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Discrete time crystals are a special phase of matter in which time translational symmetry is broken through
a periodic driving pulse. Here, we first propose and characterize an effective mechanism to generate a stable
discrete time crystal phase in a disorder-free many-body system with indefinite persistent oscillations even in
finite-size systems. Then we explore the sensing capability of this system to measure the spin exchange coupling.
The results show strong quantum-enhanced sensitivity throughout the time crystal phase. As the spin exchange
coupling varies, the system goes through a sharp phase transition and enters a non-time crystal phase in which
the performance of the probe considerably decreases. We characterize this phase transition as a second-order
type and determine its critical properties through a comprehensive finite-size scaling analysis. The performance
of our probe is independent of the initial states and may even benefit from imperfections in the driving pulse.

Introduction.– Symmetry breaking is a fundamental pro-
cess that shapes our universe, from its early evolution and the
formation of elementary particles to various forms of phase
transitions in our daily lives. Breaking continuous spatial
translation symmetry into a discrete one results in ordinary
crystals, where atoms sit in a regular order. In a seminal
work by Wilczek [1], the idea of breaking continuous time
translation symmetry and the formation of time crystals was
proposed. While this proposal proved impossible in equilib-
rium states of time-independent systems with two-body in-
teractions [2–4], the spontaneous emergence of a new peri-
odic motion turned out to be possible in periodically driven
systems [5–7]. Breaking discrete time translational symme-
try (DTTS) in such systems and forming so-called discrete
time crystals (DTC) has become the subject of intensive theo-
retical [5–24] and experimental [25–40] research (for reviews
see [41–46]). In periodically driven systems with a period T ,
DTCs do not correspond to equilibrium states but reveal tem-
poral order where: (i) physical observables evolve with period
gT with integer g>1; (ii) the dynamics are robust against small
imperfections in the driving pulse; and (iii) the oscillating be-
havior persists indefinitely in the thermodynamic limit. The
existence of the DTC relies on mechanisms that prohibit the
system from absorbing energy from the driving pulse, such
as self-trapping, the presence of disorder, gradient magnetic
fields, all-to-all or long-range interactions, domain-wall con-
finement, and quantum scars [9, 13, 15, 17–23, 41–44, 46].
While major proposals focus on the formation and detection
of DTCs, the potential application of this phase of matter is yet
to be explored. So far, time crystals have been used for simu-
lating complex systems [14], topologically protected quantum
computation [47], designing quantum engines [48], metrology
in fully-connected graphs [49], measuring AC fields [50], and
system-environment coupling [51].

Strongly correlated many-body systems have been identi-
fied as excellent quantum sensors. In particular, various forms

of quantum criticality have been used for achieving quantum-
enhanced sensitivity beyond the capacity of classical sensors.
This includes first-order [52–54], second-order [55–70], dis-
sipative [71–80], topological [81–84], Floquet [85, 86], and
Stark [87–89] phase transitions. However, the benefits of us-
ing criticality-based probes are limited by three major fac-
tors: (i) the region over which quantum-enhanced precision is
achievable is very narrow; (ii) state preparation, e.g. ground
state, near the critical point may require a complex time-
consuming procedure; and (iii) the presence of imperfection
deteriorates the performance of the sensor. Therefore, any
sensing protocol that operates optimally over a reasonably
wide region without requiring complex state preparation and
being stable against unwanted imperfections is highly desired.

Here, by exploiting the state-of-the-art numerical simula-
tions, we put forward a mechanism for establishing a stable
DTC with period-doubling oscillations that persist indefinitely
even in finite size systems. While the DTC shows strong ro-
bustness to a certain value of imperfection in the pulse, it goes
through a sharp second-order phase transition as the spin ex-
change coupling varies. Relying on this transition, we devise
a DTC quantum sensor that benefits from multiple features.
First, the probe shows extreme sensitivity to the exchange
coupling across the whole DTC phase, achieving quantum-
enhanced sensitivity. Second, the probe performance is inde-
pendent of the initial state. Third, the precision enhances by
increasing imperfection in the pulse to the certain value. In
addition, we also characterize the non-DTC phase observing
features of ergodic phase in the thermodynamic limit.

Quantum parameter estimation.– We begin by recapitulat-
ing the theory of quantum parameter estimation that aims to
infer an unknown parameter ω in a Hamiltonian of a probe by
observing the evolution of the probe’s state ρ(ω). The uncer-
tainty in estimating ω, quantified through the standard devia-
tion δω, is lower bounded by quantum Cramér-Rao inequality
δω≥1/

√
FQ(ω) wherein FQ(ω) is the quantum Fisher infor-
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mation (QFI). For pure states ρ(ω)=|ψ(ω)⟩⟨ψ(ω)| the QFI is
given by FQ(ω)=4

(
⟨∂ωψ(ω)|∂ωψ(ω)⟩−|⟨∂ωψ(ω)|ψ(ω)⟩|2

)
[90].

In classical sensors Fisher information, at best, scales linearly
with system size L. Exploiting quantum features in sensing
the coupling of a k-body interacting system allows precision
enhancement to FQ∼L2k, known as ultimate precision [91].

