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1 Introduction

Throughout this paper, let I, denote the finite field with ¢ elements, where ¢ is a prime power. Let n
be a positive integer that is coprime to g. An [n, k, d] linear code C over F, is defined as a k-dimensional
subspace of Iy with minimum (Hamming) distance d. Let A; be the number of codewords of (Hamming)
weight 7 in C. The polynomial 14+ A z+- - -+ A, 2™ is called the weight enumerator of C and (1, A1, -+ , A,)
is called the weight distribution (or weight spectrum) of C. The weight distribution contains important
information for estimating the probability and capability of error correction of a code. Therefore, the
weight distribution attracts much attention in coding theory, and determining the weight distribution
of linear codes has also become a hot topic. For a linear code C, let ¢t be the number of nonzero A;’s
in the weight distribution. Then the code C is called a t-weight code. Linear codes with few weights
are important in secret sharing [8], [25], authentication codes [15], association schemes [5] and strongly
regular graphs [6].

Let 7 denote the multiplicative group of Fy. For A € F7, a linear code C is called a A-constacyclic
code if (Aan—1,a0,a1, - ,an—2) € C for every ¢ = (ag,a1, -+ ,an—1) € C. It is well known that a -
constacyclic code of length n over F, can be identified as an ideal of the quotient ring F,[z]/(z™ — A) via

the F;-module isomorphism 7 : Fy — ng))\ = Fy[z]/(z™ — \) given by
(a0, a1, ,an_1) = ag + a1z + -+ an_12" " (mod z" — \),

where (2™ — A) is an ideal of the polynomial ring Fy[z] generated by =™ — A. If A = 1, A-constacyclic

codes are just cyclic codes; and if A = —1, A-constacyclic codes are known as negacyclic codes. As we all

know, a linear code C of length n over F, corresponds to an [ -subspace of the algebra R;q))\ Moreover,

C is A-constacyclic if and only if the corresponding subspace is an ideal of RSJ)A. A A-constacyclic code

C is called irreducible if C is a minimal ideal of R;q))\ When n is coprime to the characteristic of Fy, a

constacyclic code of length n over I, is called a simple-root constacyclic code; otherwise it is called a
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repeated-root constacyclic code. Constacyclic codes form an algebraically rich family of error-correcting
codes, and are generalizations of cyclic and negacyclic codes. These codes can be efficiently encoded
using shift registers and can be easily decoded due to their rich algebraic structure, which explain their
preferred role in engineering.

The number of non-zero weights of a linear code plays a crucial role in the theory of error-correcting
codes, and its research topic has always attracted people’s interest. In 1969, Assmus and Mattson [3]
derived a relationship between codes and designs in terms of the number of non-zero weights of a linear
code. In 1973, Delsarte studied the number of distinct distances for a code C. In the linear case,
this reduces to studying the number of distinct weights of the given code [12], which is consistent with
studying the number of non-zero weights. In that work, the author emphasizes the importance of this
parameter by analyzing its relationships with the number of non-zero weights of the dual code, as well as
the minimum distance of both the code and its dual. By analyzing these parameters, the author derived
many interesting results about the properties of distance. In particular, these parameters are used to
calculate the coset weight distributions of a code. In addition, the number of non-zero weights of a code
has close connection with orthogonal arrays and combinatorial designs (see [12], [14]).

For a general linear code, it seems very difficult to obtain an explicit formula for the number of non-zero
weights of the code. A more modest objective is to establish acceptable bounds on the number of non-
zero weights of a linear code. Indeed, several recent works have looked into the upper and lower bounds
on the number of non-zero weights of a linear code. Alderson [I] determined necessary and sufficient
conditions for the existence of linear full weight spectrum codes over Fg, i.e., linear codes satisfying that
there exist codewords of each weight less than or equal to the code length. Ding and Yang [16] studied
the weight distributions of irreducible cyclic codes, and established a lower and upper bound on the
number of non-zero weights of these codes. Shi et al. [24] conjectured that for a linear code of dimension
k over F,, the largest number of non-zero weights of this code is bounded from above by (¢* —1)/(¢— 1),
and proved that the bound is sharp for binary codes and for all g-ary codes of dimension &k = 2. The
conjecture was completely proved by Alderson and Neri [2]. Shi et al. [22] presented lower and upper
bounds on the largest number of non-zero weights of cyclic codes, and gave sharper upper bounds for
strongly cyclic codes, where the periods of their non-zero codewords are equal to the code length. Shi et
al. [23] investigated the largest number of non-zero weights of quasi-cyclic codes, and presented several
lower and upper bounds on the largest number of non-zero weights of quasi-cyclic codes.

Chen and Zhang [I1] observed that the number of non-zero weights of a linear code is bounded from
above by the number of orbits of the automorphism group (or a subgroup of the automorphism group)
acting on the code, with equality if and only if any two codewords with the same weight belong to
the same orbit. Let C be a simple-root cyclic code of length n over F, and let G be the subgroup of the
automorphism group Aut(C) of C generated by the cyclic shift and the scalar multiplications. The authors
derived an explicit upper bound on the number of non-zero weights of C by calculating the number of
G-orbits of C* = C\{0}, and established a necessary and sufficient condition for codes meeting the bound.
Li and Shi [I9] established a tight upper bound on the number of non-zero weights of a simple-root quasi-
cyclic code. Zhang and Cao [26] established a tight upper bound on the number of non-zero weights of
a simple-root constacyclic code. In [9], Chen, Fu and Liu improved the upper bound on the number of
non-zero weights of a simple-root cyclic code C in [I1] by replacing G with larger subgroups of Aut(C).

