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Abstract

In this paper, we establish the ergodicity for stochastic 2D Navier-
Stokes equations driven by a highly degenerate pure jump Lévy noise. The
noise could appear in as few as four directions. This gives an affirmative
anwser to a longstanding problem. The case of Gaussian noise was treated
in Hairer and Mattingly [Ann. of Math., 164(3):993-1032, 2006]. To
obtain the uniqueness of invariant measure, we use Malliavin calculus
and anticipating stochastic calculus to establish the equi-continuity of the
semigroup, the so-called e-property, and prove some weak irreducibility of
the solution process.
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1 Introduction and Main results

1.1 Introduction

In the theory of turbulence, the study of the equations of fluid mechanics driven
by degenerate noise forcing, that is, the driving noise does not act, directly on all
the determining modes of the flow, is ubiquitous; see e.g., [Eyi96, Nov65, Sta88,
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VKF79]. And in the physics literature when discussing the behavior of stochastic
fluid dynamics in the turbulent regime, the main assumptions usually made are
ergodicity and statistical translational invariance of the stationary state. The
uniqueness of an invariant measure and the ergodicity of the randomly forced
dissipative partial differential equations(PDEs) driven by degenerate noise have
been the problem of central concern for many years.

Because of the complexity and the difficulty of the problem, it is much less
understood and there are only a few works on this topic. In this paper, we
confine ourselves to stochastic 2D Navier-Stokes equations. In [HM06, HM11]
the authors studied the 2D Navier-Stokes equations on the torus and the sphere
and established the exponential mixing, provided that the random perturbation
is white in time and contains several Fourier modes. In [Shil5], the exponential
mixing was established for the 2D Navier-Stokes system perturbed by a space-
time localised smooth stochastic forcing. In the paper [KNS20] the authors
proved a similar result in the situation when random forces are localised in the
Fourier space and coloured in time. The problem of mixing for the Navier-
Stokes system with a random perturbation acting through the boundary has
been studied in [Shi21]. The authors in [KS12| proved the polynomial mixing
of the 2D Navier-Stokes equations driven by a compound Poisson process. We
remark that the volume of the intensity measure of compound Poisson process
is finite.

So far, there are no results for the case when the random perturbation is
pure jump Lévy noise of infinite activity, that is, the volume of the intensity
measure of the Lévy noise is infinite. This is the subject of the present article.
We point out that there are no results even for the non-degenerate case of pure
jump Lévy noise of infinite activity, i.e., all determining modes of the unforced
PDE are directly affected by the noise.

Now, let us give a brief introduction to the main result. The Navier-Stokes
(NS) equations on the torus T? = [—m, 71]? are given by

Ou+ (u-V)u =vAu—Vp+¢, divu =0, (1.1)

where u = u(x,t) € R? denotes the value of the velocity field at time ¢ and
position z = (z1,x2), p(z,t) denotes the pressure, v > 0 is the viscosity and
& = £(x,t) is an external force field acting on the fluid. Since the velocity
and vorticity formulations are equivalent in this setting, we choose to use the
vorticity equation as this simplifies the exposition. For a divergence-free velocity
field u, we define the vorticity w by w = V A u = Jou; — d1ue. Note that u
can be recovered from w and the condition div w = 0. With these notations we
rewrite the NS system (1.1) in the vorticity formulation:

Ow = vAw + B(Kw,w) + 0, w}t:O = wo, (1.2)
where n = n(x, t) is an external random force, B(u, w) = —(u-V)w, and K is the
Biot-Savart operator which is defined in Fourier space by (Kw)x = —iwgk™/|k|?,

where k+ = (k1, k2)" = (—ka, k1), and wy, is the scalar product of w with 5™,



The Biot—Savart operator has the property that the divergence of Kw vanishes
and that w = V A (Kw).

In this paper, we prove that there exists a unique statistically invariant state
of the system (1.2). Roughly speaking, we establish the following result. For
rigorous statement and general version of the result, please see Theorem 1.6
below.

Consider the system (1.2) with noise
n(x,t) = by sin(x1) L1 (¢)+ba cos(x1) La(t)+bs sin(x1+x2) L3 (t)+bs cos(x1+x2) La(t),

where by, - - - , by are non-zero constants, Ly = (L1(t),- - , L4(t)) is a 4-dimensional
pure jump process with Lévy measure vy :

2|2

vr(dz) = / (27Tu)7267‘27u1/5(du)dz, (1.3)
0
here vg is a measure on (0, c0) satisfying
vs5((0,00)) = co and / (e* — 1)ws(du) < oo for some ¢ > 0.
0

Then the main results imply that the Markov semigroup generated by the system

(1.2) possesses a unique invariant measure p* on the space H = {w € L*(T%,R) :
Jpo w(z)da = 0}.

There are now empirical data which shows that Lévy processes are more suit-
able to realistically represent external forces in statistical physics(c.f. [Nov65]),
climatology(c.f. [IP06]) and mathematics of finance(c.f. [KT13]). Therefore,
the mathematical analysis of stochastic partial differential equations driven by
Lévy processes becomes very important. This motivates the study of this paper.

To prove the main result, we will use Malliavin calculus and anticipating
stochastic calculus to establish an equi-continuity of the semigroup, the so-called
e-property, and prove some weak irreducibility for the solution process of the
system (1.2).

To deal with the setting of highly degenerate noises, we need some quan-
titative control of the Malliavin matrix, and it is inevitable to use the “future
information”. Hence, some anticipating stochastic analysis are necessary. How-
ever, Malliavin calculus associated with Poisson random measures is much less
effective than that of the Wiener case. In this paper, we assume that the driving
noise is a subordinated Brownian motion. Introducing a sort of time change,
we borrow the nonadapted stochastic analysis associated with Brownian motion
when dealing with the “future information”.

Because of the strong intensity of the jumps and also the unbounded jumps,
we need to introduce a new set of ideas and techniques to establish the unique-
ness of invariant measures in comparison to the case of Gaussian noise (see
[HMO6] [HM11][FGRT15]). Now we highlight some of them.



e In [HMOG6], the authors gave preliminary estimates for the solutions in
[HMO06, Lemma 4.10], which plays an essential role in controlling various
terms during the proof of the asymptotically strong Feller. The proof
of [HMO06, Lemma 4.10] strongly relies on the Girsanov transformation
and exponential martingale estimate of the Gaussian noise. However, the
Girsanov transformation and exponential martingale inequality associated
with Poisson random measures is expressed in terms of complicated ex-
ponential type nonlinear transformations, which seems very hard (if not
impossible) to control; see [App09, Theorem 5.2.9]. In the setting of pure
jump Lévy noise, to overcome the above difficulty, we design a sequence
of stopping times o, (see (2.7) and (2.8)), and build new preliminary es-
timates, see Lemma 2.2 in this paper, which is totally different from the
ones for the Gaussian case, i.e., [HMO06, Lemma 4.10]. We point out that
Lemma 2.2 seems not possible to be proved by the exponential martingale
inequalities and the It6 formula for Poisson random measures.

With the help of the stopping times oy, we could identify the “bad part”
of the sample space €2, denoted by {w € Q : © > M}; see (4.2) and
(4.3) for the definition of the random variable ©; and the “bad part”
could be controlled by the strong law of large numbers, which means
that limy—oo P{w € © : © > M}) = 0. On the “good part” of the
sample space, we could obtain something like the asymptotic strong Feller
property; see (4.33). Combining the two parts, we obtain the e-property.

e Let My be the Malliavin matrix of w; and S, be some subspace of
H (For the definition of My, see Section 4.2 in [HMO06] or (2.23)—(2.24)
below). To obtain the ergodicity via Malliavin calculus, one key ingredient
is to show

P(¢eig£N<M0’1¢’ @) <e) < C(Jlwol)r(e), Ve € (0,1) and wo € H, (1.4)

where |Jwp|| denotes the L? norm of wg, C is some function from [0, c0)
to [0,00) and r is a function on (0, 1) with lim. ,o7(¢) = 0. In the ex-
isting literatures [HMO6][HM11][FGRT15] etc., the properties of Gaussian
polynomials(see, e.g., [HM11, Theorem 7.1]) play very essential roles for
the estimate of the left side of (1.4). Similar arguments do not work in
the case of pure jump processes. In this paper, using the fact that the
jump times of pure jump noise with infinite activity are dense in any time
interval [a,b] with 0 < a < b, we find a new way to get something like
(1.4). First, we prove

]P’(d)eigf (Mo, ¢,9) = 0) =0, Yuo € H, (1.5)

where o1 is a positive stopping time. Then, with the help of (1.5) and the
dissipative property of Navier-Stokes system, we derive a weaker version of
(1.4) which is sufficient for our purpose. In a word, our method of proving
something like (1.4) is totally different from that of the Gaussian case. See
Proposition 3.4 and Proposition 3.5 in Section 3 for more details.



Finally, we point out that there are not many results on the ergodicity of
stochastic partial differential equations driven by pure jump Lévy noise. And we
list them here for readers who are interested. For the case that the driving noise
is non-degenerate, we refer to [PZ11, PXZ11, PSXZ12, Xul3, WXX17, WXIS,
DXZ14, DWX20, BHR16, FHR16, WYZZ22]. For the case that the driving
noise is degenerate, we refer to [SXX19, WYZZ24, MR10].

1.2 Main results

We consider the system (1.2) in the Hilbert space:

H= {w e L*(T% R) : /

| we)de = o} (1.6)

endowed with the L2-scalar product (-, -) and the corresponding L?-norm || - |
In order to describe the noise 7, we introduce the following notation. Denote

75 ={(k1,k2) € Z* : ky > 0} U {(k1,0) € Z* : ky > 0}

and Z2 = {(k1,kz) : —(k1,k2) € Z%}. For any k = (k1,k2) € Z2 := Z*\(0,0),
set
el = ek(;p = Sin<k’ I> lf (kla k2) S Zi,
cos(k, ) if (ki, ke) € Z2.

We assume that 7 is a white-in-time noise of the form

n(x,t) = Z kagtek(:v), (1.7)
keZy

where Zy C Z2 is a finite set, by, k € Z, are non-zero constants, Ws, = (Wgt)kezo
is a | Zp|-dimensional subordinated Brownian motion which will be specified be-
low. For convenience, we always denote |Zy| by d. Assume the canonical basis
of R? is {0k } ke z, and the linear operator @ : R — H is defined in the following
way:

Qz = Z brzrer, Vz = Z 20 € Rd,

keZo kE€Zo

then, n(t) = QWs,.

Now let us give the details for the subordinated Brownian motion Wg,. Let
(W, H, P#) be the classical Wiener space, i.e., W is the space of all continuous
functions from RT to R? with vanishing values at starting point 0, H C W is
the Cameron-Martin space consisting of all absolutely continuous functions with
square integrable derivatives, P#% is the Wiener measure so that the coordinate
process Wi (w) := wy is a d-dimensional standard Brownian motion. Let S be the
space of all cadlag increasing functions ¢ from R to R* with ¢y = 0. Suppose
that S is endowed with the Skorohod metric and a probability measure P#s so



that the coordinate process S¢(¢) := ¢; is a pure jump subordinator with Lévy

measure Vg satisfying
o0

(1 A u)rg(du) < oo.
0

Consider now the following product probability space (2, F,P) := (WxS, B(W)x
B(S),P* x PHs), and define for w = (w,f) € W x S, Ly(w) := wy,. Then,
(Lt = Wg,)1>0 is a d-dimensional pure jump Lévy process with Lévy measure
vy, given by

d

v (E) = /OOO/E(27TU)2e;_u2dZV5(du), E € B(RY). (1.8)

To formulate the main result, let us recall that a set Zy C Z? is a generator
if any element of Z? is a finite linear combination of elements of Z, with integer
coefficients. In what follows, we assume that the following two conditions are
in place.

Condition 1.1. The set Zy C Z?2 appeared in (1.7) is a finite, symmetric (i.e.,
—Zy = Zy) generator that contains at least two non-parallel vectors m and n
such that |m| # |n|.

This is the condition under which the ergodicity of the NS system is estab-
lished in [HMO06, HM11] in the case of a white-in-time noise and in [KNS20] in
the case of a bounded noise. The set

Zp = {(170)7 (=1,0), (1, 1)7 (_17 _1)} C Zi = Zz\{(0,0)}
is an example satisfying this condition.

Condition 1.2. Assume that vg satisfies
/ (e* — 1)vg(du) < oo for some ¢ > 0
0
and

v5((0,00)) = o0. (1.9)

Remark 1.3. If vg(du) = u=' =2 Itgy<xydu for some « € [0,2) and X > 0, then
condition 1.2 is satisfied. In this case, v1,(dz) = {(z)dz and ((z) satisfies

(1.10)
C z|?
) < T expl- )Vl 21

where C7,C5y,C5 are positive constants depending on «,d and Y. Thus, the
appearance of the small jumps of L; will behave like a-stable processes and the
appearance of big jumps will be very rare.