The model.– We consider a one-dimensional chain that con-
tains L spin-1/2 with Ising-type interaction, governed by the
following Hamiltonian

H(t) = JHI +
∑

n

δ(t − nT )HP,

HI =

L−1∑
j=1

jσz
jσ

z
j+1, HP = Φ

L∑
j=1

σx
j . (1)

Here J is the spin exchange coupling, and σ
x,y,z
j are the

Pauli operators. The gradient zz interaction in HI causes off-
resonant energy splitting at each site and, therefore, leads the
particle’s wave function to localize, reminiscent of the local-
ization which is usually induced by applying a gradient mag-
netic field [87–89, 92, 93]. This localization, characterized
by the existence of an extensive number of conserved quanti-
ties [94–96], is essential to prevent our system from absorbing
the energy of the periodic drives [97, 98]. In the absence of
the localization, any local physical observable becomes fea-
tureless, and the system thermalizes [99, 100].

Since HP acts in period T , the evolution of the system is de-
scribed by the Floquet theorem. The Floquet unitary operator
for one period evolution is

UF(Ω, ε) = e−iHP e−iΩHI , (2)

here Ω=JT , and Φ is tuned to be Φ=(1−ε) π2 , with ε as devi-
ation from a π/2 x-rotation. In the following, we show how
two main parameters, namely Ω and ε play roles in estab-
lishing a stable DTC. First, we analytically show that setting
Ω=π/2 results in a stable period doubling DTC that is robust
against arbitrary imperfection ε in the rotating pulse. Then,
through comprehensive numerical simulations, we show that
as Ω varies from π/2, the system goes through a sharp phase
transition from a stable DTC to a regime in which DTC order
is lost. We explore the possibility of this phase transition to
act as resource for quantum sensing.

Discrete Time Crystal.– We begin by highlighting
some key features of HI . First, HI is diagonalized in the
computational basis, namely HI=

∑2L

z=1 Ez|z⟩⟨z| in which
{|z⟩} represents the 2L elements of the computational ba-
sis. Any state of the computational basis can be written as
|z⟩=(σx

1) j1 (σx
2) j2 · · · (σx

L) jL |↑, ↑, · · · , ↑⟩with z=( j1, j2, · · · , jL)2
being the binary representation of the integer z. Second,
[HI ,Π jσ

x
j]=0 which implies that Ez=E2L−1−z. Third, for an

even number of spins which is considered here, all the eigen-
values Ez are integer numbers that are even (odd) if L/2 is an
even (odd) number. Since [HI ,Π jσ

x
j]=0, for ε=0 which re-

sults in e−iHP=Π jσ
x
j , one has a trivial period doubling DTC as

U2
F(Ω=π/2, ε=0)=e−2iHP e−2iΩHI=(−1)HI=±I. Consequently,
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FIG. 1: (a) Stroboscopic dynamics of the revival fidelity F(2nT )
over a hundred of period cycles n when system of size L=12 is in
the DTC phase, happens for ω≤10−2π/2, and non-DTC, happens for
ω≥0.05π/2. (b) Dynamical behavior of the revival fidelity at strobo-
scopic times n∈{10, · · · , 100} as a function of ω obtained for a chain
of size L=30 and ε=0.01. The inset is the average fidelity F(nT ).
The black dashed line determines the onset of the phase transition.

one observes persistent oscillations in typical observables
with spontaneously breaking DTTS. For ε,0, one gets
[HI , e−iHP ],0. In this case, the reduction of U2

F(Ω=π/2, ε,0)
to the identity is not obvious. To study this nontrivial DTC, we
focus on the evolution of computational basis over n period
cycles and its revival fidelity F(nT )=|⟨z|Un

F(Ω=π/2, ε,0)|z⟩|2
in the system with even number of spins. For a typical
computational basis state |z⟩ with uz spins down, the free
evolution of the system governed by HI imposes a dynamical
phase as e−iΩHI |z⟩=(−i)L/2(−1)uz |z⟩. Then the first rotating
pulse evolves |z⟩ to a superposition of all the 2L elements,
each with coefficient (−i sinΦ) f (cosΦ)L− f wherein f is the
number of the flipped spins. After the second period of the
evolution, one can show that ⟨z|U2

F(Ω=π/2, ε,0)|z⟩ is equal
with the summation of 2L choices of flipping L spins with
coefficient (i)L(−i sinΦ)2 f (cosΦ)2(L− f ). A straightforward
simplification results in ⟨z|U2

F(Ω=π/2, ε,0)|z⟩=(−i)L and,
hence, F(2T )=1, see Supplementary Materials (SM). This
calculation shows that regardless of the imperfections in the
driving pulse, as long as Ω=π/2 any initial state returns to
itself after time 2T , therefore, period-doubling oscillations of
F(nT ) persists indefinitely even in finite size systems.

