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Abstract. We consider the Robin Hood dynamics, a one-dimensional extremal self-

organized critical model that describes the evolution of low-temperature creep. One

of the key quantities is the time evolution of the state variable (force noise). To

understand the temporal correlations, we compute the power spectra of the local force

fluctuations and apply finite-size scaling to get scaling functions and critical exponents.

We find a signature of the 1/fα noise for the local force with a nontrivial value of the

spectral exponent 0 < α < 2. We also examine temporal fluctuations in the position

of the extremal site and a local activity signal. We present results for different local

interaction rules of the model.
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1. Introduction

Diverse temporal noises can exhibit low-frequency 1/fα noise in the power spectral

density [1]. Generally, the spectral exponent α lies between 0 (white) and 2 (Brownian

noise). Examples vary, from voltage variations across a resistor to biological signals

like DNA sequences [2]. Self-organized criticality (SOC), introduced by Bak-Tang-

Wiesenfeld (BTW) [3–7] can explain the 1/f noise observed in non-equilibrium natural

systems, although SOC is not a necessary condition. The SOC systems organize

spontaneously into a critical state, where the long-range space-time correlation emerges

naturally. A common feature of SOC is a power law in the avalanche size or duration

distribution. The scaling property vanishes when the system’s external driving rate is

high. SOC seems to occur in diverse contexts, ranging from earthquakes [8, 9] and

biological evolution [10–12] to rainfall [13].

The BTW sandpile model exhibits the 1/fα noise in the avalanche activity signal

monitored on a fast time scale [14, 15]. Several variants of the BTW model also exhibit

the 1/f noise. The total mass or energy fluctuations recorded at a slow (drive) time scale

also show 1/f noise [16–22]. The Bak-Sneppen (BS) evolution model displays the 1/f

noise in local activity [23] and the number of species below a threshold [24, 25]. Recently,

the fitness fluctuations in the BS model have been shown to follow 1/fα noise with

α ≈ 1.2 [26]. The BS model demonstrates punctuated equilibrium, wherein the long

periods of stasis are interrupted by intermittent bursts.

The naturally evolving system named low-temperature creep, or Robin Hood (RH)

model, also exhibits the phenomenon of SOC [27, 28]. Commonly, creep refers to the

evolution of a system under a constant external driving force. Originally proposed

for dislocation movements, the RH model consists of a one-dimensional (1D) lattice,

where a site i at the time step t has the height hi(t). At each time step, the site

with the maximum height is selected: hm(t) = max{hi(t)}. The height evolves as

hm(t + 1) = hm(t) − ∆(t) and hm±1(t + 1) = hm±1(t) + ∆(t)/2, where ∆(t) is an

independent random variable. For periodic boundary conditions, the total amount∑L
i=0 hi(t) remains constant.

One can easily simulate the 1D RH model, starting with a flat interface. Selecting

the first site to rob at random, all L sites of the interface get updated at least once

after T steps. The average T for many independent runs scales with the system size

⟨T ⟩ ∼ LD [29]. The avalanche size follows the power-law distribution P (S) ∼ S−τ . To

define an avalanche, consider the sites that are above a threshold height h0 as live sites.

An avalanche of threshold h0 is the number of time steps S in which the maximum

height is greater than h0. In extremal SOC models, various critical exponents can

be typically expressed in terms of two important exponents: the avalanche dimension

D and the correlation exponent ν. The exponents τ and ν satisfy a scaling relation

τ = 1 + (D− 1/ν) /D [30]. The avalanche dimension D and the interface roughness

exponent χ follow a scaling relation χ + D = D. In the 1D RH model, the critical

exponents D = 2.23 and τ = 1.13 imply ν = 1.41 and χ ≈ 1.23 [30].
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If the decrement of the activated site ∆(t) is completely added to only the left

nearest neighbor, the dynamics becomes anisotropic. The anisotropic version of the

model becomes exactly solvable but belongs to a different universality class [31]. In fact,

the critical exponents are sensitive to underlying symmetry and dimensionality [30]. For

the anisotropic variant of the 1D RH model, τ = 4/3 and D = 3/2 yield ν = 2 and

χ = 1/2 [31].

