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In sufficiently clean materials where electron-electron interactions are strong compared to
momentum-relaxing scattering processes, electron transport resembles the flow of a viscous fluid.
We study hydrodynamic electron transport across density interfaces (n-n junctions) in a 2DEG in
the Corbino geometry. From numerical simulations in COMSOL using realistic parameters, we show
that we can produce tunable viscous layers at the density interface by varying the density ratio of
charge carriers. We quantitatively explain this observation with simple analytic expressions together
with boundary conditions at the interface. We also show signatures of these viscous layers in the
magnetoresistance. Breaking down viscous and ohmic contributions, we find that when outer radial
region of the Corbino has higher charge density compared to the inner region, the viscous layers at
the interface serve to suppress the magneto-resistance produced by momentum-relaxing scattering.
Conversely, the magneto-resistance is enhanced when the inner region has higher density than the
outer. Our results add to the repertoire of techniques for engineering viscous electron flows, which
hold a promise for applications in future electronic devices.

I. INTRODUCTION

In lieu of the Drude flow in conventional conductors, elec-
trons flow like a viscous fluid when collisions among them
become the dominant scattering mechanism [1–4]. This
hydrodynamic regime has long remained elusive in ex-
periments due to want of fabrication of sufficiently clean
materials where electron-electron interactions are strong
compared to momentum-relaxing scattering. However,
the advent of ultra-high mobility 2D electron systems
has bridged this gap. Several effects of viscous electron
flow like negative non-local resistance [5, 6], electron-hole
drag [7], vorticity [8, 9], Poiseulle flow [10, 11], superbal-
listic conductance through point contacts [12–14], and vi-
olation of Widemann-Franz law [15–19] are predicted and
have also been observed. With a magnetic field, more un-
conventional effects like negative magneto-resistance [20–
25], Hall viscosity [26, 27] and giant anomalous photore-
sistivity [28–32] have been seen.

Two main geometries that have been used to study
electron transport at the mesoscopic scale are the Hall
bar and the Corbino ring. Unlike the Hall bar, the
Corbino does not have edges except for the source and
drain terminals. This distinctive feature makes it an at-
tractive setup to study bulk states in the quantum Hall
regime, since quantum Hall transport measurements in
the more conventional Hall bar geometry are dominated
by contribution from edge currents. In addition, due to
transverse Hall currents in a magnetic field, the Corbino
makes magneto-resistance a feasible probe to study hy-
drodynamics [33–36]. For example, Ref. [33] derives a
quadratic-in-field magneto resistance in a 2DEG Corbino

ring (e.g. in GaAs heterojunctions), and shows that an
applied electric field is expelled from the bulk of the
sample in spite of viscous dissipation. However, at low
carrier densities, due to non-vanishing temperature gra-
dients this is no longer true [37, 38]. Ref. [34] shows
how viscosity affects magneto-resistance in charge neutral
graphene Corbino ring assuming no-slip and no-stress
leads. Ref. [35] extends the study to low-density and the
high-density limiting cases and show that although the
simple expression of Ref. [33] is valid in the high-doping
Fermi liquid regime, additional contributions appear near
neutrality point. Thermoelectric coefficients calculated
in the ballistic limit [39] show signatures of transition
from quantum Hall transport to incoherent transport.
Since we are only concerned with the high charge density
transport regime, we use the formalism of Ref. [33].

The situation is very different in the Hall bar geometry,
where magneto resistance is either very weak (for small
fields) or is complicated by several factors such as change
in viscosity [20, 26], size of cyclotron orbit compared to
channel width [40, 41], edge currents [42], etc. Moreover,
the presence of edges introduces an unknown boundary
condition which effects the flow [43]. Recent efforts have
been made to mitigate this problem by making samples
with perfect-slip boundaries. This was done by inducing
an electron channel in a GaAs heterostructure by apply-
ing a bias from a top gate instead of chemical doping.
There, viscous effects were artificially re-introduced by
modifying the geometry of the channel [22], or by means
of magnetic modulation [44–46]. The Corbino geometry
provides an alternative solution to the problem of bound-
ary conditions by completely eliminating boundaries ex-
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FIG. 1. (a) Schematic of the setup considered in this paper. (b), (c) Colormap of tan θHall = v(r)/u(r) for uniform density
(n2/n1 = 1), and a density gradient n2/n1 = 2, obtained from a numerical simulation of the hydrodynamic equations (1) in
COMSOL. The Hall angle is expected to be approximately constant in the bulk where flow is Drude-like, and change towards
the contacts due to drag forces acting on the electrons due to viscous layers. A density gradient induces formation of additional
viscous layers at the interface, sensitive to the density gradient. (d) Radial profile (along a radial section of (c)) of tan θHall for
various outer densities n2. The interface induces a change in Hall angle in a region (shaded) approximately wide as the Gurzhi
length D on either side. The jump in Hall angle at the interface also increases for a higher density gradient.

cept for contacts at source and drain.

Experiments on the Corbino in graphene have directly
probed the existence of viscous layers localised at the in-
put and output terminals [47]. These layers are approx-
imately as wide as the ‘Gurzhi length’ D, that is, the
momentum diffusion length arising from combination of
momentum relaxing and momentum conserving e-e scat-
tering, and defined as D =

√
lmrlee/2. Due to the high

mobility of 2DESs with respect to the metallic leads, and
due to rough surfaces of the leads over microscopic length
scales, electron flow into and out of the sample is almost
always normal. In this Article, we explore the possibil-
ity of a situation where the injected velocity has a tun-
able tangential component, by considering electron flow
through two regions of different density (n-n junction) in
the Corbino geometry. Away from the boundaries, vis-
cous forces cease to operate and the electron transport
assumes Drude character. The Drude flow depends on
the charge density of carriers and is different on either
side of the junction. At a no-stress interface of two den-
sities, the tangential flow must be continuous, forcing the
velocity to reduce to a common value and leading to for-
mation of viscous layers. The strength of these layers is
directly proportional to the mismatch between the inter-
face velocity and the Drude velocity in the bulk. There-
fore, by tuning the gate bias, we can easily realise viscous
layers of varying lengths.

