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The axioms of quantum mechanics provide limited information regarding the structure of the
Hilbert space, such as the underlying number system. The latter is generally regarded as complex,
but generalizations of complex numbers, so-called hyper-complex numbers, cannot be ruled out
in theory. Therefore, specialized experiments to test for hyper-complex quantum mechanics are
needed. To date, experimental tests are limited to single-particle interference exploiting a closed
phase relation in a three-path interferometer called the Peres test. Here, we propose a general
matrix formalism to derive the Peres test putting it on a solid mathematical ground. On this basis,
we introduce multi-path and multi-particle interference tests, which provide a direct probe for the
dimensionality of the number system of quantum mechanics.

Modern quantum mechanics – formulated nearly 100
years ago [1, 2] – has sparked profound curiosity due to
its counter-intuitive predictions: A single particle can
be in a superposition state and thus interfere with it-
self [3–5]; moreover, two particles can be entangled giv-
ing rise to nonlocality in terms of Bell inequality viola-
tions [6–9]. These “mysteries” [3] have led to questioning
quantum mechanics from the start, even by its founders.
Schrödinger, who introduced the complex number i in his
famous equation for the dynamics of the wave function
ψ [2], later criticized its use, “What is unpleasant here,
and indeed directly to be objected to, is the use of complex
numbers. ψ is surely fundamentally a real function” [10].
Nowadays, the foundational pillars of quantum mechan-
ics, i.e., its axioms, are typically challenged in specialized
tests, also to rule out alternatives to quantum theory [11–
13].

One of the very axioms of quantum mechnics is
Born’s rule [14], which establishes a connection between
the abstract mathematical formalism and actual exper-
iments. It states that it is the absolute square of the
complex(-valued) quantum-mechanical wave function ψ
that is related to the real(-valued) world, partly re-
solving Schrödinger’s above “complexity issue”. Initi-
ated by Sorkin [15], the rule has been subject to several
single-particle tests in various domains over the last 15
years [16–19]. Recently, these tests were transferred to
verifications of Born’s rule via multi-particle interference
exhibiting a higher sensitivity to deviations [20] and a
first two-particle test of Born’s rule was conducted [21].
So far, no deviations from the rule have been found.

A further building block of quantum theory is the con-
tinued use of complex numbers in quantum mechanics
(CQM). However, other quantum-mechanical formula-
tions – based on different number systems like real num-
bers or even hyper-complex numbers – are technically
possible. Real-valued quantum mechanics (RQM), for
instance, has been a curious construction [22–24] until
recently. In 2021, Renou et al. derived a Bell-like ex-

periment to show the inadequacy of a solely real-valued
theory [25], which has been experimentally verified a year
later with photons [26] and superconducting qubits [27].
Complex numbers are therefore necessary for quantum
theory, but the question remains as to whether they
are sufficient. The attention thus changed to higher-
dimensional formulations, where quaternionic quantum
mechanics (QQM) is a prominent example. Already in
1979, Peres proposed a test to differentiate between CQM
and QQM by utilizing single-particle interference in a
three-path setup [28]. Early experimental realizations,
conducted with neutrons [29] and photons [30], utilized a
trimmed version of the test based on non-commutativity.
Only recently, measurements of the original Peres test
in the optical [31] and microwave regime [32] were con-
ducted, yet both not able to rule out QQM. Although it
was motivated by S. Adler already in 1995 in his book
on quaternionic quantum mechanics, ”to provide tests for
quaternionic quantum mechanics [...] A potentially fruit-
ful avenue, which has not yet been explored, is that of
multiparticle effects.” [12], there has been no work on
the extension of the Peres test to multi-path and multi-
particle interference.

In this Letter, we address this issue. We first briefly
recapitulate quaternions as an example for a number sys-
tem of a hyper-complex quantum-mechanical theory and
the Peres test. We then introduce a matrix method which
allows to recover the single-particle Peres test in a gen-
eral way, also leading to a geometric interpretation of
the test. Based on this, we generalise the single-particle
Peres test to an arbitrary number of paths and particles
revealing a direct link to the dimension of the number
system.

Quaternions. The most prominent example of the
construction of a hyper-complex theory beyond standard
quantum mechanics, is the four-dimensional formulation
of quantum mechanics based on quaternionic wave func-
tions [12]. The Hilbert space H is in that case quater-
nionic H, and an element of that space, a quaternion
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q ∈ H, is an extension of a complex number z = a+bi ∈ C
to q = a + bi + cj + dk, where a, b, c, d are real numbers
and i, j,k form the imaginary unit basis with multipli-
cation rules i2 = j2 = k2 = ijk = −1. In general, the
multiplication of quaternions is non-commutative, e.g.,
ij = −ji. A quaternion q can also be represented as
q = (v,v), i.e., a composition of a scalar part v = a
and a pure imaginary vector part v = bi+ cj+ dk, ana-
log to the complex decomposition z = (a, b). In the
same analogy, a quaternion can be expressed in the ex-
ponential form q = |q|en̂θ = |q|[cos(θ) + n̂ sin(θ)] with
|q| =

√
a2 + b2 + c2 + d2 being the norm of the quater-

nion, n̂ = v/|v| being the unit vector of the pure imagi-
nary part, and θ = |v| =

√
b2 + c2 + d2 being the norm

of the vector v.

