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We investigate the topological-to-non-topological quantum phase transitions (QPTs) occurring in the Kitaev
code under local perturbations in the form of local magnetic field and spin-spin interactions of the Ising-type
using fidelity susceptibility (FS) and entanglement as the probes. We assume the code to be embedded on the
surface of a wide cylinder of height M and circumference D with M ≪ D. We demonstrate a power-law
divergence of FS across the QPT, and determine the quantum critical points (QCPs) via a finite-size scaling
analysis. We verify these results by mapping the perturbed Kitaev code to the 2D Ising model with nearest-
and next-nearest-neighbor interactions, and computing the single-site magnetization as order parameter using
quantum Monte-Carlo technique. We also point out an odd-even dichotomy in the occurrence of the QPT in
the Kitaev ladder with respect to the odd and even values of D, when the system is perturbed with only Ising
interaction. Our results also indicate a higher robustness of the topological phase of the Kitaev code against
local perturbations if the boundary is made open along one direction. We further consider a local entanglement
witness operator designed specifically to capture a lower bound to the localizable entanglement on the vertical
non-trivial loop of the code. We show that the first derivative of the expectation value of the witness operator
exhibits a logarithmic divergence across the QPT, and perform the finite-size scaling analysis. We demonstrate
similar behaviour of the expectation value of the appropriately constructed witness operator also in the case of
locally perturbed color code with open boundaries.

I. INTRODUCTION

Investigating novel phases and corresponding quantum
phase transitions (QPTs) [1] in quantum many-body sys-
tems with correlations arising out of quantum information
science has arguably been one of the most prominent re-
search topics in the last two decades. On one hand, the
Landau paradigm [2] of phases characterized by local or-
der parameters, and the corresponding QPTs associated with
spontaneous symmetry breaking [1] have been studied exten-
sively in terms of fidelity susceptibility (FS) [3] and entan-
glement [4], including local entanglement over a subsystem
of size far less than that of the entire system [4, 5] as well as
global entanglement that considers the state of the entire sys-
tem [4, 6]. On the other hand, there exist topological phases
(TPs) outside the Landau paradigm – relevant particularly
in studying fractional quantum Hall effect [7], quantum spin
liquids [8], topological quantum codes [9, 10], and quantum
walks [11] – which can not be probed with local order pa-
rameters, and has been explored using fidelity [12] and topo-
logical entanglement entropy [13].

The topological-to-non-topological QPTs occurring in
the lattice models referred to as the topological quantum
codes (TQCs), including the Kitaev code [9] and the color
code [10], in the presence of external perturbations has at-
tracted a lot of attention due to the importance of these mod-
els in topological quantum computation [14]. Such a QPT re-
sults in the disappearance of the TP of the lattice models due
to local perturbations in the form of local magnetic fields, or
spin-spin interactions [15–18], thereby quantifying the ro-
bustness of the TPs. So far, such QPTs have mostly been
probed using ground state energy per site [15, 17], expec-
tation value of Wilson loops [16], energy gaps [15, 17, 18],
and topological entanglement entropy [18]. Probing QPTs
occurring in quantum many-body systems using FS exploits
the fact that the ground state (GS) of a quantum many-body

Hamiltonian undergoes a drastic change at the quantum crit-
ical point (QCP), and therefore exhibits a sharp drop in the
fidelity between the ground states of the model at two dif-
ferent, and yet very close instances of the system parame-
ter bringing about the QPT [3]. While FS as a probe ap-
pears to be applicable for all QPTs, recent observation of the
shifting of the peak in FS from the QCP corresponding to
the Berezinskii-Kosterlitz-Thouless transition [19] poses the
question as to whether the QPTs occurring in the topological
codes can be faithfully captured by the FS. However, study
of such QPTs using FS is challenging due to the difficulty in
fully accessing the GSs of the perturbed TQCs.

The GSs in the TP (TPGSs) of the Kitaev code [9] and
the color code [10] are genuinely multiparty entangled (see
[20, 21] and the references therein) stabilizer states [22].
Due to the connection of such states with graph states [21]
via local Clifford operations [23], full information regard-
ing the entanglement of this state is accessible [21, 24].
However, in the presence of perturbation in the form of lo-
cal magnetic field or spin-spin interactions, it is not so. In
this paper, we focus on the local entanglement over a sub-
set of qubits. In the case of stabilizer states, the local en-
tanglement over a chosen subset of qubits has been shown
to be efficiently quantified using only a measurement-based
approach [21, 24–27], where strategic local Pauli measure-
ments on all qubits outside the subset results in non-zero
average entanglement – bipartite or multipartite – over the
qubits in the selected subset. This average entanglement
maximized over all possible local Pauli measurements on all
qubits outside the subset is referred to as the localizable en-
tanglement (LE) [25]. While this motivates one to compute
LE for probing the QPTs in locally perturbed topological
codes, the optimal Pauli measurement setup for LE over arbi-
trary subsystems can be determined only in the case of van-
ishing perturbations [24, 26]. When perturbation is present,
similar to the FS, one needs to access the full state for de-
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FIG. 1. Kitaev code defined on the (a) square and the (b) triangular lattices with open (periodic) boundary condition along the vertical
(horizontal) directions, where qubits (represented by white circles) sit on the edges (represented by thin lines) of the lattice. Each of the
NP plaquette operators, indexed by P (denoted by shaded regions), involves respectively 4 and 3 qubits for the square and the triangular
lattices, and each of the NV vertex operators, V (shown by solid gray circles and thick black lines), involves 4 and 6 qubits respectively in
the bulk, and 3 and 4 qubits respectively at the boundary. The non-trivial loops Lx,z

h,v corresponding to the logical operators Lx,z
h,v , are shown

with thick lines, where h and v in the subscript denote the horizontal and vertical directions. We consider the 2D lattice in the shape of a
cylinder of circumference D and height M with D ≫ M (c), where only two non-trivial loops – one x-type in the vertical direction, and
the other z-type in the horizontal direction – exist. The interaction strengths corresponding to different NN and NNN (shown by dashed thin
lines) qubit-pairs in the mapped transverse-field Ising model H̃ are given by g and 2λ respectively for the square lattice, where only NN
qubit-pairs interact via a strength g + 2λ in the bulk, and g + λ in the boundary of the triangular lattice.

termining LE over a chosen subsystem, and the problem be-
comes exponentially difficult for large system sizes1.