Manipulating viscous electron flow at mesoscopic
length scales is an actively pursued endeavour. Re-
cent works studying hydrodynamic flows through differ-
ent channel geometries [48] find that effective channel
width can change for different geometries while the mi-
croscopic scattering parameters are unaffected. Although
boundary conditions are never perfectly determined mi-
croscopically, a perfect no-slip boundary can be realised
over larger length scales by considering current flowing
through a series of constrictions [49]. Ref. [43] show that
slip length at the boundaries can vary with temperature
in a non-trivial way, while other studies [50] demonstrate

how non-linear hydrodynamic effects like Bernoulli effect,
Eckart streaming and Rayleigh streaming can be realised
in special scenarios. Our proposal of a gate-tunable vis-
cous layer could be used for easy electrical manipulation
of thermal dissipation at interfaces and adds to the grow-
ing repertoire of methods for viscous flow engineering.
The plan of the paper is as follows. In Sec. II, we show

the emergence of distinct viscous layers at a density in-
terface from numerical simulation of compressible Stokes
flow in COMSOL. We next present an analytical expla-
nation of this result in Sec. III using simple expressions
derived from the more complicated exact solution. We
show that we can piecewise model the flow and match
them at the interface by using simple interface condi-
tions, which we derive in Sec IV. Then, in Section V, we
show signatures of these viscous layers in the magneto
resistance. We also decompose the ohmic and viscous
contributions with analytic expressions. Finally, we end
with a summary of our findings in Section VI.

II. TUNABLE VISCOUS LAYERS AT DENSITY
INTERFACE

In this section, we present results from numerical sim-
ulation of hydrodynamic flow across a density gradient
and show that viscous layers can be induced at the inter-
face of different density regions. In the parameter win-
dow favouring hydrodynamic regime of transport, the lo-
cal conservation laws of particle number and momentum
which govern the electron flow take the form of the equa-
tion of continuity and the Stokes equation [22]

∇ · (nu) = 0 (1a)

ne (E+ u×B)+∇ · σ − m∗n

τ
u = 0 (1b)

where u is the macroscopic velocity of fluid elements,

σ = η
[
∇⊗ u+ (∇⊗ u)

T − (∇ · u) I
]
is the shear stress

tensor. We have neglected pressure gradients because,



3

Parameter Description Value Parameter Description Value

n1 charge carrier density 2 × 1011cm−2 m∗ effective electron mass 0.067me = 6.1 × 10−32kg

B Applied magnetic field 20mT lee e-e scattering length for n = n1 300nm

µ mobility 20 × 106cm2/V · s lmr momentum-relaxing scattering length 14.8µm

D1 Gurzhi length for n = n1 1.05µm 2d width of interface 0.2D1 = 210nm

r1 radius of inner contact 4D1 = 4.2µm r2 radius of outer contact 15D1 = 15.8µm

TABLE I. Value of parameters of 2DEG used for simulation of hydrodynamic flow.

assuming the ‘gradual channel approximation’, they re-
sult in a negligible correction to the capacitance between
the 2DEG and the gates, and can be absorbed into the
electric potential. The bulk viscosity of electrons is con-
sidered negligible [22, 51]. Equation (1) is supplemented
by boundary conditions, which are determined by the
magnitude and direction of current flowing in and out of
the 2DEG at the inner and outer electrodes.

We also omitted the nonlinear convective derivative
(Navier term) u ·∇u on account of the very low Reynolds
number (< 0.1) in the electron fluid. At temperatures
when hydrodynamic effects become prominent, thermal
motion of electrons become sufficiently strong that effects
of Landau quantization are negligible. Furthermore, the
Hall viscosity compares to the shear viscosity by a factor
of 2ωcτee [20]. From values in Table I, this is ≈ 0.16,
which we assume is small and therefore neglect Hall vis-
cosity.

For the case of homogeneous charge density and as-
suming azimuthal symmetry, with the convention u =

ur̂+ vϕ̂, the exact solution of (1) is given by [38, 52]

u(r) = u1r1/r (2a)

v (r) = c1I1 (r/D) + c2K1 (r/D)− ωcτu1r1/r (2b)

where ωc = eB/m∗ is the cyclotron frequency, D =
√
ντ

is the Gurzhi length, I1,K1 are first-order modified Bessel
functions, c1, c2 are constants determined by fitting to
boundary conditions, and u1 = u (r1) is the input radial
velocity.

Comparing this with the non-viscous, simple Drude
solution

vohm (r) = −ωcτu1
r1
r

(3)

we can see that viscosity conspires with momentum-
relaxing scattering in the form of the Gurzhi length to
affect the tangential velocity v. A simple way to high-
light this effect is to calculate the local angle between the
flow velocity and the radial vector, known as the Hall an-
gle: tan θHall = v(r)/u(r). For Drude flow (Eq. (3)), this
is constant, while viscous terms in Eq. (2) cause devi-
ations from it. At the source and drain, where flow is
approximately normal to the surface of the leads, the
Hall angle is zero, therefore, viscous layers develop near
these terminals to accelerate the tangential flow. The ap-
pearance of these viscous layers has already been shown
in a Corbino sample with graphene by plotting the Hall
angle profile [47].

In our case, we consider a non-uniform density profile
n(r) varying over a relatively small length scale d ≪ D
at an interface at r = r⋆. In a gated junction in GaAs
quantum wells, the density interface is expected to have a
width d ≈ 100 nm−150 nm. On solving the electrostatic
potential due to the gates, we find the density varies as

n(r) =
n1 + n2

2
+

n2 − n1

2
tanh([r − r⋆]/d) (4)

which interpolates between the two regions r < r⋆ and
r > r⋆ with densities n1, n2 respectively.
Given this density profile, we solve the hydrodynamic

equations (1) in the numerical solver COMSOL, supple-
mented by no-slip conditions at the source and drain.
We assume a density gradient in Eq. (4) that smoothly
connects the two constant density regions over a charac-
teristic length of d = 0.1D ≈ 100 nm. Such a density
setup can be created by using a dual gate architecture
with top and bottom gates [53]. We assume Fermi-liquid
behaviour of electrons with respect to density, i.e, the e-e
scattering rate goes as τ−1