Peres test. In 1979, Asher Peres introduced a method
to differentiate between CQM and QQM using a three-
path interferometer for single particles [28]. An iconic ex-
ample for such interference is Young’s well-known double-
slit experiment. Here, each of the two paths is associated
to a wave function and the total probability distribu-
tion is given according to Born’s rule by the absolute
square of the superposition of the individual wave func-
tions, i.e., P12 = |ψ1 + ψ2|2. This formulation leads to
interference fringes and the (pure) interference term can
be extracted by subtracting from the double-slit signal
the related single-slit signals Pi = |ψi|2, i.e.,

Iij =
Pij − Pi − Pj

2
√
PiPj

. (1)

Iij is called the normalized second-order interference in
the terminology of Sorkin’s interference hierarchy [15,
20]. In CQM with complex-valued wave functions ψi ∝
eiϕi , the interference term corresponds to the cosine
of the related phase difference, i.e., I C

ij = cos(ϕij) =
cos(ϕj − ϕi). In QQM with quaternionic-valued wave
functions ψi ∝ en̂iθi , the interference term becomes

I H
ij = cos(θi) cos(θj)+n̂i ·n̂j sin(θi) sin(θj). Since I C/H

ij ∈
[−1, 1], no direct test with two paths can be constructed
to differentiate CQM and QQM.

In a corresponding setup with three paths A, B, and
C as depicted in Fig. 1(a), however, three different pair-
wise interference terms IAB , IBC , and ICA exist [33]. In
CQM, the latter are related to the respective phase dif-
ferences ϕAB , ϕBC , and ϕCA, which can be depicted in
the unit circle of C, see Fig. 1(b), building a cyclically
ordered set with closed phase relation

ϕAB + ϕBC + ϕCA = 0 mod 2π . (2)

Starting from this relation and using trigonometrical
transformations, Peres constructed the following func-
tion [28]

F = I2
AB + I2

BC + I2
CA − 2 IABIBCICA , (3)

which in CQM always equals one due to Eq. (2). In
QQM, however, the phases are three-dimensional rep-
resented by the pure imaginary vector v = n̂θ. Thus,
the closed phase relation does not hold generally, see
Fig. 1(c), and F can become smaller than one. The
value of F can thus discriminate between CQM and QQM
via [28]

F = 1 : CQM is admissible,

F < 1 : QQM is admissible,
(4)

which is called the Peres test. By inserting Iij from
Eq. (1), F can be written as a function of the probability
distributions, Pi, Pij , and F is thus readily accessible for
experiments [31, 32].
Note that the Peres test can also be seen as a test

for the non-commutativity of phases. Two quaternions
and thus their phases commute, when their respective
vector parts are parallel to each other, vi||vj . In that
case, n̂i · n̂j = 1 and θi → ϕi, such that the quaternionic
interference terms I H

ij reduce to the complex ones I C
ij

leading to F = 1.
Matrix formalism of the Peres test. To generalize the

Peres test to multi-path and multi-particle interferences,
we will first map the original Peres test to a matrix for-
malism better suited for generalization.
The second-order interference terms of Eq. (1) can be

expressed as a dot product of two real-valued unit vec-
tors, i.e., Iij = m̂i · m̂j where m̂i, m̂j ∈ Rd with d the
dimension of the number system the wave functions are
chosen in. For CQM with C ≃ R2, for example, the map
reads ψi(x) = ai + ibi → m̂i = (ai, bi). For a double slit
with ψi = exp(iϕi), we get m̂i = (cosϕi, sinϕi) and thus
recover Iij = m̂i · m̂j = cos(ϕj − ϕi).
For a setup of three paths as in the Peres test, we have

three individual wave functions that are mapped onto
vectors m̂i, which can be collected to define the matrix
M = (m̂A, m̂B , m̂C)

T . We can then construct an inter-
ference matrix containing all second-order interference
terms via

