the
contrary, our method maintains a rate greater than 99%
during fine-tuning. We also fine-tune our model to a new
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A beautiful dessert waiting to be 
shared by two people.

A small cabin on top 
of a snowy mountain

A mecha robot in a favela 
in expressionist style

A group of motorcyclists drive 
down a tree lined street.

A panda sitting on a bench 
next to a stone building.

Fig. 6. Samples generated by SD-1.4 [7] equipped with our method. The first row represents the input captions, and the second row shows the
corresponding generated images. Our method has a negligible impact on the image generation performance of the DM.

TABLE 5
VS-Rate(%)↑ of backdoor-based methods in protecting the ownership

of backdoored DMs against out-of-distribution fine-tuning on CUB
Dataset [115], where the validation data are MS-COCO Validation Set,

and the independent model is SD-1.4 w/o watermarking.

Fine-tuning on Downstream Task
Method 0.5k steps 1k steps 1.5k steps 2k steps

FixedWM [32] 62.58 60.29 60.37 59.21
Stable Signature [33] 72.00 65.54 58.77 59.39
WatermarkDM [31] 76.15 75.33 73.94 74.50

wAIAO (Ours) 95.57 97.04 94.66 94.88

Cat→Dog Dog→Cat

Success Response Rate (%) Success Verification Rate (%)

99.84 100.00 99.91 98.3899.95 99.73 99.91 99.98

0

50

100

Cat→Dog Dog→Cat

Success Response Rate (%) Success Verification Rate (%)

99.84 100.00 99.91 98.3899.95 99.73 99.91 99.98

0

50

100

RS-Rate (%) VS-Rate (%)

Fig. 7. VS-Rates/RS-Rates of WDP and our method in protecting the
source DMs before fine-tuning on the downstream generation task.
The blue bar represents the results of WDP [29], and red bar refers to
our method.

multimodal dataset such as the CUB-200 dataset [115]. Ta-
bles 5 and 4 summarize the results of our method and show
that it achieves a higher verification performance (≥90%)
than the baseline methods (∼70%). Thus, our method is
demonstrated to be the most robust to fine-tuning removal.

TABLE 6
RS-Rate(%) ↑ of the Watermarking Methods on AFHQ. The results with
>2k steps correspond to the checkpoint with the best generative

performance.

Protocol Method Fine-tuning-based Removal
0.5k steps 1k steps 1.5k steps >2k steps

Cat → Dog WDP [29] 0.09 0.00 0.00 0.00
AIAO 100.00 100.00 99.67 97.87

Dog → Cat WDP [29] 0.02 0.00 0.00 0.00
AIAO 98.48 99.43 98.39 93.61

TABLE 7
VS-Rate(%) ↑ of our method compared to the WDP in terms of

unconditional image generation on the AFHQ Dataset [30].

Fine-tuning-based RemovalProtocol Method 0.5k steps 1k steps 1.5k steps >2k steps
WDP [29] 60.19 92.71 88.65 81.75Cat->Dog AIAO 96.38 94.96 96.05 88.03
WDP [29] 92.06 79.10 67.74 67.93Dog->Cat AIAO 95.93 92.25 93.63 94.49

5.3 Protection Performance for Unconditional DM

Similar to text-conditional generation, we use one dataset
to learn the identifier and fine-tune the model on another
dataset to test its robustness over fine-tuning removal. In
this study, we use AFHQ-Dog [30], AFHQ-Cat [30], LSUN-
Church [123], and LSUN-Bedroom [123] as the training
or downstream dataset. We use Dataset-1 → Dataset-2 to
represent the protocol that the model learns the identifier in
Dataset-1 and is fine-tuned on Dataset-2. We compare our
method with WDP [29], which is designed for watermarking
unconditional DMs. More details are available in Appendix
E.

Tables 6 and 7 show that our method effectively protects
and verifies the ownership of unconditional DMs, maintain-
ing a high response rate (≥90%) even against fine-tuning-
based removal. In contrast, WDP performs poorly on fine-
tuning-based removal, achieving a low response success
rate. Their performance before fine-tuning is shown in Fig.
7. As indicated in Fig. 8, a DM incorporated with WDP
becomes vulnerable when fine-tuned on a downstream gen-
eration task with new data, although it performs well before
such fine-tuning. More specifically, after fine-tuning, the DM
with WDP generates noise-like images when the trigger is
activated. As the outputs become nearly random noise, with
a large distance from the generated images without triggers,
the response accuracy rapidly drops to zero (Table 6). In
contrast, Fig. 9 shows that our method properly responds to
the predefined triggers after fine-tuning, demonstrating the
stability and potential utility of our method for traceable
ownership verification. These impacts of these two methods
on generative performance is described in Appendix F.
Meanwhile, we visualize the results of the independent
model, given a trigger, in Appendix G to further explain
the failure of WDP.