We denote by Pi(wp,-) the transition probabilities of the solution of the
stochastic Navier-Stokes equation (1.2), i.e,

Py(wo, A) = P(w(t) € AJw(0) = wy)

for every Borel set A C H and

BNM=LﬂMMmeFWW=LBMAMM®

for every f: H — R and probability measure p on H.
Before we state the main theorem in this paper, we present two propositions
which are the essential ingredients in the proof of the main result.

Proposition 1.4. Under the Condition 1.1 and Condition 1.2, the Markov semi-
group { P, }1>0 has the e-property, i.e., for any bounded and Lipschitz continuous
function f, wo € H and € > 0, there exists a § > 0 such that

|P.f(wgy) — Puf(wo)| < e, Yt >0 and wj with ||wy — wol| < 6.

The proof of this proposition is given in Section 4 based on Malliavin calculus,
which constitutes a major part of the paper.

Since there are many constants appearing in the proof, we adopt the fol-
lowing convention. Without otherwise specified, the letters C,C4,Cs, -+ are
always used to denote unessential constants that may change from line to line
and implicitly depend on the data of the system (1.2), i.e., v, {bx}rez,, Vs and
d = |Zy]. Also, we usually do not explicitly indicate the dependencies on the
parameters v, {bx}rez,, Vs and d = |Zy| on every occasion. The proof of the
proposition below is almost the same as that in [EMO01, Lemma 3.1]; for the
convenience of the readers, we give its short proof in Section 5.

Proposition 1.5. (Weak Irreducibility) For any C,~v > 0, there exists a T =
T(C,v) > 0 such that

inf  Pp(wqg, By) > 0,
ik Fr (wo, By)

where By, ={w e H : ||w|| <~}

After we state Proposition 1.4 and Proposition 1.5, we have the following
main result of the paper.

Theorem 1.6. Consider the 2D Navier-Stokes equation (1.2) with a degenerate
pure jump noise (1.7). Under the Condition 1.1 and Condition 1.2, there exists a
unique invariant measure p* for the system (1.2), i.e., u* is a unique probability
measure on H such that P}p* = p* for every t > 0.

Proof. We first prove the existence. By Lemma 2.1 below, it holds that

t
1%
2 E [ s < ] + Ct,
0



here the definition of || -||; is introduced in (2.1). Following the arguments in the
proof of [DX09, Theorem 5.1] and using Krylov-Bogoliubov criteria, we obtain
the existence of invariant measure.

Now we prove the uniqueness. Assume that there are two distinct invariant
probability measures p; and g for {Pi}i>0. By Proposition 1.4 and [KSS12,
Theorem 1] (or [GL15, Proposition 1.10]), one has

Supp w1 N Supp pz = 0. (1.11)

On the other hand, by (2.3) in Lemma 2.1 below, for every invariant measure
1, the following priori bound

/ JeolPu(dw) < C
H

holds(See [EMS01, Lemma B.2]). Following the arguments in the proof of
[HMO06, Corollary 4.2] and using Proposition 1.5 , for every invariant measure
u, we have 0 € Supp p. This contradicts (1.11). We complete the proof of
uniqueness. o

The rest of the paper is organised as follows. In Section 2, we provide
some estimates for the solution w; and introduce the essential ingredients of the
Malliavin calculus for the solution. Moreover, we give all the necessary estimates
associated with the Malliavin matrix. Section 3 is devoted to the proof of the
invertibility of the Malliavin matrix of the solution w; which plays a key role in
the proof of Proposition 1.4. In Section 4, we give the proof of Proposition 1.4.
The proof of Proposition 1.5 is given In Section 5. Some of the technical proofs
are put in the Appendix.

2 Preliminaries

2.1 Notations

In this paper, we use the following notations. Let Hy = span{e; : j €

Z? and |j| < N}. Py denotes the orthogonal projections from H onto Hy.
Define Qnu :=u — Pyu,Vu € H.

For oo € R and a smooth function w € H, we define the norm ||w||, by

lollZ = > Ik, (2.1)

keZ?

where wy, denotes the Fourier mode with wavenumber k. When « = 0, as stated
in Section 1.2, we also denote this norm || - || by || - ||. For any (s1, $2,53) €
R? with E?:l s; > 1 and (s1, s2,83) # (1,0,0),(0,1,0),(0,0,1), the following



relations will be used frequently in this paper(c.f. [CF88]):
(B(u,v),w)z—(B(u,w),v), lfV’U,:O,

(B 0), )] <l ol ses ol )

1Kulla = [[ulla-1,

lwll? )2 < llwllflwlh.

L*>°(H) is the space of bounded Borel-measurable functions ¢ : H — R with
the norm ||¢||cc = sup,cpg |¥(u)|. Cp(H) is the space of continuous functions.
C}(H) is the space of functions ¢ € Cy(H) that are continuously Fréchet dif-
ferentiable with bounded derivatives. L£(X,Y") is the space of bounded linear
operators from Banach spaces X into Banach space Y endowed with the natural
norm || - ||z(x,y). If there are no confusions, we always write the operator norm

- lleceyy as |- -
Let N (dt,dz) be the Poisson random measure associated with the Lévy process

Ly = Wg,, iec.,
NL((0,8] xU) = Y Iy(Li — L), U € B(R*\ {0}).

s<t

Let Np(dt,dz) denote the compensated Poisson random measure associated
with Np(d¢,dz), i.e.,

NL(dt,dz) = NL((O,t] X U) — dtl/L(dZ).

Similar notation also apply to Ng(dt, dz) and Ng(dt, dz). As the measure vy, (dz)
is symmetric, the Lévy process L; admits the following representation:

¢
Lt:// 2Ny (ds,dz).
0 JR4\{0}

Let F = F(w,{) be a random variable on the space (2, F,P). We use E*" F' to
denote the expectation of F' when we take the element ¢ as fixed, i.e,

B p = / Flw, 0)P* (dw).
W

The notation E#s F' has the similar meaning. We use EF' to denote the expecta-
tion of F' under the measure P = PHW x [PHs,

The filtration used in this paper is
Fi:=0(Wsg,,Ss: s <t).

For any fixed ¢ € S and positive number a = a(¢) which is independent of the
Brownian motion (W;)¢>o, the filtration FV is defined by

FV = o(Wy:s<a).

If 7: Q — [0, 00] is a stopping time with respect to the filtration F;, F, denotes
the past o-field defined by

Fr={AeF:Vi>0,An{r <t} € F}.

10



2.2 Priori estimates on the solutions

Lemma 2.1. Let w; be the solution to equation (1.2) with initial value wy. Then,
there exist positive constants C1, Ca, which depend on the parameters v,{b;};cz,,vs, d,
such that

Elw,||?

IN

e " wol|* + Cy, Vt >0, (2.3)

¢
gE/ lwsPds < [wol® + Cat, Ve > 0. (2.4)
0
Proof. Let vy, be the intensity measure defined in (1.8). We claim that

/ |z|2vr (d2) +/ |z|"vr(dz) < 00, Vn >2. (2.5)
|zI<1

|z[=1

We only prove that le|>1 |2|"vL(dz) < 00,¥n > 2, the first term in (2.5) can be
treated similarly. By definition, we have

oo 22
[ et = [ e[ emg e S aa]a:
o0 o0 7<2
= Cd/ T"er*l[/ w2 5 g (du)|dr.
1 0
o0 o0 T2
= Cd/ Vs(du)/ pitd=le=guy~d/2qy
0 1

> > nt+d—1 2u
= Cd/ Vs(du)/ (2ux) R TR
0 1/(2u) 2V 2ux

< Cdyn/ u"/zys(du) < 00.
0

Now, we prove (2.3) and (2.4). Applying It&’s formula to ||w;||?, we obtain

o] = ~2vfjwilfde+2 [, Q) Na(dtdz)
zeR4\ {0}

(2.6)
+ / Q=] Ny(dt, dz).
z€R4\{0}

Set C = szRd\{O} |Qz||?vL(d2), which is a constant only depending on {b;} e z,, Vs, d.
By (2.6) and standard arguments,

t
Elwe|* + 2”/ E|ws][fds = [Jwo||* + Ct,
0

which yields the desired results (2.3) and (2.4). O

Let o9 =0 and By =Y b?. For any k >0, k € Nand ¢ € S, we define

JE€EZ20

oc=0(l)=01(0) =inf {t > 0: vt — 8Borl; > 1} (2.7)

11



and
o = o) = inf{t > op_1, v(t — og—1) — 8Bor(ly — {y,_,) > 1}. (2.8)

For the solutions to equation (1.2) and theses stopping times o (with respect
to F), we have the following moment estimates.

Lemma 2.2. There exists a constant ko € (0,v] only depending on v, {b;}cz,, Vs
and d = |Zy| such that the following statements hold:

(1) For any k € (0, ko] and the stopping time o defined in (2.7), we have
E*s exp{10vc} < Cy, (2.9)
where Cy, is a constant depending on k and v,{b;}cz,,Vs,d. Hence

Eexp{10vo} < C,. (2.10)

(2) For any £ € (0,kKo], almost all £ € S(under the measure P*s) and the
stopping times oy, defined in (2.7) and (2.8), we have

B [ exp {wllwa, I? = kllwg,_, |27

Ok
+w<;/ e~V (@R +8Borloy —Lo)| 14y ||2ds (2.11)

k—1

Tk—1

— kBl —z,,,cfl)}\nw |=<c

where C' is a constant only depending on v,{b;}cz,,vs and d. Moreover,
the following statements hold:

E [ exp {wllews, |2 = #llwn, e

ok
+ Vli/ e V(ok—9)+8Bor(l,, _Zs)||ws||%ds (2.12)

k—1

— kB (L, — z,,,H)}

Foa| 2C.

where C is the constant appearing in (2.11).
(8) For any k € (0, ko] and k € N, one has

B[ exp {llwo, . |2} For | < Cexp {re ™ o, |2}, (2.13)

where Cy; is a constant depending on k and v,{b;};cz,,vs,d.

(4) For any k € (0, ko|, there exists a Cy, > 0 depending on r and v,{b;};jez,,Vs,d
such that for any n € N and wo € H, one has

Euy exp{r Y [we,[|* — Cen} < eoxllvol®, (2.14)
=1

12



where a = # In this paper, we use the notation E,, for expectations

under the measure P with respect to solutions to (1.2) with initial condition
wo -

(5) For any k € (0, ko], wo € H and n € N, one has

Euy sup [Jws]|®™ < Chp(1 4+ [Jwo||*™), (2.15)

s€(0,0
where Cy, ,x is a constant depending on n, k and v,{b;}jez,, Vs, d.

The proof of the above lemma is long, we leave it in Appendix A. Throughout
this paper, k¢ is the constant appearing in Lemma 2.2.

2.3 Elements of Malliavin calculus

Let d = |Zy| and denote the canonical basis of R? by {6;} e z,. We have defined
the linear operator Q : R? — H in the following way: for any z = 5 z;0; €
Rd

JE€E20

QZ = Z ijjej.
J€Z0
The adjoint of @ is given by Q* : H — R%:
Q"¢ = (bj{€ e5)) ez, € RY, for & € H.

For any 0 < s <t and £ € H, let J,:£ be the solution of the linearised
problem:

3th,t§ - VAJs,té. - B(wt; Js,té) = Oa (216)
Js,sg = 57
where B(w,v) = B(Kw,v) + B(Kv,w).
Forany 0 <t <T and¢ € H, let K; 1 be the adjoint of J; 1, i.e., 0y := K¢ 7§
satisfies the following backward equation
Oror + VAo + DB (wy) o = 0, (2.17)
or =&,
where (DB*(w)p,v) = (p, DB(w)) and DB(w)i) = B(Kw,v) + B(Ki, w).

Denote by J. S(Qt) (¢, 1) the second derivative of w; with respect to initial value
wp in the directions of ¢ and . Then

0T (6, 00) = vATZ (6, 00) + B(K s 4, T 1)) + B(K s 00, Js 1)
+ B(Kwi, JE) (6,0)) + BKIE) (6.9),wy),  for t > s, (2.18)
T3 (4, 9) = 0.

13



For given £ € S, t > 0, let ®(¢t,W) be a fZV—measurable random variable.
For v € L2([0, £;]; R?), the Malliavin derivative of ® in the direction v is defined
by

1 .
O(t, W) = lim — <<I>(t,w0,W—|—a/ vds) — fI)(t,wo,W)) ,

e—=0 ¢ 0

where the limit holds almost surely (e.g., see the book [Nua06] for finite-dimensional
setting or the papers [MP06, HM06, HM11, FGRT15] for Hilbert space case).
In the definition of Malliavin derivative, the element ¢ is taken as fixed. Then,
D w, satisfies the following equation:

Ly
dDVw, = vAD w,dt + B(D wy, w;)dt + Qd ( / vsd5> :
0

By the Riesz representation theorem, there is a linear operator D : L?(Q, H) —
L2(9; L%(]0,4,); RY) ® H) such that

D wy = (Dw, v) 2(j0,0,);ra): Y0 € L*([0,4]; RY). (2.19)
Actually, we have the following lemma.

Lemma 2.3. For any { € S and v € L([0,4;]); R?), we have

Ly
’D”wtz/ I 1 QUudu,
0

here v, is defined by ~y,, = inf{t > 0,5;(¢) > u}. Hence, we also have
Diwy = Jy, 1Q0;, Yu € [0, 4],

where DI denotes the Malliavin derivative with respect to the jth component of
the noise at time u.