We take up these challenges by considering the Kitaev
code in the presence of local perturbations in the form of
single-qubit magnetic field and spin-spin interactions of the
Ising type. The code is defined on a square and a triangular
lattices with a periodic boundary conditions (PBC) assumed
along the horizontal direction and an open boundary condi-
tion (OBC) along the vertical, embedded on a wide cylinder
whose length is negligible compared to the circumference
(see Fig. 1). We determine the ground state of the perturbed
Kitaev code using exact diagonalization (ED), and calculate
the FS with respect to the field and the Ising perturbation
strengths. Across the QCPs on the field and the Ising interac-
tion axis, FS exhibits a power-law divergence in the thermo-
dynamic limit. In order to overcome the limitation in the size
of the system due to the use of ED and to verify QCPs deter-
mined using the FS, we map the perturbed Kitaev code with
OBC along the vertical direction on to a 2D Ising model with
nearest-neighbor (NN) and next-nearest-neighbor (NNN) in-
teractions. We probe the QPT occurring in the perturbed Ki-
taev code using the single-site magnetization of the 2D Ising
model, computed using the continuous time quantum Monte-
Carlo technique with cluster update [30]. The results support

1 In fact, it is been shown for correlations such as quantum discord [28]
which uses similar optimization as in the case of LE that the problem is
NP-hard [29].

the QCPs obtained using the FS. We perform similar investi-
gation for the perturbed Kitaev code embedded on a cylinder
with a length far greater than its circumference also, and de-
termine the QCPs. Our results indicate that the topological
phase of the Kitaev code with OBC along the vertical direc-
tion is more robust against local perturbations in the form
of the local field and the Ising interactions, as compared to
the same in the case of the Kitaev code embedded on a torus
with PBC along both directions. We also point out an odd-
even dichotomy in the occurrence of the QPT in the cases of
odd and even values of D on a square lattice when only Ising
perturbation is present in the system.

Next, we focus on the LE over the vertical non-trivial
loop corresponding to the Kitaev code, and note that a lower
bound of this LE can be calculated via constructing an appro-
priate local entanglement witness operator [31, 32] (cf. [33])
on the selected subset of qubits [24, 26, 27], in the same
vein as an appropriately constructed witness operator pro-
vides a lower bound of a properly chosen entanglement mea-
sure on a quantum state [34]. The construction of the witness
operator depends on the optimal Pauli measurement setup
on the qubits outside the subset [24, 26, 27] for localizing
maximum entanglement on the loop. Using ED, it has been
shown [27] in the case of TQCs of moderately small sizes
perturbed with local magnetic field that the witness-based
lower bound of LE has the potential to be a marker for the
field-induced QPT. Nevertheless, due to obvious numerical
limitations in accessing large systems, a full scaling analysis
of LE across the QPTs of a locally perturbed TQC remains a
difficult problem.
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To address this, we consider the local entanglement wit-
ness operator constructed specifically to capture a lower
bound of the LE – both bipartite and genuine multipartite
– on the subset of qubits forming the vertical non-trivial loop
in the unperturbed Kitaev code. We determine the expecta-
tion value of the witness operator in the GS of the perturbed
Kitaev code by exploiting its mapping to the 2D Ising model.
We demonstrate that the first derivative of the expectation
value of the local witness operator w.r.t. the strength of the
local perturbation exhibits a logarithmic divergence across
the QCP, and perform the corresponding finite-size scaling
analysis. We further show persistence of such behaviour for
the witness operator by extending our investigation to the
color code perturbed locally by a parallel magnetic field [17]
and embedded on a wide cylinder, where we use mapping of
the model on to the 2D Baxter-Wu model with a transverse
field [35] and additional Ising interactions along the bound-
ary for computing the expectation value of the constructed
local witness operator.

The rest of the paper is organized as follows. In Sec. II,
we discuss the salient features of the Kitaev code embed-
ded on the surface of a wide cylinder (Sec. II A). Determi-
nation of the QCPs of the locally perturbed Kitaev code us-
ing FS, and its verification with local magnetization of the
mapped 2D Ising model is discussed in Sec. II B. Sec. II C
deals with the behaviour of the expectation value of the spe-
cially constructed local entanglement witness operator cap-
turing a lower bound of LE over the vertical non-trivial loop
of the Kitaev code. The persistence of similar behaviour by
the local witness operator in the locally perturbed color code
embedded on a wide cylinder is demonstrated in Sec. III.
Sec. IV contains the concluding remarks and outlook.

II. LOCALLY PERTURBED KITAEV CODES

In this section, we focus on the locally perturbed Kitaev
code embedded on a lattice with open boundary condition
along one side, and study the phase transition induced by the
perturbation.

A. Toric code under open boundary condition

We consider the Kitaev code represented by the Hamilto-
nian [9]

HK = −
∑
P

ZP −
∑
V

XV , (1)

defined on the square [9, 15, 37] and the triangular [16] lat-
tices with OBC along the vertical (v), and PBC along the
horizontal (h) directions (see Fig. 1) [18, 37]. Each of the
z-type plaquette and x-type vertex operators, given by

ZP =
⊗
i∈P

σz
i ,XV =

⊗
i∈V

σx
i , (2)

follow the commutation relations

[XV ,ZP ] = [XV , HK ] = [ZV , HK ] = 0, (3)

∀P, V with P and V respectively denoting the plaquette and
the vertex indices, and i denoting the indices of the qubits
sitting on the edges of the lattice. In the case of the square
lattice, both the plaquette and the vertex operators act non-
trivially on four qubits in the bulk, while at the boundary,
the vertex operators act on three qubits (see Fig. 1(a)). On
the other hand, in the bulk of the triangular lattice, plaque-
tte and vertex operators act non-trivially on three and six
qubits respectively, while at the boundary, the vertex oper-
ators have support on 4 qubits. One can also consider the
OBC along v in such a way that the plaquette operators are
modified at the open boundary for both the square and the tri-
angular lattices, keeping the vertex operators unaltered [18].
However, in this paper, we consider the formalism where
plaquette operators remain unchanged. With OBC along v,
the lattice can be embedded on the surface of a cylinder of
height M ≡ NVv

and circumference D ≡ NVh
, with NVh

(NVv
) being the number of vertices in the horizontal (verti-

cal) directions, and NV = D × M being the total number
of vertex operators in the system, such that the lattice hosts
a total of N = (2M − 1)D and N = (3M − 2)D qubits
in the cases of the square and the triangular lattices respec-
tively. In this paper, we consider a wide cylinder in the limit
M ≪ D (see Fig. 1(c)), where the open boundary becomes
extensive in system size resulting in features that are differ-
ent from those corresponding to the case of PBC along both
directions [18]. The constraint