However, establishing a stable DTC must be independent
of fine-tuned Hamiltonian parameters. This obliges us to an-
alyze the effect of a deviation as ω=|π/2−Ω|. Surprisingly,
our comprehensive numerical simulations show that as ω in-
creases, our system goes through a sharp phase transition
from a stable DTC to a region with no spontaneous break-
ing of DTTS in Eq.(1). Before presenting the main results,
some general points related to methodologies need to be clar-
ified. Throughout this Letter, we used the exact diagonaliza-
tion (ED) computational method for the system of size L=12
and time-dependent variational principle (TDVP) techniques
for finite matrix product state (MPS), using PYTHON pack-
age TeNPy [101], for systems of size L>12. The results are
presented for the initial state |ψ0⟩=|0⟩=|↑, · · · , ↑⟩, although,
the results are generic and remain valid for other computa-
tional basis states too (see SM). In Fig. 1(a), we plot strobo-
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scopic dynamics of the revival fidelity F(2nT ) as a function
of n for different values of ω in the system of size L=12 under
a driving pulse with an imperfection of magnitude ε=0.01. In
the stable DTC phase, happening in the rangeω≤10−2π/2, one
observes F(2nT )=1. For larger values of the deviation, such
as ω≥0.05π/2, revival fidelity shows nontrivial oscillations,
signaling the entrance to a non-DTC region. We character-
ize this region later. This distinctive behavior with respect
to ω reflects itself in all stroboscopic times as has been de-
picted in Fig. 1(b). In this panel, we plot the revival fidelity
at different stroboscopic times n∈{2, 10, · · · , 100}, in a chain
of length L=30 and ε=0.01. The inset represents the average
fidelity F(nT )=(1/N)

∑N
n=1 F(2nT ) for the considered strobo-

scopic times. As is obvious from Fig. 1(b), the phase tran-
sition between stable DTC and non-DTC region occurs at a
specific value of ω=ωmax, dashed line, in all the stroboscopic
times. In the following, we first analyze the capability of this
phase transition as a resource for quantum sensing. Then, we
complete this analysis by extracting the critical features of the
quantum phase transition using a well-established mechanism
that identifies the type of transition as a second-order one.

DTC sensor.– To investigate the sensing capability of
our DTC probe for sensing ω, in Fig. 2(a), we plot QFI
FQ as a function of ω at different stroboscopic times
n∈{2, 10, · · · , 100}, in a chain of length L=30 and ε=0.01.
Several interesting features can be observed. First, the QFI
shows distinct behaviors in each phase. While in the DTC
phase, the FQ becomes a plateau whose value depends on n, in
the non-DTC region it shows nontrivial and fast oscillations.
Second, by approaching the transition point, denoted by ωmax
(dashed line), the QFI indeed shows a clear peak at all strobo-
scopic times. Note thatωmax in both Fig. 1(b) and Fig. 2(a) are
exactly the same. To understand the dynamical growth of the
QFI, in Fig. 2(b), we plot FQ over thousands of driving cycle
n in a systems of size L=12 and ε=0.01 at different ω’s. As
the figure shows, when the probe is tuned to work deeply in ei-
ther DTC phase (for ω=10−4π/2) or the non-DTC region (for
ω=10−1π/2), one obtains FQ∝n2. However, in the transition
point, ω=ωmax the QFI in the early times n∈[1, · · · , 80] dra-
matically increases as FQ∝n3, and then follows FQ∝n2 in the
larger times. To identify the effect of size on quality of sens-
ing, we analyze the QFI at various sizes L=12, · · · , 32 and
also different cycles n. In Figs. 2(c) and (d), we plot the ob-
tained FQ as a function of ω after n=2 and n=100 cycling pe-
riods, respectively, for various L and fixed ε=0.01. The finite-
size effect is obvious in both DTC phase and transition point,
namely, the points where QFI peaks. By enlarging the chain,
the peaks of the QFI smoothly skew towards smaller values
of ω as can be seen in the inset of Fig. 2(d). The obtained
ωmax at different n’s are well-mapped with functionωmax∝L−1,
indicating that in the thermodynamic limit L→∞ the transi-
tion happens at infinitesimal deviation ω. In the non-DTC
region, the oscillatory behavior of the QFI, in particular in
larger times (n=100) prevents us from investigating the scal-
ing behaviors in this phase. In Fig. 2(e), we present the QFI
at n=2 as a function of L at ω=10−4π/2, namely deep inside
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FIG. 2: (a) The QFI FQ versus ω in stroboscopic times in a sys-
tem of size L=30. The onset of the phase transition is determined
by ω=ωmax (dashed line), the point where QFI peaks in different n’s.
(b) Dynamical growth of the QFI when a system of size L=12 is
deeply in DTC phase (for ω=10−4π/2), in the non-DTC phase (for
ω=10−1π/2), and at the transition point (ω=ωmax). (c) and (d) QFI
versus ω in systems with various L’s after n=2 and n=100, respec-
tively. Inset: ωmax versus L at n=2 and n=100. The numerical simu-
lation (NS) are well described by the fitting function ωmax∝L−1. (e)
The values of the QFI after n = 2 in DTC phase (for ω=10−4π/2)
and at transition points (ω=ωmax) versus L. The numerical simula-
tion (NS) is well-mapped by a function as FQ∝Lβ (solid lines) with
β>3. (f) The finite-size scaling analysis obtained for the curves in
panel (c). The best data collapse is obtained for the reported critical
parameters (ωc, ζ, ν). Here, Q determines the quality of the data col-
lapse with Q=1 for the optimal data collapse [102, 103].