I =MMT =

 1 IAB IAC

IBA 1 IBC

ICA ICB 1

 , (5)

where Iii = m̂im̂i = 1 regardless of the number system,
and Iij = Iji. Now, the determinant of this interference
matrix can be calculated to

det(I) = 1−I 2
AB −I 2

BC −I 2
CA+2IABIBCICA = 1−F ,

(6)
and contains Peres’ F function of Eq. (3). This is no
coincidence, since det(I) = 0 reveals the linear depen-
dence of the three vectors m̂i. The three corresponding
phases can thus be written in a closed phase relation as in
Eq. (2) for CQM, which was the starting point of Peres’
construction of the F function. Hence, we can state the
test equivalently as
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FIG. 1. Three-path interference test. (a) Experimental setup of the Peres test with three different paths A, B, and C.
Due to Born’s rule, such a setup involves three second-order interferences Iij , which can be used to construct the F function.
(b) In CQM, the three phases associated to the three paths can be depicted in the unit circle with a closed phase relation
leading to F = 1. (c) In QQM with three-dimensional phases, the phase relation does not hold in general leading to F ≤ 1.
(d) Mapping the wave functions onto unit vectors m̂i, the F function can be related to the determinant of the interference
matrix I yielding the square of the volume of the spanned parallelepiped. For CQM with d = 2 (in red), all vectors lie within
a plane, the spanned volume is zero, and thus det(I) = 0 equivalent to F = 1. For higher d ≥ 3, however, the m̂i’s span a
nonzero volume with det(I) ≥ 0 equivalent to F ≤ 1.

det(I) = 0 : CQM is admissible,

det(I) > 0 : QQM is admissible.
(7)

So far, we have not made any assumptions on the under-
lying number system and Eqs. (6) and (7) are thus valid
for all dimensions. The dimension d of the number sys-
tem comes in via the dimension of the individual m̂i and
thus in the dimensions ofM , which is (3×d)-dimensional.
The dimension of I = MMT , however, is always (3× 3)
containing the three second-order interference terms for
all d.
In CQM,M is thus 3×2 - dimensional and we can add

to M a column of zeros such that it becomes a square
matrix M̃ = (M,0). Now, observe that this transforma-
tion does not change the interference matrix I = M̃M̃T .
Then, from det(M̃) = 0 and the product rule of the de-
terminant, one can immediately conclude det(I) = 0 or
F = 1 in CQM. For higher d as in QQM, however, no
zero column can be added to make the above conclusion
on det(I) and F .

Multi-path Peres tests. Next, we use the introduced
matrix formalism to introduce multi-path interference
tests with an arbitrary number of paths n. Note that
extensions based on closed phase relations, although fea-
sible in principle, quickly become cumbersome due to
the involvement of many trigonometric transformations.
From now on, we will denote the number of paths n in a
subscript of the related functions and matrices, i.e., Fn,
Mn, and In, with the previous F ≡ F3, M ≡ M3, and
I ≡ I3.
In an n-path setup, there are n different wave func-

tions, each associated with a phase, which can be mapped
onto d-dimensional unit vectors {m̂i}i=1,...,n. The gen-
eralized matrix Mn, built up of these vectors, becomes

(n × d)-dimensional, where the number of rows equals
the number of paths n in the setup and the number of
columns equals the dimension d of the investigated num-
ber system. The general interference matrix In =MnM

T
n

will thus be (n × n)-dimensional collecting all
(
n
2

)
(non-

trivial) second-order interferences {Iij}i,j=1,...,n;i<j .
As shown above for CQM in the original Peres test,

a transformation M ≡ M3 → M̃3 = (M3,0) does not
change the I3-matrix, and we could directly conclude that
F3 = 1 for d = 2 < 3 = n. Quite generally, this transfor-
mation is possible, when the number of paths n is greater
than the investigated dimension d, i.e., for n > d, we can
write

Mn =

m̂1

...
m̂n


n×d

→ M̃n =

m1,1 . . . m1,d 0 . . . 0
...

. . .
...

...
. . .

...
mn,1 . . . mn,d 0 . . . 0


n×n

,

and directly conclude det(In) = det(M̃n)
2 = 0. The

multi-path Peres function is thus always one, Fn :=
1−det(In) = 1 for d < n. However, when d ≥ n, there is
no such transformation giving access to the calculation
of the determinant In via the determinant of Mn, such
that we can not conclude det(In) = 0. Underestimat-
ing the dimension results in the zeros of the matrix M̃
being replaced by higher-dimensional coefficients, giving
the possibility of det(In) ≥ 0, and thus Fn ≤ 1. This
indicates that the number system of dimension d is not
admissible, but a higher-dimensional one should be con-
sidered.