ee ∝ 1/EF ∝ 1/n. Also, given
the high mobility of 2DEG, we assume the momentum-
relaxing scattering is limited by phonons and not by dis-
order, therefore, τ is independent of n [22, 54–56]. The
Gurzhi length then varies as D ∝ n. At hydrodynamic
temperatures lee ∼ n [22] or even stronger, therefore
qualitativelyD ∼ n holds for a large range of parameters.
We have assumed an electron-electron scattering length
lee = 300nm at n1 = 2×1011cm−2, which corresponds to
a temperature T = 20K in 2DEG in GaAs/AlGaAs [22].
A summary of the values of parameters is given in Table
I.
In Fig. (1), we plot the Hall angle profile for uni-

form density and a finite density gradient n2 = 2n1. We
clearly see a change in the Hall angle near the density
interface, indicating the formation of viscous layers. We
also show the radial profile of tan θHall for different den-
sity gradients. We find that a larger gradient causes a
greater change in Hall angle, thereby creating stronger
viscous layers.

III. ANALYTIC DERIVATION OF TUNABLE
VISCOUS LAYERS

The hydrodynamic equations (1) for homogeneous
charge density are solved by Eqs. (2). This form, al-
though known in literature, is very non-intuitive. We
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show in appendix A that it can be approximated by the
much simpler expression

v (r) = (ωcτu1 + v1)

√
r1
r
e−(r−r1)/D − ωcτu1

r1
r

+ (ωcτu2 + v2)

√
r2
r
e−(r2−r)/D, r2 > r1 ≳ D

(5)

where r1, r2 are the radii of the inner and outer contacts.
This shows that there are two viscous layers exponen-
tially localized over a length D at the inner and outer
terminals at r1, r2, and a Drude contribution which dom-
inates in the bulk r1+D ≲ r ≲ r2−D. Surprisingly, if the
injected velocity v1 matches the non-viscous Drude value
vohm(r1) in (3), Eq. (5) predicts that the viscous layers
disappear completely. As noted earlier, metal-2DEG in-
terfaces are almost always no-slip (v1, v2 ≈ 0), so this
situation is never realized.

For flow through a density gradient, the continu-
ity equation constrains the radial velocity as u(r) =
n1r1u1/n(r)r. The bulk ohmic velocity v ∼ −ωcτu(r) is
therefore discontinuous at the interface, while the bound-
ary condition (10) derived in the next section states that
v must be continuous. Therefore, viscous layers must
develop at the interface at r⋆ to force v to a common
value. Moreover, the viscous dissipation in these layers
is proportional to the mismatch between the Drude ve-
locity in the bulk and the interface velocity. By tuning
the density ratio, we can tune this mismatch and thereby
produce viscous layers of varying strengths.

In Fig (2), we plot the velocity profile as a function of
the radial distance r using the fit solution

v (r) = (ωcτu1 + v1)

√
r1
r
e−(r−r1)/D1 − ωcτu (r)

+ vint (r) + (ωcτu2 + v2)

√
r2
r
e−(r2−r)/D2 (6)

where the velocity near the interface (u⋆ ≡ u(r⋆ − d) =
u1r1/r⋆)

vint (r) =

{
(ωcτu⋆ + v⋆)

√
r⋆
r e

−(r⋆−r)/D1 r < r⋆(
ωcτu⋆

n1

n2
+ v⋆

)√
r⋆
r e

−(r−r⋆)/D2 r > r⋆

We support this result with a numerical simulation of
the Stokes flow in COMSOL. As it can be seen, our ap-
proximate solution bears excellent agreement with the
exact result. Moreover, from boundary condition (9), we
can equate the off-diagonal stress tensor σrϕ at r⋆ to get
the common velocity v⋆.

− v⋆
ωcτu⋆

=
1 + 2ρ⋆ + 2ρ⋆n− n2

−3 + 2ρ⋆ + 2ρ⋆n
2 + 3n3 (7)

where ρ⋆ = r⋆/D1 and n = n2/n1. A plot of v⋆ vs n
is also shown. Numerical simulation of the flow across
a smooth density gradient of width d ≪ D produces

(a)

4 10 15
0

v
*

0.3

0.6

COMSOL
Analytic

(b)

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

COMSOL
Analytic

FIG. 2. (a) Plot of tangential flow velocity as function of ra-
dial distance from eq. (6). Numerical simulation of Eq. (1)
using COMSOL with smooth density gradient as in Eq. (4)
with d = 0.1D1 ∼ 100nm shows that the piecewise analytical
solution with interface conditions approximates the flow very
well. Viscous layers approximately wide as the Gurzhi length
D act near the input, output terminals and at the interface
to match the bulk Ohmic velocity to flow at the boundaries.
Tuning the density ratio changes the tangential velocity at
the interface, v⋆, which, in turn modulates the strength of
viscous layers. (b) Velocity at interface as function of density
ratio, obtained using analytic solution (6) and using boundary
conditions (9), (10). v⋆ can be made to vary by a factor of 3
by varying n2/n1 over experimentally feasible ranges. COM-
SOL simulation of the Stokes flow with smooth interface gives
identical values of v⋆ and verifies that our interface conditions
are accurate.

very similar results to the piece wise analytical solution
matched with interface conditions.
Thus, we see that by changing the density ratio, we

can tune the velocity v⋆ at the interface, by which we
can control the appearance of viscous layers. This also
has implications in the electric resistance, as we explore
in Section V.

IV. BOUNDARY CONDITIONS OF FLOW AT
INTERFACE

We derive the boundary conditions on which our pre-
vious results are based. We consider a sharp interface
between two regions of densities n1 and n2. By sharp,
it is implied that the variation of density is over length
d much smaller than the dimensions of the sample, but
larger than the Fermi wavelength. To derive boundary
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conditions, we integrate the equations of flow (1a), (1b)
over a patch with faces parallel to the interface. Because
of the ϕ symmetry of the system, this is the same as in-
tegrating the equations from r⋆ − d to r⋆ + d, where 2d
is the thickness of the interface.