In addition, we compare our method with other poten-
tial protection approaches for verifying the ownership of
the DM, where these approaches are based on distribution
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TABLE 8
Ownership verification of our method compared to similarity-based methods [111, 116–118] in terms of the VS-Rate (%) ↑ on the protocol of

Church → Bedroom with 2k-steps fine-tuning removal.

Method Source Model Fine-tuning-based removal

Sample = 1 Sample = 50 Sample = 100 Sample = 1 Sample = 50 Sample = 100

Distribution Distance FID [111] (Inception-V3 [119]) - 53.50 62.00 - 52.50 51.00

Image Similarity MoCo-v3 [118] (ViT-B/16 [120]) - 97.47 100.00 - 49.49 50.00
DINO-v1 [116] (ViT-B/16 [120]) - 95.45 100.00 - 49.49 50.00

Model Attribution
GAN-Guards [117] (R18 [121, 122]) 65.90 99.03 100.00 50.49 51.46 51.96
GAN-Guards [117] (R34 [121, 122]) 65.59 99.51 100.00 51.30 58.74 59.80
GAN-Guards [117] (R50 [121, 122]) 64.50 100.00 100.00 50.11 50.00 50.00

Backdoor AIAO 93.55 98.32 99.04 82.94 92.07 96.63

Diffusion 
ModelNoise

Updated
Diffusion 

Model

Trigger

Noise

Updated
Diffusion 

Model
Noise

Diffusion 
Model

Trigger

Noise

(a) After Adding Trigger

(b) After Fine-tuning on Unseen Clean Data 

Fig. 8. Failure for competing method. In (a), after adding triggers to the
diffusion model, the model works well and can simultaneously generate
clean and watermarked images by specifying the input signal. However,
in (b), following fine-tuning on new data, such as dog images in this
instance, the model loses its ability to generate watermarked images
and fails to produce any meaningful images as well.

distance or image similarity. These approaches verify own-
ership by measuring the similarity between the generated
samples from the given model and protected model. Greater
similarity indicates a higher probability that the test model
is fine-tuned from the protected model. Thanks to self-
supervised learning [65, 124, 125], we use the embedding
space of MoCo-v3 [118] and DINO-v1 [116] to measure
image similarity and FID [111] for distribution similarity. We
also implement GAN Guards [117], a method using classi-
fiers to identify whether the generated images are generated
by the protected model. As these methods require negative
data for training or measuring, we train an independent
model against the protected model on the same dataset
(LSUN-Church) with different random seeds. We collect
5,000 images, each from the protected and independent
models as training samples, respectively. We also generate
two test sets to evaluate the verification performance be-
fore/after fine-tuning-based removal. For the former test set,
we use 5k independent noise inputs to produce 10k images
from protected and independent models separately. We then
fine-tune these two models with 2k steps on LSUN-Bedroom
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(a) Triggered Model (b) Fine-tuned Model

Triggered Prediction Event (GT)

Fig. 9. Activation Value Changes in Response to Triggers. In (a),
the source model accurately responds to triggers, producing values
similar to a predefined response (i.e. , ground truth). Subsequently, we
fine-tune the source model with new data, resulting in (b), where the
reacted values undergo slight changes but still meet the verification
requirements.

and use each fine-tuned model to generate another 5k
images to be used as a test set for validating the robustness.

As shown in Table 8, because of the high distributional
similarity between the independent and protected models,
FID fails to accurately distinguish data from different mod-
els, making this task challenging. Other methods achieve
satisfactory results (>95% accuracy) in protecting the source
DM when using 50 samples for prediction. However, the
ownership verification performance of these methods signif-
icantly decreases when handling fine-tuning removal. GAN-
Guards achieves the best result (e.g., 59.80% of verification
success rate), among all baselines, while our method (e.g.,
96.63%) outperforms GAN-Guards by a large margin. The
proposed method shows stable verification success rates
before and after fine-tuning DM, indicating the effectiveness
of our method in verifying the ownership of unconditional
DMs 2.

5.4 Ablation Studies and Analysis
Ablation study. We ablate each key component of our
method to show their contributions to the performance.
We remove Rev. loss and AIAO strategy while building a
baseline that uses a single fixed in-layer (down_blocks.0)
and out-layer (up_blocks.3) to embed our trigger. As
shown in Table 9, our mask-controlled trigger enables the

2. Table 8 does not include WDP since we fail to reproduce it with
competitive generative performance in this setting.
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TABLE 9
Ablation study of our method in protecting the text-to-image DM on

in-distribution fine-tuning protocol, where the protection performance is
measured by RS-Rate (%)↑. Back. Loss and Rev. Loss refer to

backdoor embedding loss and reverse loss, respectively.

Back. Loss AIAO Rev. Loss Source Fine-tune 2k steps

✓ × × 100.00 20.42
✓ ✓ × 94.97 72.36

✓ × ✓ 100.00 84.91
✓ ✓ ✓ 100.00 99.90

TABLE 10
RS-Rate(%) ↑ of our method on text-to-image generation for

independent/source models.

