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Fig. 1. Our approach facilitates the generation of continuous, collision-free animated trajectories for the X-wing. The left figure shows the swept volume of
the X-wing during flight. The four figures on the right show the trajectories before and after optimization from two different perspectives. The motions are
visualized using swept volumes in the figure, providing an intuitive representation of continuous collision scenarios.

In the field of trajectory generation for objects, ensuring continuous collision-

free motion remains a huge challenge, especially for non-convex geometries

and complex environments. Previous methods either oversimplify object

shapes, which results in a sacrifice of feasible space or rely on discrete

sampling, which suffers from the “tunnel effect”. To address these limita-

tions, we propose a novel hierarchical trajectory generation pipeline, which
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utilizes the Swept Volume Signed Distance Field (SVSDF) to guide tra-

jectory optimization for Continuous Collision Avoidance (CCA). Our in-
terdisciplinary approach, blending techniques from graphics and robotics,

exhibits outstanding effectiveness in solving this problem. We formulate

the computation of the SVSDF as a Generalized Semi-Infinite Programming

model, and we solve for the numerical solutions at query points implic-

itly, thereby eliminating the need for explicit reconstruction of the surface.

Our algorithm has been validated in a variety of complex scenarios and

applies to robots of various dynamics, including both rigid and deformable

shapes. It demonstrates exceptional universality and superior CCA per-

formance compared to typical algorithms. The code will be released at

https://github.com/ZJU-FAST-Lab/Implicit-SVSDF-Planner for the benefit

of the community.

CCS Concepts: •Mathematics of computing→Mathematical optimiza-
tion; • Computing methodologies→ Robotic planning.

Additional Key Words and Phrases: signed distance field; swept volumes;

continuous collision avoidance; optimization

ACM Reference Format:
Jingping Wang, Tingrui Zhang, Qixuan Zhang, Chuxiao Zeng, Jingyi Yu,

Chao Xu, Lan Xu
†
, and Fei Gao

†
. 2024. Implicit Swept Volume SDF: Enabling

Continuous Collision-Free Trajectory Generation for Arbitrary Shapes. ACM
Trans. Graph. 43, 4, Article 110 (July 2024), 14 pages. https://doi.org/10.1145/

3658181

ACM Trans. Graph., Vol. 43, No. 4, Article 110. Publication date: July 2024.

ar
X

iv
:2

40
5.

00
36

2v
1 

 [
cs

.R
O

] 
 1

 M
ay

 2
02

4

HTTPS://ORCID.ORG/0009-0001-2865-6517
HTTPS://ORCID.ORG/0000-0003-2130-8226
https://orcid.org/0009-0001-2865-6517
https://orcid.org/0000-0003-2130-8226
https://doi.org/10.1145/3658181
https://github.com/ZJU-FAST-Lab/Implicit-SVSDF-Planner
https://doi.org/10.1145/3658181
https://doi.org/10.1145/3658181


110:2 • Wang and Zhang, et al.

1 INTRODUCTION
Generating continuous collision-free motion trajectories for objects

of any shape is highly valuable in fields like animation production,

computer-aided design, manufacturing, and robotic navigation plan-

ning. However, in practical applications, the shapes of objects and

their environments are often complex, non-convex geometries. This

makes handling collisions during continuous motion a challenge.

Previous methods have either oversimplified the shapes of objects

and environments or approximated continuous motion with discrete

sampling moments. The former compromises feasible space, leading

to an inability to generate correct motion trajectories in complex,

confined environments. The latter theoretically risks missing colli-

sion detections, failing to ensure continuous collision-free motion.

This phenomenon is known as the “tunnel effect” [Ericson 2004].

Due to these challenges, achieving Continuous CollisionAvoidance
(CCA) without simplifying the shapes of objects or sacrificing any

feasible space has been a long-pursued goal in trajectory generation

algorithms.

Inspired by recent advances in computer graphics and robotics,

we propose a new perspective. The Swept Volume (SV) generated

by an object’s continuous motion describes the minimal safe space

required throughout its movement. This means that if there are no

obstacles inside the SV created by an object’s motion, then contin-

uous collision-free motion is theoretically guaranteed. Moreover,

this assurance does not require simplifying the shapes of objects or

environments. From this viewpoint, we introduce a novel pipeline

for generating continuous, collision-free trajectories for objects of

arbitrary shape. Our approach relies on the numerical optimiza-

tion of spatiotemporal joint trajectories. Using the implicit Signed
Distance Field (SDF) of the SV, we can quickly generate gradients at

obstacles that pose collision risks, which guides trajectory optimiza-

tion. Owing to the inherent compactness of the SV in describing the

occupied space, our method naturally achieves zero feasible space

sacrifice and CCA. Moreover, our method does not suffer from the

“tunnel effect” [Ericson 2004]. To the best of our knowledge, this is

the first method to concurrently achieve these outcomes in motion

trajectory generation.

We first propose a method to compute the implicit SDF of the SV.

In previous research, much focus has been on the reconstruction of

the surface of the SV. However, the task of surface reconstruction

itself is extremely challenging. Simply obtaining the surface area

of the SV does not provide a differentiable objective function for

trajectory optimization either. In trajectory generation tasks, we are

more concerned with the signed distance of obstacles relative to the

SV. A smaller signed distance value means that the obstacle is closer

to the object at a certain moment. If the sign is negative, it indicates

an impending collision with the obstacle, which is a scenario to

be avoided. In this paper, we formulate the problem of solving for

the Swept Volume Signed Distance Field (SVSDF) as a Generalized
Semi-Infinite Programming (GSIP) model. We propose a method to

implicitly solve the swept volume signed distances at query points

without explicitly reconstructing the SV surface. Theoretically, our

method can compute the exact SVSDF and can be proven to con-

verge to any numerical precision. We then developed a hierarchical

trajectory optimization algorithm. This algorithm uses the implicit

SVSDF to guide the SV away from obstacles. Additionally, our ap-

proach optimizes the energy of the trajectory, such as minimizing

the integral of the squared control efforts in robotic planning tasks.

Our algorithm, proven effective across diverse scenarios with

complex-shaped vehicles, aircraft, ships, and deformable worm and

ferrofluid robots, demonstrates its universality. It also shows supe-

rior CCA performance compared to previous methods.

The contributions can be summarized as follows:

• We propose a novel method based on GSIP to compute the

exact SVSDF of various shapes.

• We develop a trajectory generation framework centered on

hierarchical optimization that enables continuous collision

safety for arbitrarily shaped robots.

• Our algorithm demonstrates state-of-the-art CCA perfor-

mance in a variety of scenarios, showcasing its versatility

and broad adaptability.

• We will open-source our algorithms to support the graphics

and the robotics community.

2 RELATED WORKS

2.1 Swept Volume SDF Calculation
There is a long history of research on SV. Over the past decades, nu-

merous works have contributed to the techniques for computing SV.

However, previous efforts have focused more on constructing the

surfaces of SV, such as methods based on envelope theory [Martin

and Stephenson 1990; Wang and Wang 1986; Weld and Leu 1990],

methods utilizing differential equations[Blackmore et al. 1997], kine-

matic methods [Ju¨ ttler and Wagner 1996]and methods based on

exact Boolean calculations [Cherchi et al. 2020; Zhou et al. 2016].