For the continuity equation,∫ r⋆+d

r⋆−d

dr ∂r (rnu) = 0

The radial velocity is therefore discontinuous, as

(nu)
∣∣r⋆+d

r⋆−d
= 0 (8)

Integrating the tangential component of (1b),

−eB

∫ r⋆+d

r⋆−d

rdr nu+

∫ r⋆+d

r⋆−d

dr
∂r

(
r2σrϕ

)
r

−m⋆

τ

∫ r⋆+d

r⋆−d

rdr nv = 0

From the continuity equation, r nu = const, so, in the
limit of small d, the first term gives a vanishing contri-
bution. Similarly, assuming the tangential flow v does
not diverge at the interface, the third term contributes
negligibly in limit of small d. Therefore,

0 ≈ 1

r⋆

∫ r⋆+d

r⋆−d

dr ∂r
(
r2σrϕ

)
=

1

r⋆

(
r2σrϕ

) ∣∣∣∣r⋆+d

r⋆−d

In other words, the off-diagonal stress tensor, σrϕ, is con-
tinuous at the interface:

σrϕ

∣∣r⋆+d

r⋆−d
= 0 (9)

Given σrϕ = r∂r (v/r), this implies that the tangential
flow velocity v is also continuous.

v
∣∣r⋆+d

r⋆−d
= 0 (10)

Multiplying the radial component of (1b) by u and
integrating,

−e

∫ r⋆+d

r⋆−d

rdr nu∂rΦ+ eB

∫ r⋆+d

r⋆−d

rdr nuv

+

∫ r⋆+d

r⋆−d

dr
u

r
∂r

(
r2σrr

)
− m∗

τ

∫ r⋆+d

r⋆−d

rdr nu2 = 0

Using the fact that rnu = I/2πe = const across the
interface, as before, we find that the terms proportional
to B, τ−1 have a vanishing contribution in the limit of
small d. The net condition reduces to

Φ
∣∣r⋆−d

r⋆+d
× I

2π
= (ruσrr)

∣∣∣∣r⋆−d

r⋆+d

+

∫ r⋆+d

r⋆−d

r dr
σ2
rr

η
(11)

where integration by parts has been used for the right
hand side. Given σrr = ηr∂r (u/r), we find

(ruσrr)

∣∣∣∣r⋆−d

r⋆+d

=

(
I

2πe

)2
2

r2⋆

(
η2
n2
2

− η1
n2
1

)
(12)

Together with potential jump at the inner and outer
contacts, this covers viscous dissipation in the homoge-
neous regions. The remaining term in Eq. (11) is just
the viscous dissipation due to compressive flow at the in-
terface. Neglecting derivative of r compared to n at the
interface,∫ r⋆+d

r⋆−d

r dr
σ2
rr

η
=

(
I

2πe

)2 ∫
dr r3η

(
d

dr

1

nr2

)2

≈
(

I

2πe

)2 ∫
η

n4r

(
dn

dr

)2

dr

Finally, in the limit d → 0, we can approximate(
dn

dr

)2

=

(
∆n

2d

)2

sech4
(
r − r⋆

d

)
≈ (∆n)

2

3d
δ (r − r⋆)

(13)

Using this in the integral for viscous dissipation, the
total potential drop at the interface is

−∆Φint

I
=

η2

π (n2e)
2
r2⋆

− η1

π (n1e)
2
r2⋆

+
η⋆

π (n⋆e)
2

1

6r⋆d

(
∆n

n⋆

)2

, (14)

where ∆n = n2 − n1 is the difference in densities, n⋆ =
(n1 + n2)/2 is the density in the middle of the junction,
and η⋆ is the corresponding shear viscosity.
Eqs. (8), (9), (10) and (14) are the required boundary

conditions of the problem.

V. SIGNATURE OF VISCOUS LAYERS IN
MAGNETORESISTANCE

In Fig (3), we plot the magneto-resistance ∆R =
R (B) − R (0) vs. n2/n1, calculated numerically for a
high mobility µ = 2 × 106cm2/V · s and a low mobility
µ = 2000 cm2/V · s Corbino ring. Assuming a ultra-
high mobility sample where momentum-relaxing scatter-
ing is due to phonons only, the mobility should be close
to our assumed high mobility value at T ≈ 20K [22]. It
must be noted that in the Corbino, voltage applied di-
vided by current yields the inverse magneto-conductance
1/G (B), which is not equal to the magneto-resistance
R (B) as the conductivity tensor in a magnetic field is
non-diagonal. However, in the following, we use in-
verse magneto-conductance and magneto-resistance in-
terchangeably for convenience.
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FIG. 3. (a) Scaled magnetoresistance [R(B) −R(0)] /(RDru
1 ω2

cτ
2) with density ratio. The circles are numerical simulation values

from COMSOL, obtained by calculating the potential difference between inner and outer electrodes. The red solid line is an
analytical plot of sum of viscous and ohmic dissipation (see eq. (16)). For non-viscous flow, scaled magneto resistance for
different mobilities collapse onto a single curve (the Ohmic limit, eq. (15)). For high-mobility sample, viscous layers at the
terminals and at interface suppress magnetoresistance (red curve). x axis is set to log scale to give equal emphasis to the
cases n2 > n1 and n2 < n1. (b) Resistance due to viscous dissipation, calculated from COMSOL and from analytic solution
(6) (expression in table II). Because viscosity is proportional to density, viscous dissipation goes up with n2/n1. At very high
n2, velocity gradient in the bulk is low, resulting in a decrease in viscous resistance. The opposite happens for very low n2.
(c) Resistance due to Ohmic dissipation. In the bulk, the magnitude of current density, |J | ∼ J in(1 + ω2

cτ
2) is approximately

constant, so the ohmic resistance per unit area Rohm = J2/µne goes down monotonically with n2.

For non-viscous flow, described by the Drude equation,
the resistance for the density junction is simply

∆Rohm = (ωcτ)
2 RDru

1

2π

[
ln

(
r⋆
r1

)
+

n1

n2
ln

(
r2
r⋆

)]
(15)

where the Drude resistivity RDru
1 = m∗/n1e

2τ = 15.3Ω
for values of parameters in Table I. When scaled by
(ωcτ)

2
RDru

1 (= 244Ω), the magneto resistance vs n2/n1

for samples with different mobility should collapse onto
a single curve. This is clearly reflected in the result for
the low mobility simulation in Fig (3). However, we find
that the presence of viscous layers serve to suppress this
magneto-resistance. This is counter intuitive, given that
viscous dissipation increases, but by decelerating the ve-
locity at the interface, the viscous layers reduce the ohmic
dissipation as well.