Source Fine-tune 2k steps

Same trigger for Independent Models 46.27 44.73
Incorrect Trigger for Source Model 45.12 54.54

Correct Trigger for Source Model 100.00 99.90

baseline to achieve a high response rate for protecting the
source model. However, when the source model is fine-
tuned on a downstream dataset (COCO-B), the baseline
fails to protect the fine-tuned source model; in this case,
the response rate of the baseline drops from 100% to 20%
without Rev. loss and AIAO. In contrast, when the fixed
in-layer/out-layer embedding is replaced by our AIAO,
the performance of the baseline is improved to 72.36 to
protect the fine-tuned model. Similarly, adding Rev. Loss
also remarkably improves the performance. Because of the
proposed Back. Loss, Rev. Loss, and AIAO, our method
achieves a response rate of 99. 90% for the fine-tuned model,
demonstrating the effectiveness of our proposed method.

We then evaluate the effectiveness of the proposed trig-
ger by building two baselines. The first baseline embeds our
trigger into an independent model, where the independent
model is trained on the same dataset as the watermarked
one, but without embedding triggers. The second baseline
embeds an incorrect trigger, where the incorrect trigger is
randomly generated. We then validate whether the two
baselines were generated by the ownership of the source
model. The data in Table 10 show that the response accuracy
of the two baselines is less than 50%, while that of the
source model with a correct trigger is higher than 99.9%.
These results indicate that our trigger effectively validates
the ownership of the source model.
Number of active elements in spatial mask. We examine
the effect of the proportion of embedded identifiers within

TABLE 11
RS-Rate(%) ↑ of our method in protecting the text-to-image generation

(in-distribution) using different ratios for watermarking.

Backdoor Ratio in MS Source Model Fine-tune 2k steps

0.01 65.77 64.73
0.05 100.00 99.90
0.1 100.00 97.31
0.2 67.09 83.90
0.3 55.73 46.97

54.33
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Fig. 10. Response success rate of our method using different
numbers of sub-paths against fine-tuning-based removal. The un-
conditional DM equipped with our backdoor is further fine-tuned on a
downstream generation task (dog→cat) for 2k steps to remove the back-
door. Our method effectively resists fine-tuning-based removal when
there are more than five subpaths.

the spatial mask. As shown in Table 11, we test the response
success rate of our approach with different ratios for water-
marking. Table 11 shows that using a small backdoor ratio
(e.g., 0.01) achieves a low response success rate, hampering
the ownership verification performance. Similarly, a large
ratio introduces considerable training difficulties, leading to
a low response success rate. In contrast, when the ratio is in
the range [0.05, 0.1], our method achieves a high response
rate even against fine-tuning-based removal. In this study,
we set the ratio at 0.05.
Number of subpaths for ownership verification. Our
method randomly selects multiple subpaths via AIAO for
ownership verification. Fig. 10 shows the positive effect
of using multiple subpaths in handling fine-tuning-based
removals, with different numbers of subpaths used in our
method during verification. As shown in Fig. 10, increas-
ing the number of subpaths leads to a higher response
success rate. Nevertheless, our method does not require a
large number of subpaths. The response success rate of our
method reaches 97.50% with only 10 subpaths, although the
protected source model is fine-tuned for 2k steps. These
results indicate the effectiveness and robustness of our
method to protect the ownership of DMs.

6 DISCUSSIONS

Impact of trigger on generative performance. We examine
the impact of the proposed triggers on generative per-
formance by comparing the visual differences among the
samples generated with and without inputting triggers.
As shown in Fig. 11, the DM can consistently generate
high-quality images for both cases despite visible changes
in colors, boundaries, and high-frequency components. In
other words, our trigger effectively ensures the generation
quality by controlling only the signs of the feature maps
while preserving their absolute values.
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w/o Trigger w/ Trigger Difference w/o Trigger w/ Trigger Difference

Fig. 11. Generative performance on source model with or without
triggers. We show the generated samples, given the same noise from
two separate models trained on AFHQ-Cat [30] and AFHQ-Dog [30]. To
evaluate the impact of input triggers on these models, we measured
the L2 distance between generated images. The visualization of the
difference is normalized by the min-max scaling.

TABLE 12
RS-Rate(%)↑ of WatermarkDM [32] and our method on MS-COCO
Validation Set after fine-tuning 2k steps on COCO-B with different

ensemble strategies.

Method Infer. Steps Res. Suc. Rate (%)