A correspondence exists between the RH model and the dry friction model [29]. In

the dry friction model, one can consider two interfaces that move against each other.

Let the distance between these two interfaces be (hm − hi), where hm represents the

maximum value. The value of hm fluctuates from the maximum to a value close to

the critical height hc. If hm is high, only the maximum height remains in the contact

between the interface, leading to a small frictional force. If hm is close to hc, many sites

come into contact with the interface, so the frictional force is large. The critical height

takes a value of nearly hc ≈ 0.114 [29]. The frictional force between two interfaces

satisfies a power-law probability distribution P (F ) = F−µ, with µ = (D + 1/ν)/D. In

the 1D RH model, the exponent is µ ≈ 3.

Motivated by recent studies of the 1/f noise in the BS model [26], this paper aims to

uncover the temporal correlations in the local height or local force noise in the RH model

and its variants. Our extensive numerical studies reveal the local force power spectra

follow the 1/fα noise with a non-trivial value for the spectral exponent. As expected,

the spectral exponent changes for the anisotropic variant of the model. The power-law

scaling feature is valid for a frequency regime f ≫ f0, where the cutoff frequency scales

with system size as f0 ∼ L−λ. We argue that the cutoff frequency exponent is not a new

exponent: λ = D. In the mean-filed limit, the spectral exponent tends to α → 2 and

λ → 1. We also examine power spectra for the random walk signal (time evolution of

the extremal site) and a local activity signal. Three distinct frequency regimes emerge,

and the power spectrum remains system-size-dependent in the entire frequency regime.

With finite-size scaling, the critical exponents and scaling function are determined.

The organization of the paper is as follows: section 2 begins with the definition of

the RH model. Section 3 shows numerical results for the power spectra of the following

signals: local force, position of the extremal site, and local activity. The finite-size

scaling method reveals the critical exponent and the data collapse. The paper concludes

with a summary and discussion in section 4.

2. Model

The extremal SOC model that we study basically describes low-temperature creep

(popularly known as the Robin Hood system) [27]. Consider L sites on a circle, where

each site has a state variable ξ, representing local force. Initially, we assign a random

value to each ξ from a uniform distribution ρ(ξ) in a unit interval. The dynamics include

the following steps:

(i) Pick the site with maximum force ξi.
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Figure 1. The space-time evolution of the largest force site for different versions of

the model: (a) the RH, (b) the aRH, and (c) the rRH. In the aRH model, the space

inversion symmetry x → −x does not hold.

(ii) Reduce a part of the force randomly ξi → ξ
′
i and transfer that amount ∆ = ξ − ξ′

to the nearest neighbors in equal amounts ξi±1 → ξi±1 +∆/2.

(iii) Goto step 1 and repeat the process ad infinitum.

At each time, the maximum force site triggers an update of the process, implying

extremal dynamics. In the critical state, the extremal site in the space-time plane evolves

into a fractal structure (cf figure 1). The position of the extremal site x(t) executes a

random walk with a jump size satisfying a power-law distribution. At each update time,

we can call the extremal site active. The local activity A(t) takes a value of 1 at time

t if the site becomes active and 0 otherwise. One of the striking features is that the

total force η =
∑L

i=1 ξi or the average force ξ̄ = η/L remains constant during the entire

dynamics.

In this model, the local interaction involves two sites, the nearest left and right

neighbors. One can term this an isotropic version of the RH model. Although the

model is not solvable, an anisotropic version (aRH) becomes tractable [31]. In the aRH

model, the transfer of excess force from the extremal site happens to only the left nearest

neighbor. If the addition of force occurs at randomly selected two sites, we term this

random neighbor version (rRH).

Our interest is to examine the temporal correlation in the local force fluctuations

ξ(t) (cf figure 2). Using Monte Carlo simulations, we get the signals and compute the
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Figure 2. The typical temporal noise in the force of a site for (a) the RH, (b) the

aRH, and (c) the rRH versions of the model. The local force reveals that the period

of stasis may be longer for the RH model than that of the aRH model.

Model a b a− λ λ α = (a+ b)/λ

RH 1.73(8) 1.00(1) -0.44(3) 2.2(1) 1.3(1)

aRH 1.37(1) 0.80(2) -0.17(1) 1.54(2) 1.41(4)

rRH 1.05(1) 0.92(2) -0.06(1) 1.11(2) 1.78(6)

Table 1. The power spectra critical exponents for the local force signal ξ(t).