To describe this analytically, we start with the power
dissipation for hydrodynamic flow:

I∆Φbulk+

∮
u ·σ ·dS =

1

τ

∫
m∗nu2dV +

∫
σ2

2η
dV (16)

The first term on the left is the rate of work done by
the electric potential to drive the current, while the sec-
ond term is the rate of work done against the boundary
stress. The energy provided by these terms are dissipated
by Ohmic and viscous forces, described by the terms on
the right hand side. The importance of boundary stress
is apparent if we consider the particular case of pure ra-
dial flow with no ohmic dissipation [33]. It can be shown
that in this case, the potential drop ∆Φbulk = 0, whereas
power dissipation by viscous forces is finite. The only
way the dissipated power can be compensated is by the
boundary term on the left hand side. Here, we expand

this to a broader framework involving the effect of tan-
gential velocity (caused by magnetic field) and effect of
disorder.
When B = 0, the flow is radial and the viscous and

ohmic dissipation are decoupled in the electric resistance.
By solving the Stokes equation, we find

R (0) = Rvis (0) +Rohm (0) (17)

Rvis (0) =
η1

π (n1e)
2

1

r21
− η2

π (n2e)
2

1

r22
+Rvis,int

Rohm (0) =
RDru

1

2π
ln

r⋆
r1

+
RDru

2

2π
ln

r2
r⋆

The first term in Rvis(0) is due to the potential drop at
the inner lead, the second term is from the outer lead
and Rvis,int is due to the potential difference at the in-
terface, determined by Eq. (14). This energy is dissi-
pated by viscous forces in the regions of homogeneous
charge density and due to compressive flow at the inter-
face. For parameters in Table I and n2 = 3n1, we find
the boundary resistance at the inner and outer leads is
0.24Ω while the resistance arising due to potential jump
at the interface is 1.76Ω, i.e, the total viscous resistance is
Rvis(0) = 2.0Ω. On the other hand, the zero-field ohmic
dissipation Rohm(0) is 2.6Ω. This conforms well with nu-
merical values of viscous and ohmic dissipation (in Eq.
(16)) from our COMSOL simulation (2.3Ω and 2.6Ω re-
spectively).
A magnetic field couples the viscous and ohmic dissi-

pation in the electric potential and writing an analyti-
cal expression for resistance becomes difficult. However,
based on our simplified solution (6), we can still derive
approximate analytic expressions, as summarised in Ta-
ble II. We find that the magnetic field contribution is
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∆R (B) Viscous Ohmic

bulk (ωcτ)2 ×Rvis (0) (ωcτ)2 ×Rohm (0)

bdy layer

η1(ωcτ)
2

π(n1e)
2

[
I1 +

α2
⋆−

4r⋆D1
+

2α⋆−
r2⋆

]
+ η2(ωcτ)

2

π(n2e)
2

[(
α2
⋆+

4r⋆
+

α2
2

4r2

)
1

D2
+

2α⋆+

r2⋆
+ 2α2

r22

] (ωcτ)
2

2π
×

[
RDru

1 D1

(
β1
r1

+
β∗−
r∗

)
+RDru

2 D2

(
β∗+
r∗

+ β2
r2

)]
TABLE II. Magneto resistance due to bulk ohmic flow and due to viscous layers, using approximate solution (6). Notation: If

ṽi = − v(ri)
u(ri)ωcτ

, i = 1, 2 for the inner and outer contacts, respectively, and ṽ⋆± = − v⋆
u(r⋆±d)ωcτ

, then α1 = (ṽ1 − 1)
(

1 + 3D1
2r1

)
,

α2 = (ṽ2 − 1)
(

1 − 3D2
2r2

)
, α⋆∓ = (ṽ⋆∓ − 1)

(
1 ± 3D1

2r⋆

)
, βi = 1

2
(ṽi − 1) + 2 (ṽi − 1)2, i = 1, 2, ⋆±. ṽ1, ṽ2 = 0 in our simulations,

ṽ⋆ is given by Eq. (7). The expression for I1 is given in Eq. (B1) in appendix.

proportional to (ωcτ)
2 = 16 and is therefore larger than

the zero-field resistance (7.15Ω for viscous and 19.2Ω for
ohmic dissipation, from COMSOL). From our simplified
expressions, we can quantitatively break up the power
dissipation into spatially localized channels. From inner
to outer, they are: (i) boundary resistance at the inner
lead due to viscous stresses acting on radial flow, (ii)
resistance from viscous layer located ∼ D1 from the in-
ner lead, arising due to tangential velocity, (iii) potential
drop in bulk, primarily due to ohmic scattering, (iv) resis-
tance from viscous layers near the density interface, due
to tangential velocity, (v) viscous dissipation due to ra-
dial compressive flow at the interface, (vi) bulk resistance
due to ohmic scattering in the outer region, followed by
the outer viscous layer and the boundary resistance at
the outer lead.

Our expressions in Table II allows us to separately
calculate the contributions to the total resistance from
the different viscous layers, something that would not be
possible from either a global measurement or a numeri-
cal simulation which probes the total voltage drop and
current across the entire device. In Fig (4), we plot the
dissipation from the expressions in Table II. We find that
for n2 > n1, the net contribution from the interface vis-
cous layers is negative, while for n2 < n1, it is positive.
A heuristic explanation can be given as follows. Because
viscosity is proportional to density, near n2/n1 = 1, vis-
cous dissipation at interface layers increases with n2. For
very high densities, however, the velocity gradients in
these layers is small, resulting in decrease in dissipation.
The converse happens when n2 < n1. On the other hand,
the Ohmic dissipation, which goes as n|u|2, drops with
increasing density because the velocity of charge carriers
decreases. For n2/n1 < 1, the increase in |u| due to de-
crease in n saturates, and the Ohmic dissipation starts to
decrease due to decrease in n2. The Ohmic contribution
dominates over the viscous one, therefore, the net contri-
bution to magneto resistance from the viscous layers is
negative when n2/n1 > 1 and positive when n2/n1 < 1.