WatermarkDM [32] (w/o ensemble) 20 60.71
WatermarkDM [32] (w/ ensemble) 20 58.12

AIAO (Ours) 5 97.71
AIAO (Ours) 10 99.62
AIAO (Ours) 20 99.79

Robustness against multi-stage fine-tuning removal. We
design a more challenging scenario to further evaluate the
robustness of the proposed method. In particular, we fine-
tune the source model on different datasets in multiple
stages using various fine-tuning methods. In our experi-
ments, we embed our backdoor in the source DM using
dataset COCO-A to protect the model. Subsequently, we
attempt to remove the embedded backdoor by first fine-
tuning the protected DM on COCO-B in the first stage and
then employing Dreambooth [25] to fine-tune the model in
the second stage. Fig. 12 shows that the generation perfor-
mance of our method is comparable with that of the orig-
inal pre-trained DM. Furthermore, although protected DM
undergoes such complex fine-tuning, our method maintains
a high response verification rate (> 99%), showing that our
method effectively resists two-stage fine-tuning removal.
Comparison of our method with WatermarkDM on the
same sampling strategy. The proposed method samples
several trigger-response pairs in different sub-paths to mit-
igate the influence of busy layers. To further justify the
effectiveness of our method, we use the same sampling
strategy for competing methods, and the response is av-
eraged over multiple diffusion steps rather than obtained
from the generated image. We compare our method with
WatermarkDM since it is the most resilient method against
fine-tuning (Table 3). From Table 12, by averaging 20 steps,
WatermarkDM achieves 58.12% accuracy, which is lower
than the case without the ensemble (60.71%). The low accu-
racy may be due to the noises presented in the intermediate
diffusion steps that affect the response accuracy. Given
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Fig. 12. Generative performance on pre-trained and watermarked
models with Dreambooth [25]. Stress testing reveals the resilience of
our method: A trigger is embedded using half of the MS-COCO dataset,
followed by fine-tuning the remaining data to approach malicious at-
tacks—a scenario in which comparing methods failed verification. After
the attack, our triggered model is applied to personalized generation with
DreamBooth, and it demonstrates generative capabilities comparable to
the original model, while maintaining high response success rates of
99.12% for the backpack and 99.90% for berry bowl images.

that generating an image using a diffusion model involves
multiple diffusion steps, existing methods do not fully adapt
to this property, thereby leading to a low-efficiency response
(multiple inferences for one watermarking). In contrast, our
method is sample-efficient and achieves a success rate of 97.
91% by averaging only five diffusion steps, confirming its
effectiveness over other methods.
Improving the black-box method via AIAO. We examine
the potential of extending our AIAO strategy to a black-
box setting. To this end, we propose a new strategy based
on AIAO, called the Arbitrary-Layer strategy. This strategy
randomly chooses a layer during training and enforces the
selected layer to generate abnormal behavior, given the trig-
ger. More specifically, we reselect a layer every 200 training
steps for backdoor embedding and update the remaining
layers with loss from the standard diffusion model to pre-
serve generation performance.

Further, we integrate our Arbitrary-Layer strategy with
WDP [29], which is the most recent black-box watermarking
method for unconditional generation. To evaluate the effec-
tiveness of the Arbitrary-Layer strategy, we test the methods
on the unconditional generative task, i.e. , the protocol of
Dog→ Cat in the black-box setting. The proposed Arbitrary-
Layer strategy considerably improves the success RS-Rate
of WDP from 67.93% to 76.59% against fine-tune-based
removal. These results show that the proposed Arbitrary-
Layer strategy improves the robustness of the WDP’s water-
mark to fine-tuning. Unlike typical watermarking methods
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that enforce both busy and lazy layers to jointly learn the
embedded watermark, our Arbitrary-Layer strategy enables
layer-wise learning, in which each layer is required to learn
watermarks from its predecessors. As the predecessors in U-
net can be either a skip connection or a learnable layer, such
a strategy can encourage the utilization of a skip connection
when the predecessor layer is busy, thereby mitigating the
forgetting of the watermark during fine-tuning on down-
stream tasks. This indicates the potential to extend our
method to black-box ownership protection. However, de-
signing a superior method for black-box settings is beyond
the scope of this study. We will explore this in our future
study.

7 CONCLUSION

This paper proposes a novel ownership protection method
for fine-tuned DMs. Robust verification can be achieved
by decreasing the utilization of busy layers through fine-
tuning. To achieve this, our new strategy, AIAO, strategi-
cally places triggers and responses in the feature space of
the DM across different depths and verifies ownership by
sampling the subpaths watermarked by them. To general-
ize trigger-response pairs to feature space, a novel mask-
controlled trigger function generates trigger signals with
sign shifts, yielding invisible backdoors and causing negligi-
ble effects on generation. Empirical studies show that back-
doors embedded through AIAO enhance the robustness of
protection against fine-tuning.
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APPENDIX

.1 More Implementation Details

Pilot study. We fine-tune the pre-trained DM, i.e. , SD-1.4
[7] on the AFHQ-Dog (256 × 256) dataset for 100 epochs,
with a learning rate of 1 × 10−5, and the text prompt is “A
cat.” The training data are counterfactual since the training
images are pictures of dogs, which are inconsistent with
the text prompt. As the original pre-trained DM does not
sufficiently learn from such counterfactual training data, the
DM is enforced to update its parameters during fine-tuning.

Table 13 lists the busy layers studied in our pilot study.
In the table, we denote the layer as the individual module as
specified in the official implementation3. We find that most
of the top-rank busy layers are cross-attention layers [126],
resulting in similar observations with recent work [25, 61,
127].