∏
V XV = I over the stabi-

lizer operators results in a two-fold degenerate GS manifold
{|Ψα

0 ⟩, α = 0, 1}, which are simultaneous eigenstates of all
ZP and XV along with HK . Two non-trivial loops, Lx

v and
Lz
h, constitute the loop operators

Lx
v =

⊗
i∈Lx

v

σx
i , Lz

h =
⊗
i∈Lz

h

σz
i . (4)

In terms of the loop and the vertex operators, the GS mani-
fold is given by

|Ψα
0 ⟩ = (Lx

v)
α

[∏
V

1 + XV

2

]
|0⟩⊗N

, α = 0, 1. (5)

B. QPT in locally perturbed Kitaev code: Fidelity
susceptibility

We now consider the locally perturbed Kitaev code em-
bedded on the surface of the wide cylinder (M ≪ D, see
Fig. 1(c)), and take the square lattice for demonstration. The
perturbations are in the form of local fields of strength g on
each qubit, and Ising interactions of strength λ on each NN
qubit-pair, while the full system Hamiltonian reads [15]

H = HK − g
∑
i

σz
i − λ

∑
⟨i,j⟩

σz
i σ

z
j , (6)

with i, j being qubit-indices, and ⟨i, j⟩ representing a NN
qubit-pair. In the limit g = λ = 0 (H = HK), the topo-
logically protected two-fold degenerate ground states of the
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Square lattice
Boundary Condition Lattice geometry g0c λ0

c

PBC along h and v D = M 0.328 [15] 0.166 [16]

PBC along h, OBC along v M ≪ D 0.541
0.494 for odd M
No QPT at finite λ for even M [16]

PBC along h, OBC along v M ≫ D 0.368 0.174
Triangular lattice
Boundary Condition Lattice geometry g0c λ0

c

PBC along h and v D = M 0.209 [36] 0.104 [16]
PBC along h, OBC along v M ≪ D 0.400 0.276
PBC along h, OBC along v M ≫ D 0.231 0.113

TABLE I. Values of g0c and λ0
c corresponding to Kitaev code on the square and the triangular lattices of different geometries with different

boundary conditions. The values corresponding to M ≪ D and M ≫ D limits are obtained using magnetization as the order parameter
computed via the QMC technique. For M ≪ D limit, we set M = 2 and D ∈ [39, 75] while for M ≫ D limit, we use D = 3 and
M ∈ [15, 51]. All quantities are dimensionless.
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FIG. 2. Finite-size scaling of fidelity susceptibility for square lattice. (a) The log - log plot of max(χ) with D (Eq. (9)) corresponding
to the GS of H on a square lattice under the field and the Ising perturbations. The value of k obtained from the fitting of the data are
k = 2.0(2) for the field perturbation and k = 1.98(0) for the Ising perturbation. Data collapse of χ obtained by finite size scaling analysis
as per Eqs. (10)-(11) in the case of the field and the Ising perturbations are shown in (b) and (c) respectively. Insets show the variations
of χ/N as functions of the corresponding perturbation strengths. The values of the exponents (see Eqs. (10)-(11)), obtained from fitting
of the data, are νg = 0.900 and νλ = 0.950, while the other fitting parameters are αg = −0.17(0), δg = 1.4(3), αλ = −0.60(1) and
δλ = 1.9(5). In all the plots, D ∈ [3, 9] and M = 2, where, only odd values D are taken for the Ising perturbation. All the quantities
plotted are dimensionless.

system are genuinely multiparty entangled [24, 27], while
increasing the values g and λ drive the state into an unentan-
gled state with no topological order through a QPT from a
topological phase to a non-topological phase.

We first probe the QPT using the fidelity

f(g1, g2) = − lim
N→∞

⟨Ψ0(g1)|Ψ0(g2)⟩ , (7)

between the ground states of the model at two different yet
close values of a system parameter, say, g, given by g1 and
g2 = g1 + δ, with |Ψ0(gi)⟩ being the GS of the model for
g = gi, i = 1, 2. Fixing δ and taking different values of g,
one can compute the second derivative of the fidelity w.r.t. δ,

which is referred to as the fidelity susceptibility (FS) [3]:

χ(g) = lim
δ→0

2f(g − δ/2, g + δ/2)

δ2

=
∂2f(g − δ/2, g + δ/2)

∂δ2

∣∣∣∣
δ=0

. (8)

A peak in the FS for a finite-sized system signals a QPT.
A similar definition can also be adopted for FS w.r.t. the
Ising interaction strength λ. Our numerical analysis with the
GS of H determined via exact diagonalization (ED) indicates
that the maximum of FS occurring near the QCP exhibits a
power-law divergence as

max(χ) ∝ Dk, (9)

which we demonstrate in Fig. 2(a). In order to determine the
QCPs, we perform the scaling of χ near the QCPs as (see
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FIG. 3. Probing QPT with magnetization. Variation of m = ⟨σ̃z
V ⟩ as function of (a) g with λ = 0, and of (b) λ with g = 0 for the

square lattice with M = 2. The insets depict the data collapse of m upon scaling (Eqs. (15)-(16)), where νg = νλ = 1, βg = βλ = 0.125,
g0c = 0.541 and λ0

c = 0.494. (c) Variations of g0c and λ0
c as functions of M , where the QCPs asymptotically approach those corresponding

to the 2D square lattice with PBC along both h and v according to Eqs. (17)-(18). The fitting parameters obtained are αg = 0.60(8), δg =
1.5(0), αλ = 1.2(5) and δλ = 1.9(5). To support our data, we point out here that the value of g0c for M = 3 obtained in our analysis tends
to the previously reported value of g0c = 0.453 [18] with increasing system size. For M ≥ 3, g0c , λ0

c are obtained by the data collapse of m
for 11 ≤ D ≤ 25 (d) The phase boundaries corresponding to the perturbed Kitaev code on the g − λ plane where g, λ ≥ 10−2, with the
inset showing an illustration of the scaling obtained for the case of the phase boundary I at g = 0.06. Here, M = D and PBC is assumed
along both h and v. The phase boundary II is for the case of M = 2, PBC along h and OBC along v. The boundaries I and II, given by
Eqs. (19)-(20) respectively, are obtained by fitting the (g, λg

c) data acquired from the scaling analysis of m according to Eqs (17) and (18).
All quantities plotted are dimensionless.