Recently, a novel approach was proposed by Sellán et al. [2021]

that extends the zero-level set of spatiotemporally continuous im-

plicit functions to obtain the surface of SV. This approach has sig-

nificant improvements in generalization, robustness, and efficiency.

The proposed implicit function is derived from the minimum signed

distance during the brush motion process. As part of the method, the

implicit function itself is a conservative SDF (cf. [Quilez 2018; Sellán

et al. 2021, 2023]) of the SV, and has exact values only outside the

SV. However, in the trajectory generation process, the SDF inside

SV is more critical, as it guides the SV to avoid obstacles that could

lead to collisions.

The first work to achieve exact SDF computation for SV is pre-

sented in [Marschner et al. 2023]. The authors use the closest point

loss to correct for conservative SDFs generated by previous meth-

ods using neural networks in the context of the CSG operation. By

adding a loss function to fit the SV, the network can obtain the

exact SDF of the SV generated under a cubic Bézier path. However,

neural networks require hours of training for accurate SDF eval-

uation. Furthermore, encoding different trajectories and shapes is

challenging, and it often requires additional training or adjustments

to the input dimensions of the network encoder. In addition, the

output of neural networks lacks precise theoretical guarantees. In

contrast, our numerical method computes the exact SVSDF under

theoretical guarantees and applies to different trajectory shapes and

brushes, requiring only the SDF of the brushes.
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2.2 Continuous Collision Avoidance Trajectory Generation
In robotics and graphics, the generation of continuous, collision-

free motion has become a focal point. Early research focused on

path generation, which identifies point sequences while ensuring

segment safety, using either search-based (e.g. [Frana and Misa 2010;

Hart et al. 1968]) or sampling-based (e.g. [Janson et al. 2015; LaValle

1998]) methods. However, these methods struggle with resolution

sensitivity, challenges in unstructured environments, and satisfy-

ing complex nonlinear constraints such as dynamic constraints.

Recently, the focus has shifted to accurately representing contin-

uous motion trajectories and optimizing them through numerical

optimization, a strategy that is adept at dealing with nonlinear con-

straints and producing higher quality solutions.

Most of the methods perform collision evaluations at discrete

states along the trajectory during optimization. Discrete approxima-

tions of continuous-time problems theoretically hinder CCA. This

limitation arises because the discretization of the states potentially

leads to the underdetection of collisions. For example, in a game

scenario, a fast-moving projectile may pass through a thin wall if the

collision is not detected at a certain timestamp. This phenomenon is

known as the “tunnel effect” [Ericson 2004] and is a challenge that

Continuous Collision Detection algorithms aim to address. Contin-

uous Collision Detection represents a group of algorithms designed

for robust collision check continuously, rather than just at discrete

moments [Brochu et al. 2012; Wang et al. 2021]. However, these tech-

nologies are not directly applicable to trajectory generation because

they are limited to providing Boolean detection results and cannot

provide guidance or gradients to optimize collision-free trajectories.

Many efforts are dedicated to achieving CCA. Safe corridor based

methods divide safe areas into convex hulls and restrict trajecto-

ries within these hulls [Ding et al. 2019b; Liu et al. 2017]. However,

these methods compromise the feasible space and are not suitable

for complex shapes or dense obstacles. The work [Blackmore and

Leu 1992] presents a mathematical technique for analyzing SV and

shows that the notion of a sweep differential equation leads to crite-

ria that provide useful insights into the geometric and topological

properties of SV, although these insights have not been applied to

motion planning for robots. In the work [Guthrie 2022], the con-

cept of SV is used to solve the CCA problem, but the SV is only

approximated by convex hulls, which is not tight, and the applica-

tion of the robots is only for planar two-dimensional cars, which

cannot be applied to robots of arbitrary shapes. Hauser [2021] fo-

cus on collision constraints for non-convex geometries in robot

planning. They compute the maximum penetration depth between

two rigid bodies and effectively address these constraints using

semi-infinite programming. However, their approach is based on a

discrete branch-and-bound method that neglects the continuity of

object motion. Recently, Zhang et al. [2023] attempt to address CCA

for robots using trajectory optimization based on implicit signed

distance fields. However, their approach lacks a comprehensive plan-

ning framework and fails to correctly compute the SDF inside the SV

during optimization, resulting in gradient oscillations. In complex

scenarios, their success rate in achieving CCA decreases.

In conclusion, no existing planning algorithm has been able to

achieve effective CCA without compromising the solution space.

To address this problem, our method pioneers the use of SVSDF

combined with advanced hierarchical optimization techniques, re-

sulting in unprecedented performance. Specifically, we solve a GSIP

to compute the exact SVSDF. With this exact SVSDF, we establish a

CCA framework for objects of any shape, ensuring tight and reliable

continuous collision estimation applicable to trajectory generation.

Our method has been benchmarked and achieved the highest level

of CCA performance to date.

3 IMPLICIT SWEPT VOLUME SDF
In this chapter, we first introduce the method for computing SVSDF.

By modeling the problem as a GSIP, our method can compute an ex-

act SVSDF over the entire space, which provides accurate guidance

for generating trajectories of arbitrary shapes in complex environ-

ments.

We denote the mathematical concept of the SV set with the sym-

bol SV , and the italicized 𝑆𝑉𝑆𝐷𝐹 (𝒑) represents the SVSDF query
function that returns the SVSDF value at the point 𝒑.

3.1 GSIP Model for Swept Volume SDF
SV refers to the set of all points that an object passes through as

it moves along a trajectory. The set 𝑀 (𝑡) is used in this paper to

represent potentially time-varying shapes. Suppose 𝑀 (𝑡) moves

along the trajectory T (𝑡), where 𝑡 is the time parameter, SV can

be defined as

SV =
⋃

𝑡 ∈[𝑡start,𝑡end ]
T (𝑡)𝑀 (𝑡) . (1)

In the formula mentioned above, we use the homogeneous rigid

transformationmatrixT to represent the trajectory. Thus,T (𝑡)𝑀 (𝑡)
intuitively means the position and pose of shape 𝑀 (𝑡) at time 𝑡 .

Computing the SVSDF is essentially a matter of finding the shortest

signed distance metric from a point 𝒑 to 𝐹𝑟 (SV), where the symbol

𝐹𝑟 (·) denotes the boundary of a set. Consider an open ball 𝐵𝒑 (𝑟 )
centered at point 𝒑 with radius 𝑟 . Intuitively, if 𝐵𝒑 (𝑟 ) is the smallest

sphere at 𝒑 that tangent to 𝐹𝑟 (SV), then |𝑆𝑉𝑆𝐷𝐹 (𝒑) | = 𝑟 . Fig. 2

illustrates this property.

Inspired by this feature, our algorithm calculates the SVSDF mag-

nitude at point 𝒑 by solving for the sphere centered at 𝒑 that is

tangent to 𝐹𝑟 (SV). Specifically, we solve the following problem:

maximize 𝑟,

s.t. 𝐵𝒑 (𝑟 ) ∩ 𝐹𝑟 (SV) = ∅.
(2)

However, the constraint that two infinite sets do not intersect is

very difficult to deal with, but fortunately, this constraint can be

reformulated into infinite inequality constraints, thus transforming

the problem into a standard GSIP in mathematical optimization.