Model ap b λp α = (ap + b)/λp

RH 4.06(3) -1.27(4) 2.23(1) 1.25(4)

aRH 3.16(4) -1.38(1) 1.43(2) 1.24(3)

Table 2. Same as in Table 1, but for the random walk signal x(t).

Model ap b λp α = (ap + b)/λp

RH 0 1.00(1) 2.22(3) 0.45(1)

aRH -0.81(4) 0.99(1) 1.43(2) 0.13(4)

Table 3. Same as in Table 1, but for the local activity A(t).

power spectral density, employing the standard fast Fourier transform method. In all

numerical results, we use a signal of length N = 218 or 220 after removing transients up

to 106. We also perform ensemble averages over M = 104 different realizations of the

signal and vary the system size from L = 24 to 27.
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Figure 3. (Main panel) In the RH model, the power spectra Sξ(f, L) of the local

force noise ξ(t) for different system sizes L. (Inset) The system size scaling of various

quantities: (■) the power below the cutoff frequency Sξ(L, f ≪ f0), ( ) the power at

a fixed frequency above the cutoff frequency Sξ(L, f = 0.1), and (×) the total power

P (L), along with the best-fits. The floating numbers [cf table 1] are the estimated

slopes of the straight lines on the double-logarithmic plot.

3. Results

3.1. The local force noise

For the RH model, figure 3 shows the power spectra Sξ(f, L) of the local force noise ξ(t).

The spectrum remains independent of frequency below a cutoff frequency of f0 ∼ L−λ

and varies as the 1/fα form above f0. On increasing the system size, the power at a

fixed frequency increases ∼ La for f ≪ f0 while ∼ L−b above the cutoff. One can write

an expression for the spectrum as [20–22, 26]

Sξ(f, L) ∼
{
La, f ≪ L−λ,

1/
(
fαLb

)
, L−λ ≪ f ≪ 1/2.

In terms of reduced frequency u ∼ fLλ, the spectrum behaves as

Sξ(f, L) ∼ LaH(u), (1)

where the scaling function (cf figure 4) varies as H(u) ∼ 1/uα for u ≫ 1 and constant

for u ≪ 1.

Also, the total power scales as P (L) ∼ La−λ. The critical exponents satisfy scaling

relations [26]

α = (a+ b)/λ.
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Figure 4. For the local force signals ξ(t), the data collapse Sξ(f, L)/L
a with fLλ for

(a) the RH, (b) the aRH, and (c) the rRH versions of the model. To compare, we also

add straight lines along with the estimated slope values.
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Figure 5. (a) The power spectra Sx(f, L) for the time series x(t) in the RH model.

(b) The system size scaling for (+) the peak power Sx(L, f = fp), (▲) the frequency

fp with peak power, and ( ) the power at a fixed frequency above the cutoff frequency

Sx(L, f = 0.1) (cf table 2).
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Figure 6. The scaling function is Sx(f, L)/Sx(fp), with fp ∼ L−λp and Sx(fp) ∼ Lap .

The data collapse for the RH (a) and the aRH (b) models.
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Figure 7. (a) In the RH model, the power spectra SA(f, L) for the local activity

signal A(t). (b) The system size scaling for (▲) the peak power frequency fp and ( )
the power SA(L, f = 0.1) at a fixed frequency above the cutoff frequency (cf table 3).

It is easy to appreciate the scaling relations in the following way: Since the scaling

function H(u) ∼ L−aSξ(f, L) is independent of the system size L in the non-trivial
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Figure 8. The data collapse for A(t). The case (a) belongs to the RH model and (b)

corresponds to aRH model.

frequency regime, we get H(u) ∼ 1/(fαLa+b) ∼ Lαλ/(Lλf)αLa+b ∼ 1/uα, giving αλ =

a + b. Similarly, the total power varies as P (L) ∼
∫
dfSξ(f, L) ∼ La

∫
dfH(u) ∼ La−λ.

As seen from equation (1), the two exponents a and λ determine the scaling function.

The exponents are easy to determine from the scaling of the power in low-frequency

components and the total power as a function of system size.