Fig 2(b)-(c))

[χ(gm)− χ(g)]/χ(g) = χg(D
νg (g − gm)), (10)

[χ(λm)− χ(λ)]/χ(λ) = χλ(D
νλ(λ− λm)), (11)

where νg, νλ are scaling exponents, χg, χλ are chosen to be
polynomial functions of g and λ respectively [38, 39], and
gm, λm are the points at which FS attains its maximum value
for a given system size D and for fixed M . Critical perturba-
tion strengths can be determined by assuming the asymptotic

form for gm and λm as,

gm = g0c +
αg

Dδg
, (12)

λm = λ0
c +

αλ

Dδλ
. (13)

Here, the superscripts in g0c and λ0
c represent the values of λ

and g, respectively, being fixed for determining the QCP. The
estimated values of critical perturbation strengths with FS are
g0c = 0.547, λ0

c = 0.496. Similar scalings are obtained for
the case of the triangular lattice as well, where we obtain the
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QCPs g0c = 0.403, λ0
c = 0.282. It has been shown [16] that

for g = 0, the Kitaev code defined on the square lattice under
Ising perturbation does not undergo a QPT for any finite λ0

c

if M = 2 (i.e, one plaquette in vertical direction) and D
is even. However, our investigation reveals that the system
undergoes a QPT at a finite λ0

c in the case of M = 2 and
odd values of D, thereby exhibiting an odd-even dichotomy.
This dichotomy is a feature of square lattice only, and is not
observed in triangular lattice.

While the FS successfully indicates the QPT, the number
of qubits N = (2M − 1)D (for square lattice) in the system
grows rapidly with D for a fixed M , and the QPT quickly
becomes intractable using ED. Therefore, to verify the QCPs
predicted by the FS with larger system sizes, we consider a
mapping of H to the 2D transverse field Ising model (TFIM)
on a zig-zag square lattice with both NN and NNN interac-
tions. Note that [ZP , H] = 0 ∀P, and H is block-diagonal in
eigenvalues of ZP , with a constant energy gap 2 due to flip-
ping a plaquette operator. For the study of QPT occurring
in the GS of H , it is sufficient to investigate the low-energy
sector of the spectrum where eigenvalues of all ZP are +1.
Note further that {XV , σ

z
i } = 0 ∀i ∈ V , [XV , σ

z
i σ

z
j ] = 0

if both i, j ∈ V , and {XV , σ
z
i σ

z
j } = 0 if either i or j ∈ V ,

allowing one to switch from the vertex operators to an effec-
tive spin language where ±1 eigenvalues of XV serve as the
basic degrees of freedom, and introduce a pseudo-qubit op-
erator σ̃x

V for XV . This maps H to the effective 2D TFIM,
represented by [15, 16, 40, 41]

H̃ = −g
∑

⟨V,V ′⟩

σ̃z
V σ̃

z
V ′ − 2λ

∑
⟨V,V ′′⟩

σ̃z
V σ̃

z
V ′′ −

∑
V

σ̃x
V , (14)

on a zig-zag square lattice (see Fig. 1(a)) of size NV with
PBC (OBC) along h (v), where the pseudo-qubits sit on the
vertices V of the original lattice, and ⟨V, V ′⟩ and ⟨V, V ′′⟩ re-
spectively represents the NN and NNN effective qubit-pairs
with interaction strengths g and 2λ respectively.

For demonstration, we choose the Kitaev ladder with
M = 2, and fix D to be odd. For the corresponding H̃ , we
compute m = ⟨σ̃z

V ⟩ using continuous time quantum Monte
Carlo (QMC) simulation with cluster updates [30]. The QPT
is captured by a scaling of m as

m = D−βg/νgmg

[
D1/νg

(
g − g0c

)]
, (15)

m = D−βλ/νλmλ

[
D1/νλ

(
λ− λ0

c

)]
(16)

with βg(βλ) and νg(νλ) being the critical exponents corre-
sponding to the field (Ising) perturbation, and mg(mλ) is a
polynomial in g (λ) [39]. In Fig. 3(a)-(b) we demonstrate
the scaling in the case of square lattice under field and Ising
perturbations. Similar to the FS, we determine the critical
exponents to be νg = νλ = 1, and obtain βg = βλ = 0.125.
Further the critical values of the field and the Ising interac-
tion strengths are found to be g0c = 0.541 and λ0

c = 0.494,
which are in agreement with the ones obtained from the FS
analysis.

To explore how the QCPs shift with an increase in the sys-
tem size by increasing M , in Fig. 3(c), we plot the variations

of g0c and λ0
c with M , which asymptotically approach their

corresponding values for the Kitaev code on a square lattice
with PBC along both directions as,

g0c = g0c,t +
αg

M δg
, (17)

λ0
c = λ0

c,t +
αλ

Mδλ
. (18)

Determination of the critical points λg
c for non zero values of

g via scaling analysis of m, and subsequent fitting of the data
(g, λg

c) lead to the phase boundaries

I: λ = 0.158(8)− 0.5(9)g + 0.3(5)g2, (19)
II: λ = 0.44(7)− 1.2(1)g + 0.(7)g2, (20)

with Eq. (19) (Eq. (20)) corresponding to PBC along both h
and v (PBC along h, OBC along v) (see Fig. 3(d)), where we
have taken g, λ ≥ 10−2. It is clear from the figure that the
topological phase of the Kitaev code with OBC along v sur-
vives considerably larger perturbations in terms of g and λ,
and therefore exhibits a higher robustness as compared to the
Kitaev code with similar perturbations defined on a square
lattice with PBC along both directions. Further, the robust-
ness increases as one reduces the value of M , i.e, as one
approaches the M ≪ D limit, as clearly seen from Fig. 3(c).

Similar treatment of the Kitaev code on the triangular lat-
tice (see Fig. 1(b)) with OBC along the vertical direction
maps the model to the TFIM on the triangular lattice having
only NN interactions, but different NN interaction strengths
in the boundary and the bulk (see Fig. 1(b)):

H̃ = −
∑
V

σ̃x
V − (g + 2λ)

∑
⟨V,V ′⟩∈bulk

σ̃z
V σ̃

z
V ′

−(g + λ)
∑

⟨V,V ′⟩∈boundary

σ̃z
V σ̃

z
V ′ . (21)

The QPT in the model can be probed in a similar fashion
as in the case of the square lattice, while all features of the
FS and magnetization scaling in the vicinity of the QPT, and
the behaviour of critical strengths g0c , λ

0
c against M remain

qualitatively similar. Note that in contrast with the parabolic
phase boundary obtained in the case of the square lattice, the
phase boundary in the present case is a straight line, given by

I: λ = 0.103(0)− 0.49(8)g, (22)
II: λ = 0.27(9)− 0.69(3)g, (23)

with g, λ ≥ 10−2.
In Table I, we list the known critical perturbation strengths

for the topological-to-non-topological QPTs in the case of
Kitaev code on the square and the triangular lattices with dif-
ferent boundary conditions, along with the QCPs determined
in this paper. For determination of these QCPs, we use FS as
well as magnetization of the mapped 2D Ising model calcu-
lated using the QMC technique as the order parameter. From
our investigation, it is clear that a system size extensive open
boundary results in a significant enhancement in the robust-
ness of the Kitaev code under local perturbations for both
square and triangular lattices. We also point out that in the
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FIG. 4. Expectation value of local witness operator. (a) Variation of w̃ and (inset) dw̃/dg as a function of g for the lattice size D =
7,M = 2 (N = 21). (b) Variation of max(dw̃/dg) against system size log(D) according to Eq. (29) with M = 2, and D ∈ [3, 13]. The
value of k is found to be 1.09(0). All quantities plotted are dimensionless.

limit M ≫ D of the narrow cylinder, the bulk of the system
for both square and triangular lattices behaves similar to the
case of PBC along both directions, with small increase in g0c
and λ0

c from their respective values corresponding to PBC
along both h and v (see Table I).