Specifically, if there is a metric function 𝑔, which maps a point 𝒒
to a real value, 𝑔(𝒒) > 0 when 𝒒 lies outside the swept volume and

𝑔(𝒒) < 0 when 𝒒 lies inside the swept volume, then problem (2) can

be equivalently transformed as:
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Fig. 2. An L-shaped object follows a path that combines translation and
rotation, creating the light blue SV. Points 𝒑𝐴 and 𝒑𝐵 are outside the SV,
marked by yellow circles indicating the smallest tangent circles with radii
equal to the SVSDF values at those points. In contrast, points 𝒑𝐶 and 𝒑𝐷
are inside the SV, with their SVSDF values corresponding to the negative
radii value of the centered green circles.

maximize 𝑟,

s.t. 𝑔(𝒒) ≤ 0, ∀𝒒 ∈ 𝐵𝒑 if 𝒑 ∈ SV, (3)

s.t. 𝑔(𝒒) ≥ 0, ∀𝒒 ∈ 𝐵𝒑 if 𝒑 ∉ SV . (4)

That is, the open ball 𝐵𝒑 (𝑟 ) is tangent to the 𝐹𝑟 (SV) while all
the points inside the ball are either outside the 𝐹𝑟 (SV) or all inside,
depending on whether the centre of the ball is inside the 𝐹𝑟 (SV)
or not. In this work, we chose 𝑔 that satisfies the condition as:

𝑔(𝒑) ≜ min

𝑡 ∈[𝑡start,𝑡end ]
SDF𝑀 (𝑡 )

(
T −1 (𝑡) 𝒑

)
, (5)

where the associated argmin time is denoted as follows:

𝑡∗ (𝒑) ≜ argmin

𝑡 ∈[𝑡start,𝑡end ]
SDF𝑀 (𝑡 )

(
T −1 (𝑡) 𝒑

)
. (6)

Here, SDF𝑀 (𝑡 )
represents the SDF of the shape 𝑀 (𝑡), and

T −1 (𝑡) 𝒑 is the relative position of the point 𝒑 in the coordinate

system of𝑀 . In fact, the work [Sellán et al. 2021] has proved that

the function 𝑔 defined in this way is a conservative SDF of the SV .

i.e., if 𝒒 lies outside the SV , then 𝑔(𝒒) = 𝑆𝑉𝑆𝐷𝐹 (𝒒). If 𝒒 lies inside,

then 𝑔(𝒒) is the upper bound of 𝑆𝑉𝑆𝐷𝐹 (𝒒). This choice offers two
advantages. First, for the case of 𝑔(𝒒) ≥ 0 in Eq. (4), the signed

distance can be obtained directly, thus focusing our attention solely

on solving Eq. (3). Second, the nature of the conservative SDF con-

tributes to the fast convergence of the optimization variables when

solving the GSIP, as will be shown in the Section 3.2.

3.2 Solving the GSIP problem
In a general form, GSIP can be stated as:

minimize 𝑓 (𝑥),
s.t. 𝑥 ∈ 𝑄,

𝑄 = {𝑥 ∈ R𝑛 | 𝑔(𝑥,𝑦) ≤ 0, ∀𝑦 ∈ 𝑌 (𝑥)}.
(7)

The set-valued mapping 𝑌 : R𝑛 ⇒ R𝑚 describes the index set of

inequality constraints. Functions 𝑓 and 𝑔 in the equation above are

assumed to be real-valued and at least continuous on their respective

domains [Stein 2012]. By exploiting the bi-level structure of the GSIP,

we can effectively tackle the problem.

Specifically, we replace the infinite set 𝑄 by the finite set 𝑄
′
in

Eq. (7) by first finding the upper bound of the constraint:

𝑄
′
= {𝑥 ∈ R𝑛 | sup𝑦∈𝑌 (𝑥 ) 𝑔(𝑥,𝑦) ≤ 0}.

This insight decomposes the GSIP into a bi-level optimization

problem: first solve the low-level problem 𝑳𝑷 (𝒙,𝒚) to find an upper

bound for the infinite constraints, and then solve the upper-level

problem 𝑼𝑷 (𝒙,𝒚), which solves the optimization problem with

finite constraints only.

𝑳𝑷 (𝒙,𝒚) : 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

𝑔(𝑥,𝑦) , 𝑠 .𝑡 . 𝑦 ∈ 𝑌 (𝑥), (8)

𝑼𝑷 (𝒙,𝒚) : 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥

𝑓 (𝑥) , 𝑠 .𝑡 . 𝑔(𝑥,𝑦∗) ≤ 0. (9)

By substituting Eq. (3) into forms above we can derive our bi-level

formulation:

𝑳𝑷 (𝒓, 𝒔) : 𝒔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒔

𝑔(𝒒(𝒔)) , 𝑠 .𝑡 . 𝒒(𝒔) ∈ 𝑌 (𝑟 ) ≡ 𝐵𝒑 (𝑟 ),
(10)

𝑼𝑷 (𝒓, 𝒔) : 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑟

(−𝑟 ) , 𝑠 .𝑡 . 𝑔(𝒒(𝒔∗)) ≤ 0. (11)

Here 𝒔 = {𝜃, 𝜙, 𝛼}, where 𝜃 and 𝜙 represent the angles in the spheri-

cal coordinate system, and 𝛼 serves as a scaling factor for the radius

𝑟 , constrained within the range of 0 to 1. The point 𝒒(𝒔) is defined
in this spherical coordinate system as follows:

𝒒(𝒔) = 𝒑 + [𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ]𝑇 ,
𝑥𝑟 = 𝛼𝑟 sin(𝜃 ) cos(𝜙),
𝑦𝑟 = 𝛼𝑟 sin(𝜃 ) sin(𝜙),
𝑧𝑟 = 𝛼𝑟 cos(𝜙) .

(12)

where𝒑 represents the center of the sphere. However, when 𝑳𝑷 (𝒙,𝒚)
and 𝑼𝑷 (𝒙,𝒚) are non-convex problems, it is hard to obtain the

optimal solution in one step. A more robust approach is to solve

iteratively by a discretization method [Blankenship and Falk 1976;

Remez 1962]. In the problem (10), 𝑳𝑷 (𝒓, 𝒔) cannot be guaranteed to

be convex, depending on the spatial distribution of the trajectory.

Therefore, we adopt the discretization method for numerical solu-

tion. Fortunately, the 𝑼𝑷 (𝒓, 𝒔) is a linear problem with an analytical

solution, simplifying our algorithm. The algorithm procedure is

demonstrated in Alg. 1, and Fig. 3 illustrates the iterative process of

the algorithm. By solving the GSIP, we implicitly obtain the SVSDF

value at the query point, without the need for explicit surface re-

construction. The convergence proof of our discretization method

is given in detail in §C of the supplementary materials.