the DTC phase, and also at the corresponding transition points
ω=ωmax. The numerical results can be properly mapped with
a fitting function as FQ∝Lβ with β=3.125 and β=3.13 in the
DTC phase and at the transition point, respectively. Based on
these, one can suggest the following ansatz for the QFI

FQ ∝ nαLβ, (3)

where throughout the DTC phase one has α≃2 and β≃3. We
highlight this as the main result of this Letter showing that our
DTC probe achieves quantum-enhanced sensitivity. It is worth
emphasizing that in classical probes one at best achieves β=1.
Exploiting quantum features may enhance the precision to
β=2, conventionally known as the Heisenberg limit. The ulti-
mate obtainable precision in k-body interacting system, how-
ever, is given by β=2k, which becomes β=4 in our case [91].
Thus, while our DTC probe beats the conventional Heisenberg
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FIG. 3: (a) The QFI versus ω in a chain of size L=20 after n=10
period cycles for different ε. The dashed line determines the onset
of the phase transition. (b) The QFI versus ε for two values of ω,
obtained after n=100 cycling periods in a system of size L=12.

limit, it remains below the ultimate precision bound.
To characterize the observed phase transition, we as-

sume a continuous second-order ansatz for the QFI as
FQ=Lζ/νG(L1/ν(ω−ωc)) where ζ and ν are critical exponents,
ωc is the critical point and G is an arbitrary function. If this
ansatz is correct, one expects to obtain data collapse of vari-
ous size systems when L−ζ/νFQ is plotted versus L1/ν(ω−ωc).
Indeed, as shown in Fig. 2(f), tuning the parameters to
(ωc, ζ, ν)≃(0.00026, 2.9569, 0.9488), optimized using Python
package PYFSSA [102, 103], results in an almost perfect data
collapse for curves in Fig. 2(c). This indicates that the DTC
phase transition is indeed of the second-order type.

Imperfection effect.– Previously we analytically proved that
our DTC is robust against uniform imperfection ε in the driv-
ing pulse when ω=0 (see SM). In the case of nonzero ω, the
situation becomes even more interesting. In Fig. 3(a), we plot
the QFI versus ω after n=10 for a chain of size L=20 under
driving pulse with various imperfections ε. While the qualita-
tive behavior of the probe in the DTC phase is not affected by
imperfection, increasing εmay enhance the QFI. To assess the
performance in a wider range of the imperfection, in Fig. 3(b)
we report FQ as a function of ε for ω=10−4π/2, and ω=ωmax.
The results are obtained after n=100 in a system of size L=12.
This can be understood as imperfect rotating pulses through
involving a larger sector of the Hilbert space in the dynam-
ics of the system imprints more information about ω into the
quantum state. The enhancement in the DTC phase, where
the system is supposed to be strongly localized, has remark-
ably stronger effect than at the transition point that already has
features of both thermalization and localization. This interest-
ing result is in sharp contrast with the usual sensors where the
imperfections deteriorate the sensing power.

Melting transition of the DTC.– Having elucidated the
sharp second-order phase transition controlled by ω, we now
explore the melting of the DTC by increasing the imperfection
ε. In Fig. 4(a), we plot the revival fidelity F(nT ) after n=100
period cycles as a function of ω and ε, obtained for system
of size L=12. Indeed the phase diagram is fully described by
both ω and ε. To diagnose the transition driven by the im-
perfection ε, we use averaged entanglement entropy ⟨S EE⟩

and averaged diagonal entropy ⟨S DE⟩ obtained for all Flo-
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FIG. 4: (a) Phase diagram of the DTC as function of ω and ε. The
background is F(nT ) after n=100 in a system of size L=12. The
markers determine the phase boundary between DTC and the ther-
mal phase, obtained through finite-size scaling analysis of averaged
entanglement entropy ⟨S EE⟩ and averaged diagonal entropy ⟨S DE⟩.
(b) ⟨S EE⟩ versus ε for systems of different sizes at ω=5×10−4. Inset
is the finite-size scaling analysis, showing the best data collapse ob-
tained for reported critical parameters (εc, ν, ζ).

quet states of UF(Ω, ε)=
∑2L

k=1 e−iϕk |ϕk⟩⟨ϕk |. For a given Flo-
quet state |ϕk⟩, the reduced density matrix ρ(k)

L/2 = TrL/2|ϕk⟩⟨ϕk |

can be obtained by tracing out L/2 spins in the right side
of the chain. Therefore, the entanglement entropy between
the half-systems is S (k)

EE=−Tr[ρ(k)
L/2 ln(ρ(k)

L/2)] with an average as

⟨S EE⟩=
∑2L

k=1 S (k)
EE/2

L. Replacing ρ(k)
L/2 by decohered density

matrix ϱ(k)
L/2 which only contain the diagonal elements of ρ(k)

L/2,
results in diagonal entropy as S (k)

DE=−Tr[ϱ(k)
L/2 ln(ϱ(k)