C. Probing the QPT with entanglement

Computing entanglement in the GS of H is hindered by
the requirement of full access to the GS of the model, which,
in turn, is restricted by the exponential growth of the Hilbert
space of the system with the system-size. The mapping
H → H̃ results in the loss of information regarding the de-
generacy and the entanglement-content of the GS of the per-
turbed model. Nevertheless, we show that the mapping can
be exploited to probe entanglement of the locally perturbed
Kitaev code with OBC along v, which can subsequently be
used to study the topological-to-non-topological QPT occur-
ring in H . We choose the square lattice for demonstration,
and use information available on the two-fold degenerate
TPGSs of HK (H in the limit g = λ = 0 [9, 18, 37]),
which is known to facilitates non-zero LE [24, 25, 27] over
the non-trivial loop Lx

v via σz measurements on all qubits
belonging not to Lx

v but to the plaquettes through which Lx
v

passes, and σx measurements on all other qubits [24, 27]2

(see Appendix A for details). A witness-based lower bound

2 Note that one can also choose the horizontal non-trivial loop as the sub-
system. However, we choose the vertical loop for this paper to keep the
subsystem-size constant with increasing system size governed by D.

to the LE over Lx
v can be obtained as a function of the expec-

tation value

w = Tr(Wρ) (24)

of the local witness operator W , constructed as [31, 32]

W =
1

2
−

∏
Sα′∈{Sα}

I + Sα′

2
(25)

in a TPGS ρ of (6). Here, {Sα} is a subset of size n of all
possible stabilizers that can be constructed using the plaque-
tte and the vertex stabilizers. Note that for the square (tri-
angular) lattice, n = M (n = 2M − 1) for Lx

v , as shown
in Fig. 1. The set {Sα} is chosen such that the Pauli ma-
trices contributing to Sα must commute outside the chosen
subset Lx

v , and the components of Sα on the chosen subset
must themselves form a complete set of stabilizer generators
corresponding to a stabilizer state on the chosen qubits (see
Appendix B for a detailed discussion on the construction of
the witness operator W ) [32]. For example, in the case of Lx

v

in the Kitaev code on square lattice with OBC along v, {Sα}
is constituted of all the plaquette stabilizers through which
Lx
v passes, and the subset of the vertex stabilizers that have

a common support with Lx
v in terms of a single qubit (see

Appendix B and Fig. (7)) [27]. Using genuine multiparty en-
tanglement [20] quantified by geometric measures [42], one
can determine a lower bound for the localizable genuine mul-
tiparty entanglement [24] on Lx

v in terms of w as [43] (also
see Appendix C for details)

Ew =
1−

√
1− 4w2

2
, (26)
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FIG. 5. Finite-size scaling of dw̃/dg for square and triangular lattices. Data collapse obtained by the finite size scaling as per Eq. (30)
for the case of (a)-(b) square lattice and (c)-(d) triangular lattice. Insets show the variations of the first derivative of w̃ w.r.t. the system
parameter for various system sizes near the QCP. All plots correspond to system sizes M = 2 and D ∈ [5, 13], where only odd values of
D for the square lattice under Ising perturbation. The critical exponents are νg = 0.985 (νg = 1.000) and νλ = 1.031 (νλ = 0.988)
for the square (triangular) lattice. Other fitting parameters, obtained by fitting the data to Eq (31) are αg = 0.077(2) (αg = 0.009(6)),
δg = 1.45(7) (δg = 1.7(7)), αλ = −0.24(4) (αλ = −0.018(4)) and δλ = 1.1(6) (δλ = 1.4(7)) in the case of the square (triangular)
lattice. All quantities plotted are dimensionless.

while choosing negativity [44] as a bipartite entanglement
measure, the lower bound for localizable bipartite entangle-
ment between a boundary qubit and the rest of the qubits in
Lx
v is given by [27],

Ew = −2w. (27)

We point out here that the witness-based lower bound corre-
sponding to the LE computed in terms of negativity provides
the actual value of LE for the TPGS of HK(g = 0, λ =

0) [27]. Using this lower bound, in [27], it has been shown
for finite-sized systems that the first derivative of the lower
bound potentially capture a signature of the QPT for g > 0,
with λ = 0 and PBC along both h and v. However, a com-
plete scaling analysis for entanglement in the case of non-
vanishing perturbation strengths in the thermodynamic limit
is a non trivial task.

Noting that one can access the lower bound of LE by
computing w, in this paper, we probe the QPT in terms



9

of w. Without any loss in generality, the construction of
{Sα} for Lx

v is carried out ensuring Sα=1 having the form
S1 =

∏
V ∈Lx

v
XV , and the rest n − 1 stabilizers being

made of plaquette stabilizers only as Sα =
⊗

P∈Lx
v
ZP ,

α = 2, · · · , n (see Appendix B for the details of construc-
tion of W along Lx

v considered in this paper). This structure
of {Sα} along with the fact that ZP = +1∀P in the GS of H
(Eq. (6)) simplifies w as w = −⟨S1⟩/2, which is equivalent
to computing w̃ = −⟨S̃1⟩/2 in the GS of TFIM, where we
have used the mapping XV → σ̃x

V to obtain,

S̃1 =
∏

i∀XVi
∈S1

σ̃x
i . (28)

This provides an advantage in computing w in terms of w̃
using ED, since the effective lattice of size M × D corre-
sponding to H̃ stands for the locally perturbed Kitaev code
on a square lattice hosting N = (2M − 1)D > MD qubits.