0.33 1 3
-2.5

-2

-1.5

-1

-0.5

0

0.5
10-2

Total
Viscous
Ohmic

FIG. 4. Viscous, ohmic and total contribution to magne-
toresistance due to viscous layers at interface, obtained from
analytic expressions in table II. Negative values indicate that
the viscous layers decrease magneto resistance arising from
momentum relaxing scattering. Because viscosity is propor-
tional to density, viscous dissipation increases with n2 near
n2/n1 = 1. For high densities, velocity gradients in the vis-
cous layers become small, therefore, viscous dissipation de-
creases. The opposite is true for very small n2/n1. Also
because the viscous layers decelerate the flow more at the in-
terface when n2/n1 is large, the ohmic dissipation, which is
proportional to n|u|2, decreases. For n2/n1 < 1, the opposite
should be true, however, at very low n2/n1, the decrease in
n becomes the overriding factor in ohmic dissipation, and the
ohmic contribution starts to fall.

VI. SUMMARY

We have studied hydrodynamic electron flow across
density junctions in the Corbino geometry. Starting from
the Stokes and continuity equations, we have derived
boundary conditions of flow across the interface. Using
these conditions, we have shown that we can make tun-
able viscous layers at the interface by varying the density
ratio of the junction. We have also calculated the viscous
and Ohmic dissipations by these viscous layers and we
have found opposing behaviour when electrons flow from
regions of lower or higher density to the other.
Density modulation in Corbino using top gates have

been done in experiments [53]. Also, by using temper-
ature as a tuning parameter, we can smoothly switch
from the ballistic to hydrodynamic regimes. It would be
an interesting problem to address the transport charac-
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teristics at this crossover as Ref. [12] did for point con-
tacts. Study of thermal transport due to viscous layers
is another possible avenue of investigation, especially for
sample near charge neutrality [34, 35]. Additionally, one
could thread a magnetic flux through the Corbino like in
the quantum Hall setup and study its effect on transport,
as in Ref. [36]. Therefore, our results presented in this
paper open up possibilities for exploring novel transport
phenomena in the Corbino geometry, and in general in
the field of viscous electronic engineering.
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Appendix A: Derivation of approximate solution of
Stokes flow

The exact solution of Stokes equation (1b) is given by
(2). Here, we derive the simplified form (5). Assuming
r1, r2 ≳ D, we approximate the Bessel functions appear-
ing in the solution by their asymptotic forms. K1 is a
decreasing function, hence its contribution towards the
outer boundary is small, i.e,

v
∣∣
r→r2

≈ c1I1(r/D) + vohm(r) ≈ c1
er/D√
2πr/D

+ vohm(r)

Fitting this to the output flow at r2,

v
∣∣
r→r2

≈ (ωcτu2 + v2)

√
r2
r
e−(r2−r)/D − ωcτ

u2r2
r

We find that viscous correction to the Ohmic flow pre-
dominates in a region of width ≈ D from the outer
boundary.

Similarly, because I1 is an increasing function of r, and
given that inner and outer boundaries are largely sepa-
rated, we expect the relative contribution of I1 towards
inner boundary is small.

v
∣∣
r→r1

≈ c2K1(r/D)+vohm(r) ≈ c2

√
πD

2r
e−r/D+vohm(r)

Fitting to input flow at r1:

v
∣∣
r→r1

≈ (ωcτu1 + v1)

√
r1
r
e−(r−r1)/D − ωcτ

u1r1
r

Stitching these together in (2), we get the required
expression.

Although the above approximations hold for D ≲ r1,
a similar approach can be made for r1 ≲ D (r2 large).
This situation, seemingly impractical, is now a possibility
with the fabrication of ultra-clean semiconductor hetero-
junctions. In recent experiments, mobilities as high as
50 × 106cm2/V · s have been reached [57], for which the
Gurzhi length is of the order of 10µm. To simplify the
Stokes solution, we assume a hypothetical interface at
r⋆ = r1 + D and divide the solution into two regions.
The outer region, similar to before, has the form

vout ≈ (ωcτu⋆ + v⋆)

√
r⋆
r
e−(r−r⋆)/D − ωcτ

u1r1
r

+ (ωcτu2 + v2)

√
r2
r
e−(r2−r)/D

(A1)

For the inner region r1 < r < r⋆, we make small-
argument expansion of the Bessel functions in the exact
solution (2):

vin = A
r

r1
+A′ r1

r
+A′ r1

2
r ln

r

r1
+O(r2/D2)

where coefficients A,A′ have been suitably defined to im-
pose boundary conditions. Matching the flow at the in-
put terminal,

vin = (v1 −A)
r1
r

+A
r

r1
+

r1
2D2

(v1 −A+ ωcτu1) r ln
r

r1
(A2)

The remaining unknown A can be determined numeri-
cally by imposing continuity of vorticity at r⋆. The com-
plete solution (A1), (A2) is plotted in Fig (5) for the
hypothetical case of different injected tangential veloci-
ties. The approximate analytic solution is also compared
with the exact solution (2).

0.1 1 10
0

0.05

0.1

0.15

0.2

0 0.1 0.2

FIG. 5. Approximate solution of Stokes flow (circles) for dif-
ferent injected velocities when r1 ≲ D. Solid lines represent
the exact solution
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Appendix B: Derivation of magnetoresistance
expressions in Table II

1. Ohmic dissipation

From the power budget equation (16), the Ohmic
power dissipation is

P ohm = 2πm∗τ−1

∫
rn

(
u2 + v2

)
dr

First, let us consider homogeneous charge density. The
radial component is simply u = u1r1/r, hence, the cor-
responding contribution to P ohm is

P ohm,r = I2
RDru

2π
ln

r2
r1

where the total current I = 2πr1neu1 and RDru =
m∗/ne2τ .