Proof. We need to prove that for any v € L%([0, ¢;], R?),

t o o
D w; :/ Jde(/ vsds) :/ Iy 1 Quydu. (2.20)
0 0 0

The first equality in (2.20) follows from the formula of constant variations or
Fubini’s theorem; see [Zh16, Page 370, lines 1-5] for example. So we give a
proof of the second equality in (2.20). Obviously, we have

/0 MQd/ v,ds) ZJMQ/ivsds (2.21)

r<t &

Since v, = r,u € (€r_,¥¢,), it holds that

ZJMQ/ vudu—Z/ Ty, thudu_/ Iy 1Quydu.

r<t Ly r<t

Combining this with (2.21), we complete the proof of the second equality in
(2.20).
O
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For any s < t and ¢ € S, define the linear operator A ; : L?([ls, £;]; RY) — H
by

Ly
As v :/ Ty tQuadu, v € L*([ls, 4];RY). (2.22)
4

s

The adjoint of Aj ¢, : H — L%([ls, 44]; RY), is given by
A:,td) = (bj <¢7 J’Yuvtej>)jezo ue[[s7(t] .
The Malliavin matrix Mg, : H — H is defined by
Mg = A AL,¢ (2.23)
By a simple calculation, we have(c.f. [Zh14, Lemma 2.2]) *

s t¢ d) Z bz/ Tt¢;ej r- (224)

JEZo

(For any function f : [a,b] — R, the integral f; f(s)d¢s is interpreted as
f(a,b] f(s)dés.)

In the rest of this subsection, we will provide some estimates for Js ¢, J, S t yAg
Aj M1 and their Malliavin derivatives, which will be used in subsequent sec-
tions.

Lemma 2.4. There exists a constant Cy only depending on v such that for any
o, e Hand0<s<t<T, Js and J( t) satisfy almost surely

sup | Joull2 < Collg|2eCo S IwrliPar (2.25)
tEST
/ o rll2dr < Collg|2eCo Ji IonliPar (2.26)
2 211,1,112,Co ST w4 dr-
sup. T2, 0|2 < Colll?[v]2e ; (2.27)

tels, T

Furthermore, for any k > 0 and 0 < s < T, it also holds that

5— Z VK 5
HJ || < { ]20/ ||’u}5||16 ( ) OH( S)dS

T
+ O, / eQu(Tfs)flﬁ%on(ETffs)dS}||§||2,

where Cy is taken from (2.25)-(2.27), and C,; is a constant depending on &, v.

I Actually, we have,

<Ms,t¢7 ¢> = Z b2/ K’yu to, ej du_ Z b2 Z / K’yu t¢7eg

JEZy JEZp re(s,t]
= YD (Knihe) (Ul — )= Y b2/ (Kr e, e;)2dl,.
J€EZ0  TE(s,t] JjE€EZ9

15



Remark 2.5. In the other places of this paper, we need to use the constants
appeared in (2.25)—(2.27), so we use a special notation Cy to denote them.

Proof. By (2.2),

(B(KJs &, we), Js,16) < Cllwe |1l Js,e€ll1 21| s 6l

v 43 (2.20)
< 2108l + Cllwly 114811,

where C' = C(v). Therefore, applying the chain rule to ||J; ;£||?, one arrives at
Al Jo €)1 < —v[| o€ l3dt + Cllwe |17, 18] dt,
which implies
19.461% < Cllg]2e 210 vo < s < ¢

and

t t
4/3
v [ Wartltdr < €12+ C [ w21 g
t
4/3 il 1Y/ 3ar "l |3 dr
<1617 + CUEIE [ w11 e w0 < Gjgec S et

The proof of (2.25) and (2.26) is complete.
Now we prove (2.27). As in (2.29), we have

14
(BT (9,0),w0), I3 (6, 9)) < 2195 0.0} + Cllwel 15 (0, 0)11
Moreover,

(BK w1, Juatt), JE (0,9)) < CIIE (6,0 1111 a1 2l Ts sl
12
< 1T @)+ Cll Tl ol Toto |
Hence, applying the chain rule to ||Js(2t) (¢,)]|?, with the help of (2.25)—(2.26),
we get
t
tlw 4/3 r
175 (6, ) ||? < CeC S e / (1768113 ol Tss 1 + (160013 2| T l1Jdr
< CeC L el dr) g2 o) 2,

(2.28) is easily obtained by Young’s inequality and (2.25).
o

Recall that Py is the orthogonal projection from H into Hy = span{e;;j €
Z2 |jl < N} and Qy = I — Py. For any N € N;t > 0 and £ € H, denote
&' = QnJos€, & = PnJou€ and & = Joi€.
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Lemma 2.6. For anyt >0 and £ € H, one has

Cli€|”® s
jet 1 < exp-on?ep il + DEE o [ junas) sup o
! \/N 0 ! s€[0,t]

where C' is a constant depending on v.

Proof. Note that ||£P]|2 > N2||¢|? and that

(BIKE,wr), &) + (B(Kwe, &), &) < Cll 1llwell1 ol
1%
< leéthllf + Cllwell? jpli€el?,

applying the chain rule to ||€]||2, we find

t
€117 < exp{—vN?t}[|¢]* + C/O exp{—vN*(t — s)}H|ws |7 2]l ] *ds

< exp{—vN?t}i¢]*

t t
+Cep(C [ s} € sup ] [ exp{-vN(t = o)} s 1ds
0 s€[0,t] 0
t
< exp(-rN I+ Cop(C [l s} el s )
0 s€|0,t

¢ t
x(/o exp{—4VN2(t—s)}ds)l/4(/0 ||ws||£11/3d8)3/4,

where we have used (2.25) in the second inequality. The above inequality implies
the desired result. O

Lemma 2.7. Assume that £ = 0, then for any t > 0,

t 1+t
L 4/3
l€N? < C||€||26XP{C/ lwally*ds} sup ([lws]|>/? + Dz
0 s€[0,t]

where C' is a constant depending on v. Furthermore, combining the above in-
equality with Lemma 2.6, for any € € H and t > 0, we have

[o,:QnE|1?
14¢

t
_UNZ 4/3
<Cle ™ D) exp(C [ s} sup (a2 + V€]
N 0 s€[0,t]

Proof. In view of (2.2), one has
L L v L 4/3 L
(B(KEE, wi), &) < 11T+ Cllwelly €11
(See (2.29) for similar arguments) and

(B(Kwe, &), &) + (BKE! wy), &)

17



1%
< Clétlallwellligt e < €T + Cllwdl PR -

Thus, applying the chain rule to [|£]|?, we have

t
I < Cexp{C / Jesl|¥?ds} / o 211602 s

< Cexp{C / lwsl|*2ds} sup [luws]l? / IR €8 1ds

567

4/3 h)2 ! hy2a )
< Cexp{C ||ws|| ds} sup s ||§ I2as) et ias)
1/2
< ClelexpfC [ ol as) s ||ws||2( [ etiras)
s€[0,t] 0

< ClelexpfC [ s s

s€(0,t]

bl UN2 2 OH§||2 4340 oy 5 1/2
o [ testomnspiel? + L expic [ ary sup o )as)

< ClePexpfc [ s} s (5

SUP,e(o,4] ||wr||1/2\/5>

selo.] N4
1+t
< Ol exp( [ s} sup (el + 135
N/
s€[0,t]

where in the fourth inequality we have used (2.26) for the fourth inequality and
Lemma 2.6 for the fifth inequality. O

Using the similar arguments as that in [HMO06, Section 4.8] or [FGRT15,
Lemma A.6], we have the following lemma.

Lemma 2.8. There is a constant C = C({bj}jez,,d) > 0 such that for any
0<s<tandp >0, we have

£y
et oo emnm < € [ 1l (2:30)
A2 (Mas + BD |l 2,220, ,0gmey) < 1, (2.31)
(Mt + BD) 2 Al £(r2((es, 0020y, 81) < 1, (2.32)
[(Mee + B[ ey < 872 (2.33)
Lemma 2.9. For any 0 < s <t,j€{1,---,d} and u € [0, 4], we have

0 y sy S ) U € fs,f
D;Js,tgz{ Q0o O €
Jot (J1,,5Q05,8) if u < L.
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Proof. In view of Lemma 2.3, the proof is the same as that in [HMO06, (4.29)].
We omit the details. (|

As in [HMOG6], if A : H; — Ho is a random linear map between two Hilbert
spaces, we denote by DA : Hy — Ha the random linear map defined by

Lemma 2.10. The operators Js 1, As ¢, and A%, are Malliavin differentiable, and
for any r > 0, the following inequalities hold

1D ool sty < Coeexp{Co / Jal|3ds}], (2.34)
0
1D} Av,o |l £(22(0,0,1%4), 1) < Cr(o + 1)exp{Co/ lws |12 ds}, (2.35)
0
HDiAS,aHﬁ(H,L?([o,ea];Rd)) < Cylo+ 1)6XP{CO/ ||w5||‘11/3ds}, (2.36)
0

where Cy is the same constant as that appeared in Lemma 2.4, Cy is a constant
depending on k,v,{b;}cz,,d (Recall that o depends on k.).

Proof. The inequality (2.34) is derived from Lemma 2.4 and Lemma 2.9. (2.35)
is obtained by Lemmas 2.4, 2.9, Cauchy-Schwarz inequality and the fact that

vo

o < .
- 8%0%

Lo
Aoﬁv:/ Iy o Qulu)du, £
0

The inequality (2.36) is a consequence of (2.35). O

3 The invertibility of the Malliavin matrix M.

Before stating the main results in this section, we prepare two lemmas. Lemma
3.2 can be seen as the pure jump version of Theorem 7.1 in [HM11], which deal
with the Wiener case. In this section, we use Af(s) to denote f(s) — f(s—).

Lemma 3.1. Consider a probability space (ﬁ,]?, }IND), and a given Lévy process
L(t),t > 0 on (0, F,P), which takes values in a topological vector space (T, B(T)).
Suppose that the Lévy process Z(t), t > 0 has a o-finite intensity measure v. For
any G € B(T), define NS((t1,12]) = #{s € (t1,2] : AL(s) € G}. If 9(G) = o0,
then there exists a Qo € F with ﬁ(ﬁo) =1 such that for any & € Qo and any
0<t <t

Nzc((tl, t2])(@) = oc.

Moreover, {s € [0,00) : AL(s)(@) € G} is dense on [0,00).
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Proof. Let Q denote the set of all rational number on R. It is sufficient to prove
that for any 0 < 1 < to with ¢1,%2 € Q, we have ]P(Ng((tl,tz]) =00)) = 1. Let
K,,,n > 1 be an increasing sequence of measurable subsets of 7 such that K, 1
T and v(K,) < co. It is well known that NgﬂK"((tl, t2]) is a Poisson random

variable with parameter (G N K,,)(t2 —t1). To prove I@(Ng((tl, ta]) = 00)) =1,

it suffices to show that for any positive integer M, @(Ng((tl,tg]) > M)) = 1.
Indeed,

P(NE((tr,ta]) > M) = lim P(NEV (1, 85]) > M)

n—oo

= 1— lim (NS ((t1,85]) < M)

n— 00 L

M -
. . (U(GﬁKn)(tg —tl))m .
= 1- lim Z()exp(—u(G NEK,)(t2 —t1)) = =1,
where we used the fact that 7(G N K,,)(t2 — t1) — 00, as n — oo. O

_ Consider the probability space (Q, F, }fD), and a R%valued Lévy process
L(t) = (L*(t), L*(t), ..., L%(t)),t > 0 with a o-finite intensity measure . For
any n € Nand 1 <17 <d, let

Gl = {y e R?\ {0} : ma <<|yi| .
n=1y MOde ) e el < T

Assume that v satisfies the following condition:
v(G) =00, ¥Yne€Nand1<i<d.

By Lemma 3.1, there exists a QF, € F with P(Q,) = 1 such that for any w € QF,,
the set {s € [0,00) : AL(w,s) € G%} is dense in [0,00). Let Q := N, Npen Y,
then P(Qo) = 1, and for any w € Qg the set {s € [0,00) : AL(w,s) € G%} is
dense in [0,00) for any 1 < ¢ < d and n € N. We stress that €y only depends
on the Lévy process L(t),t > 0.