In Fig. 4(a), we plot w and w̃ as functions of g for the Ki-
taev code on a square lattice (D = 7, M = 2), and show
them to be identical. The absolute value of the first deriva-
tive of w̃ w.r.t. g is plotted in the inset as a function of g,
exhibiting a sharp peak near the QCP g0c . Fig. 4(b) demon-
strates how the maximum of dw̃/dg approaches infinity with
increasing system-size via increasing D:

max

(
dw̃

dg

)
= k log (D) + constant. (29)

We point out the similarity with the logarithmic divergence
observed in the NN concurrence in the case of the 1D
TFIM [5]. Fitting the data with Eq. (29) leads to k =
1.09(0), for the case reported in Fig. 4(b) while similar scal-
ing (Eq. (29)) is observed in other cases (eg. Ising perturba-
tion in the square lattice, or field and Ising perturbation in the
triangular lattice) as well except different scaling exponent
k. Since the logarithmic divergence occurs in the thermody-
namic limit, in order to obtain the QCP g0c , we perform the
scaling [5]

exp

(
dw̃

dg
− dw̃

dg

∣∣∣∣
g=gm

)
= Fg(D

1/νg (g − gm)), (30)

where νg is the critical exponent, gm is the value of g at
which the maximum in dw̃/dg takes place for a given system
size D, and Fg is a polynomial scaling function. The QCP, g0c
is obtained by assuming the asymptotic form for gm (similar
to Eqs. (12)-(13)):

gm = g0c +
αg

Dδg
(31)

where αg, δg are two fitting parameters specific for each type
of lattice. Similar scaling forms are chosen for the Ising per-
turbation as well. Figs. 5(a)-(b) show the data collapse in
the case of square lattice with the QCPs g0c = 0.543 and
λ0
c = 0.497 and Qualitatively similar features are observed

on the triangular lattice also (see Figs. 5(c)-(d)), with the
QCPs g0c = 0.402 and λ0

c = 0.280. The results are in agree-
ment with the critical strengths obtained earlier by the anal-
ysis of FS and magnetization.

III. LOCALLY PERTURBED COLOR CODE

We now focus on the color code defined on tricolorable
lattices [10]. The Hamiltonian of the color code is given by

HC = −
∑
P

ZP −
∑
P

XP , , (32)

where every plaquette P is associated with both x and z type
plaquette operators,

ZP =
⊗
i∈P

σz
i ; XP =

⊗
i∈P

σx
i , (33)

with i ∈ P denoting all qubits belonging to the plaquette P .
Note that unlike the Kitaev code, qubits in the color code are
placed on the vertices of the lattice. The plaquette operators
form a mutually commuting stabilizer set, i.e,

[XP ,ZP ] = [XP , HC ] = [ZP , HC ] = 0. (34)

While the QPT occuring in the color code with PBC along
both horizontal and vertical directions under parallel mag-
netic field and Ising interactions have been studied [16, 17],
the same with open boundaries are yet to be explored. We
consider the color code defined on the honeycomb and the
square-octagonal lattices [45] with OBC along the vertical,
and PBC along horizontal direction (see Figs. 6(a)-(b) re-
spectively). The honeycomb lattice contains plaquette oper-
ators acting non-trivially on six qubits in the bulk and four
qubits in the boundary, while the square-octagonal lattice
contains plaquette operators acting non-trivially on four and
eight qubits in the bulk, and six qubits in the boundary. We
denote the maximum number of plaquettes appearing in the
vertical direction to be M and the same along the horizontal
direction by D. The lattice hosts a total of N = D(2M − 1)
qubits for the honeycomb lattice, and N = 2D(2M − 1)
qubits for the square-octagonal lattice respectively, with only
even values of D allowed in order to simultaneously main-
tain tricolorability of the lattice and PBC along h. We
choose the smallest possible instance of M—M = 3 for
the honeycomb lattice, and M = 2 for the square-octagonal
lattice—required for degenerate TPGS for investigating the
QPT in the extensive open boundary limit by increasing D.
The TPGS manifold, {|Ψα,β

0 ⟩ , α, β = 0, 1}, is fourfold de-
generate, and four independent non-trivial loop operators,
Lx(z)
h(v),c1(c2)

—two of each of the x and the z type—can be
identified along vertical and horizontal directions acting non-
trivially on the qubits lying along the path L

x(z)
h and L

x(z)
v re-

spectively. Here, c1, c2 denotes two different colors as shown
in Fig. 6(a)-(b). The Lx

h and Lx
v operators can be used to span

the GS manifold of HC as follows:

|Ψα,β
0 ⟩ =

(
Lx
h,c1

)α (Lx
v,c2

)β [∏
P

1 + XP

2

]
|0⟩⊗N

. (35)

We now consider the color code with OBC along v, per-
turbed by a parallel magnetic field:

H = HC − g
∑
i

σz
i . (36)
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FIG. 6. Color code defined on the (a) honeycomb and the (b) square-octagonal lattices with open (periodic) boundary condition along the
vertical (horizontal) direction, where qubits (denoted by white circles) sit on the vertices of the lattice. The honeycomb lattice involves
6 (4) qubits in the bulk (boundary), while the square-octagonal lattice involves 4 (6) qubits in the bulk (boundary). The horizontal and
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h,c1
and Lx(z)

v,c2 , are shown with thick colored lines, where h and v denote
the horizontal and vertical directions, and c1, c2 denote two different colors. The horizontal length of the lattice is assumed to be D and
vertical length M , with D ≫ M . The dashed thin black lines represent the lattice on which effective qubits (denoted with gray circles)
are located. The data collapse obtained for the derivative of w̃ in the case of the (c) honeycomb lattice with D ∈ [4, 10], and in the case
of the (d) square-octagonal lattice with D ∈ [4, 8]. Insets in (c) and (d) show the variations of dw̃/dg w.r.t. g in the respective cases. The
data collapse occurs at the critical perturbation strength g0c = 0.406 (g0c = 0.401) and the exponent νg = 0.806 (νg = 0.846) for the
honeycomb (square-octagonal) lattice. Other fitting parameters (Eq. (31)) are αg = 0.13(6) (αg = −1.627) and δg = 2.0(9) (δg = 0.067)
for the honeycomb (square-octagonal) lattice. All quantities plotted are dimensionless.