More training details. We train our method in two
stages: 1) We use all loss functions and assigned the same
weight factors to them in the first stage. 2) We only use
the generation loss function in the second stage. By such
two-stage training, our method provides a practical way
to embed triggers while preserving the generation perfor-
mance rather than extensive hyper-parameter searches. In
all experiments, unconditional DM requires 1.5k training
steps, and the text-to-image DM requires 2k training steps.
The triggered elements occupied 5% of the feature maps for
watermarking.

Trigger Function. Tab. 14 illustrates the outputs of the
proposed trigger function given all potential inputs.

.2 More details about C in learning objective Lb

Here, we elucidate the backdoor embedding loss Lb:

Lb = Scos(MS
j ○ g(F̃i∣i→ j),R(vj) ○C). (7)

The learning objective Lb aligns the sign of prediction
g(F̃i∣i → j) with R(vj) =MS

j ○MI
j . To ensure the optimal

value of Lb can reach -1, MS
j ○MI

j is normalized by a
constant term C,

C = ∣g
−(F̃i∣i→ j)∣

∣∣g−(F̃i∣∣i→ j)∣∣
, (8)

where g−(⋅∣i→ j) refers to g with stop gradient operator. To
better understand the impact of C, we explain it with a toy

case: g(F̃i∣i → j) =
⎛
⎜⎜⎜
⎝

−3
4
−5
2

⎞
⎟⎟⎟
⎠

, MS
j =
⎛
⎜⎜⎜
⎝

1
0
1
1

⎞
⎟⎟⎟
⎠

, MI
j =
⎛
⎜⎜⎜
⎝

−1
1
−1
1

⎞
⎟⎟⎟
⎠

. Then, if

the constant term is removed, Lb is calculated by:

3. https://huggingface.co/CompVis/stable-diffusion-v1-4

TABLE 13
Busy layers studied in our pilot study.

Rank Layer Name

Top 10

up blocks3attentions0transformer blocks
up blocks2attentions1transformer blocks

up blocks1resnets2conv1
up blocks2attentions2transformer blocks

up blocks2upsamplers0conv
up blocks3attentions2transformer blocks
up blocks3attentions1transformer blocks

down blocks0attentions0transformer blocks
up blocks2resnets2conv1

up blocks2attentions0transformer blocks

Top 10-20

up blocks1upsamplers0conv
up blocks1attentions2transformer blocks

up blocks2resnets1conv1
down blocks0attentions1transformer blocks

up blocks2resnets2conv2
up blocks2attentions1proj out
up blocks2attentions2proj out

up blocks2resnets0conv1
down blocks1attentions0transformer blocks

Top 20-30

up blocks2resnets1conv2

up blocks2resnets0conv2
up blocks3resnets0conv1

up blocks2attentions1proj in
up blocks1attentions1transformer blocks
up blocks1attentions0transformer blocks

up blocks2attentions2proj in
up blocks1resnets2conv2

up blocks2attentions0proj out
down blocks1attentions1transformer blocks

up blocks1resnets1conv1

Top 30-50

up blocks1attentions2proj out
down blocks2attentions1transformer blocks

up blocks2attentions0proj in
up blocks1attentions2proj in
up blocks0upsamplers0conv

up blocks3resnets0conv2
down blocks2attentions0transformer blocks

up blocks1resnets0conv shortcut
up blocks0resnets2conv1
up blocks1resnets0conv1

up blocks1resnets2conv shortcut
up blocks1attentions0proj out

up blocks1resnets1conv shortcut
up blocks2resnets2conv shortcut

down blocks2resnets0conv1
up blocks1attentions1proj out
up blocks1attentions1proj in

up blocks2resnets1conv shortcut
up blocks2resnets0conv shortcut

up blocks1attentions0proj in

MS
j ○ g(F̃i∣i→ j) =

⎛
⎜⎜⎜
⎝

−3
0
−5
2

⎞
⎟⎟⎟
⎠
,

MS
j ○MI

j =
⎛
⎜⎜⎜
⎝

−1
0
−1
1

⎞
⎟⎟⎟
⎠
,

−Scos(MS
j ○ g(F̃i∣i→ j),MS

j ○MI
j) =

− 10

6.164 × 1.732 = −0.937.

(9)

https://huggingface.co/CompVis/stable-diffusion-v1-4
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TABLE 14
Truth table of the proposed trigger function. When MS is set as 0, the
output sign is based on the input. Otherwise, the sign is determined

using MI .

Input Sign (F̃i) MS MI ∣Fi∣ MS
i ○MI

i ○ ∣Fi∣ + (1 −MS
i ) ○Fi

+ 1 + + +
+ 1 - + -
- 1 + + +
- 1 - + -

+ 0 + + +
+ 0 - + +
- 0 + + -
- 0 - + -

In this case, although MS
j ○ g(F̃i∣i → j) has the same sign

as MS
j ○MI

j , the corresponding loss value remains larger
than −1, providing an inaccurate values for learning. In
other words, different instances of g(F̃i∣i → j) can yield
the correct signs but still produce Lb with varying values.