Lemma 3.2. If for some wg € Qq, the following three conditions are satisfied:
(1) a(wo),b(wo) € [0,00) and a(wy) < b(wo);
(2) gi(wo,-) : [a(wo),b(wp)] = R,0 < i < d, are continuous functions;
(3)

d
go(wo,r) + Zgi(wo, r)i/i(wo,r) =0, Vré€ |a(wy),b(wy)]- (3.1)
i=1

Then

gi(wo,r) =0, ¥r € [a(wy),blwy)], 0<i<d.
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Proof. By (3.1), it is sufficient to show that
gi(wo, ) =0, ¥r € [a(wo), b(wo)], (3.2)

fori=1,---,d. Let us prove

g1(wo, ) =0, 7 € [a(wo),b(wo)]-
The proofs of the other cases with ¢ = 2,--- | d are similar.
The conditions (2) and (3) imply that

d
0= AL'(wo,7)gi(wo,), 7 € [a(wo),b(wo)]. (3.3)

=1

Fix n € N. For any s € {s € [0,00) : AL(wp,s) € G5} N [a(wo), b(wo)], by
(3.3) and the definition of G, one has

d
0 = |3 AL (wo,8)gi(wo, )|
=1
~ d =5
> AL (wo, 5)| - [g1 (w0, 8)| = Y IAL (wo, )| - [gi(wo, 5)]
=2

> |Ail(w0’ S)| ! |gl(w07 )| - _|AL wo, S Z |g’L wo, S

which implies

d
d

|91 wo, S — E w07
ni=

where we have used the fact that |Ai1(wQ, s)| > 0. Recall that the definition
of Qo implies that the set {s € [0,00) : AL(wp,s) € GL} is dense on [0, 00) for
any n € N. By the continuity of g;(wo,-),? = 1,2, ...,d, we obtain

sup g1 (wo, 8)| <
selafwo) b(wo)]

3

Z|gZ wo,s)|, VneN.
1=2

SE[a(wo) b(wo)]

Since n is arbitrary, we obtain that
g1(wo,s) =0, Vs € [a(wo), b(wo)]-

The proof is complete. O

Recall the assumption (1.9): vs((0,00)) = co. By Lemma 3.1, for the process
St,t > 0, we have the following result.
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Lemma 3.3.
P (0: {s: ASs(£) > 0} is dense in (0,00)) = 1.

Recall that

(Moot o) = 3 02 / (Kopoh, )2

JE€E20

The first objective this section is to prove the following proposition.

Proposition 3.4. For any a € (0,1], N € N and wy € H, one has

P( | inf (Moso,0)=0) =0,

a,N

where So N = {6 : [|[Pno|| > a,[|¢]| = 1}.

We will prove the following stronger result than (3.4) for later use:
]P)(W = (W,f) : é inf Z b?/ <K7‘,a'¢,€j>2d£7‘ = O) =0.
o/2

Proof. To prove (3.5), we first make some preparations.
For every i € Zy3 and n € N, set

i — ) z Rd . |y’L|
Gl ={y=(y;,j € Z0) e R*\ {0} jezongv%#zlyg }

Then, for any ¢ € Zy and u > 0, we have

y2
/ (2mu) =42 _Wdy—/ (27ru)_d/2e_%dy
Gl

Z1/n z1/n sd_ 2
= Cd/ le/ / dzq (27ru)7d/ze’ e

Can~ 1 (21)~ d/2/ w2 T 24714z,
0

Y%

oo m2

= Cdn_d+1(27r)_d/2/ e~ 2ty
0

= Cd,n > 0.

Hence, for every i € Zy and n € N,

() = [ ([ em e )iy

oo y2
= / Vs(du)/ (2wu)_d/26_%dy
0 »

22
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> Cqnvs((0,00)) = oo,

where vy, is the Lévy measure of L(t) = Wg, given in (1.8). Therefore, there
exists a Q) € F with P(Q}) = 1 and on the set Q}, Lemma 3.2 applies to the
Lévy process L(t) = L(t) = Ws,.

By Lemma 3.3, there exists a set Sg C S with P#$(Sy) = 1 and for any ¢ € Sy,
{s : ASs(f) := £; — ls_ > 0} is dense in (0, 00), which implies that if f is a
nonnegative continuous function on some time interval [a, b] and f; f(s)dés =0,
then f(s) =0, s € [a,b]. Denote Q2 = W x Sy C Q. Obviously, P(Q2) = 1.

We are now in the position to prove (3.5). Set

,_ L 2 7 N2 — 102
£o={w: ¢€1ng]§0 b2 /0/2<KT7,,¢,eJ> at, =0} nojne;. (3.6)

In the following, we will prove £ = &, completing the proof of (3.5).
Assume that £ # @ and w = (w, £) belongs to the event £. Then, for some
¢ with

PNl = a, (3.7)

one has f;/2<Kryg¢, ej>2dér = 0 for j € Zy. By the property of ¢ € Sy stated
above and the continuity of (K, ,¢, e;) with respect to r, it holds that

sup |<K7«70¢), 6j>| = O, V] S Z(). (38)
r€lo/2,0]

With the help of (2.17), ¢, := (K;,+¢, e;) satisfies the following equation:
Aot + cjor + (Ko d, B(Kwy, ;) + B(Kej, wy)) =0,
O = <¢7 €j>,

where ¢; is a constant depending on j. Combining the above equation with (3.8),
we deduce that for any t € [0/2, o],

(K00, B(Kw,ej) + B(Kej,w)) =0.
Let vy = wy — Zie z, bint e;. Then, the above equation becomes
<Ktﬁg¢, B(Ut + Z biwgtei, 6j)> = O
1€2Zp

That is

F&)+ ) W bi(Ki 06, Bleiye;)) =0, Vt € [0/2, 0],
€20

where f(t) := (K;q¢,B(vt,e;)) is a continuous stochastic process. By the
assumption (3.6), the above equality and the fact that Lemma 3.2 holds for
w € O}, one arrives at that

(Ki,0¢, Bleiye;)) =0, Vteo/2,0].
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Checking through the above arguments, we actually proved that
(Ki00,e5) =0, Vt € [0/2,0]
= (K; ¢, Blei,ej)) = 0,Vi € Zy and t € [0/2,0].
Define the set Z,, C Z2 recursively:

Zy = {i+j|j € Zo,i € Zny with (iT, ) #0,]i] # |j[},

where i+

= (i2, —i1). Assume that we have proved
(Ki00,ej) =0,Vj € Z,_1 and t € [0/2,0].
Then, by (3.9), it follows that
(Kt.06,B(ej,ei)) =0,Yj € Z,_1,i € Zp and t € [0/2,0].

It is easy to verify that Z,, is symmetric for any m > 0, i.e. Z,, = —Z,,. Also
by the definition of Z,,, one can see that

{ej,j € Z,} Cspan{B(e;,e;) :j € 20,i € Zp_1}.
Hence,
(Kio0,e5) =0,Vj € Z, and t € [0/2,0].
By this recursion,
(Kiopye;) =0, VjeU,2,=7272andtc[0/2,0]

(Here, we have used [HMO06, Proposition 4.4].) Let t — o to get ¢ = 0, which
contradicts (3.7) . Therefore, £ = @.

The proof of (3.5) is complete.
O

Proposition 3.4 is not sufficient for the proof of Proposition 1.4, we need a
stronger statement. For o € (0,1],wo € H,N € N;R > 0 and ¢ > 0, let?

Xwo N —ipf o0, D). 3.10
¢€lga,N<Mo, b, b) (3.10)
and denote
r(e,a, R, N) = sup P(Xv0*N <), (3.11)
flwo || <

Based on (3.5) and the dissipative property of Navier-Stokes system, we
obtain the following result whose proof is given in Appendix B.

Proposition 3.5. For a € (0,1],9% > 0 and N € N, we have
lim (e, a, R, N) = 0.
=0

2Note that Mo,t is the Malliavin matrix of w¢, the solution of equation (1.2) at time t with
initial value wg. Therefore, Mg, » also depends on wg.
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4 Proof of Proposition 1.4.

Let us take f € C}(H) and ¢ € H with ||| = 1. Compute the derivative of
Euy, f (w) with respect to wp in the direction &:

VeEuy, f(we) = EV f(wi) Jo,&. (4.1)

In the papers [HM06, HM11], their ideas of proof of the asymptotic strong Feller
property is to approximate the perturbation Jy ;£ caused by the variation of the
initial condition with a variation, Ag+v = D"wy, of the noise by an appropriate
process v. Denote by p; the residual error between Jy +£ and Ag +v:

pe = Jo & — Ao .

The proof of Proposition 1.4 is much more involved than that in [HM06, HM11]
since we even don’t have E||Jy (£ < oo.

Let us first explain the main ideas of the proof of Proposition 1.4. Let
ko = ko(v, {b;}jez,, Vs, d) be the constant appeared in the statement of Lemma
2.2. Recall that, for any x € (0, ko), the stopping times oy, are defined in (2.7)—
(2.8). For any k € (0, ko] and n € N, we define the following random variables
onS:

On41
X, = / 2V (Ont1=8)=16Bonllo, 1y —le)qg Y, = ¢ — Ly, . (4.2)

n

On41

By the strong law of large numbers, Lemma 2.2 and the definitions of oy, we
have?

lim ‘< 0o, almost surely,
n—o00 n
and
n—1 n—1
Y . " (o441 — 0y
lim EZ*O < lim 2170( s i) < 00, almost surely.
n—o0 n 8%0[{ n—0o0 n

Therefore, with probability one, we have

n—1 n—1
i—o Xi i—o Yi
O :=sup 2izo Xi + sup 2o Vi < 0. (4.3)
n>1 n n>1 n

For any Y, M > 0, f € C}(H) and wo,w) € By(Y) :={w € H, |w|| < T}, one
has
|PLf (wo) — Pef (wp)| = [Ef (wi”) — Ef (w; )|

< Ef(wi)ie<an — Ef (w; ) o<yl + 2/ fl|P(© = M)
= Il + IQ, (44)

3Actually, by Lemma 2.2, EX2 < E[(opt1 — o’n)2e4u(an+17f"n)] < 0.
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where w;” is the solution of equation (1.2) with initial value wy.

One can choose the constant M sufficiently large, independent of the initial
condition wy and time ¢, to make Is arbitrarily small. The main difficulty lies
in the estimate of I1. Denote PM f(wo) = E[f(w;")I{e<y]. For any process
v e L2(Qx [0,00); RY) = L2(W x S x [0, 00); R?), we write

IVePM f(wo)| = [EV f(we)Jo1éT{o <y ]
= [E[Vf(wi)D wilio<ny] + E[V f(we)pilro<nry]l- (4.5)

For any fixed ¢ € S, the process v = v’ in the above will be chosen such that
vt € L2(W x [0, £4;]; R?) and that v* is Skorokhod integrable with respect to the
Brownian motion W. Since {¢ : ©(¢) < M} is independent of the Brownian
motion W4, it holds that

E[Vf(w))D wilio<ny] = E* [Ijo<an BMY (V f (we) D wy) |

Ly
=E* [Iio<nmy EM” (f(wt)/o v(s)dW (s))]

Zt
=E[f(w) [ oW () ocan ] (46)

In the above, for any fixed ¢ € S, the integral foét v(s)dW (s) is interpreted as
the Skohorod integral. In a word, the estimate of I; is obtained through
some gradient estimates of V¢ PM f(wp). In order to do this, by (4.5)—(4.6), we
need to select suitable direction v and do some moment estimates for p; and
foét v(s)dW (s). This will be done in subsections 4.1-4.3. In subsection 4.4, we
complete the proof of Proposition 1.4.

4.1 The choice of v.

In this section, we always assume that ||£]| = 1. For any x > 0, recall that the
stopping times o}, are defined in (2.7)—(2.8). For any £ € S and k > 0, we will
define the perturbation v to be 0 on all intervals of the type [(s,,, ,, 45, .,], 7 € 2N,
and by some vy, 0, ., € L*([ls,.ls,.,],H),n € 2N on the remaining intervals.
For fixed ¢ € S and n € 2N, define the infinitesimal variation:

Vo ,0n+1 (T) = A:rn,a’n+1(M(7n;(7n+1 + ﬁ]l)_l’]a'n7o'n+1p(7n7 e [£U717€G’n+1]

(4.7)
Voni1,0n42 (T) =0, r¢€ [60n+1’60n+2]'
where p,, is the residual of the infinitesimal displacement at time o,,. Set
o(r) = Vop,onii(T), 7€ [lg, Ly, ] and n € 2N, (4.8)
U0'n+170'n+2 (T)7 re [ean+17ean+2] and ne 2N'

Here and after, we use v, to denote the function v restricted on the interval
[¢4, €] and the constant 8 in (4.7) will be decided later. Obviously, po = Jo,0§ —
A070’U = f

Similar to [HMO06], we have the following recursions for p,., .
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Lemma 4.1. For any 8 > 0, if we definethe direction v according to (4.8), then

Popis = Jgn+lvgn+2ﬁ(M0nygn+l + ﬂ]l)_l‘](fn70n+lpa’n) Vn € 2N.

Proof. By a straightforward calculation,
Zgn+2
Pony2 = J0,0n+2£ - A0,0n+2v = J0,0n+2£ - / J’Yuxan+2Qvudu
0

Zf"n+1
= Jdn+170n+2 J010n+1€ - J0n+170n+2 J’Yu,dn+1 Quydu
0

= Jdn+170n+2pdn+1

and
Zf"n+1
pa’n+1 = JO7U71+1§ _/ J’Y1L;G'n+1Qvudu
0
Zf"’n Zf"n+1
= Dt~ [ e Qe [0 Quada
0 Loy,
* —1
Janxan+1pan - AU717U71+1AUTL,0’71+1(M(Tn7o'n+l + ﬁ]l) Ja'n7o'n+1p(7n
= ﬂ(Mon,onﬂ + /8H>_1J0nygn+lpgn)
which yields the desired result. o

4.2 The control of p,, .

Let Ac = Acwgan = {X¥0%N > ¢l where the random variable X®o:N
is defined in (3.10). To provide an estimate for ||p,, |, we start with some
preparations.