L/2)] and its

average ⟨S DE⟩=
∑2L

k=1 S (k)
DE/2

L. This quantity has recently been
proposed for emulating the thermodynamic behavior in many-
body localization contexts [96, 98]. In the DTC phase, each
Floquet state is a maximally entangled Greenberger-Horne-
Zeilinger (GHZ) of two computational basis states. For in-
stance, for negligible values of the ε, one approximately has
|ϕ1⟩�

1
√

2
(|0⟩ + |2L − 1⟩) and |ϕ2L⟩� 1

√
2
(|0⟩ − |2L − 1⟩) with the

corresponding eigenvalues as ϕ1�E1 and ϕ2L�E1±π. This so-
called π-pairs of the Floquet states results in S (k)

EE=S (k)
DE= ln 2

in deep DTC phase. By increasing ε both entanglement and
diagonal entropy grow and peak at ε=0.5, see Fig. 4(b) and
also SM. To extract the critical properties of a transition, one
can establish finite-size scaling analysis to predict the behav-
ior of the system when its size is changing. In the inset of
Fig. 4(b), we depict the best collapse of the corresponding
curves obtained for reported (εc, ν, ζ). By increasing the sys-
tem size ωmax decreases and thus the extension of the DTC
phase becomes smaller. Therefore, for finite-size scaling anal-
ysis we select the lengths such that for the given ω they are all
within the DTC phase when ε≃0. Note that the obtained εc

from finite-size scaling of both ⟨S EE⟩ and ⟨S DE⟩, shown as
markers on panel (a), are very close and determine the phase
boundary between the DTC and the non-DTC phase.

Non-DTC region.– By increasing ω, one observes non triv-
ial oscillations in the behvior of fidelity F(2nT ), see Fig. 1(a),
which signals the lost of the DTC order. As the system size in-
creases the period of these oscillations increases, hinting that
the system thermalizes in the thermodynamic limit L→∞. As
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shown in the SM, the entanglement entropy ⟨S EE⟩ and the
diagonal entropy ⟨S DE⟩ asymptotically approach their corre-
sponding Page entropy [104–106], expected for ergodic ther-
mal phases, as the system size increases. This provides further
evidence that the non-DTC phase becomes an ergodic thermal
phase in the thermodynamic limit.

Conclusion.– Having established a DTC with indefinite per-
sistent oscillations and strong robustness to the imperfections
in the driving pulse, we show that this DTC is extremely
precise in measuring coupling strength. It provide quantum-
enhanced sensing over a region that extends over the DTC
phase to the transition point. Through establishing finite-size
scaling analysis, we characterize the nature of the phase tran-
sition as the second-order and determine relevant critical ex-
ponents. The obtained quantum-enhanced sensitivity is gen-
eral and independent of the initial state. Regarding the im-
perfection in the rotating pulse, we show that increasing im-
perfection, before melting the DTC, enhances the precision of
estimation in both DTC phase and transition point.
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[20] K. Bull, A. Hallam, Z. Papić, and I. Martin, Phys. Rev. Lett.
129, 140602 (2022).

[21] W. Deng and Z.-C. Yang, Phys. Rev. B 108, 205129 (2023).
[22] S. Liu, S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao, Phys.

Rev. Lett. 130, 120403 (2023).
[23] B. Huang, Phys. Rev. B 108, 104309 (2023).
[24] K. Giergiel, J. Wang, B. J. Dalton, P. Hannaford, and K. Sacha,

Phys. Rev. B 108, L180201 (2023).
[25] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee,

J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vish-
wanath, et al., Nature 543, 217 (2017).

[26] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya,
F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, et al., Nature
543, 221 (2017).

[27] S. Pal, N. Nishad, T. Mahesh, and G. Sreejith, Phys. Rev. Lett.
120, 180602 (2018).

[28] J. Rovny, R. L. Blum, and S. E. Barrett, Phys. Rev. Lett. 120,
180603 (2018).

[29] J. Smits, L. Liao, H. Stoof, and P. van der Straten, Physi. Rev.
Lett. 121, 185301 (2018).

[30] J. Randall, C. Bradley, F. Van Der Gronden, A. Galicia,
M. Abobeih, M. Markham, D. Twitchen, F. Machado, N. Yao,
and T. Taminiau, Science 374, 1474 (2021).

[31] H. Keßler, P. Kongkhambut, C. Georges, L. Mathey, J. G.
Cosme, and A. Hemmerich, Phys. Rev. Lett. 127, 043602
(2021).

[32] H. Xu, J. Zhang, J. Han, Z. Li, G. Xue, W. Liu, Y. Jin, and
H. Yu (2021), arXiv:2108.00942.

[33] A. Kyprianidis, F. Machado, W. Morong, P. Becker, K. S.
Collins, D. V. Else, L. Feng, P. W. Hess, C. Nayak, G. Pagano,
et al., Science 372, 1192 (2021).

[34] H. Taheri, A. B. Matsko, L. Maleki, and K. Sacha, Nat. Com-
mun. 13, 848 (2022).

[35] X. Mi, M. Ippoliti, C. Quintana, A. Greene, Z. Chen, J. Gross,
F. Arute, K. Arya, J. Atalaya, R. Babbush, et al., Nature 601,
531 (2022).