We then examine the same case but with constant terms
as below:

C = ∣g
−(F̃i∣i→ j)∣

∣∣g−(F̃i∣i→ j)∣∣
=
⎛
⎜
⎝

0.487
0.811
0.324

⎞
⎟
⎠
,

−Scos(MS
j ○ g(F̃i∣i→ j),MS

j ○MI
j ○C) =

− 6.164

6.164 × 1 = −1.

(10)

Considering the constant term, the optimal results of Lb is
fixed to −1, indicating correct alignment between the loss
function and our goal.

.3 Theoretical Analysis

Our pilot study reveals that the busy layer causes perfor-
mance deterioration after fine-tuning. Therefore, we used
the metric C—the number of busy layers encountered dur-
ing verification—to analyze the stability of the triggers. A
robust approach achieves verification with reduced C. We
theoretically prove that our method can reduce the number
of visits to busy layers by four times:
Theorem. 1 If triggers and responses are embedded in the model’s
input and output, respectively, E[C] = Cb.
Theorem. 2 Under the Arbitrary-In-Arbitrary-Out strategy
(AIAO), the trigger and response positions follow the conditional
uniform distributions. Here, E[C] = 1

4Cb.
Cb is a constant number, presenting the total busy layer

numbers within the full DM.
Intuition This theoretical analysis can be explained from the
viewpoint of sampling areas. As shown in Fig. 13 (a), when
the busy layer is assumed to be uniformly distributed along
the model, the probability density of the busy layer is only
related to the length between the in-layer and the out-layer.
Therefore, the density can be presented as a triangular re-
gion. Considering that in traditional approaches, the trigger
(in-layer) and the response (out-layer) are located farthest
from each other, their sampling area is represented by a
point in the upper left corner (see Fig. 13 (b)). In contrast,
our sampling area covers the entire feasible region. This
indicates that the expectation of our approach should be
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Fig. 13. Intuitive Explanation of the Proposed Method. Original meth-
ods introduce triggers to the input and detect specific responses in the
output. However, after fine-tuning, this verification process encounters
all busy layers and thereby suffers from their dramatic changes. Sup-
pose that a busy layer follows a uniform distribution across the depth
of the model. The sampling region of this baseline will be limited to the
top left corner, where the busy layer distribution achieves the highest
density. In contrast, our proposed method allows us to apply triggers
at any position and detection can occur at any subsequent positions
behind the trigger. By sampling various sub-paths and averaging their
verification results, the proposed method can suppress the influence of
busy layers.

lower than the baseline in terms of the impact of the busy
layer.
Preliminary A watermarked generative model G(⋅) consists
of n layers where the i-th layer refers to vi. After fine-
tuning, Cb layers change, which are grouped into busy
layers. The existing observations show that the busy layers
are unevenly distributed throughout the depth of the model.
As a reasonable assumption, we model the distribution of
the busy layers as a uniform distribution U(1,L), where
each busy layer is independently and identically distributed
(i.i.d.). The expectation E(C∣vi, vj ,Cb) distributed within the
layers {vi, vi+1, ..., vj−1, vj} can be calculated by

E(C∣vi, vj ,Cb) = Cb
j − i
L
= Cb

j − i
n − 1 , (11)

where i and j represent random variables that denote the
in-layer and out-layer, respectively.
Proof of Theorem. 1: Since the in-layer and out-layer are fixed,
their probability density function (PDF) is given as

fin(v) =
⎧⎪⎪⎨⎪⎪⎩

1 if v = v1
0 otherwise

, (12)

fout(v) =
⎧⎪⎪⎨⎪⎪⎩

1 if v = vn
0 otherwise

, (13)

where fin(v) and fout(v) are independent; v1 and vn are the
first layer and last layer in G, respectively. The expectation
of the number of busy layers E(C∣Cb, fs(⋅), fe(⋅)) can be then
computed by

E(C∣Cb, fin, fout) = ∫ ∫ fin(v)fout(v)E(C∣vi, vj ,Cb)dvidvj
= Cb.

(14)
Note that even with multiple sampling, as in the case of
AIAO, the expectation of the baseline still converges to Cb,
which cannot be further reduced.
Proof of Theorem. 2: In the AIAO strategy, the in-layer PDF is

f̄in(v) =
1

n − 1 s.t. v ∈ G. (15)
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Fig. 14. Empirical Validation of the Negative Impacts of Busy
Layers. Our method samples multiple in-layers and out-layers to con-
struct sub-paths. We test the distribution response success rates (after
fine-tuning in clean data) for different sub-paths. The top 50 layers
exhibiting the most significant changes during fine-tuning are designated
as the busy layers. Sub-paths are categorized into two groups based
on whether they encounter less or more than 25 busy layers. These
experiments are based on 25k input samples. Verification with fewer
busy layers consistently yields higher accuracy. The experiments are
carried out on the unconditional image generation task (dog→cat)