Lemma 4.2. (c.f. [HM11, Lemma 5.4]) For any positive constants ,e,a €
(0,1], N € N and € € H, the following inequality holds with probability 1:

_ p
Bl P (BL+ Mo,o) [ < €]l (a V4 ) a + 110 g (4.9)
Proof. On the event AS, the inequality (4.9) obviously holds. On the event A,
this inequality is proved in [HM11, Lemma 5.14], so we omit the details.

O
Let Rf = B(Mo, 0., + BI)~L. We have the following estimate for

On,0n+1
B

On,0n41"

Lemma 4.3. For any k > 0,0 € (0,1],p > 1 and N € N, there ezists a 3 =
B(k,8,p,N) > 0 such that

E[||PyRE 1P| Fs] < derlvenl® wn e N. (4.10)

On,0n+1
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Proof. Denote o1 by 0. We here give a proof for the case n =0 and p > 2. The

other cases can be proved similarly. Let SR = s, be a positive constant such

that exp{x®R?} > 1. We divide into the following two cases to prove (4.10).
Case 1: |Jwg|| > . In this case,

E[[| Py Ry, |P|Fo] <1 < dexlwol”,

Case 2: ||wg|| < . For any positive constants ¢, § and « € (0, 1], by Lemma
4.2, we have

E[|PNRy 7| Fo] < Cp(av \/g)p + Cpr(e, o, R, N),

where C), is a constant only depending on p, and r(e, o, R, N) is defined in (3.11).
Choose now a = a(p) small enough such that

Cpa?f <

N

By Proposition 3.5, lim._, (¢, a, B, N) = 0. Pick a small constant e such that

Cpr(e, o, R, N) < g

Finally, we choose 8 small enough so that
0
Cp(\/ B/E)p < 5

Putting the above steps together, we see that E [||PNRg)U||p’]:0] < gerllwol* g

By Lemma 4.1, for any n € 2N, 8 > 0 and N € N, one easily sees that

Ponys = J0n+170n+2Rgn,an+1Jdn,dn+1p0n
= J0n+170n+2QNRgn,on+1J0n10n+1p0n + Jdn+1,dn+2PNRgn,an+1Jdn70n+1pdn
M+ o (4.11)

T p0'n+2 On+42°

The values of 5 and N will be decided later.
1)

To estimate ||pg, |, we first consider the term ps, ,,. For any x > 0,{ € H
and n € N, by Lemma 2.7 and Young’s inequality, we have

|| J0'n+170'n+2 QN§||2

_ - Y 1+Un — Op
< O(emv N omememen) g S BT sup (P DI

N1/4

TE€[0n41,0n+2

On+2
VKR _ _ _
N e s R
1
g

120 /. .,
On+2
+Cx e2”<"n+2‘r>‘16%0““%+2‘f’"’dr}- (4.12)
On+1
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here and below C'is a constant depending on v, {b;};ez,,vs,d, Cjx is a constant
depending on &, v, {b;}ecz,, Vs, d. Applying (2.28) with s = 0, and T = op41,
also with the help of (4.12) and the expression of p,(;ln) 2, We have

195 % < 141,00 12QN 1o 0 1, 1%

SCexp{%/

+1
Jualfre(er 1= oo =0 s = EBolla, ., ~ Lo,

On
On42
VK K
2 —v(ont2—5)+8Bok(lo,, 5 —¥s)
X exp {?/ st”le " Itz ds — 6%0(&77&2 - £U71+1)
Ont1

x sup o (Jlws]* +1)
S€[Ont1,0n42]

1 + On+2 — Un+1)20
N5

K K
X exXp {6%0(&77&1 - ﬂUn) + E%O(ﬂmwz - €0n+1)}

Ont1
« eXp{C',i/ 2(n1=5)~16Bor (Lo, 1 —£0) g 4 O,i/

On On+1

X (exp{ — 20UN? (040 — 0n+1)} + (

On+2
e2u(0n+2—s)—16‘30n(60n+2 —és)ds}

*[1pa, I

i= CUpUp i1 Vi RpeCn (Yt Ynt) oCn(XntXnin) | 140, (4.13)

n |

where X,,,Y,, are defined in (4.2), and

6
Vo= sup  (Jlws]™ +1),

5€[0n+1,0n+2]

Ont1
U, = exp {ﬁ / st”%e—u(anﬂ—s)+8‘Bon(f(rn+1—és)ds — g%o(&’"“ - fgn)},
.

n

(1 + Op+2 — Un+1>20

R, = exp{ — 20UN? (0,10 — Un+1)} + N

For the second term p((72n) 1, Using (2.28) twice, with the similar arguments as
that for deducing (4.13), we obtain

162,114
< CUAUnia | PYRE, ., |060n rt¥ns ) Cu Xt X o, (140, (4.14)

Combining (4.11) with (4.13)(4.14), for any n € 2N, one arrives at

193,410 < COeS A Tnr) O LA Tn i) 140,

where 0, = UpUni1VaRn + UpUpia||[PNRE . [|*0. Assume that || = 1,
then [|po]| = 1. By recursion, for any n € N, we have
||p02n+2 ||40 S CnJrl ( H 92i)ecn E?QJI(XHAQ)’ (415)
i=0
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Recall that © = sup,,», E?{‘l’l Xi | Sup,,>1 L%}l u Thus, on the event
{¢:0(f) < Mj,
it holds that
[Poaniall 0 < C e ME D TT 0y, Wn e N. (4.16)
i=0

Notice that 6; depends on the parameters IV, 5. We have the following estimates
for 6;,i € N.

Lemma 4.4. For any € (0, k0] and 6 € (0,1), there exist constants 8 > 0 and
N € N which depend on k,6,v,{b;}cz,,vs,d such that

E[6;|Fs,] < dexp{xllwe,|*}, VieN.

Proof. Obviously, for any k > 0,6 > 0, by Lemma 2.2, there exists a N =
N(k,8",v,{bj}jez,,Vs,d) > 0 such that

6/
(BIR, | F, )" < T VieN.
Hence, also with the help of Lemma 2.2, it holds that

E[U;Uis1ViRi| Fo,

< (B|U (| F0) ' (BIU || For ) VO (BIVi P o) P (BI R P )
!
< On%e“””‘” " (4.17)

By Lemma 4.3, for any ¢’ > 0,k > 0 and the N = N(x,¢',v,{b;}jez,,Vs,d)
given above, there exists a 8 = 8(k,0’, N) > 0 such that

5/

(BIPARE, 5, 101F0) " < L expl S e, |2, Vi€
Hence,
40
E(UiUip1|PNRY, 5, 1| 7o)
1/6 1/6 2/3
< BNV 7o) " (B0 | o) (BIPNRE, o, 1))
/

< c%eﬁ“w% I”.

Combining this with (4.17) and setting ¢’ = é—‘i, we complete the proof. O

For any x € (0,k0], M > 0 and 79 > 0, the constant 8 in (4.7) is decided
through the following Lemma. Recall that, Cy = Co(v) is the constant introduced
in Lemma 2.4.
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Lemma 4.5. For any k € (0, ko], M > 0,9 > 0, there exists a positive constant
B = B(k, M,v0,v,{b;}jez,, Vs, d) such that if we define the direction v according
to (4.7), then the following holds

02n+

2
Euw, [(1 + o2n42 — ‘72")8 eXp{SCO/ ||w5||;l/3d5}||pozn ||4I{®§M}]

O2n

< G My exp{drallwo]|* — ny0} (4.18)

for everyn € N and wg € H, where a =
on k, M,y and v,{bj}jez,,Vs,d.

%, Cy M.~ 15 a constant depending

Proof. As in other places of this paper, C' denotes a constant that may depend on
v,{b;}jez,,Vs,d; C\ denotes a constant that may depend on &, v, {b;},cz,, Vs, d;
First, we have the following

Claim. For any 6 € (0,1) and k € (0,Ko], there exists constants B =
B(k,8,v,{b;j}jezy,Vs,d) and N = N(k,6,v,{b;}jez,,Vs,d) such that

E[[ 637 < otrtb/2e2anliwoll*+Cun -y e N, (4.19)
i=0
where a = 171?, 0; is defined as in Lemma 4.4. Indeed, by Lemma 4.4 and

(2.14), we can choose a f > 0 and a N € N such that
E[] 6,/ = IE[ 01/%e=5 Tiso lwesi I° 0§ Tl llway uj
i=0 i=0
< (E ] faie Simolwea I*) /2 (e Sio lwosi17) /2
i=0
< 6(n+1)/26(a+1)n||w0||2+C~n,
which yields (4.19).

Now we are in a position to prove (4.18). By Young’s inequality and (4.15),
we have

02n+42
(14 a2s2 = o) Pexp(8Co [ ]l s} o
O2n
< (14 02n42 — 02,)®
VK et 2 *I/(Uz +175)+8%0K(3 —L ) K

X eXP{F ”wS”le " 7ot ds — 6%0(6027&1 - EUzn)}

02n

T2n 42

X exp{ﬁ/ ||ws||%E*V(Uzn#%*5)4’8%0!@(562714»2 7£s)ds _ g%o(g@nﬁ _ gdznﬂ)}

(e

2n+1

KR
X exp {CRX2n + OKXQHJrl + E%O(}/Zn + }/2n+1)}

n—1
ch/m( H 9;{10)62351 O (XitYi)
i=0
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where X; = fa”l (oit1=9)=16Borllo;yy —)gg Y, = ls,,, — ls;. Notice that
the right hand of (4.20) depends on 8 and N through 6;. We will determlne the
values of 8 and N such that (4.18) hold.

For i € {2n,2n+ 1}, set

vk [7+ (ot —s " _ K
G :Eexp{F/ ||ws||%e (Git1=8)+8Bor(bo; ) —Ls) qg _ E%o(&nﬂ _gﬂ)}'

i

By Lemma 2.2, we have

7/15
%) <C,, (4.21)

(E(l + 0ont2 — O2n)
(ECE)® < CuEexp {re wa,|2/6}, i€ {2n,2n+1}. (4.22)

By (4.19), for any § € (0,1) and & € (0, ko], there exist constants S and N such
that

n—1
(]E H 951_/2)1/5 < 5n/1062an||w0||2/5+CN(71—1)/5_ (4.23)
i=0

Notice that on the event {¢: ©(¢) < M}, it holds that
2n-+1
> (Xi+Yi) < M(2n+2). (4.24)
i=0
Hence, by Holder’s inequality, using (4.20)—(4.24) and (2.14), we have

02n

+
B[(1+ oanra — oan)Pesp{Co [l ds}lpen, [Tz |

O2n

n—1
< E[(l + Oonss — U2n)8c2n42n+1( H 6.;1_/10)60~M(2n+2)cn/10}
=0

n 120\ 7/15 fomc
< Car(B(L+ 02nr2 = 02) ) (BGS,) VO (BGS, 1) o (E T 05/%)1/°
1=0
< Crpy "0 0P B exp ke o, /6 YE exp {e ™ 1w, ]1%/6}
< On o/ W0etanlwl® -y e N,

where Cy; p > 1 is a constant depending on &, M and v, {b;};ez,, Vs, d. Choose
0 =6(k, M,v0,v,{bj}jez,, Vs, d) sufficiently small so that

Cr 0" < e, YneN.

Then, we adjust the values of 8 and N according to (4.23). The proof of (4.18)
is complete.
O
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4.3 The control of fogt v(s)dW (s).

For any M,t > 0 and n € N, the aim of this subsection is to give an estimate
for the moment of the stochastic integral:

(e52n+1 /\Et)\/EU%
EH / u(s)dW (s)
Loy

We start with an estimate on the moments of p;.

2
I{GSM}]

Lemma 4.6. For any k € (0,k0], M > 0,79 > 0, let 8 be the constant chosen
according to Lemma 4.5. Then, for any wo € H,n € N and t > 0, one has

Ewo [Hpt||4I{®SM}I{tE[Uzn,Uzn+z)}] < O“»Mq’vo exXp {40"{”1”0”2 - n’YO} ) (425)
where Cy M, @5 a constant depending on &, M,y and v,{b;}jcz,,Vs,d.