3.2. The random walk and the local activity

In the RH model, we show power spectra for the random walk and the local activity

signals in figure 5 and figure 7, respectively. The power spectrum does not depend on

the frequency below a cutoff frequency f0 and varies in a power-law manner 1/fα above

a peak frequency fp. Interestingly, the spectrum also shows an intermediate frequency

regime f0 ≪ f ≪ fp, where the power increases in a power-law manner. The frequency

fp ∼ L−λp corresponds to the peak power S(fp) ∼ Lap . Here, we get the data collapse

function (figures 6 and 8) as

S(f, L)/S(fp) = L−apS(f, L),

where the reduced frequency is fLλp . The collapse curve remains independent of L only

if f ≫ f0, while it decays in a power-law manner ∼ L−(ap−a) in the frequency regime

f ≪ f0. In the frequency regime f ≫ f0, the scaling function remains independent of

L, resulting in

α = (ap + b)/λp.
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3.3. Random neighbor version

For the random neighbor version, the maximum force site and the local activity remain

uncorrelated in time. The local force exhibits ∼ 1/fα with α = 1.8(1) very close 2. This

behavior seems consistent with mean-field theory.

4. Summary and Discussion

In summary, we have studied the Robin Hood model in one dimension with different

interaction rules. While the interacting sites include the nearest one left and one right

neighbor in the original model, an anisotropic case has one left neighbor, and a mean-

field version has two random neighbors. Since the Robin Hood system demonstrates

self-organized criticality, it is natural to expect the emergence of long-range space-

time correlations. In the model, the evolution of the largest force site (random walk)

describes a fractal structure in the space-time plane, although the total force remains

conserved. Specifically, we examined the temporal correlations in the local force noise,

the random walk signal, and the local activity. By applying the finite-size scaling,

we get the data collapse for the power spectra, which reveals the scaling function and

the critical exponents. The local force noise follows the 1/fα form with the spectral

exponent α ≈ 1.3, and the cutoff frequency varies as f0 ∼ L−λ with λ ≈ 2.2. In the

anisotropic variant, the critical exponents take different values: α ≈ 1.4 and λ ≈ 1.5. In

the random neighbor version, the local force exhibits mean-field behavior, with α ≈ 1.8

close to 2 and λ ≈ 1.1 close to 1.

For the random walk and the local activity signals, the power spectrum exhibits

three frequency regimes. In the frequency regime below the cutoff frequency f ≪ f0,

the power spectrum shows constant behavior in the frequency, which depends on the

system size. For the intermediate frequency regime f0 ≪ f ≪ fp, the power increases

in a power law manner, where fp is the peak frequency corresponding to the maximum

power. The power spectrum varies in a decaying power-law manner 1/fα above a peak

frequency f ≫ fp. The power spectrum also shows scaling with the system size in the

entire frequency regime. Although the spectral exponent is the same α ≈ 1.2 for the

random walk signals both in the Robin Hood model and its anisotropic variant, the

cutoff frequency exponent takes different values of 2.2 and 1.4, respectively. For the

local activity, the spectral exponent is α ≈ 0.45 (0.13) for the isotropic (anisotropic)

version. Numerically, the two exponents are nearly the same λ ≈ λp.

Notice that below the cutoff frequency, the noise becomes uncorrelated. The inverse

of the cutoff frequency is the average time by which all sites at least once have been

updated or lost the retained temporal memory. The system size scaling of these suggests

the cutoff frequency exponent is equal to the avalanche dimension λ = D. Since the

anisotropic version of the model remains exactly solvable with D = 3/2, our numerical

estimate of λ agrees well [31].

Finally, we contrast two extremal SOC models. The Robin Hood model follows the
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conservation law, where the total force is constant. In the Bak-Sneppen model [26], the

sum of state (fitness) variables can fluctuate, implying non-conservative dynamics. In

both models, the power spectral density for the random walk and the local activity

signal exhibits qualitatively different behavior. Three (instead of two) distinct frequency

regimes emerge in the Robin Hood model. Particularly in the moderate frequency regime

(which is absent in the Bak-Sneppen model), the power increases with frequency and

goes up to a peak value at a frequency, which we termed the peak frequency.
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