4 TRAJECTORY GENERATION WITH IMPLICIT SVSDF
In the previous chapter, we introduced the method to compute the

implicit SVSDF by solving the GSIP. Thanks to the compactness

of the SV, we propose a pipeline based on SVSDF, achieving the

trajectory generation method that simultaneously incorporates zero

solution space sacrifice and CCA. Our method applies to various con-

figuration spaces, including R(2), SE(2), R(3), and SE(3), etc., thus
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𝑟𝑟0Init value

Iter:2
Iter:3

Iter:1

Init Iter:1 Iter:2 Iter:3

shape and trajectory

Swept Volume

Sampling Points  whose 𝑔𝑔 > 0

Evaluation Point

Radius for Next Iteration
𝑔𝑔 > 0: Outer Tangent Sphere

Sampling Points  whose 𝑔𝑔 < 0

Final

Iter:2

Iter:3

Iter:1

Iterative process

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 values in iteration

𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑔𝑔∗: Maximum Evaluation Value 

-3.0 -1.5 0 1.5 3.0

Fig. 3. The figure shows a simplified iterative method for computing the internal SVSDF in 2D using the GSIP, a process that is also applicable in 3D. In the
discretized data, green points outside SV use gradient descent (as described in Section 5) to find their metric value 𝑔, which is the radius of the tangent circle.
The largest 𝑔∗ among these values indicates the largest current constraint violation. The radius of the next iteration is reduced by 𝑔∗. Increasing the sampling
density and iterations quickly yields accurate SDF values within SV.

Algorithm 1 𝑆𝑉𝑆𝐷𝐹 Computation

1: function SampleInBall(𝑟,𝒑) ⊲

2: Sample a number of points uniformly inside the ball 𝐵𝒑 (𝑟 )
3: to form a set 𝑌 by discretizing 𝒔 in Eq. (12).

4: return 𝑌

5: end function
6: ————————————–

7: Input: 𝑞𝑢𝑒𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 𝒑
8: if 𝑔(𝒑) > 0 then
9: return 𝑔(𝒑)
10: else
11: 𝑘 ← 0

12: 𝑟𝑘 ← 𝑎 𝑏𝑖𝑔 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 .

13: 𝑌
′

𝑘
← SampleInBall(𝑟𝑘 ,𝒑)

14: 𝒔∗
𝑘
← Replace 𝑌 (𝑟 ) by 𝑌 ′

𝑘
and solve 𝑳𝑷 (𝒓𝒌 , 𝒔) in Eq. (10).

15: if 𝑔(𝒒(𝒔∗
𝑘
)) < 𝜖+

𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
then

16: return −𝑟𝑘
17: end if
18: Solve 𝑼𝑷 (𝒓𝑘 , 𝒔

∗
𝑘
) and update 𝑟 , which has an analytic

19: solution: 𝑟𝑘+1 ← 𝑟𝑘 − 𝑔(𝒒(𝒔∗𝑘 )).
20: 𝑘 ← 𝑘 + 1 , 𝒈𝒐𝒕𝒐 line 13.

21: end if

satisfying different types of problems. For example, the workspace

of ground robots is typically SE(2), that of drones is SE(3). To ex-

plain the details of our method, we will use the SE(3) space and
multirotor dynamics [Mellinger and Kumar 2011] as a case study in

this chapter.

4.1 Hierarchical Trajectory Optimization
In SE(3), the configuration of the rigid object at time 𝑡 is determined

by both the rotation matrix 𝑅(𝑡) and the translation vector 𝑝 (𝑡), as
expressed by the equation: T (𝑡)𝑀 (𝑡) = 𝑅(𝑡)𝑀 (𝑡) +𝑝 (𝑡). Compared

to sampling and search methods, numerical optimization offers the

advantage of incorporating dynamics, making it a prevalent and

effective approach for handling high-dimensional motion planning

[Latombe 2012].

However, achieving collision-free trajectory generation in com-

plex environments has an obvious non-convex nature [Liu et al.

2018], especially when dealing with non-convex shapes without

simplification. In such cases, the non-convex nature of the CCA

problem makes it challenging for optimization methods to find fea-

sible optimal solutions. Therefore, numerical optimization methods

often adopt a hierarchical planning approach, necessitating the use

of sampling-based or search-based methods to provide an initial

value for numerical optimization. In this paper, the trajectory gener-

ation based on SVSDF that we propose is also a hierarchical method

based on numerical optimization. Specifically, our proposed pipeline

includes three levels:

1) Front-End, considering objects of any shape, we use rapid

collision detection technology and asymmetric A* search to

quickly find a feasible path.

2) Mid-End, the feasible path points, including position and

attitude, are converted into parameters of a continuous tra-

jectory, obtaining initial values for the trajectory parameters.

3) Back-End, utilizing SVSDF and the initial values provided

by the mid-end for trajectory optimization, to achieve CCA

and dynamic constraints.

Fig. 4 illustrates our hierarchical pipeline.

Front-End
Given the start and end points of the planning, obtaining the param-

eters for a continuous collision-free trajectory through optimization

is a highly non-convex problem. Therefore, a good initial value for

optimization is required to ensure that the optimization results reach

a satisfactory local optimum. In the front-end step, we find a rough

feasible path through A* path search in the workspace, guiding the

final topological structure of the trajectory. However, the direct
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Front -End

Obstacles

Mid -End Back -End

Discrete Position-Pose States

Fit Discrete States

From Front-End

Evaluation Point

Computing SVSDF via GSIP Final TrajectoryInitial Trajectory

Computing SVSDF Optimization via

        SVSDF 

Fig. 4. The hierarchical trajectory generation framework consists of three stages: the front-end, the mid-end, and the back-end. The front-end generates
a discrete sequence of high-dimensional position-pose states, the mid-end facilitates the generation of initial values for the optimized trajectory, and the
back-end uses the exact SVSDF to formulate a continuous collision-avoidance trajectory.

application of vanilla A* faces some challenges, as planning in C-

space [Hsu et al. 1997] requires extensive collision checks and node

search expansions. This can be extremely slow in high-dimensional

spaces like SE(3) [Ding et al. 2019a]. Therefore, we have adapted
the A* method to facilitate efficient path searching within the SE(3)
space. This adaptation ensures that the search space complexity of

our modified A* algorithm aligns with that of the conventional 3D

vanilla A*.

Our modifications mainly involve two aspects. Firstly, when ex-

panding neighboring nodes, we only evaluate nodes adjacent to

the current node in the position dimensions, while in the attitude

dimensions, we directly find the feasible attitudes closest to the

attitude of the current node, making the expansion of neighboring

nodes asymmetric in different dimensions. In trajectory optimiza-

tion, the continuity of attitudes will be ensured through the energy

optimality of the trajectory. Secondly, we utilize discretized collision

detection instead of accurate but costly geometric collision detec-

tion, which can be visualized with the help of Fig. 5. In fact, the final

trajectory is optimized according to the SVSDF, thus the front-end

path search does not need to be overly fine and strictly collision-free.

The use of precise collision checking is also unnecessary.