Considering that the response should be placed behind the
trigger, the out-layer follows a conditional PDF f̄out(v∣vi),

f̄out(v∣vi) =
1

n − i s.t. v ∈ g(⋅∣i→ n). (16)

Based on Bayes’ theorem, E(C∣Cb, f̄in(⋅), f̄out(⋅)) is obtained
as

E(C∣Cb,f̄in(⋅), f̄out(⋅))

= ∫ f̄out(v∣vi)f̄in(v)E(C∣vi, vj ,Cb)dvidvj

= Cb
(n − 1)2 ∫

n

1
∫

n

i

j − i
n − i di dj

= Cb
(n − 1)2 ∫

n

1

1

n − i(
1

2
n2 − ni + 1

2
i2)di

= Cb
(n − 1)2 ∫

n

1

n − i
2

di

= Cb
(n − 1)2

1

4
(n − 1)2 = 1

4
Cb.

(17)

Based on Theorem. 1, E(C) of the baseline equals to Cb,
which is four times higher than that of our methods. Since
a smaller E(C) implies greater stability, we theoretically
demonstrate that the AIAO strategy can enhance resilience
to the forgetting caused by fine-tuning.
Empirical study on busy layers Our theoretical analysis is
based on the negative impact of busy layers. We empirically
validate the supposition that the busy layer causes the for-
getting of the watermarks. We identify the busy layers as the
50 layers with the most significant shifts after fine-tuning.
By sampling 25k trigger-response pairs, we analyze the
response success rates in the presence of varying numbers
of busy layers. In Fig. 14, we present the distribution of
response success rates for cases with more than or less than

TABLE 15
Summarization of the Competing Methods Discussed in the Paper.

Protected Model Category Method Publication

Fine-tune DM
Backdoor Watermarking

WDP[29] Arxiv’23
WatermarkDM [31] Arxiv’23

FixedWM [32] Arxiv’23
Image Watermarking Stable Signature [33] ICCV’23

w/o Fine-tuning DM

Distributional Distance FID [111] NIPS’17

Image Similarity DINO-v1 [116] ICCV’21
MoCo-v3 [118] ICCV’21

Model Attribution GAN-Guards [117] Arxiv’23

25 busy layers. The results show that responses are more
precise when there are fewer busy layers in agreement with
our observation that busy layers are the key to forgetting
triggers.

.4 Experimental Setup on Text-to-Image Generation
We use SD-1.4 [7] as the source model. The source model
learns to embed identifiers on the MS-COCO dataset (2017)
[114]. The MS-COCO dataset comprises 118K pairs of im-
ages and captions for training along with an additional
5K pairs for validation. To evaluate the stability of the
compared methods over fine-tuning, we evenly partition the
MS-COCO train set into two subgroups, namely, COCO-A
and COCO-B. COCO-A is dedicated to embedding triggers,
while COCO-B serves as the new data for testing the source
models over in-distribution fine-tuning. For the out-of-
distribution fine-tuning, we use CUB [115] as the target data,
which contains 5994 image-caption pairs in the training set.
Training Protocol. We adopt AdamW optimizer [128] and
a noise scheduler of DDPM [5] with an initial learning rate
of 1 × 10−5 during training. The batch size is 128, and the
maximum number of training steps is 3k for embedding
our backdoor and 6k for fine-tuning-based removal.
Baselines We compare our method with caption-watermark
approaches: WatermarkDM [31] and FixedWM [32]. Water-
markDM [31] takes a special fixed caption as the trigger
input, [31], and FixedWM [32] takes a caption containing
a special word [32, 103]. In addition, we examine Stable
Signature [33], which directly embeds watermarks into the
generated samples. All the baselines used are summarized
in Table 15.

.5 Experimental Setup on Unconditional Image Gener-
ation
We use AFHQ-Dog [30], AFHQ-Cat [30], LSUN-Church
[123], and LSUN-Bedroom [123] datasets. Each subdataset of
AFHQ contains 5k animal images, LSUN-Church contains
12.6k, and LSUN-Bedroom consists of 3,033k images. The
diffusion model is initially trained on one of these datasets
to learn the watermarks. Subsequently, another dataset is
used to fine-tune this model for evaluating the robustness
of the triggers. To ensure the DM where the watermark is
inserted has satisfactory generative performance, we initial-
ize the weights from the pre-trained SD-1.4 [7] with a fixed
caption input, i.e., the text encoder was banned in this case.
The training protocol is the same as that used for the text-
to-image generation except that the maximum training step
is set to 6k.
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TABLE 16
Unconditional generation performance of the DM [7] on AFHQ and LSUN datasets, where the DM is equipped with various ownership protection

methods. The generation performance is measured by FID ↓. The baseline refers to SD-1.4 [7] without backdoor embedding.