The actual model becomes very quickly intractable with ED
even for the smallest possible values of M and the analy-
sis with FS becomes inconclusive due to the inaccessibility
of the full GS of the perturbed model. However, the per-
turbed color code with OBC along v, given by Eq. (36), can
be mapped to the Baxter-Wu model in a transverse field with
additional Ising interactions along the boundary (see [17, 35]
for a similar mapping of the perturbed color code with PBC
along both h and v) as follows. Similar to the Kitaev code,
[H,ZP ] = 0∀P , and for the QPT, the GS of H is guaranteed
to have an eigenvalue of +1∀ZP . Further, {σz

i ,XP }∀i ∈ P
allows one to treat the XP operators as effective qubits, and
introduce the pseudo spin operator σ̃x

P residing on every pla-
quette with two eigenvalues ±1 that are flipped by the field
term. Since the lattice is tricolorable and qubits reside on the
vertices of the lattice, the field term on every qubit in the bulk
results in a three-body Baxter-Wu interaction σ̃z

P σ̃
z
P ′ σ̃z

P ′′ be-
tween the neighbouring effective qubits. On the other hand,
qubits in the boundary belong to only two plaquettes, result-
ing in an Ising term σ̃z

P σ̃
z
P ′ between the neighbouring ef-

fective qubits lying along the boundary. Thus, the effective
Hamiltonian reads

H̃ = −
∑
P

σ̃x
P − g

∑
⟨P,P ′,P ′′⟩∈bulk

σ̃z
P σ̃

z
P ′ σ̃z

P ′′

−g
∑

⟨P,P ′⟩∈boundary

σ̃z
P σ̃

z
P ′ . (37)

The lattices in which the effective qubits reside are shown
using dashed lines in Figs 6(a)-(b).

Similar to the Kitaev code, we focus on the expectation
value of w of the local witness operator constructed for ob-
taining a lower bound of LE on Lx

v , and compute w̃ in the GS
of the effective model H̃ . The scaling of max(dw̃/dg) with
log(D) is found to be the same as Eq. (29), with k = 3.2(9)
(k = 3.4(2)) for the honeycomb (square-octagonal) lat-
tice, which are different from that of Kitaev code. Further,
the data collapse obtained for dw̃/dg as per Eq. (30) for
the honeycomb and the square-octagonal lattices are demon-
strated in Figs. 6(c) and 6(d) respectively. Our analysis pro-



11

vides QCPs as g0c = 0.406 for the honeycomb lattice, and
g0c = 0.401 for the square-octagonal lattice. We point out
here that g0c for the honeycomb lattice with OBC along v
is close to the known QCP g0c = 0.383 corresponding to
the perturbed color code on the honeycomb lattice with PBC
along both h and v [17]. This indicates a lower enhancement
in the topological phase in the case of the color code against
perturbation in the form of a parallel field when the boundary
is made open along v.

IV. CONCLUSION AND OUTLOOK

In this paper, we study the Kitaev code in the presence
of local magnetic field and spin-spin interaction of the Ising
type, defined on a square and a triangular lattice with OBC
along the vertical direction, which can be embedded on a
wide cylinder with a circumference much larger than its
height. We probe the QPTs from the topological to the
non-topological phase of the model occurring due to gradu-
ally increasing the perturbation strengths, and determine the
QCPs using the fidelity susceptibility of the ground state of
the model, which exhibits a power-law divergence across the
QPTs. We verify the results using local magnetization of
the 2D Ising model to which the perturbed Kitaev code can
be mapped. Our investigation demonstrates an enhanced ro-
bustness of the topological phase of the Kitaev code against
the local perturbations when OBC along the vertical direc-
tion is used, as compared to the case when the boundary
condition along both directions are periodic. We also demon-
strate an odd-even dichotomy on the occurrence of the QPT
depending on whether the circumference of the cylinder is
even or odd, when the field perturbation is absent.

We further consider a local entanglement witness operator
constructed specifically to capture a lower bound to the lo-
calizable entanglement over a non-trivial vertical loop in the
unperturbed Kitaev code, and demonstrate that the expecta-
tion value of the operator in the ground state of the perturbed
Kitaev code exhibits a signature of the QPT via a logarithmic
divergence in its first derivative w.r.t. the local perturbation
strength. This feature remains qualitatively unchanged in the
case of the locally perturbed color code with a boundary con-
dition similar to that of the Kitaev code, when the perturba-
tion is in the form of local parallel magnetic field. The use
of the witness operator makes our result potentially verifi-
able in experiments designed with various substrates includ-
ing trapped ions [46] and superconducting qubits [47], where
topological quantum codes can be realized.

We conclude with a discussion on the challenges that lay
ahead. Note that we have used exact diagonalization for ob-
taining the ground state of the locally perturbed topologi-
cal codes as well as the models they map to, eg. the 2D
Ising model in a transverse field [30, 36], and the Baxter-
Wu model in a transverse field [35] with Ising interactions
at the boundary. Therefore our study is still limited by the
constraint of system size that is inherent in an exact diago-
nalization study. This is particularly prominent in the case
of the locally perturbed color code on a tricolorable lattice
with a system size growing faster compared to the Kitaev

code, where scaling analysis with only the entanglement wit-
ness operator is performed by looking at the mapped model
which provides an advantage in computation (see discussion
in Sec. II B around Eq. (14)). However, obtaining enough
data for performing a similar analysis with the fidelity sus-
ceptibility is not possible as it requires access to the actual
ground state of the perturbed color code. Note that in the
mapping of, for instance, the locally perturbed Kitaev code to
the 2D Ising model, the designed local entanglement witness
operator translates to an off-diagonal operator in the mapped
model, and the determination of its expectation value us-
ing quantum Monte-Carlo technique itself is a difficult prob-
lem [48], which needs to be addressed for probing larger sys-
tems. However, we point out here that this limitation does
not hinder the thesis of this paper, and while one may in-
deed determine the QCPs and the critical exponents more
precisely by employing a better numerical algorithm, our re-
sults are expected to hold qualitatively.
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Appendix A: Localizable entanglement in Kitaev and color
codes

Localizable entanglement (LE) is defined as the maximum
average entanglement that can be localized over a subsystem
Ω of a multi-qubit state ρ, by single qubit projective mea-
surements on all qubits in the rest of the system Ω [25]:

EL = max
{M}

∑
k

pkE(ρk), (A1)

where pk = Tr(MkρM†
k) and ρk = TrΩ(MkρM†

k)/pk are
the probability and the corresponding post measured state in
Ω, respectively, for the measurement outcome k. The set
{M} denotes the set of all possible single qubit projective
measurements in Ω. Here, E is a bipartite or multipartite en-
tanglement measure. A lower bound to EL can be obtained
by judiciously fixing an appropriate measurement basis, say,
an appropriate Pauli basis on every qubit in Ω, that provides
a non-trivial value EP , where by the definition,

EP ≤ EL. (A2)

In the case of stabilizer states, the local unitary connec-
tion [23] with graph states [21] can be exploited to arrive
at a measurement setup that can lead to a non-trivial value
of EP for arbitrary choices of Ω [24]. In the case of the
ground state of the Kitaev code (Eq. (1)) one can choose a

https://github.com/titaschanda/QIClib
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(b)(a)