Each expansion step of the A* algorithm is represented by a high-

dimensional node, denoted as𝑁𝑛𝑜𝑑𝑒 , with coordinates (𝑥,𝑦, 𝑧,𝛾, 𝛽, 𝛼),
corresponding to the object’s position and attitude. The position ex-

pansion strategy for 𝑁𝑛𝑜𝑑𝑒 is the same as the standard A* algorithm,

but for attitudes (𝛾, 𝛽, 𝛼), we start the collision evaluation from the

attitude closest to the parent node. If no collision occurs, we update

the high-dimensional node coordinates and add them to the closed

list. If a collision is detected, we choose a more deviated attitude

from the parent node for re-evaluation. We pre-discretely store the

shape grid for all attitudes, denoted as𝑀𝑚𝑎𝑝 (𝛾 𝑗 , 𝛽 𝑗 , 𝛼 𝑗 ), capturing
the object’s profile at various combinations of roll, pitch, and yaw

(RPY) angles. This map is discretized to match the resolution of the

overall environment map 𝐸𝑚𝑎𝑝 . By combining various RPY config-

urations, we create a multi-channel map𝑀𝑚𝑎𝑝 where each channel

records self-occupancy information for a specific set of discretized

RPY angles. During collision detection, a Boolean convolution op-

eration is conducted between the environment map𝑀𝑚𝑎𝑝 and the

multi-channel map 𝑀𝑚𝑎𝑝 to efficiently assess potential collisions

for each RPY configuration. As shown in Fig. 5, since the object’s

shape data is pre-loaded in memory, this collision detection process

is very fast.

By prioritizing the collision-free nodes with the smallest devia-

tions in RPY during each A* expansion, this asymmetric A* algorithm

efficiently navigates high-dimensional spaces like SE(3). Detailed
algorithmic procedures can be found in Algorithm 2 of the supple-

mentary materials.

The front-end produces a sequence of high-dimensional collision-

free nodes that contain both position and pose information. This

sequence is referred to as 𝔗A*:

𝔗A* = {𝑁 𝑖
𝑛𝑜𝑑𝑒 :(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝛾𝑖 , 𝛽𝑖 , 𝛼𝑖 ) ∈ SE(3)}, (13)

and serves as the output of the first layer in our hierarchical plan-

ning approach. This discrete sequence is then passed to the mid-
end, where it is used to generate an initial trajectory. This initial

trajectory, which is characterized by its speed compared to the kin-

odynamic approach [Webb and Van Den Berg 2013], serves as the

initial input for the subsequent back-end optimization process. For

trajectory generation and optimization, we employ the concept of

𝔗MINCO as introduced in [Wang et al. 2022]. 𝔗MINCO denotes

the set of minimum control effort polynomial trajectories defined

as follows:

𝔗MINCO ={𝑝 (𝑡) : [0,𝑇Σ] → R𝑚 |c =M(q,T),

q ∈R(𝑁−1)𝑚,T ∈ R𝑀>0},

c =(c𝑇
1
, ..., c𝑇𝑀 )

𝑇 ∈ R6𝑁×𝑚,

q =(q
1
, ..., q𝑁−1) ∈ R(𝑁−1)×𝑚,

T =(𝑇1,𝑇2, ...,𝑇𝑁 )𝑇 ∈ R𝑁 }.

(14)
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Fig. 5. Here is a 2D example for visual clarity: An L-shaped robot performs
collision detection with the environment, where the pose dimension is
discretized by the yaw.

In this representation, the trajectory 𝑝 (𝑡) is an𝑚-dimensional

polynomial with 𝑁 segments, each of degree 5. The coefficients

of the polynomial are denoted as c, q represents the intermediate

waypoints. The time allocated for each segment is specified by T,
with the total time denoted as𝑇Σ =

∑𝑁
𝑖=1𝑇𝑖 . The parameter mapping

M(q,T) is constructed based on Theorem 2 presented in [Wang

et al. 2022].

An𝑚-dimensional trajectory with𝑀 segments can be described

as:

𝑝 (𝑡) = 𝑝𝑖 (𝑡 − 𝑡𝑖−1) ∀𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖 ), (15)

where the 𝑖𝑡ℎ segment of the trajectory is represented by a poly-

nomial of degree 5:

𝑝𝑖 (𝑡) = c𝑇𝑖 𝛽 (𝑡) ∀𝑡 ∈ [0,𝑇𝑖 ). (16)

Here, c𝑖 ∈ R6×𝑚 denotes the coefficientmatrix, 𝛽 (𝑡) = [1, 𝑡, . . . , 𝑡5]𝑇
is the natural basis, and 𝑇𝑖 = 𝑡𝑖 − 𝑡𝑖−1 represents the time duration

of the 𝑖𝑡ℎ segment.

The trajectory representation in 𝔗MINCO is uniquely determined

by the pair (q,T). The mapping c =M(q,T) converts this represen-
tation into (c,T), allowing for the expression of any second-order

continuous cost function 𝐽 (c,T) as 𝐻 (q,T) = 𝐽 (M(q,T),T). Con-
sequently, the partial derivatives 𝜕𝐻/𝜕q and 𝜕𝐻/𝜕T can be easily

derived from 𝜕𝐽/𝜕c and 𝜕𝐽/𝜕T.
Mid-End
Following the front-end, the output sequence𝔗A* consists of dis-

crete points without timestamps and does not constitute a trajectory.

Therefore, a primary goal of hierarchical planning is to transform

these reference key path points into a dynamically feasible and

collision-free trajectory.

The inherent non-convexity of collision-free trajectory genera-

tion poses a significant challenge to optimization-based methods.

These methods often struggle to find a global minimum and typi-

cally require well-chosen initial values, as noted in [Nocedal and

Wright 1999]. The purpose of themid-end here is to provide the

back-end with a good initial value of the optimized trajectory to

reduce the optimization pressure. The trajectory generated by the

mid-end needs to try to fit the output of front-end, namely the

key position-pose states (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝛾𝑖 , 𝛽𝑖 , 𝛼𝑖 ) ∈ 𝔗A* as follows:

𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ), (17)

𝑅𝑖 = 𝑅𝑧 (𝛼𝑖 ) · 𝑅𝑦 (𝛽𝑖 ) · 𝑅𝑥 (𝛾𝑖 ) . (18)

where 𝑅𝑧 , 𝑅𝑦, 𝑅𝑥 represent the rotation matrices corresponding to

each axis. To improve the alignment of trajectory path points and

attitude with the desired key states from 𝔗A*, we formulated an un-

constrained optimization problem with the following cost function:

min

c,T
, 𝐶𝑜𝑠𝑡mid-end = 𝜆𝑚 𝐽𝑚 + 𝜆𝑡 𝐽𝑡 + 𝜆𝑝G𝑝 + 𝜆𝑅G𝑅 . (19)

Here, the terms 𝐽𝑚, 𝐽𝑡 ,G𝑝 ,G𝑅 represent the smoothness, total

time, position, and pose residual penalties, respectively. The weights

𝜆𝑚, 𝜆𝑡 , 𝜆𝑝 , 𝜆𝑅 are assigned to these four items. The position residual

G𝑝 (𝑡) is defined as follows, utilizing the 𝐶2
-smoothing function

L𝜇 [·]:

G𝑝 (𝑡) = L𝜇

[
∥𝑝 (𝑡) − 𝑝𝑖 (𝑡 ) ∥2

]
, (20)

where ∥ · ∥2 denotes the square of Euclidean norm of a vector.

The function 𝑖 (𝑡) maps to the index of the key node based on the

proximity principle in 𝔗A*, correlating the time t with the nearest

key node identified in the front-end output. The smoothing function

L𝜇 [𝑥] is based on an exact penalty and handles non-negativity

constraints, where 𝜇 is a small smoothing factor.