From approximate solution (5), we can split the tan-
gential velocity into a bulk ohmic contribution and a
boundary contribution as

v = vohm + vbdy

where vbdy ∝ e−(r−r1)/D near r1 and vbdy ∝ e−(r2−r)/D

near r2. From this, the tangential flow contribution to
P ohm is

P ohm,t =
2πm∗n

τ

{∫
r
(
vohm

)2
dr

+

∫
r
[
2vohmvbdy +

(
vbdy

)2]
dr

}

The first term, which is an ohmic contribution and comes
from the bulk, is:

P ohm,t

∣∣∣∣
bulk

= I2 (ωcτ)
2 RDru

2π
ln

r2
r1

= (ωcτ)
2
P ohm,r = (ωcτ)

2
P ohm

∣∣∣∣
B=0

The remaining contribution, coming from the viscous
boundary layers, is

P ohm,t

∣∣∣∣
inner bdy

× τ

2πm∗n

= −2ωcτu1r1 (v1 + ωcτu1)

∫ ∞

r1

e−(r−r1)/Ddr

+ r1 (v1 + ωcτu1)
2
∫ ∞

r1

e−2(r−r1)/Ddr

= (ωcτu1)
2
r1D

{
2 (ṽ1 − 1) +

1

2
(ṽ1 − 1)

2

}

with the notation ṽ1 = −v1/ωcτu1. An exactly similar
calculation gives

P ohm,t

∣∣∣∣
outer bdy

× τ

2πm∗n

= (ωcτu2)
2
r2D

{
2 (ṽ2 − 1) +

1

2
(ṽ2 − 1)

2

}
with u2 = u (r2) = u1r1/r2, and ṽ2 = −v2/ωcτu2.
The generalization to a system with two different den-

sities is straightforward: the power dissipated is the sum
of the dissipations from each of the uniform density re-
gions. The result is given in Table II.

2. Viscous dissipation

P vis = 2π

∫
σ2

2η
r dr

Under azimuthal symmetry, σrr = −σϕϕ = ηr∂r (u/r),
while σrϕ = σϕr = ηr∂r (v/r). The viscous dissipation
due to radial flow

P vis,r =
2π

η

∫
σ2
rrr dr = I2

η

π (ne)
2

(
1

r21
− 1

r22

)
This is the same as power supplied due to boundary
stresses in the clean limit, when the electric field driving
the current disappears [33]. The magnetic field correc-
tion, and also the contribution from disorder, comes from
the azimuthal flow, as

P vis,t =
2π

η

∫
σ2
rϕr dr

= 2πη

{∫ r2

r1

r3
[
∂r

(
vohm

r

)]2
dr

+

∫ r2

r1

r3

[
2∂r

(
vohm

r

)
∂r

(
vbdy

r

)
+ ∂r

(
vbdy

r

)2
]
dr

}
Like for ohmic dissipation, the first term is proportional
to the zero B field (bulk) resistance

P vis,t

∣∣∣∣
bulk

= (ωcτ)
2
P vis,r

The contribution from the boundary layers comes from
the second term. At the inner boundary layer,

P vis,t

∣∣∣∣
inner bdy

= I2
η(ωcτ)

2

π (ne)
2

{∫ ∞

r1

F1 (r) e
−(r−r1)/Ddr

+

∫ ∞

r1

F2 (r) e
−2(r−r1)/Ddr

}
F1 (r) =

4

r
1/2
1 r3/2

(ṽ1 − 1)

(
1 +

3D

2r

)
F2 (r) =

1

r1
(ṽ1 − 1)

2

(
1 +

3D

2r

)2



10

with ṽ1 = −v1/ωcτu1 as before. If r1 ≫ D, F1, F2

are slowly varying with r compared to the exponential,
hence, we may set their values as fixed at r1.

P vis,t

∣∣∣∣
inner bdy

= I2
η

π (ne)
2

{
2α1

r21
+

α2
1

4r1D

}
α1 = (ṽ1 − 1)

(
1 +

3D

2r1

)

A very similar expression holds at r2:

P vis,t

∣∣∣∣
outer bdy

= I2
η(ωcτ)

2

π (ne)
2

{
2α2

r22
+

α2
2

4r2D

}
α2 = (ṽ2 − 1)

(
−1 +

3D

2r1

)

The dissipation due to two density regions is the sum

of dissipation from each region; however, for our choice
of parameters r1 = 4D, the assumption r1/D ≫ 1 is
not valid and naively using the above expression gives
inaccurate estimates near r1. In this case, we directly
integrate the full expression keeping the generic form of
F1 (r) , F2 (r). The result can be expressed in terms of
the exponential integral function:

P vis,t

∣∣∣∣
inner bdy

= I2
η (ωcτ)

2

π (ne)
2 I1

I1 =

{
2 (ṽ1 − 1)

r21
+

(ṽ1 − 1)
2

4r1D

(
1 +

3D

2r1

)
+ λ

}
(B1)

λ =
3

4r21
(ṽ1 − 1)

2

(
1 +

r1
D
e2r1/DEi

[
−2r1

D

])
Ei [z] = −

∫ ∞

−z

dt e−t/t
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and V. Umansky, Phys. Rev. B 91, 045437 (2015).

[32] P. S. Alekseev and A. P. Alekseeva, Phys. Rev. Lett. 123,
236801 (2019).

[33] M. Shavit, A. Shytov, and G. Falkovich, Phys. Rev. Lett.
123, 026801 (2019).

[34] V. Gall, B. N. Narozhny, and I. V. Gornyi, Phys. Rev. B
107, 235401 (2023).

[35] A. Levchenko, S. Li, and A. V. Andreev, Phys. Rev. B
106, L201306 (2022).

[36] A. Tomadin, G. Vignale, and M. Polini, Phys. Rev. Lett.
113, 235901 (2014).

[37] S. Li, A. Levchenko, and A. V. Andreev, Physical Review
B 105, 10.1103/physrevb.105.125302 (2022).

[38] V. Gall, B. N. Narozhny, and I. V. Gornyi, Phys. Rev. B
107, 045413 (2023).

[39] A. Rycerz, K. Rycerz, and P. Witkowski, Materials 16,
10.3390/ma16124250 (2023).

[40] T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and
J. E. Moore, Phys. Rev. Lett. 118, 226601 (2017).