Proof. From the construction we have

P = JUzmtpUzn - A02n7tv(72n)t7 fort € [02717 U2n+1]7
=
J02n+1,tpd2n+1v fort e [02n+17 02n+2]

for any n > 0. Using (4.7) and inequalities (2.31)(2.33), we get
||U<72n,<72n+1 ||L2([Zg2n,fa%+1];Rd) < ﬁ71/2||‘]0'2n)(72n+1 Poay, H (426)
Hence, by Lemma 2.4, (2.30) and the definition of 2,11, for any t € [o2,, 02n11],

1otll < s 6902 | + [ Ao Vs

< ||Jazn,tﬂazn || + |‘A0'2n;t||£(L2([lc,r2n,Zt];Rd),H)||v(72n7t||L2([eg2n7552n+1]§Rd)

< ”J(sztpUzn ” + H'AUzn,t||£(L2([lg2n,Zt];Rd),H) ||U<72n702n+1 ||L2([Zg2n,€a%+1];Rd)

< ||Jd2n7tpt72n ” + Cﬂil/z (£U2n+l - €U2n)1/2||‘]d2n702n+1p02n || Sup ||JS¢||L(H,H)

SE[Uvat]
o2

n+1
< CN,B(l + O2nt1 — O2n) €XP {CO/ ”wsnzll/gds} ”pozn ”7 (4-27)

O2n

where Cy g is a constant depending on «,S,v,{b;};cz,,vs,d. For any t €
[02n+1, 02n+2], also by Lemma 2.4, it holds that

T2n+42 4/3
”ptH < sup ||J02n+17tp02n+1|| < CO eXp{Co/ ||w5||1 ds}”p02n+1|l(’4'28)

t€[o2n41,02n+2] O2n+1

Combining (4.27),(4.28) with (4.18), we complete the proof.
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Lemma 4.7. For any M > 0,79 > 0,k € (0, ko], let B be the constant chosen
according to Lemma 4.5. Then,

lognt1 2
Eu, U /é v(s)dW (s)| I{@SM}}

T2n

(4.29)
< G, M7 exp{2al[wo|* — ~om/2}

and

(Zg%“/\et)vemn 9
Eu | [ o(5)IW ()] Troan

T2n

(4.30)
< G M, exp{26awo|* — yon/2}

forn >0,t >0 and wo € H, here Cy p , s a constant depending on &, M, o

and v,{b;}jez,,vs,d.

Proof. We only prove (4.29); the estimate (4.30) is treated in a similar way.
Using the generalised It6 isometry (see Section 1.3 in [Nua06]) and the fact that
v(t)=0fort e[l 1 we have

021419 O’2n+2]a

Loop i1 2
Eu, | /é o(8)AW (5)|* Tioary]

T2n

éd2n+l
—E,,| / lo(s) BadsTioary]

T2n

e”2n+1 £°2n+1
+ Ey, [/z /e Tr(DSv(T)Drv(s))dsdrl{@SM}]
o2

T2n

e”2n+1
< Ey, [/1Z [0(s)[RadsTio< )]

T2n

Lognt1 [Lozni1 5
+ Ewo [/Z ~/é |D7"U(72n70'2n+1 (S)lle dedeTI{@SM}}
T2n

T2n

= L1+ Lo. (4.31)
Using (4.7), (4.26), Lemma 2.4 and Lemma 4.5, we have

e”2n+1 2 _1 2
L, =E,, / () Lo earyds < B Bug [ Joa, cnnss pons I Tro<ar)

T2n

92n+1

< B7ACoE o dra™

4/3
! dT||Pa2n||2I{@§M}

< Cro, Mo exp{26aljwol|® — nv0/2} (4.32)
where k € (0, ko] and Cy; ar,+, is constant depending on &, M, vy and v, {b;}cz,, Vs, d

that may change from line to line. To estimate Ly, we use the explicit form of
D,v. Notice that, for any r € [{,,, ,¢ andi=1,...,d,

U2n+1]

7 _ 7 * —1
Drv02n,d2n+1 - D’I‘(A0'27L7O'2n+1)(MU2TL>U2TL+1 + B]I) J02n102n+1 Poan
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+ A:’2n10’2n+1 (MUZn)02n+1 + ﬁ]l)_l

X (D:’(AUZn;UZn+1)AZ’Qn,O’Qn+1 + A02n70271+1D;‘("4:’2n,0’2n+1))
X (Mosp,0a041 + /BH)71JU2nyg2n+lpU2n
+ A:zn,02n+1 (Md2n,d2n+1 + B]I)ilp’:‘(‘]g2nyg2n+l>pg2n'

By inequalities (2.31)—(2.33), Lemma 2.4 and Lemma 2.10, we have

||Diva2n,a2n+1 ||L2([Zc,2n Lo iRD)

<p! ||Di("402n702n+1)||£(L2([Zg2n,Eazwrl];]Rd),H) | o2 00ms1 Pozn |
+ 287D (Ago oo M e L2y, oy, 1R T2 0011 P |
+ 872D (Joan0sm 1) Po |

< Crg(l+02n11 — 020) eXP{2CO/

02n

O2n

1 4/3
lws]|3ds} | pes,

where Cy g is a constant depending on &, and v, {b;}cz,,Vs,d. By Lemma
4.5 and the fact that lo,,,, — lo,, < g5 (02041 — 025), it follows that

Lognt1 [Lozni1
2
Eu}[) / / |D7“vt72n702n+1 (S)|Rd><]RdI{®SM}deT
Looy, 14

T2n
02n

+1
<B[(lrsr s~ loa,)Cnp(L+ 02nis — o) exp{dCo [ f{7ds} o, ]

O2n

< Creprg exp{2ralwol® — ny0/2}.

Combining the above estimate with (4.31) and (4.32), we complete the proof. [

4.4 Proof of Proposition 1.4(continued).

For £ € H, let v be the process chosen as in (4.7). In order to treat the term Iy
in (4.4), we observe that

Ve PM f(wo)| = [EV f(we) Jo &L {0 <11y ]
= [E[Vf(w)D"wilto<my] + B[V f(wi)pilio<my]|
I
= E[f(wt)/o v(s)dW (s)Iie<my]| + E[Vf(w)pelie<nry)
= Iy + I1o.

For any M > 0, k € (0, ko] and 7o > 0, we set the value of 8 in (4.7) according
to Lemma 4.5. For the term I71, by Lemma 4.7 in subsection 4.3, we have

AVLoy,

> (éd2n+l
o< Il Y E [ o(s)AW. 02|
n=0 o2

n
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ad (oo 11 Ae)VEay, 2 1/2
< X (8l [ o)W, Loy
n=0 T2n
< Nfllse Y Cronrg expirallwol|* —von/4}.

n=0

Now consider the term I;2. By Lemma 4.6 in subsection 4.3, we have

Z IV fllocBuo ol Tto < a1y Iiteionn oansa)}]

I <
n=0
< D IV llooClrnr o exp {ak||wol|* — ~yon/4} .
n=0

Combining the estimates of I11, I12, for any £ with ||£]|=1, we conclude that

IVePM f(wo)| < Cratino ([ flloo + IV fllow exp {asllwo]|*} ), (4.33)

where Cy; 11,4, 1s & constant independent of ¢. Let y(s) = swo + (1 — s)w,. Then,
by (4.33),

, 1
Ef(wy°) jo<my — Ef(w; ) [{e<m} = /O (VPM f(~(s)), wo — wp)ds

< Cremtiollwo = woll ([ fllo + 1V f I sup exp{arlly(s)[I”}).  (4.34)
se|0,
Combining the estimates (4.34) with (4.4), for any x € (0, ko], wo,w] €
Br(Y),f € CL(H) and M > 1,t > 0, we obtain that
| Pef (wo) — P f (wp)]
< Crnrollwo = wo | ([[flloe + 1V flloo exp{anT?}) + 2] fllP(© > M).

For any bounded and Lipschitz continuous function f on H, by the arguments
in [KPS10, Page 1431], there exists a sequence (f,,) satisfies (f,) C C{(H) and

limy, 00 frn(z) = f(2) pointwise. In addition, ||fnllcc < ||fllee and ||V falloo <

Lip(f), where Lip(f) = sup,, % Therefore, for any ¢t > 0, one has

|P, f (wo) — Py f(wp)] = Jim |P; fr(wo) — Prfr(wp)]
< lim [On,Mnono —whl| ([ falloo + 1V fulloo exp{anT?}) + 2[| fullP(© > M)}

< Crntolwo = woll (1 f oo + Lip(f) exp {arT?} + 2| f|P(© > M)
=J; + Js. (435)

For any € > 0, by (4.3), we can set a M > 0 such that J> < §. Obviously, there
exists a 6 > 0 such that for any wo, wy € By (Y) with ||wo — wpl| < 0, J1 < 5.
Combining these with (4.35), one arrives at that for any positive constants e, T,
there exists a d > 0, such that

[P, f(wo) — Pif(wg)| < e, Vt>0and wy,w, € Bg(Y) with |Jwy — wp| < 6.

This completes the proof of Proposition 1.4.

36



5 Proof of weak irreducibility

We start with the following lemma.

Lemma 5.1. For any T > 0, > 0 and non-zero reals numbers b;,1 € 2y, one
has

P( sup || Z biWi el <e)>po>0.
t€[0,T] €2,

where po = po(T, e, {bi}icz,) i a constant.

Proof. For sufficiently big constant M > 0, one sees that

P( sup || > bWieill <e)
t€[0,T] i€2,

> Pr(Sp < M)PY( sup || > biWiei| < &) >0,
te[0,M] i€2,

which completes the proof.

Now we are in position to give a proof of Proposition 1.5.

Proof. The proof of this proposition is the same as that in [EM01, Lemma 3.1].
For the reader’s convenience, we provide the proof here. Define v; = w; — ny,
where 7, = Ziezo biwgt e;, wy is the solution to (1.2) at time ¢. Then, v; satisfies

0
% =vA(v +m1) + B(Kwe, w) = vA(vg + 1) + B(Kwy, ve + 1¢)

Taking the L2-inner product of this equation with vy produces

1d

s—lol* = —vlIVul]? + wAn, v) + (B(Kwy, me), ve)
2 dt
< vVl + Cilloc| | Al + Cullvel [ Ane | 1w |11
= —v[[Vu? + Cullocll|Ane | + Cullvelll| Anellll (v + ) |
< =v|[Vuil? + Cullve|[ | Ane|l + Culloz | Anell[[ve]l + Culloe | Ane ¢ ]
v 4C? 4C?
< —§|\thl2 + 71||A77t|\2 + Cullve || Ane | + 71||A77t|\2|\77t|\27

where Cy; = Cy(v) is a constant. For any T, > 0, we define,

. v
AO,T) = 9= (9s)scpor) € D(0,T;; H) : sup [Ags|l <min{d, —-} 5.
s€[0,T) 40y

where A stands for the Laplacian operator. If n € Q'(§,T), one has

v, 4C% 2 4 2
[osl|* < Jlvol?e™ 2" + 71 v {min (5= 4—(1/31> + min (57 4—(1/31> }
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Let C and 7 be given as in the statement of Proposition 1.5. As ||wp|| < C, there
exists a 7" and a ¢ such that

or|| < % and § < g

Putting everything together, one has

[woll < C and n € A'(6,T) = [lwr|l < [Jvrll + [[nr]l < 7.

Combining this fact with Lemma 5.1, we complete the proof. O

A Proof of Lemma 2.2.

This section is organized as follows. In the subsection A.1, we make some
preparations. Then, we provide the proofs of (2.9)—(2.14) in subsection A.2, the
proof of (2.15) is given in subsection A.3.

A.1 Preparations

For k > 0,6 € (0,1] and £ € S, set

1 t+e
05 = —/ lsds + et,
€ Jt

and
0°=0°(0):==inf {t > 0: vt — 8Borl; > 1}.

Keeping in mind that £ is a cadlag increasing function from Rt to RT with
Lo =0, it is easy to see that the following lemma is valid.

Lemma A.1. For{ €S,
(i) €¢ :[0,00) = [0,00) is continuous and strictly increasing;
(i) for anyt >0, £ strictly decreases to {; as € decreases to 0.

With regard to stopping times ¢° and o, the following moment estimates
hold.

Lemma A.2. There exists a constant Ko > 0 such that, for any k € (0, K],
sup E¥* exp{10vo®} < C, (A1)
e€(0,1]

ErselOe < C,, (A.2)

where C; is a constant depending on k, v,{b;};cz,,Vs,d.
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Proof. We only give a proof for(A.1); the proof of (A.2) is similar. Let ¢, =
fooo (e160Bort _ 1)pyg(du). Then ¢, < oo for sufficiently small constant x. For
any n € N and € € (0,1). by the fact that e!60BorSe(t)—cxt — p160Borli—cit g
local martingale(c.f.[App09, Corollary 5.2.2]) and that ¢5, < £, 1. + en, we have

PHs(€: 0% (L) > n) < P (vn — 8Borkl;, < 1)

= PH (160Bgkl5, > 20vn — 20)

< P (160B okl se > (200 — 160Bgke)n — 20)

=P (160Boklyre — cu(n+e) > (200 — 160Boke — ¢ )n — 20 — cké)

< exp{—(20v — 160Boke — cx)n + 20 + cue}. (A.3)

By the Condition 1.2, one has lim,_,g ¢, = 0. Therefore, there exists a constant
ko > 0 such that

160Bok + ¢, < 10v, Vk € (0, Kol

For any k € (0, and € € (0, 1], by (A.3) and the above inequality, we conclude
that

[Fts g10vo® <1+ Z elOv(nJrl)]P)(o.a € (n,n+1])

n=0

<1+ Z et exp{—(20v — 160Boke — ¢ )n + 20 + e}
n=0

<14 exp{10v + 20 + ¢, } -
1 —exp{—10v 4 160Box + ¢ }

Q.