L𝜇 [𝑥] =


0 𝑥 ≤ 0,

(𝜇 − 𝑥/2) (𝑥/𝜇)3 0 < 𝑥 ≤ 𝜇,

𝑥 − 𝜇/2 𝑥 > 𝜇.

(21)

The pose residual G𝑅 (𝑡) is defined as:

G𝑅 (𝑡) = L𝜇

[
∥𝑅(𝑡)−1𝑅𝑖 (𝑡 ) − 𝐼 ∥2𝐹

]
. (22)

Here, ∥𝐴∥2
𝐹
represents the Frobenius norm of matrix 𝐴, which

can be expressed as tr

{
𝐴𝑇𝐴

}
using the matrix trace.

Basically, G𝑅 (𝑡) quantifies pose similarity residuals and G𝑝 (𝑡)
evaluates position similarity residuals. These optimization compo-

nents are designed to ensure closeness between 𝑝 (𝑡) and 𝑝𝑖 (𝑡 ) , and
they strive to keep 𝑅(𝑡)−1𝑅𝑖 (𝑡 ) close to the identity matrix 𝐼 . This

closeness indicates the alignment of 𝑅(𝑡) with 𝑅𝑖 (𝑡 ) .
Detailed descriptions of 𝐽𝑚 and 𝐽𝑡 can be found in §A of the sup-

plementary materials. This appendix also contains gradient deriva-

tions for terms such as
𝜕G★

𝜕𝑐𝑖/𝜕𝑇𝑖 and
𝜕𝐽★

𝜕𝑐𝑖/𝜕𝑇𝑖 . It also provides insight

into trajectory generation and optimization.

After solving the mid-end unconstrained optimization problem,

we construct an initial trajectory that fits the discrete pose sequence

𝔗A*. This initial trajectory then serves as the starting point for

further trajectory optimization. Using the SVSDF, we perform the

final trajectory optimization to implement CCA while ensuring that

the dynamic constraints are satisfied.
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Fig. 6. For clarity, the figure here compares the obstacle avoidance gradients
applied to the robot along the trajectory in 2D scenarios. In scenarios with
more complicated robot shapes, our gradient proves to be the most effective
in pushing the SV away from obstacles, thus facilitating CCA.

Back-End
The back-end uses the SVSDF solved by the aforementioned

GSIP in Section 3.2 to construct the optimization problem that makes

the SV collision-free. The key point is that the gradient direction

provided by SVSDF is also the most appropriate direction for the

continuous collision-free optimization as shown in Fig. 6. Specifi-

cally, traditional discrete sampling methods such as those described

in related works [Geng et al. 2023; Hauser 2021; Wang et al. 2022],

typically compute the trajectory gradient based on the “fixed frame

state” of the robot at some discrete time points. This approach

conceptually separates the continuous motion process, making the

gradient estimation at each discrete time point “isolated”. This isola-

tion means that the gradient estimation at each time point does not

take into account the continuity and interdependence of the robot

during its forward and backward motion. Such an approach ignores

an important fact: the motion of robots is a continuous, holistic

process, and its state at any given time is inextricably linked to its

past and future states. Therefore, any approach that attempts to

estimate the overall gradient by considering only information from

discrete time points will not fully and accurately characterize the

robot’s motion in continuous space. Zhang et al. [2023] attempted

to use the gradient information of SV for trajectory optimization.

However, since the SDF values inside SV are determined relative

to its intrinsic shape SDF field, this method has certain limitations.

Notably, the SDF values deduced inside SV are conservative, leading

to erroneous gradient orientations internally. Our GSIP solution

in Section 3.2 provides for any obstacle point its closest distance

point projection with respect to the SV. At the same time, we can

obtain the corresponding gradient direction where the SVSDF is an

accurate description of the continuous collision constraint violation

in robot planning. Unlike previous works mentioned above, we de-

rive the SVSDF accurately, especially when the obstacle is inside

the SV, and no longer just get a bound inside [Sellán et al. 2021,

2023; Zhang et al. 2023]. This allows us to get the correct gradient

direction inside the SV, which facilitates continuous collision-free

motion.

Using the SVSDF for collision evaluation, the cost function con-

structed in the back-end is as follows:

min

c,T
𝐶𝑜𝑠𝑡back-end = G𝑑 + 𝜆𝑜G𝑜 + 𝜆𝑚 𝐽𝑚 + 𝜆𝑡 𝐽𝑡 . (23)

Here, the terms 𝐽𝑚 and 𝐽𝑡 represent the smoothness and total time,

respectively, same to themid-end.G𝑜 andG𝑑 represent the obstacle

and dynamic penalty respectively, while 𝜆𝑜 denotes the correspond-

ing weight for collision avoidance. Specifically,

G𝑜 =

𝑁𝑜𝑏𝑠∑︁
𝑖=1

L𝜇

[
𝐽𝑜 (𝒙𝑖𝑜𝑏 )

]
, (24)

𝐽𝑜 (𝒙𝑜𝑏 ) =
{
0, 𝑆𝑉𝑆𝐷𝐹 (𝒙𝑜𝑏 ) > 𝑠𝑡ℎ𝑟 ,

𝑠𝑡ℎ𝑟 − 𝑆𝑉𝑆𝐷𝐹 (𝒙𝑜𝑏 ), 𝑆𝑉𝑆𝐷𝐹 (𝒙𝑜𝑏 ) ≤ 𝑠𝑡ℎ𝑟 .
(25)

where 𝑠𝑡ℎ𝑟 is a safety threshold. 𝒙𝑜𝑏 is the obstacle point and 𝑁𝑜𝑏𝑠

is the number of obstacle points. Detailed explanations of gradi-

ent deviation and dynamic penalty G𝑑 are provided in §A of the

supplementary materials.

Due to the typically non-convex shapes of objects, the exact

SVSDF and its associated gradients significantly benefit the opti-

mization process, including avoiding gradient oscillations and reduc-

ing the number of optimization iterations required. This has been

validated in the experiments presented in Section 6.2. Particularly

in scenarios where obstacles are inside the SV, the back-end effec-

tively employs the most suitable gradient provided by the SVSDF to

guide the SV away from obstacles, achieving a continuous, collision-

free trajectory. Moreover, our method can quantify the degree of

collision violations between the obstacle and the SV, and rigorously

determine whether the object’s motion trajectory involves collisions

by checking whether the computed obstacle penalty, namely G𝑜 , is
greater than 0.

5 IMPLEMENTATION DETAILS
It is worth noting that the choice of tolerance, 𝜖+

𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
when solving GSIP in Alg. 1 does not depend on the shape of the

object. In our experiments, it is set to half of the collision avoidance

safety factor 𝑠𝑡ℎ𝑟 , which does not lead to tunneling effects.