[41] T. Holder, R. Queiroz, T. Scaffidi, N. Silberstein,
A. Rozen, J. A. Sulpizio, L. Ella, S. Ilani, and A. Stern,
Phys. Rev. B 100, 245305 (2019).

[42] V. Panchal, A. Lartsev, A. Manzin, R. Yakimova, A. Tza-
lenchuk, and O. Kazakova, Scientific Reports 4, 5881
(2014).

[43] E. I. Kiselev and J. Schmalian, Phys. Rev. B 99, 035430
(2019).

[44] J. N. Engdahl, A. C. Keser, and O. P. Sushkov, Phys.
Rev. Res. 4, 043175 (2022).

[45] A. C. Keser and O. Sushkov, Turkish Journal of Physics
47, 28 (2023).

[46] J. N. Engdahl, A. C. Keser, T. Schmidt, and O. P.
Sushkov, Electron magneto-hydrodynamics in graphene
(2023), arXiv:2312.04896 [cond-mat.mes-hall].

[47] C. Kumar, J. Birkbeck, J. A. Sulpizio, D. Perello,
T. Taniguchi, K. Watanabe, O. Reuven, T. Scaffidi,
A. Stern, A. K. Geim, and S. Ilani, Nature 609, 276
(2022).

[48] A. D. Levin, G. M. Gusev, A. S. Yaroshevich, Z. D. Kvon,
and A. K. Bakarov, Phys. Rev. B 108, 115310 (2023).

[49] R. Moessner, N. Morales-Durán, P. Surówka, and
P. Witkowski, Phys. Rev. B 100, 155115 (2019).

[50] A. Hui, V. Oganesyan, and E.-A. Kim, Phys. Rev. B 103,
235152 (2021).

[51] A. Principi, G. Vignale, M. Carrega, and M. Polini, Phys.
Rev. B 93, 125410 (2016).

[52] A. Levchenko and J. Schmalian, Annals of Physics 419,
168218 (2020).

[53] M. M. Elahi, Y. Zeng, C. R. Dean, and A. W. Ghosh,
Direct evidence of klein-antiklein tunneling of graphitic
electrons in a corbino geometry (2022), arXiv:2210.10429
[cond-mat.mes-hall].

[54] V. K. Arora and A. Naeem, Phys. Rev. B 31, 3887 (1985).
[55] B. K. Ridley, Journal of Physics C: Solid State Physics

15, 5899 (1982).
[56] T. Kawamura and S. Das Sarma, Phys. Rev. B 42, 3725

(1990).
[57] Y. J. Chung, A. Gupta, K. W. Baldwin, K. W. West,

M. Shayegan, and L. N. Pfeiffer, Phys. Rev. B 106,
075134 (2022).

https://doi.org/10.1103/PhysRevB.103.075303
https://doi.org/10.1103/PhysRevB.103.075303
https://doi.org/10.1103/PhysRevB.98.161303
https://doi.org/10.1126/science.aau0685
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aau0685
https://doi.org/10.1103/PhysRevB.106.L241302
https://doi.org/10.1103/PhysRevLett.105.246802
https://doi.org/10.1103/PhysRevLett.105.246802
https://doi.org/10.1103/PhysRevB.83.121301
https://doi.org/10.1103/PhysRevB.91.045437
https://doi.org/10.1103/PhysRevLett.123.236801
https://doi.org/10.1103/PhysRevLett.123.236801
https://doi.org/10.1103/PhysRevLett.123.026801
https://doi.org/10.1103/PhysRevLett.123.026801
https://doi.org/10.1103/PhysRevB.107.235401
https://doi.org/10.1103/PhysRevB.107.235401
https://doi.org/10.1103/PhysRevB.106.L201306
https://doi.org/10.1103/PhysRevB.106.L201306
https://doi.org/10.1103/PhysRevLett.113.235901
https://doi.org/10.1103/PhysRevLett.113.235901
https://doi.org/10.1103/physrevb.105.125302
https://doi.org/10.1103/PhysRevB.107.045413
https://doi.org/10.1103/PhysRevB.107.045413
https://doi.org/10.3390/ma16124250
https://doi.org/10.1103/PhysRevLett.118.226601
https://doi.org/10.1103/PhysRevB.100.245305
https://doi.org/10.1038/srep05881
https://doi.org/10.1038/srep05881
https://doi.org/10.1103/PhysRevB.99.035430
https://doi.org/10.1103/PhysRevB.99.035430
https://doi.org/10.1103/PhysRevResearch.4.043175
https://doi.org/10.1103/PhysRevResearch.4.043175
https://doi.org/10.55730/1300-0101.2736
https://doi.org/10.55730/1300-0101.2736
https://arxiv.org/abs/2312.04896
https://doi.org/10.1038/s41586-022-05002-7
https://doi.org/10.1038/s41586-022-05002-7
https://doi.org/10.1103/PhysRevB.108.115310
https://doi.org/10.1103/PhysRevB.100.155115
https://doi.org/10.1103/PhysRevB.103.235152
https://doi.org/10.1103/PhysRevB.103.235152
https://doi.org/10.1103/PhysRevB.93.125410
https://doi.org/10.1103/PhysRevB.93.125410
https://doi.org/https://doi.org/10.1016/j.aop.2020.168218
https://doi.org/https://doi.org/10.1016/j.aop.2020.168218
https://arxiv.org/abs/2210.10429
https://arxiv.org/abs/2210.10429
https://doi.org/10.1103/PhysRevB.31.3887
https://doi.org/10.1088/0022-3719/15/28/021
https://doi.org/10.1088/0022-3719/15/28/021
https://doi.org/10.1103/PhysRevB.42.3725
https://doi.org/10.1103/PhysRevB.42.3725
https://doi.org/10.1103/PhysRevB.106.075134
https://doi.org/10.1103/PhysRevB.106.075134

	Tunable viscous layers in Corbino geometry using density junctions
	Abstract
	Introduction
	Tunable viscous layers at density interface
	Analytic derivation of tunable viscous layers
	Boundary conditions of flow at interface
	Signature of viscous layers in magnetoresistance
	Summary
	Acknowledgments
	Derivation of approximate solution of Stokes flow
	Derivation of magnetoresistance expressions in Table II
	Ohmic dissipation
	Viscous dissipation

	References