There is thus a direct connection between the num-
ber of paths n used in the test and the dimensionality
d of the number system to be tested. The ranges of the
generalized Fn are shown below for d = 2, 3, 4, 5 and
n = 3, 4, 5, 6.
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d = 2 d = 3 d = 4 d = 5
F3 1 < 1 < 1 < 1
F4 1 1 < 1 < 1
F5 1 1 1 < 1
F6 1 1 1 1

In particular, if we want to test between two arbitrary
dimensions d1 and d2 with d1 < d2, one has to use a
multi-path test with n ∈ [d1 + 1, d2] paths. For all other
number of paths n, the related interference test is not
sensitive to the relevant dimensions: For n < d1 + 1, d2,
both theories yield Fn ≤ 1, while for n > d2, d1, both
theories yield Fn = 1. In the case of CQM (d = 2) vs.
QQM (d = 4), future experiments can thus use F3 ≡ F
but likewise F4.
Geometric interpretation. In mathematical terms,

the interference matrix In constitutes a Gram matrix
of the vectors {m̂1, . . . , m̂n} ∈ Rd; and its determinant
gives the square of the volume of the n-parallelotope (n-
dimensional extension of a 3D-parallelepiped) spanned
by the vectors. This n-dimensional volume built up of
unit vectors m̂i ranges from 0, if all vectors lay within
an (n − 1)-dimensional subspace, to 1, if all vectors are
linearly independent, such that det(In), Fn ∈ [0, 1] for all
n ≥ 3.

In the original Peres test with F3, the determinant
of I thus gives the square of the volume of the 3D-
parallelepiped spanned by m̂A, m̂B , m̂C . For CQM, how-
ever, the m̂i’s are two-dimensional and lie within the x−y
plane, see Fig. 1(d). The spanned volume is thus zero and
so is det(I) = 0 leading to F3 ≡ F = 1 (the original Peres
test). For higher d ≥ 3, however, the m̂i’s do not gen-
erally lie within a plane, see blue case in Fig. 1(d), and
the spanned volume as well as det(I) are nonzero, i.e.,
F < 1.
Multi-particle Peres tests. So far, the constructed

tests are based on single-particle interference. Quantum
mechanics, however, also allows for multi-particle inter-
ference in the case of indistinguishable particles [20, 34–
36]. In the following, we introduce a multi-particle exten-
sion of the Peres test in the setup of mutually coherent
particles, where we denote the number of particles m in a

superscript of the functions, e.g., F
(m)
n , with the previous

Fn ≡ F
(1)
n .

We specifically consider an m-particle wave function
that is coherently spread over n paths. The state of this
wave function can be described by a tensor product of the
single-particle states, and the m-particle Hilbert space is
given by Hm =

⊗m
i=1 Hi. If a single quantum object

lives in d dimensions, then m quantum objects live in an
m times d dimensional space. The joint probability of
coincidentally detecting the state at m detectors is given
by the mth-order intensity correlation function [34]. The
latter is in general determined by nm different, yet indis-
tinguishable paths leading to in total n2m interference-
like terms that can be sorted into interference orders up

to order 2m [20]. These interference terms are the build-
ing blocks of the Peres test. For mutually coherent par-
ticles like an m-particle Fock state, we can recover all
the terms by exploiting tensor products together with

the matrix formalism. We obtain I
(m)
n =

⊗m
i=1 I

(1)
n,i ,

where I
(1)
n,i is the n-path single-particle interference ma-

trix of the ith particle. The multi-particle Peres test can
then be defined similarly to the single-particle case via

F
(m)
n = 1−det(I

(m)
n ). Here, we can make use of the iden-

tity, det(K⊗L) = det(K)l det(L)k, with k and l being the
dimensions of the matrices K and L respectively. In our

case, k = l = n such that det(I
(m)
n ) =

∏m
i=1 det(I

(1)
n,i )

n.
Inserting this and using the n-path version of Eq. (6) for

the ith particle, F
(1)
n,i = 1 − det(I

(1)
n,i ), we eventually ob-

tain the multi-path and multi-particle generalization of
the Peres test, i.e.,

F (m)
n = 1−

m∏
i=1

(1− F
(1)
n,i )

n . (8)

Here, F
(m)
n is directly related to the single-particle func-

tions F
(1)
n and the connection between the number of

paths n and the dimensionality d of the number system
can be adopted:

F (m)
n = 1 : a theory with d = n− 1 is admissible,

F (m)
n < 1 : a higher-dimensional theory is admissible.

Note that due to this relation, the m-particle Peres func-

tion F
(m)
n approaches faster than F

(1)
n the case, where a

lower-dimensional theory is admissible.

Conclusion. In summary, we derived in a most gen-
eral way the Peres test via a matrix formalism, also allow-
ing for a geometrical interpretation of the test. We then
introduced generalized Peres tests that exploit multi-
path and multi-particle interference, revealing a direct
relation to the dimension of the number system of quan-
tum mechanics. Future theoretical works have to explore,
how multifaceted interference of mutually incoherent par-
ticles modifies these tests and its sensitivity to higher di-
mensions; and future experiments have to show whether
complex numbers are not only necessary but also suffi-
cient for quantum mechanics.
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