The proof is complete. O
For any « € (0, Kol, set
Si={feS:a'(f) < 0} (A4)

We have the following lemma.
Lemma A.3. P#s(Sy) = 1. And for any £ € Sy, the following statements hold.

(1) For any ¢ € (0,1), 0° < 0! < 00 and vo® — 8Bgrls. = 1;

(2) oF strictly decreases to o as € decreases to 0;

(8) L5c strictly decreases to L, as € decreases to 0;

(4) vo —8Bokl, =1;

(5) limsup,_, foUE e V(0" =) +8Bor(Loe —L) qp= < ¢,
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Proof. Lemma A.2 implies that P#s(S;) = 1.

By Lemma A.1 and the definition of o€, it is easy to see that (1) holds.
Moreover, for any ¢ € S1, o strictly decreases to a constant a as € decreases to
0. On the other hand, for any ¢ € (0, 1],

o°>a>o0. (A.5)
For any s < a, by the definition of ¢,
vs — 8Borls <1, Ve € (0,1].
Letting ¢ — 0, by Lemma A.1, we get
vs — 8Bkl < 1.

Hence o > a. Combining this with (A.5), we get (2).
Using Lemma A.1, (2), the definition of ¢, and the fact that ¢ is increasing
yields, it follows that for any ¢ € (0, 1],

gg < 6‘3 S 6‘35 S 6054,5 + EO’E.

Letting € — 0, by (2) and the right continuity of ¢, we get (3). Combining (1),
(2) and (3), one gets (4).

Combining (1) with the fact that for any s < o°, vs — 8Bgkls < 1, one
arrives at

g
lim sup/ e V(0" —5)+8Bor(loe 7e§)d€§

e—0 0
£

o
< limsup ele/ dl; <limsup ;. =/,,
0

e—0 e—0

completing the proof of (5).
The proof of Lemma A.3 is complete. O

Let Ho = span{ex : k € Zp} and D([0,00); Ho) be the space of all cadlag
functions taking values in Ho. Keeping in mind that d = |2y < oo, it is
well-known that, for any wg € H and g € D([0,00); Hg), there exists a unique
solution ¥ (wo, g) € C([0,00); H) N L% ([0,00); V) to the following PDE:

loc

o )t) = wo+v [ AW.o)(s) +0)ds
—|—/O B(K¥(wo,g)(s) + Kgs, ¥(wo, g)(s) + gs)ds.

Here V.={h € H : ||h|1 < cc}.
We denote nf = Q(Wer — Wee),m = QWe,,vf = W(wo, i) (), and v, =
U(wg,n)(t). It is easy to see that vy + n; is the unique solution wy to (1.2), i.e.,
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wy = v, + 1, and for any £ € S and € € (0,1], w§ := v§ + nf is the solution of
the following PDE:

t
wi = wo —|—/ [vAw; + B(Kwg, w)]ds + Q(Wee — Wis).
0

Recall S; introduced in (A.4). We have

Lemma A.4. For any £ € Sy and w € W, the following statements hold:

ot

lim efv(osfs)+8%gn(ff,5 722)”11)2”%(18
e—=0 Jg (AG)
:/ e—u(o—s)-i-S‘BOM(é(,—ZS)”ws”%ds7
0
and
lim |ws. — w,||* = 0. (A7)
e—0

Proof. To prove this lemma, we first need some a priori estimates for W.
By the chain rule and (2.2), there exists a constant C' = C(v) > 0 such that,
for any wo € H, g € D(]0,00); Hp) and t > 0,

19 (w0, )OI + v / 19 (wp, 9)(s)]2ds

t t t
< wol® + v / lg:]2ds + C / 1922l o, 9)(s) [2ds + C / 1922112 (o, 9)(s) | ds.

Applying the Gronwall lemma and using the fact that, for any o > 0, there
exists a constant C,, such that ||h|lo < Cullhl|, Yh € Ho, there exists a constant
C > 0 such that, for any 7" > 0,

T
sup II\I/(wo,g)(t)ll2+v/ W (wo, g)(s)|l7ds
t€[0,T] 0

., (A.8)
<C(lwolP+ [ (14 lgu[P)ds)ec 5041
0

For any g',¢> € D((0,00);Ho), put WH(t) = W(wo,g")(t) and (1) =
U (wp, g%)(t), simplifying the notation. Using similar arguments as above,

W (t) — (1) |1* + V/O [Wh(s) — W3(s)||ids
< g (s) — g°(s)[I3ds

—|—2/0 (B(KW(s) + Kgl, Ul(s) + gl) — B(KU?(s) + Kg2, V% (s) + g2), U'(s) — U?(s))ds
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- / g (s) — g(s) 13ds

+2 / (BUCY!(5) + Kb, W'(5) + 91) = BICY'(5) + Kgh WH(s) + 2), ' () = W2(s)ds
0

+2/ (BIKW! () + Kgq, U*(s) + g7) — BIKY?(s) + KgZ, U2 (s) + g2), T (s) — ¥*(s))ds

< v [ 196 - P ORas 40 [ 196) PO 6 + bl ) - o0
+c/ [0 (s) = W () + g2 ¥ () — W) s
+0 [ 166 = NI + g2 6) — )

< C(”si%pt 196+ 1) [ ') - ool
we [ 1+||w2<s>+g§||%)||w1<s> lds 5 [ 146 - W) las

Rearranging terms and using the Gronwall lemma, we arrive at, for any T' > 0,

v T
sup [0 = WO+ 5 [ 9 (s) - 90

te[0,T

. . (A.9)
<o+ sw 190 +allR) [ o) - slasexn {0 [ (141920 +a2l)as)

s€[0,T]

For any (w,¢) € W x S, from the definitions of 7 and 7, it is easy to see
that, for any T > 0,

sup sup ([l (w, Ol + [ (w, 0 ) € sup[lwill < 00, (A10)
€€(0,1] t€[0,T] t€[0,lr41+T)

and

T
lim 15 (w, £) — ne(w, £)

e—=0 Jg

|2dt = 0.

Combining the above two estimates with (A.8) and (A.9), there exists a constant
C dependent on [Jwo |, T, sup;eo ¢y, +77 [[We]| such that

T
sup (o |+ o ) .0
] 0

€€(0,1] Mtelo,T

T
(s ol [ ) o 0) <

tel0,T
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and
T
lim ( sup |lv§ — v|? +/ [lw; — wt||%dt) (w,?) = 0. (A.12)
€20 \¢el0,17] 0
Notice that, for any £ € S; and w € W,
[wge —ws|| < llvge = voll + (05 — nol

< lvge = voe | + llvos = vo | + (|15 = 70|l
< sup oy — vl 4 [lvee = voll + [QIWee. — Weg) — QW || (A13)
1

te[0,01]

Applying Lemmas A.1 and A.3, (A.11)—(A.13), and the fact that v, is continuous
in H, we deduce (A.6) and (A.7), completing the proof of Lemma A.4. O

We also have the following estimate on wy.

Lemma A.5. There exists a positive constant C which only depends on v, {b;};ez,,Vs
and d = |Zy| such that, for any k € (0,RKo],e € (0,1] and £ € Sy (see (A.4)),

B exp {KHU}; | — k|jwo|?e™vo T8Bortse

€

+ Vﬁ‘/o e—u(gi—s)+8‘30n(€§5 —£3) w§||%ds (A14)

_ B /o' e_V(o'E—S)-‘,-S%OK/(éZE —f‘z)dgi} <C.
0

Here Ko is a constant appeared in Lemma A.2.

Proof. Now we fix k € (0,Kgl,e € (0,1] and ¢ € S;.
Let v* be the inverse function of ¢¢. By a change of variable, for ¢ > (5,
Y = wse, t € [(5, 00) satisfies the following stochastic equation

t

YE =wo + / [VAYS + BKYS, YE)|Asds + QW — Wee). (A.15)
6

By Ito’s formula we have

dYF)? = =20 Y7345 dt + 2(Yy, QAWy) + Bodt,

and
d,{||}/ts||2€v'yff8%mct
= SBR[y Y| BAfdt + 26(YE, QAWy) + kDBodt]
+h|[YE|2er 7 TEBoRt (147 — 8B k) dt
< —1//@6”75_8‘30“”}@8”%?& 1 kBger Y —8Bort gy 4 2Heuvf—8‘30nt<}/t€,Qth>

—8%0%2 ”}/ts ||2€v'yff8%gntdt'
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Here we have used the inequality : ||h|l1 > ||h]|, Vh € H. Hence,

t

K||y;a||2+yﬁ‘/és —v(v—75)+8Bok(t—s) ||Y8||1’75
t (A.16)

— € _ E_AE _ ~
< /i||w0||26 V'YtJFS%OKt_'_,{%O/ e v(vs—vE)+8Bok(t S)dS—FMt,
£

where

t
Mt = Mf»a — 2,{/‘/ e_V('Yf_’Y‘:)+8§BUH(t—s) <YSE7 QdWS>
ZE
’ t
—8Bor? [ ||YE|2e (i 1) +8Bon(is) g
£

Next we prove that
E+Y exp{Mg(sTE} <C. (A.17)
Denote
t t
M, = 2/@/ (Y2, QdAWs), [M, M](s) :4230/-;2/ |YE%ds,
I IS
N(s) = M(s) — 20M, M)(s),  g{t,s) = ¢~ 2 8Bont=s)
With these notations, one has M, = fgs (t,s)dN(s). For any K > 0, by the
definition of ¢¢ and the fact that vo® — 8%0.‘%55 =1 (see (1) of Lemma A.3),
.

pr (Mgia > K) :P#W(/Z (=, s)AN(s) > K)

€
0

£ <
e e g e
— ]P;.,uw (efua' +8%m~c€ds / eu’ysf8%0nst(S) > K)
ZE
€

e,

= / ¢ETEBN (5) > k)
ZE
e

= / /i 8Borsq 1 (s)
ZE

.
_/ ¢2V1E—16Bors g —vai+8BorsqNf N (s) > eK)
¢

. Loe .
S prw (/ euys—S‘Bonde(S) _ / 621/’)’5 —lﬁ‘BDNSQe—ld[M, M](S) > EK)
o %

<exp{—4e'eK} = e 1K, (A.18)

In the first inequality, we have used the fact: for any s = £5(r < 0¢), —v7S +
8Boks = —vr+8Bokrls > —1. For the last inequality we have used the following
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fact (c.f. [App09, Theorem 5.2.9]):

o 0. )
PHw (/ eu’ysf8%0nde(S) _ g / e2v75716‘30nsd[M7 M](S) > ﬁ) < efaﬁ-

’ 2 Jus
The desired result (A.17) follows immediately from (A.18). The proof of (A.17)

is complete.

Now replacing the ¢ in (A.16) by ¢5., we obtain

o)

€
€

B [exp {52 4 v | 7 oD o s

€
L7 e

— € € - e e -
_’i||w0||26 vo +8Boklie K%O/ e v(o®—~5)+8Bok (L5 s)ds}:|
4

o
< E#w [exp {Mfia H .
Combining the above inequality with Y,z = wg., 'y§| =r, (A.17), and

—p€
s=L¢

€

£ o
/d5 e —v(o®—~v5)+8Bor(Lie —s) ||Yf||175d8 _/ 71/(0 —1)+8Bok(L5e — EE)stH d’l“,
P4 0

€
0

Loe o€
/ - e_y(g€_7§)+8‘30n(€ig —s)dS — / e—V(UE—r)+8‘BoH(€f,s —Zi)dgi,
J4 0

€
0

we obtain the desired result (A.14).
The proof of Lemma A.5 is complete.

A.2 Proof of (2.9)—(2.14).

(2.9) was already proved in Lemma A.2, and it obviously implies (2.10). We now
prove the inequalities (2.11) and (2.12) with k = 1, and it is straightforward to
extend it to the general case. (A.14), £y = 0, Fatou’s Lemma and Lemmas A.3
and A.4 imply that

. . . £ €
C > E*liminfexp 4 &l|ws.||? — kw7 T8Portoe
e—0 7
UE
_ e _ e pe
‘H//Q/ e v(0®—s)+8Bok(L5e e*)H’LUi”%dS
0
UE
_H%O/ efv(gffs)+8%(m(ff,57l§)d€§}
0
> —vo+8Bokll e

Hw LN e 2 _ 1 2
E exp{llgglfn||wag|| Ehir(l)nHon e
€

+liminfw<a/ e V(7T o) H8Bonlloe =6 || 4¢ | 2ds
0

e—0
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€

—limsupfi%o/ e_”(UE—S)JFS‘BO”(ffrE—fi)dfi}
0

e—0

Y]

R e T

—I—l/m/ e*"("*SHS%O"(l"*M||ws||fds — ﬁ%oﬁg}
0

B exp { o |2 = o 2
o
_H/H/ 67U(078)+8‘Boﬁ(lg*55)||ws||%ds_ H%oéa},
0

which gives the desired result (2.11).
In the above inequality, taking expectation under the probability measure
PHs | we get

B exp {2 —
o [Tt s wo(e,)}] < 0
0

which is (2.12).