Protocol Ownership protection method Source Model Fine-tuning on Downstream Dataset

0.5k steps 1k steps 1.5k steps After Fine-tuning

Cat → Dog
Baseline 15.84 28.33 31.75 30.38 16.28
WDP [29] 16.05 24.76 25.29 21.63 16.16
AIAO 15.29 33.51 24.07 23.14 14.93

Dog → Cat
Baseline 19.65 11.94 15.06 14.03 10.17
WDP [29] 30.47 14.98 17.09 10.73 10.73
AIAO 25.40 10.00 10.33 8.71 7.36

TABLE 17
Text-to-image generation performance of the watermarked DMs on Caltech-UCSD Birds (CUB) dataset with In-Distribution Fine-tuning Protocol,

where FID↓ and CLIP↑ scores measure the generation performance. The baseline refers to SD-1.4 [7] without backdoor embedding.

Method Finetuning-based Removal

0.5k steps 1k steps 1.5k steps 2k steps

Baseline 13.25/26.23 12.31/25.83 10.94/25.88 10.77/25.94

WatermarkDM (caption-watermark) [31] 13.10/26.07 12.09/25.88 10.90/26.03 10.86/25.94
FixedWM (caption-watermark) [32] 13.81/26.07 11.46/25.96 10.96/25.95 11.01/26.05
AIAO (Ours) 13.70/25.94 11.91/25.95 10.64/25.67 10.80/25.94

Baselines. For unconditional DM, we compare two types
of ownership protection methods. In particular, since Wa-
termarkDM [31] and FixedWM [32] are not designed for
unconditional DM, we compare our method with a noise-
watermark ownership protection method i.e. , WDP [29].
WDP generates an image marked by a fixed word when a
trigger noise is fed as an input. In addition, as shown in
Table.15, a few image similarity algorithms may be treated
as ownership protection methods since they can be used
to measure the image similarity between the test model
and the protected model’s generated images. Hence, we
use MoCo-V3 [118] and DINO-V1 [116] to measure the
similarity in latent space. Meanwhile, we use the FID [111]
to verify the ownership by estimating the distance between
the generated distribution of the protected and test model.
Some studies [117, 129], motivated by model attribution
[130], learn the pattern hidden in the generated images to
identify the ownership. We use GAN-Guards [117] as the
representative approach for comparison.

.6 More Image Generation Comparison

We evaluate the impact of our methods on text-to-image DM
[7]. In particular, we separately incorporate the DM with
WatermarkDM, FixedWM, and our method via fine-tuning
on COCO-A. All incorporated DMs are subjected to fine-
tuning-based removal using an out-of-distribution dataset
(CUB) to challenge these ownership protection methods.
As shown in Table 17, the generation performance of our
method is comparable with that of the baseline (i.e. , the
original DM), even under the challenging fine-tuning-based
removal settings with out-of-distribution data.

We evaluate the influence of our method on the genera-
tion performance of DMs. As shown in Table 16, the uncon-
ditional DM incorporated with our method achieves better

Independent 
Model

Trigger

Noise

Source 
Model after 
Fine-tuning

Trigger

Noise

Fig. 15. Illustration of the failure for WDP. In (a), given the trigger
as input, the independent model cannot output any meaningful images.
In (b), following fine-tuning-based removal, the model cannot generate
watermarked images but still shows some statistical difference over (a),
which can reach ∼80% verification success rates. However, this verifica-
tion is not encouraged since the generated images are meaningless.

image quality than that incorporated with WDP, indicating
that our method has a less negative influence on DM.

.7 Implementation Details of WDP [29]

Our experiment shows that even with a low response
success rate, WDP maintains moderate verification per-
formance. To explain this, we visualize images generated
by independent and protected models when the trigger is
activated, as shown in Fig. 15. Although the protected model
fails to generate meaningful images after fine-tuning, there
are some visible differences between the images generated
by different models.

.8 More about Backdoor Attacks

Most existing methods, which are applied for discriminative
models, design triggers for inputs (e.g., images) and define
abnormal behavior for the model outputs. However, some
approaches [131, 132] use an additional neural network to
learn specified behaviors when direct access to the training
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process of the model is unavailable. Techniques for more
stealthy operations [132, 133] embed triggers within weight
perturbations. Despite these advancements, designing trig-
gers and activating backdoors in the feature space (inter-
mediate layer) remains under-explored. Salem et al. [134]
propose using the dropout as a trigger, but this approach is
incompatible with diffusion processes.


	Introduction
	Related Works
	Diffusion Model
	Embedding an Identifier into a Neural Network

	Pilot Study
	Empirical Observations on Fine-Tuning DMs

	Methods
	Problem definition
	Selecting Backdoored Layers
	Feature-space backdoor
	Training Loss
	MC-Sampling Trigger-Response Pairs for Ownership Verification

	Experimental Results
	Evaluation Metrics
	Protection Performance for Text-to-Image DM
	Protection Performance for Unconditional DM
	Ablation Studies and Analysis

	Discussions
	Conclusion
	Appendix
	More Implementation Details
	More details about C in learning objective Lb
	Theoretical Analysis
	Experimental Setup on Text-to-Image Generation
	Experimental Setup on Unconditional Image Generation
	More Image Generation Comparison
	Implementation Details of WDP peng2023protecting
	More about Backdoor Attacks