Computation of the metric function g
In the SVSDF calculation process, computing the metric function𝑔 is

a crucial step in solving the 𝑳𝑷 (𝒓, 𝒔). As shown in Eq. (5), the value of

𝑔 is the global minimum of the function 𝑑 = SDF𝑀 (𝑡 ) (T −1 (𝑡)𝒑) .
Therefore, a global optimization technique is required to solve for

the value of 𝑔. Since 𝑑 is a continuous function and may be non-

convex, the gradient descent method can be applied to obtain a local

minimum of 𝑔, as discussed in [Sellán et al. 2021]). It is necessary to

compare several local minima to obtain the global minimum. In our

implementation, we first substitute the original shape𝑀 (𝑡) with a

bounding sphere 𝐵, where the function 𝑑′ = SDF 𝐵
(
T −1 (𝑡)𝒑

)
has

an analytic expression that can be calculated with ease quickly. It

is evident that 0 < 𝑑 − 𝑑′ < 2𝑟 for any 𝑡 , where 𝑟 is the radius of

𝐵. Intuitively, the function 𝑑 lies within the band between 𝑑′ and
𝑑′ + 2𝑟 . We select intervals according to a certain time resolution

and perform gradient descent in each interval to find the global
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Minimum evaluation method by Sellán et al. [2021] GSIP model by ours Minimum evaluation method by Sellán et al. [2021] GSIP model by ours

Fig. 7. This figure compares our SVSDF computation algorithm with [Sellán et al. 2021] in 2D scenarios for visual clarity. In these experiments, we move four
different shapes along specific trajectories. We then show the differences in SVSDF and gradients represented by contour lines.

a b c

Fig. 8. Fig. a. shows the SV generated by a 3D round pie-shape. Unlike the
internally conservative SDF shown in Fig. b, our method, as shown in Fig. c,
generates the correct SDF.

minimum of 𝑑′ + 2𝑟 ,𝑚𝑖𝑛𝐵 , and identify intervals on the function

𝑑′ where the value is less than 𝑚𝑖𝑛𝐵 ; thus, the global minimum

of 𝑑 must be within these intervals. Through this operation, we

significantly narrow down the range where the global minimum of

𝑑 could be located. Then, we further subdivide these intervals with

a certain resolution and perform gradient descent again, comparing

these local minima to obtain the global minimum of 𝑑 , which is the

value of 𝑔.

Accelerate internal SVSDF via continuity
The amplitude of SVSDF exhibits spatial continuity, which can speed

up the computational process of the SVSDF inside the SV. During

the iterative process of Algorithm 1, the SVSDF amplitude of a

neighboring point can provide an initial radius for the GSIP iteration

that is close to the optimal solution. Specifically, the initial radius

of the GSIP iteration can be chosen as 𝑟
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑆𝑉𝑆𝐷𝐹
+ 𝑑𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 , where

𝑑𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is the distance to the neighbor point. Using this strategy

to choose the initial value increases the efficiency of solving the

GSIP, improving the speed by a factor of 4 to 5.

6 RESULTS AND EVALUATION
Our algorithm is implemented in C++, with the trajectory optimiza-

tion component relying on the L-BFGS solver [Liu and Nocedal

1989].

Fig. 9. The left graph illustrates the comparative average computation
time between our method and the learning-based method in calculating
SVSDF for query points inside the SV. Meanwhile, the right graph shows the
comparison of overall computation time for a single trajectory generation
task, contrasting between our approach serving as the SVSDF computa-
tion module and the learning-based method serving the same role. The
learning-based approach, which involves additional training to accommo-
date trajectory variations, shows significantly longer computation time. All
training was performed on a single RTX2060.

6.1 Swept Volume SDF Results
The first set of experiments in this section shows the results of

the SVSDF computed by our method. We compared our method

with the pseudo-SDF derived directly from the implicit function in

[Sellán et al. 2021]. Fig. 7 and 8 show cases for different shapes and

trajectories. In contrast, our method can accurately compute signed

distances and their gradients inside the SV, which plays a crucial

role in trajectory optimization. The gradients computed at obstacle

points inside the SV contribute significantly to guiding the SV to

successfully avoid obstacles.

Additionally, we compared the average computation time of the

SVSDF at one query point between our method and the learning-

based method [Marschner et al. 2023] in four example scenarios

shown in Fig. 7. Although the learning-based method has parallel

acceleration when processing multiple queries simultaneously, it

requires pre-training to achieve sufficient accuracy. Furthermore,

during the iterative process of trajectory optimization, the trajectory

undergoes changes with each iteration. The learning-based method

ACM Trans. Graph., Vol. 43, No. 4, Article 110. Publication date: July 2024.



110:10 • Wang and Zhang, et al.

100

C
C

A
 R

at
e 

(%
)

2D experiments

80

60

40

20

0

3D experiments

10-1

Av
er

ag
e 

 �
��

�
� �

��
 Ours

Geng’s
Hauser’s
Zhang’s

shapes:

Tr
aj

ec
to

ry
 G

en
er

at
io

n 
Ti

m
e(

s)

0

4

8

20

24

32

28

36

Fig. 10. We did 500 trajectory generation tests for each shape in a randomly generated map, where the start and end points of the trajectories were randomly
selected. The left bar graph quantifies the CCA success rates for robots of different shapes, and the line graph records the average trajectory generation time
consumed. The right graph records the average minimal SVSDF values across all experiments. Given the compactness of the SV and its SDF in describing
collisions, this metric serves as an effective measure for assessing the degree of CCA in trajectories.

necessitates retraining after the trajectory undergoes deformation.

Therefore, using this method as a component for SVSDF computa-

tion in trajectory generation tasks would result in an unacceptably

long overall computation time. We conducted a trajectory genera-

tion experiment in a 2D environment with the same configuration as

shown in Fig. 10, only replacing the SVSDF computation component

with the learning-based method. The statistical data are shown in

Fig. 9.

6.2 Benchmarks and Ablation Study
We benchmark different shapes in 2D and 3D environments, evalu-

ating their performance in two settings: environments with dense

random obstacles and those with narrow gaps. These experiments

demonstrate the advantages of our algorithm in CCA. For the sake

of clarity, we present two scenarios with two different shapes, as

shown in Fig. 12. More details on additional robot shapes can be

found in Fig. 2 of the supplementary materials. We compare our

methodology with the relevant study [Geng et al. 2023; Hauser 2021;

Zhang et al. 2023] which can handle objects of different geometries.

Additionally, we conducted 500 random trials for each case and

made statistical comparisons for two key metrics: the CCA success

rate and the average minimal signed distance from obstacles to the

SV. The CCA success rate refers to the proportion of generated

trajectories that meet to be continuously collision free. The aver-

age minimal signed distance from obstacles to the SV reflects the

closeness of the generated trajectories to the obstacles and serves

as a more granular metric compared to the CCA success rate. The

corresponding statistics are shown in Fig. 10.

The difference in the experimental results stems from the differ-

ent gradients imposed by obstacles in the optimization, as shown in

the previous Fig. 6. Geng et al. [2023] tends to miss obstacles in com-

plex, densely populated obstacle scenes, given its discrete collision

evaluation along the trajectory and its specific gradient evaluation

based on individual shapes. This characteristic makes it prone to

oscillations in trajectory optimization, especially in the case of com-

plex shapes. Hauser [2021] employs a branch-and-bound method to

compute maximum penetration depth. However, their method also

relies on evaluating gradients based on individual shapes, which

does not eliminate the problem of gradient oscillation. The method

proposed by Zhang et al. [2023] uses continuous collision evaluation,

but the presence of obstacles inside the SV during the optimization

process poses significant challenges due to the incorrect signed

distances and gradients imposed by these obstacles.