We consider now (2.13) and only prove it for & = 0. Noticing that vo —
8Borl, = 1 (see (4) in Lemma A.3), using (2.12) with k = 1, there exists a
ko > 0 such that

Eexp {26|wo || — 26B0ls } < Cexp{2ke ™" ||wol*}, Yk € (0, ko).
Thus, combining (2.10), we have

E exp {li||wg||2} < (Eexp {2/{”’11)0”2 — 2/@%0&,})1/2(Eexp {2/{%060})1/2

< C’exp{lie_l||u)0||2}(IEexp{l/U})l/2 < C,. exp{/qe_1||w0||2}

which yields the desired result (2.13) for the case k = 0.
Following the arguments in the proof of [HMO06, (4.7)], also with the help of
(2.13), we arrive at (2.14).

A.3 Proof of (2.15).

Recall Sy introduced in (A.4). Fix any £ € Sy and recall Y introduced in (A.15).
By Ito’s formula,

1Y) +2vn /g Y 12 1 s du (A.19)
0

= flwoll? + 2n / Y2 2(YE, QW) +n / IVE 2728 du
0 0
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+2nn—1/||Y€|2"4Z bdu s > 5.

JEZo

Taking expectations with respect to P*¥ yields
S
e e T R I e
4

1
< ol + 3 sEpt]Eﬂwny;n?ucnt", Vs € [65,1].
ue |4,

Rearranging terms, we arrive at, for any ¢ > £3,

sup EP([YE[[*" < 2[fwol*™ + Cut™.
SE[LE,t]

Using (A.19) and the BDG inequality, we have

B sup V2|
SE[LE,t]

< JJwolf*” + 2nER Sup ‘/ Y22 ~2(Y;2, QdW,) | + Cp Euw/ [YE|22dr
1/2
< Jwol*™ + C, (Euw sup } ||Y8||2n 2(YE, QdW,) ) —i—Cn]E“W/ Y12 2dr
sE[Ls,t £ pr
1/2 t
< ||w0||2”_|_0n(E#W/ ||YTE||4n—2dT) +OHE#W/ ”YTs”Zn—sz
e o
n n— n 1/2 n— n
< ol + Co(flwoll ™2+ 22)% o Gl |21+ 27)
< Cu(L+0)wol*™ + Co(1 +17).

Using the fact that wi = Y2, we arrive at

E® sup [lw]”" =E* sup [[Y7|P" < Cu(L+ 6)lfwo | + Co (1+ (6)")-
s€(0,t] sE[€5,45]

y (A.12), Fatou’s lemma, (ii) of Lemma A.1 and
ws = (ws = ns) = (W5 = 15) +ws + (s —15) = vs — v+ wg + (s —15), Ve >0,
one has

E* sup ws]|*"
s€[0,t]

<C E“W[hmlnf sup [|wS|*" +liminf sup [vs — v<||*" + liminf sup |175—77§|2”}
=0 sel0,4] =0 sel0,4] =0 se0,4]

< Cp liminf E* sup [|wS|*" + Cy, im inf E*" sup (|ns*" + [n5|*")
=0 s€[0,1] e—=0 s€[0,4]
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< Cp(L+ L) |Jwol?™ + Cr (L + (£)™).

Since the above estimate holds for any fixed ¢ € Sy, ps(S1) = 1 (see Lemma
A.3) and since ¢ only depends on ¢ € S, we first replace the ¢ by o, and then
take expectations with respect to ug, to obtain

E sup |lws|*" < Cu(l+E*L,)||lwol*™ 4+ Cp (1 4+ E*(£5)")
s€0,0]

IN

O (1B (g ) ol + € (1 B (250) )

A

Cre(1 + [Jwo]*").

Here we have used the fact that £, < gZ&—(see (4) of Lemma A.3) and (2.9),
Chp,. is a constant depending on n, x and v, By.

The proof of (2.15) is complete.

B Proof of Proposition 3.5

We will prove Proposition 3.5 by contradiction.
Suppose that Proposition 3.5 were not true, then there exist sequences
{w(()k)} C Bp(R),{ex} € (0,1) and a positive number dy such that

lim ]P(Xwo N o €r) > dp > 0 and hm er = 0. (B.1)

k—o0 —00

Our aim is to find something which contradicts (B.1).
Since H is a Hilbert space, there exists a subsequence {wé"’“),k > 1} of

{w(()k), k > 1} such that w(()"’“) converges weakly to some w(()o) € H. We still denote

this subsequence by {wék), k> 1}. Let wgk) denote the solution of equation (1.2)

(k)

with w|i=0 = wy ' (k > 0). In the following equation

O Js 1€ — vATs 1€ — B(wy, Js4) = 0, (B.2)
Js,sg = 57

(k)

when w; is replaced by w,; ’, we denote its solution by Jg?f . We denote the

adjoint of Js(ﬁ) by ;t

Recall that for any M € N, Hy = {e; : j € Z2 and |j| < M}, Py denotes
the orthogonal projections from H onto Hjs and Qpu := u — Ppu,Vu € H. As
before, C' denotes a constant depending v, {b;} e z,, Vs, d, Cx denotes a constant
depending on R and v, {b;};cz,, Vs, d. The values of the constants may change
from line to line.

In what follows, we will give some estimates for |\PMw§k) — PMw§O)|| and
||QMw H in Lemma B.1, and for HJ(k) Jg)t)ﬂ\,s,t € (0,0] in Lemma B.2.
We finish the proof of Proposition 3.5 at the end of the section.
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Lemma B.1. For anyt >0, k € N and M > max{|j| : j € 20}, one has

k —vM? k
1Qarw®|? < e M| Qurwl® |2+

C /t (k) 14/3 1.\ 3/4 & (B.3)
Wy ds sup wg) 3
g () I 120s)™ sup )
and
t
k 0 4/3 4/3
1P — Pawf”|? < Covexp {C / (w137 + [w®13*)ds )
< sup (1+ [wd®|* + wl®|*) (B.4)
ref0,t]
k 0 1+t
X ||PMw(() ) _ PMw(() )||2 + Ml/Q]'

Proof. First, we give a proof of (B.3). By (2.2), one has
k) o (k k k k k
(B wi), @uu™) < CllQuw w2l

<
4 k k k
< J1QawiPIf + Clleof® [l |

Thus, in view of the equation (1.2), we obtain

20| QuwP |2 + (B(Kwi® , wi®), Qurw®)
k k k
M| Qurw|2dt + Cllwf® |1 w® | at.

k
d|lQarw™|?

IN

It follows that
t
e L o A R
0
< e M Qurug” |

t t
M2 (t—s 1/4 4/3 1 \3/4
o / e~ M=) gy VA ( / [ 3ds)** sup w® 2.
0 0 s€[0,1]

This completes the proof of (B.3).
Next, we will prove(B.4). One easily sees that

d[| Parwf™ — Pyrwf®||?
— —v|| Paw® — P |3dt (B.5)
+ (P = Parwy®, BKw®  wi®) = B(Kwl”  wi™)).
Clearly, we have

(Prw® — Pryw®, B(Kw®  w) — B(Kw”, w®))

= (PMw,gk) — Pngo), B(Ingk) - ngo),w,gk)»
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+<PMw§k) — PMw,EO), B(ngo),wgk) — w,@))
=11 + 5.

For the term Iy, we have
L < O|Pyw® — Pwa’nl/QnPMw““’ Parw® |[[wi®
+C|| Prrw® — Parwl” |1 |Qarwt® — Qs w<°>||||w<’“>||
h M M t t 11/2
v k 0 4/3
gl Parwy® = Pawi® |13 + Ol Parwy® — Parwl® | eof”]Y

IN

k
+C1Quw — Qw2 |wi™ |2 .
Obviously,
L < OPyw® = Py |11Quw — Qurw® w2

v k 0 k 0 0
< glPaw® = Pawl® |} + CllQarw™ — Qa7 [wf 1

Combining the estimates of I1,I> with (B.5),(B.3), taking into account the fact
that ||QMw((Jk)|| < R, we obtain

(R 4/3 s
1Pt — Paa®|[2 < [[Pagwl — Papw? |26 Jo 1w 1574
t
) 14/34
L CeC I P13 / 1Quwd® — Qurw® (w35 + w3} /5)ds

< || Pywl? — Payawl?||2eC S5 1w 17 ds

) 14/3 45 1/4
+CeC o w177 (/ 1Qarw® — Qprw® ||8d3)/

/ ) %ds)™* + / [ [4)as)**) sup (] + [0])

s€(0,t]
< eC s 1wI s py (P — Py g ||2

(k)|4/3 (0))14/3q
+ e Jo 1P A C IS sup (]| 4 )

s€[0,t]

t
( [l s g @ an? sw o)
0 s€[0,t]
1/4
o 1) sup ||12}ds> ,

which implies the desired result (B.4). O
Lemma B.2. For any 0 < s <t, ke N and £ € H with ||§|| = 1, one has

1€ = TQeI? < C sup [lw® — w2 € LUt IRl 3 ar

rels,t

where C' is a constant depending on v,{b;};cz,,Vs,d.
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Proof. By the equation (B.2), one easily sees that

AlIBe — 3Qel? < —vl|aBe — T Vel 2ar
(IR e~ Jﬁ?t)&,B(ijE’“’,Jﬁ’?s) B(kw®, JO)¢))dt
+(IMe — Q¢ Bca® e, w®) — Bica e, w!))dt

= I (t)dt + L(t)dt + Is(t)dt. (B.6)

For the terms I5(t), I3(t), we have

Lt) = (JHe— 10 Bicw® — kw®, J%)¢))
< Ollw™ —w|I178e = I el TE el
< Cllwy® —w@IPIIel , + 18— T8l
and
Lty = (JHe— e BIE e — KIS w) + BRI w —w®))
< ClwPl) e — 3elP?08 e — 1 Qely

+OJw® — w78 ~ Js?sn 17€]1
k O k O k)n4/3
||J<> JﬁtfnlwnJ” — €|

IN

0
+C||wt O121IDel3 .

Combining the above estimates of Iy, I3 with (B.6), we obtain
k 0
1787 € = Tel’?

t
t (R 4/3 r
<C sup [lw® —w®|?. Lol / TN 2 + 1T ] dr

rEls,t]

By Lemma 2.4, Holder’s inequality and using the fact that ||a||1/2 < |lallllall1,
we obtain the desired result.
o

Now we are in a position to complete the proof of Proposition 3.5.
With the help of Lemmas B.1, B.2, for any x > 0,7 € [£,0] and ¢ € H with
ol = 1, we have

1896 — JQ | < CeC I I OIS 09 _ o2
re[g,o]

< Cnexp {C [ (1 + ol )ds} sup 1+ [+ ol

rel0,0]

—uM?o k 0 1+0
x[e M /2—|—||PM’LU(())—PM’LU(())”Q—FMl/z}

o1



vk [° Co—s o
< [Coesp {55 [ (il + ol et rs2ont )

sup (1 0l + 4]
rel0,0]

Xexp{cﬁ/ e?V(U—s)—lﬁ‘Bon(Zd—fs)dS}
0

—vM?o k 0 1+o
><[e M /2+||PMw(())—PMw(())||2+M1/2}

(k)- X -Y(k,M), Vre [%,0]. (B.7)

(1]

Note that

(K86, = ((K00.e;) + (KE6 — KOo.c;))’

> —(K¢,e;)? —3(KF ¢ — K¢, e;)? > <K<0¢,eg> 3| K" ¢ — K|,

)

N)I)—l
| =

and recall that K, , is the adjoint of J, ,. It follows from (B.7) that
f KB ¢ e;)2dS, <
¢éga N Z / i °k
PG, Z/ ot i) dS; < e

+3d sup sup ||K§ka)¢ K(O Ll S)
PESa,n TE[0/2,0] ’

<P| inf 0 K©¢ e)2dS, < 2e, +2(k) - (6dS,X) - Y(k, M
< %1&’%23;0//; 9)6,¢;)245, < 25+ Z(h) - (645,X) - T(k, M)

Therefore, for any C > 0, we deduce that
f (KK ¢, e;)2dS, <
Pl 3 [ o eras <o

f (K%, e;)2dS, <2 C2Y(k, M
¢e1§aNZ/ o:€3) e+ CX (h, M)

P(Z(k) > C) + P(6dS, X > C) (B.8)
Letting k£ — oo in (B.8), by (B.1), one sees that

i (O 2 —vM20j2 11O
b <P ¢61§15NZ/ (K¢, e;)*dS, < C3(e + k)
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+supk20 E=(k)

c P(6dS,X > C) (B.9)

By Lemma 2.2 and the fact that sup,cy ||w((Jk)|| < $R, for any k € (0, ko], one
has sup, EZ(k) < co. In (B.9), first letting M — oo and then letting C — oo,
we conclude that

Jo <P | i . .

o< (a2 [ utoeras =0 (B.10)
J€Z0

On the other hand, since K, ( t) is the solution of equation (2.17) with w; issued

from wy|i—g = w((J ), (3.5) implies that
£ Le)2dS, = 0) —0.
(i, 3 [ oo

This is in conflict with (B.10) and the proof is complete.
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