(d)(c)

FIG. 7. Construction of witness operators corresponding to (a) Kitaev code on square lattice with M = 2, (b) Kitaev code on triangular
lattice with M = 2, (c) color code on honeycomb lattice with M = 3, and (d) color code on square-octagonal lattice with M = 2, as
discussed in Sec. II C. The vertical solid grey lines in the case of Kitaev codes, and the vertical solid lines in the case of the color codes
indicate the non trivial loops along which entanglement is localized. For both the Kitaev and the color codes, contributing vertex (solid
black lines for Kitaev code) and plaquette (gray circles for Kitaev code) operators are marked. The subset {Sα} (see Eq. (25) and Appendix
B) in each of these cases will be as follows: (a) S1 = X1X2,S2 = Z1 with n = 2, (b) S1 = X1X2,S2 = Z1,S3 = Z1Z2 with n = 3, (c)
S1 = X1X2,S2 = Z1,S3 = Z1Z2,S4 = Z1Z2Z3 with n = 4, and (d) S1 = X1X2,S2 = Z1,S3 = Z1Z2,S4 = Z1Z2Z3 with n = 4.

measurement setup such that ρk’s are all local unitary equiv-
alent to Greenberger-Horne-Zeilinger (GHZ) states on the
qubits in Ω, where Ω is chosen to be a non-trivial loop of
the code [24, 27]. A similar result can also be obtained in the
case of color code [27].

Appendix B: Construction of local witness operators for
non-trivial loops

In this section, we briefly discuss the construction of local
witness operators on a subsystem Ω of the topological code
with n ≤ |Lx

v | number of qubits lying along the vertical non-
trivial loop corresponding to the logical operator Lx

v . A sub-
set {Sα} of all possible stabilizer operators can construct a
local entanglement witness operator of the form Eq. (25), if
it satisfies the following four conditions [32]:

1. The subset {Sα} contains n independent and commut-
ing stabilizers.

2. The n reduced Pauli operators defined as {SΩ
α } =

{TrΩ(Sα)}, where Ω is the set of qubits outside Ω,
are independent, and mutually commute.

3. All the reduced single qubit Pauli operators, SΩ,i
α , on

every qubit outside Ω mutually commute.

4. The n× (n2) dimensional pseudoincidence matrix(M)
of the subsystem Ω, defined as

Mi,j =

{
1, if {SΩ,i

α ,SΩ,i
α′ } = 0,

0, if [SΩ,i
α ,SΩ,i

α′ ] = 0,
(B1)

is a rank n−1 matrix. Here, SΩ,i
α represents the single

qubit reduced Pauli operator of the stabilizer SΩ
α cor-

responding to qubit i ∈ Ω and j ∈ [1, (n2)] is an index

corresponding to a pair {α, α′} that runs through all
possible stabilizer pairings within the set {SΩ

α }.

We show that there exists a specific choice of such a sub-
set {Sα} for the Kitaev and the color codes such that all of
the four conditions are satisfied. Consider a subset of sta-
bilizer operators (or a certain recombination of them) such
that only one of them is composed out of x type stabilizers
(XV ,XP for the Kitaev and the color codes, respectively),
which we denote with S1. Every other element Sα∀α > 1 is
made out of only z type stabilizers (ZP for both the Kitaev
and the color code). The contributing vertex and plaquette
operators that construct the subset {Sα} are chosen in such
a way that the corresponding set of reduced Pauli operators,
{SΩ

α }, takes the following form:

SΩ
1 = ⊗n

i=1σ
x
i ,

SΩ
α = σz

1σ
z
α∀α ∈ {2, 3, · · ·n}. (B2)

See Fig. 7 for an example of such a subset in the Kitaev
and the color code with OBC along v (see [27] for a de-
tailed discussion of the choice of {Sα} in the case of PBC
along both h and v directions). While constructing the pseu-
doincidence matrix M, choosing a particular ordering for
the pairing such that the first n − 1 indices correspond to
the pairings involving the SΩ

1 component, i.e., {{α, α′}} =
{{1, 2}, {1, 3}, · · ·{1, n} · ··} leads to Mi,j = 0∀j ≥ n.
Thus, the rank of M is equal to that of the n × (n − 1)
submatrix denoted by Mn, involving only the first n − 1
columns with nonzero entries. Due to the specific form of
{SΩ

α }, it is straightforward to see that Mn
1,j = 1∀j and

Mn
i,j = δi,j+1∀i > 1. As a specific example with n = 4,

M4 =

1 1 1
1 0 0
0 1 0
0 0 1

 . (B3)
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Note that

1. {Sα} is composed of n recombinations of plaquettes
and vertices such that [Sα,Sα′ ] = 0∀α, α′. Hence, the
first condition is satisfied.

2. {SΩ
α } contains n independent operators (see Eq. (B2))

and [SΩ
α ,SΩ

α′ ] = 0∀α, α′. Hence, the second condition
is satisfied.

3. The third condition is satisfied due to the freedom in
choosing different plaquette recombinations such that
all the reduced single qubit Pauli operators, SΩ,i

α , on
every qubit outside Ω mutually commute.

4. Finally, the fourth condition is satisfied, as we directly
see rank(Mn) = n− 1.

Thus, by the theorem in [32], all four necessary and sufficient
conditions are satisfied, and {Sα} constructs a local witness
operator for the subsystem Ω.

Appendix C: Lower bound to localizable genuine multipartite
entanglement with geometric measure

The set of reduced Pauli operators {SΩ
α } defined in Ap-

pendix B form a complete set of stabilizer generators for the
n-qubit GHZ state [49] which we denote as |GHZn⟩. Thus,
the local witness operator defined by Eq. (25) and measured
in the N -qubit state can provide a lower bound to LE over
Ω, which corresponds to a measurement strategy leading to
post-measured states on Ω that are local unitary equivalent to
n-qubit GHZ state |GHZn⟩ [24, 26, 27]. The local witness
operator W is equivalent to measuring a global witness op-
erator of the form 1/2 − |GHZn⟩ ⟨GHZn| in the subsystem
Ω. Given that ⟨W ⟩ = w, the witness-based lower bound to
multipartite entanglement quantified in terms of geometric
measure of entanglement [42] is given by [43]

Ew = max
r

f(r, w), (C1)

with

f(r, w) =

{
rw + 1−

√
1+r2

2 , if r < 0,
r
2 , if r > 0,

(C2)

where we have used the fact that the value of the geometric
measure of entanglement for the GHZ state is 1/2. Maxi-
mizing f w.r.t. r leads to Eq. (26) at r = −2/

√
ω−2 − 4.
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