[36] P. Frey and S. Rachel, Sci. Adv. 8, eabm7652 (2022).
[37] Z. Bao, S. Xu, Z. Song, K. Wang, L. Xiang, Z. Zhu, J. Chen,

F. Jin, X. Zhu, Y. Gao, et al., arXiv:2401.08284 (2024).
[38] K. Shinjo, K. Seki, T. Shirakawa, R.-Y. Sun, and S. Yunoki,

arXiv:2403.16718 (2024).
[39] B. Liu, L.-H. Zhang, Z.-K. Liu, J. Zhang, Z.-Y. Zhang,

S.-Y. Shao, Q. Li, H.-C. Chen, Y. Ma, T.-Y. Han, et al.,
arXiv:2402.13657 (2024).

[40] B. Liu, L.-H. Zhang, Y. Ma, T.-Y. Han, Q.-F. Wang,
J. Zhang, Z.-Y. Zhang, S.-Y. Shao, Q. Li, H.-C. Chen, et al.,
arXiv:2404.12180 (2024).

[41] K. Sacha and J. Zakrzewski, Rep. Prog. Phys. 81, 016401
(2017).

[42] D. V. Else, C. Monroe, C. Nayak, and N. Y. Yao, Annu. Rev.
Condens. Matter Phys. 11, 467 (2020).

[43] V. Khemani, R. Moessner, and S. Sondhi, arXiv:1910.10745
(2019).

mailto:RozhinYousefjani@uestc.edu.cn


6

[44] K. Sacha, Time Crystals (Springer International Publishing,
Switzerland, Cham, 2020), ISBN 978-3-030-52523-1.

[45] P. Hannaford and K. Sacha, AAPPS Bull. 32, 12 (2022).
[46] M. P. Zaletel, M. Lukin, C. Monroe, C. Nayak, F. Wilczek,

and N. Y. Yao, Rev. Mod. Phys. 95, 031001 (2023).
[47] R. W. Bomantara and J. Gong, Phys. Rev. Lett. 120, 230405

(2018).
[48] F. Carollo, K. Brandner, and I. Lesanovsky, Phys. Rev. Lett.

125, 240602 (2020).
[49] C. Lyu, S. Choudhury, C. Lv, Y. Yan, and Q. Zhou, Phys. Rev.

Res. 2, 033070 (2020).
[50] F. Iemini, R. Fazio, and A. Sanpera, arXiv:2306.03927 (2023).
[51] V. Montenegro, M. G. Genoni, A. Bayat, and M. G. Paris,

Commun. Phys. 6, 304 (2023).
[52] M. Raghunandan, J. Wrachtrup, and H. Weimer, Phys. Rev.

Lett. 120, 150501 (2018).
[53] T. L. Heugel, M. Biondi, O. Zilberberg, and R. Chitra, Phys.

Rev. Lett. 123, 173601 (2019).
[54] L.-P. Yang and Z. Jacob, J. Appl. Phys. 126, 174502 (2019).
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Supplementary Materials

ROBUSTNESS OF THE DTC AGAINST NONUNIFORM IMPERFECTIONS

In the main text, we analytically show that in the case of Ω=π/2, our DTC is robust against uniform imperfection defined
as Φ = (1 − ε) π2 . In general, this imperfection can be nonuniform, namely it varies from site to site. In this scenario, the total
imperfection Φ in HP (Eq. (2) of the main text) can be replaced by Φ j = (1− ε j) π2 with ε j as a random number which is selected
from a uniform distribution as [−ε, ε] with ε,0. To see the effect of this nonuniform imperfection on the DTC in the caseΩ=π/2,
we focus on the revival fidelity of a typical computational basis |z⟩. Assume that uz denotes the number of spins down in |z⟩,
therefore the free evolution of the system governed by HI imposes a dynamical phase as e−iΩHI |z⟩=(−i)L/2(−1)uz |z⟩. Then the
first driving pulse evolves |z⟩ to a combination of 2L computational basis, each with coefficient Π j∈AΠ j′∈Ã(−i cos(ε j) sin(ε j′ ))
wherein A (Ã) are the collection of the unflipped (flipped) spins and A∪Ã={1, · · · , L}. Followed by the second period of evo-
lution, one can show that ⟨z|U2

F(Ω=π/2, ε,0)|z⟩ is equal with the summation of 2L choices of flipping L spins with coefficient
(i)LΠ j∈A cos2(ε j)Π j′∈Ã sin2(ε j′ ). A straightforward simplification results in ⟨z|U2

F(Ω=π/2, ε,0)|z⟩=(−i)L and, hence, F(2T )=1.
This calculation shows that regardless of the imperfections in the driving pulse, as long as Ω=π/2 any initial state returns to
itself after time 2T , therefore, period-doubling oscillations of the revival fidelity resist indefinitely even in finite size systems.
In the following, through an illustrative example, we provide more details on revival fidelity in a system of size L=4 prepared
initially in |5⟩=|↑↓↑↓⟩. In fact we aim to calculate F(2T ) = |⟨5|U2(Ω=π/2, ε,0)|5⟩|2. Note that here c j and s j are abbreviations
for cos(Φ j) and sin(Φ j), respectively.