The statistical results show that our method achieves the high-

est CCA success rate and minimizes violations of the SV collision

constraints. This can be attributed to the continuity of SVSDF in

collision detection and the accuracy of the internal and external

signed distances and gradients.

To evaluate the individual contributions of the components of

our hierarchical planner, we perform ablation experiments in 3D

environments, which are detailed in §B of the supplementary mate-

rials.

Finally, we show some important parameters in Table 1 used in

the above benchmark and ablation experiments.

6.3 Experiments
6.3.1 Static Shape Experiments. In Fig. 14, we simulate a TIE fighter

navigating through a complex environment in space filled with as-

teroids. Our method generates a smooth, continuous collision-free

trajectory that is consistent with the dynamic model. Notably, we

use the original mesh model of the TIE fighter without any spe-

cific simplifications. In this scenario, we use the multirotor dynamic

model [Faessler et al. 2017]. In fact, by altering the formulas in the

optimization process, our approach can be adapted to various dy-

namic models. Fig. 15 demonstrates our method in planning a flight

trajectory for a fixed-wing aircraft navigating through an extremely

narrow canyon, following the dynamic model of the fixed-wing

aircraft. Our approach is also applicable to autonomous driving. Fig.
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(a) (b)

Fig. 11. Fig. a shows the planned trajectory for a deformable ferrofluid robot, driven by a magnet to transport red particles. Silver-white cylinders represent
obstacles. Fig. b shows the planning result for a robot simulating deformable organisms. Each vertex of the robot is capable of omnidirectional motion.

13 illustrates how our method facilitates a car to perform seamless,

collision-free automated parking in a densely packed parking lot.

These cases effectively extend thework on “Path planning” discussed

in [Sellán et al. 2021]. While Sellán et al. [2021] only reconstructed

the surface of the SV, we used our pipeline to achieve CCA in plan-

ning for robots of various shapes. Fig. 16 highlights the feature that

our method does not sacrifice any solution space. In this experiment,

objects with the shapes of the characters “SIGGRAPH” and the logo

pass through three walls with holes. Our method successfully gener-

ates continuous collision-free trajectories, even though the shapes

of the holes are almost identical to those of the flying objects.

It should be emphasized that the SVs depicted are used for visu-

alization purposes only. Actually, our method does not require the

explicit reconstruction of SV surfaces. The technique for generating

SV is based on this work: [Sellán et al. 2021].

Table 1. Related Parameters in Ablation Experiments and Benchmarks

Symbol Value

Max velocity (𝑚/𝑠) 𝑣𝑚 10.0

Max acceleration (𝑚/𝑠2) 𝑎𝑚 5.0

Max jerk (𝑚/𝑠3) 𝑗𝑚 10.0

Optimization weight for obstacles 𝜆𝑜 4000.0

Optimization weight for total time 𝜆𝑡 20.0

Optimization weight for position residuals 𝜆𝑝 1000.0

Optimization weight for pose residuals 𝜆𝑅 32000.0

Optimization weight for smoothness 𝜆𝑚 1.0

Optimization weight for velocity 𝜆𝑣 1000.0

Optimization weight for acceleration 𝜆𝑎 1000.0

Optimization weight for jerk 𝜆 𝑗 1000.0

Safety threshold 𝑠𝑡ℎ𝑟 0.366

Discrete evaluation density in back-end 𝜅 32

smoothness parameter in L𝜇 [·] 𝜇 0.01

6.3.2 Deformable Shape Experiments. Our method is also effective

for deformable shapes, requiring only that the shape’s change,𝑀 (𝑡),
be differentiable. This section presents novel scenarios to demon-

strate the effectiveness of our method in generating trajectories for

such shapes. As a first example, we consider the crescent-shaped

ferrofluid robot that transports particles (inspired by [Fan et al.

2020]). The ferrofluid robot can deform between crescent and annu-

lar shapes by adjusting the tilt angle of the annular magnet beneath

it. As shown in Fig. 11a, the robot successfully avoids obstacles and

transports the red particle. In our second example, we conceptualize

a robot model inspired by “shape-shifting organisms”. This model

consists of vertices that can move independently, allowing the poly-

gon formed by these vertices to have a high degree of deformability.

This design holds promise for a variety of applications in various

domains, including flexible multi-robot collaborative transportation.

In our approach, we treat the trajectories of individual vertices as

optimization objectives. We use the polygon defined by these ver-

tices as the shape of the robot and apply our trajectory generation

algorithm. The results of this process are shown in Fig. 11b.

7 CONCLUSION AND LIMITATIONS
To the best of our knowledge, by solving the GSIP model, our al-

gorithm is the first non-deep-learning algorithm to calculate the

exact SVSDF of arbitrary shapes. Our pipeline integrates compu-

tational techniques of SV from computer graphics with trajectory

optimization techniques from robotics, combining these two fields

to provide an innovative and effective solution for CCA navigation

for robots of various shapes in complex environments. In addition,

our method can also be applied to interpolation animation genera-

tion, volume representation/rendering, reverse engineering, physics

simulation, and CAD/CAM fields. We are committed to open-source

our algorithm for the benefit of the community.

Our algorithm also has its limitations. First, due to the strong

non-convexity of the trajectory optimization problem, although con-

structing safety constraints using an exact SVSDF can effectively

improve CCA metrics, it is still not guaranteed to achieve 100%
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Fig. 12. The left image shows a U-shaped car with Mecanum wheels maneuvering under a road with barriers, while the right image shows a shuttle-shaped
boat navigating a narrow, rock-filled lake. The bottom row highlights the effectiveness of our method in CCA, showing a collision-free swept volume.

CCA. Second, in a 3D environment, computing SVSDF requires

extensive evaluation computations, resulting in non-real-time tra-

jectory generation. Therefore, we are actively exploring the use of

spatio-temporal continuum techniques to further optimize the com-

putational speed. Third, our current approach uses sample points

to represent obstacles. A possible direction for improvement is to

extend the concept of SDF by computing the distance from an object

to the nearest obstacle in SE(3) space. Fourth, our method is not

well suited to handle dynamic obstacles. Our approach to dynamic

obstacles involves treating the SV of the obstacle as a static obstacle.

A possible extension is to obtain the relative trajectory by comput-

ing the difference between the trajectories of the object and the

obstacle. This leads to an extension of the concept of “swept volume”

to “relative motion swept volume”, a direction we intend to explore

in the future.

Fig. 13. Utilizing the hierarchical planner, the small car is able to optimize
a collision-free parking trajectory in a complex, dense environment.
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Fig. 14. The initial trajectory of the Tie fighter, along with its corresponding SV, intersects with meteorites. The complex shape of the Tie fighter challenges
traditional optimization-based methods to provide optimal gradient information for obstacle avoidance. However, our hierarchical planning framework,
especially the SVSDF-based backend, ensures that the final optimized SV is collision-free.

Fig. 15. Owing to the precise collision representation in the SVSDF, the
spacecraft efficiently plans continuous, collision-free trajectories in ex-
tremely confined canyon spaces. This performance exceeds that of planning
methods that rely on discrete collision evaluation.

Fig. 16. The “SIGGRAPH” logo and letters navigate continuously and
collision-free through the narrow gaps formed by three walls.
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