e−iΩHI |5⟩ =(−i)L/2(−1)2|5⟩

e−iHp e−iΩHI |5⟩ =(−i)L/2
{
c1c2c3c4|5⟩ + (−i)c1c2c3s4|4⟩ + (−i)c1c2s3c4|7⟩ + (−i)2c1c2s3s4|6⟩

+(−i)c1s2c3c4|1⟩ + (−i)2c1s2c3s4|0⟩ + (−i)2c1s2s3c4|3⟩ + (−i)3c1s2s3s4|2⟩

+(−i)s1c2c3c4|13⟩ + (−i)2s1c2c3s4|12⟩ + (−i)2s1c2s3c4|15⟩ + (−i)3s1c2s3s4|14⟩

+(−i)2s1s2c3c4|9⟩ + (−i)3s1s2c3s4|8⟩ + (−i)3s1s2s3c4|11⟩ + (−i)4s1s2s3s4|10⟩
}

e−iΩHI e−iHp e−iΩHI |5⟩ =(−i)L
{
(−1)2c1c2c3c4|5⟩ + (−1)1(−i)c1c2c3s4|4⟩ + (−1)3(−i)c1c2s3c4|7⟩ + (−1)2(−i)2c1c2s3s4|6⟩

+(−1)1(−i)c1s2c3c4|1⟩ + (−1)0(−i)2c1s2c3s4|0⟩ + (−1)2(−i)2c1s2s3c4|3⟩ + (−1)1(−i)3c1s2s3s4|2⟩

+(−1)3(−i)s1c2c3c4|13⟩ + (−1)2(−i)2s1c2c3s4|12⟩ + (−1)4(−i)2s1c2s3c4|15⟩ + (−1)3(−i)3s1c2s3s4|14⟩

+(−1)2(−i)2s1s2c3c4|9⟩ + (−1)1(−i)3s1s2c3s4|8⟩ + (−1)3(−i)3s1s2s3c4|11⟩ + (−1)2(−i)4s1s2s3s4|10⟩
}

e−iHp e−iΩHI e−iHp e−iΩHI |5⟩ =(−i)L
{
(c1c2c3c4)2 + (c1c2c3s4)2 + (c1c2s3c4)2 + (c1c2s3s4)2 + (c1s2c3c4)2 + (c1s2c3s4)2

+(c1s2s3c4)2 + (c1s2s3s4)2 + (s1c2c3c4)2 + (s1c2c3s4)2 + (s1c2s3c4)2 + (s1c2s3s4)2

+(s1s2c3c4)2 + (s1s2c3s4)2 + (s1s2s3c4)2 + (s1s2s3s4)2
}
|5⟩ + · · ·

e−iHp e−iΩHI e−iHp e−iΩHI |5⟩ =(−i)L|5⟩ + · · · (S1)

Therefore, one has F(2T ) = |⟨5|U2(Ω=π/2, ε,0)|5⟩|2 = 1.

ROLE OF INITIAL STATE AND IMPERFECTION EFFECT

In the main text, we present results only for the initial state |ψ0⟩=|0⟩=|↑, · · · , ↑⟩. In this section, we provide results for other
computational states to show the generality of the observed behavior concerning ω and ε. In Fig. S1, we depict the QFI FQ(nT )
as a function of ω after n=100 period cycles in a system of size L=12, initialized in (a) |ψ0⟩=|↑, · · · , ↑⟩, (b) a random state, and
(c) the Néel state |ψ0⟩=|↑, ↓ · · · , ↑, ↓⟩. Curves with different colors correspond to different values of imperfections ε. In terms of
ω, one can see that the distinctive behavior of our system in both DTC and non-DTC phases reflects itself in all the considered
initial states. Regarding the imperfection effect, by increasing ε, more information about ω can be printed in the evolved state,
resulting in higher values of the QFI. As is clear from Fig. S1, this behavior is qualitatively independent of the initial states.
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FIG. S1: (a)-(c) The QFI after n=100 period cycles as a function of deviation ω obtained for different values of ε∈{0.02, 0.04, · · · , 0.3} in a
chain of size L=12 that is initialized in |ψ0⟩=|0⟩=|↑, ↑, · · · , ↑⟩, a random state, and Néel state |ψ0⟩=|1365⟩=|↑, ↓, · · · , ↑, ↓⟩, respectively.

MELTING TRANSITION OF THE DTC

In the main text, we show how increasing imperfection in the rotating pulse ε can onset a phase transition between stable DTC
and non-DTC phase. The transition driven by ε is diagnosed by averaged entanglement entropy ⟨S EE⟩ and averaged diagonal
entropy ⟨S DE⟩ obtained for all Floquet states of UF(Ω, ε)=

∑2L

k=1 e−iϕk |ϕk⟩⟨ϕk |. In the DTC phase, each Floquet state |ϕk⟩ is a
maximally entangled GHZ state of a pair of computational basis states. For instance for small values of ε one approximately has
|ϕ1⟩�

1
√

2
(|0⟩+ |2L − 1⟩) and |ϕ2L⟩� 1

√
2
(|0⟩− |2L − 1⟩) with the corresponding eigenvalues as ϕ1�E0 and ϕ2L�E0±π. Note that {Ez}

are the eigenvalues of HI with Ez=E2L−1−z. Clearly, deep inside the DTC regime, the entanglement entropy is S (k)
EE� ln 2 for all

k’s. This can be seen in Fig. S2 (a)-(c) which depict the averaged entanglement entropy ⟨S EE⟩ for systems of various sizes and
ω ∈ {1, 3, 5}×10−2. In this regime, by enlarging ε the averaged entanglement entropy gets distance from ln 2 and peaks at its size-
and ω-dependent location, happening for ε=0.5. The behavior of the entanglement entropy concerning L hints that the melting
transition is of second-order type. This means that one can extract the critical properties for the transition by implementing
finite-size scaling analysis. However, as ωmax∝L−1, by increasing the system size the range of ω’s that the DTC phase is stable
for them, namely ω<ωmax, shrinks. Therefore, the results for finite-size scaling analysis obtained using probes that for any given
ω<ωmax these systems are within the DTC phase when ε≃0. Here, the numerical restriction in the ED method limits us to the
system up to L=12. Presuming that the averaged entanglement entropy follows an ansatz as ⟨S EE⟩ = Lζ/νD(L1/ν(ε − εc)), then
plotting L−ζ/ν⟨S EE⟩ as a function of L1/ν(ε − εc) collapses the curves of different sizes. Here, ζ and ν are the critical exponents,
εc is the critical point, andD is an arbitrary function. The best data collapse can be obtained for the optimal critical parameters
(εc, ζ, ν). In the insets of Fig. S2(a)-(c), we present the best data collapse of the corresponding curves obtained for the reported
critical parameters. For the sake of completeness, we repeat the analysis above for the averaged diagonal entropy. The diagonal
entropy contains partial information about the system by setting the off-diagonal terms of the half-system reduced density matrix
to zero. In Fig. S2(d)-(f), we present the obtained ⟨S DE⟩ for various sizes and ω’s. Indeed, the behavior of the averaged diagonal
entropy is qualitatively close to the averaged entanglement entropy in both DTC and non-DTC phases. In particular, for small
values of ε, one has S (k)

EE = S (k)
DE = ln 2. In the insets of Fig. S2(d)-(f), we present the results of the finite-size scaling analysis

that we established for this quantity. Surprisingly the obtained εc for both ⟨S EE⟩ and ⟨S DE⟩ are close. Note that in the transition
between the DTC and non-DTC phases driven by ε, one may not observe quantum-enhanced sensitivity in the process of sensing
ε.

CHARACTERIZING THE NON-DTC REGION

As has been discussed in the main text, by increasing the divination ω, the perfect and stable revivals of the fidelity in
stroboscopic times, namely F(2nT )=1 for ω≤ωmax, are replaced by nontrivial oscillations for ω>ωmax. This hints one enters a
non-DTC region. In this section we aim to characterize the nature of this region. Our results for the revival fidelity F(2nT ) as a
function of n for systems of different sizes that are tuned to work in the non-DTC region, namely forω≃0.15, have been illustrated
in Fig. S3(a). By enlarging the system size, the period of these incommensurate fluctuations increases. This implies that, in
systems with enough large sizes, these oscillations practically vanish in a reasonable time window, signaling the thermalization
of the system. This observation receives more support from our static study based on the entanglement entropy and diagonal
entropy. In a thermal system, the Floquet states {|ϕk⟩} are expected to behave as a typical random pure state, therefore their
entanglement entropy is predicted to follow the Page entropy ⟨S P

EE⟩≃(L ln(2) − 1)/2 for enough large L’s. In this case, the
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FIG. S2: (a)-(c) the averaged entanglement entropy ⟨S EE⟩ as a function of pulse imperfection ε obtained for systems of different sizes and
different ω’s. (d)-(f) The averaged diagonal entropy ⟨S DE⟩ as a function of ε in systems with various size and ω’s. The insets of the panels show
the results of the finite-size scaling analysis and optimal data collapse of curves with different sizes, which happen for the reported critical
properties (εc, ν, ζ).
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FIG. S3: (a) the stroboscopic dynamics of the revival fidelity F(2nT ) over 100 period cycles when systems with different sizes evolve in
non-DTC region with ω≃0.15 and ε=0.01. (b) the averaged entanglement entropy ⟨S EE⟩ and (c) the averaged diagonal entropy ⟨S DE⟩ as a
function of pulse imperfection ε obtained for systems of different sizes and ω=π/4. Dashed lines in (b) and (c) determine the corresponding
⟨S P

EE⟩ and ⟨S P
DE⟩, respectively.

average entanglement entropy should already captured its maximum and the variations of ε may not considerably affect ⟨S P
EE⟩.

Our numerical results in Fig. S3(b) support this prediction for ω= π4 , namely deep inside the thermal phase. The results for
systems of size L=8 and L=12 capture the Page entropy ⟨S EE⟩≃⟨S P

EE⟩ (depicted by colored dashed lines) with slight changes in
terms of ε. Regarding the diagonal entropy, typical random pure states are expected to follow ⟨S P

DE⟩≃ ln(0.48 × 2L/2) + ln(2).
The presented results in Fig. S3(c) confirm this behavior. In this panel ⟨S P

DE⟩ is represented by colored dashed lines.
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