Motivated by the work [9], the objective of this paper is to establish a smaller upper bound than those
in [26] on the number of non-zero weights of a simple-root A-constacyclic code C. Using the observation of
Chen and Zhang in [I1] and Burnside’s lemma, the problem is transformed into finding larger subgroups of

Aut(C) than that in [26]. It is well known that both the A-constacyclic shift and the scalar multiplications

are automorphisms of C. In addition, we note that the multiplier p, defined on Rglq))\ by

n—1 n—1
g ( Z a;z') = Z a;x? (mod z™ — \)
=0 i=0

is also an automorphism of C. Let G’ be the subgroup of Aut(C) generated by the A-constacyclic shift
and the scalar multiplications and G” be the subgroup of Aut(C) generated by the multiplier 14, the A-
constacyclic shift and the scalar multiplications. To the best of our knowledge, G” is the largest subgroup
of Aut(C) for any simple-root A-constacyclic code C over Fy. Clearly, G’ is a subgroup of G”, and the



number of G”-orbits of C* is less than or equal to the number of G’-orbits of C*. Therefore, we need to
find the number of G”-orbits of C*, which then naturally derive smaller upper bounds on the number
of non-zero weights of C. However, intuitively, the structure of G’ is more complicate than that of G’,
which implies that finding the number of G”-orbits of C* may be more difficult than finding the number
of G’-orbits of C*. Comparing the proofs in our paper and those in [26], we need more subtle calculations
and have to get around new difficulties that have not arisen before.

In this paper, by calculating the number of G”-orbits of C*, we establish an explicit upper bound on
the number of non-zero weights of C and present a necessary and sufficient condition for C to meet the
upper bound. Many examples are presented to show that our upper bound is tight and strictly less than
the upper bounds in [26]. Moreover, comparing our results with those in [26] subsection 3.2], our results
remove the constrain that gcd(%, r) =1, i.e., our results hold for arbitrary simple-root A-constacyclic
code, where 7 is the order of A in Fy. In addition, for two special classes of constacyclic codes, we replace
G" with lager subgroups of the automorphism groups of these codes, and then we obtain smaller upper
bounds on the number of non-zero weights of these codes. The results derived in this paper improve and
generalize some of the results in [9] and [26]. In particular, our main results provide a new method to
construct few-weight constacyclic codes.

This paper is organized as follows. In Section 2, we review some definitions and basic results about
group action, A-constacyclic codes and subgroups of the automorphism group of RS:J))\ In Section 3, we
propose the main results of this paper. This is divided into three subsections: in subsections 3.1 and
3.2, we present improved upper bounds on the number of non-zero weights of irreducible A-constacyclic
codes and general A-constacyclic codes, respectively, by calculating the number of G”-orbits of C\{0}.
In subsection 3.3, for two special classes of constacyclic codes, we derive smaller upper bounds on the
number of non-zero weights of these codes by replacing G’ with lager subgroups of the automorphism
groups of these codes. In Section 4, we conclude this paper with remarks and some possible future works.

2 Preliminaries

Throughout this paper, let I, denote the finite field with ¢ elements and let n > 1 be a positive integer
relatively prime to g, where ¢ is a power of a prime. By 7, we denote the multiplicative group of F.
For a € Fy, ord(a) denotes the order of a in F;. Let Z,, denote the residue class ring of the integer ring
Z modulo n and let Z; be the group of units in Z,,. For b € Z? , ord,,(b) denotes the order of b in Z. As
usual, let | X| denote the cardinality of a finite set X. For integers b1, bs, - - , b, where r > 2 is a positive
integer, ged(by, be, - -+ ,b,) denotes the greatest common divisor of by, ba, -+ ,b,.. Given two integers by
and by, if by divides by then we write by|by. For a positive integer b, ¢(b) is the Euler’s function of b,
which is the number of positive integers not exceeding b and coprime to b.

We begin by reviewing the notion of group action on a linear code.

2.1 Group action on a linear code

Suppose that a finite group G acts on a nonempty finite set X. For each x € X, Gx = {gx|g € G} is
called an orbit of this group action containing x (or simply a G-orbit). All the G-orbits partition X, that
is, X is the disjoint union of the G-orbits. For convenience, the set of all the orbits of G on X is denoted
as G\X = {Gz |z € X}.

Let C be a linear code and let G be a subgroup of Aut(C). The next lemma reveals that the number
of non-zero weights of C is bounded from above by the number of G-orbits of C* = C\{0}, with equality
if and only if any two codewords of C* with the same weight are in the same G-orbit.

Lemma 2.1. ([II, Proposition I1.2]) Let C be a linear code of length n over F, with £ non-zero weights
and let Aut(C) be the automorphism group of C. Suppose that G is a subgroup of Aut(C). If the number
of G-orbits of C* = C\{0} is equal to N, then £ < N. Moreover, the equality holds if and only if for any
two non-zero codewords c1,co € C* with the same weight, there exists an automorphism A € G such that
Aci = cs.



Lemma 2.2. (Burnside’s lemma) [2Il Theorem 2.113] Let G acts on a nonempty finite set X. Then the
number of G-orbits of X s equal to

ﬁ S |Fix(g)), (2.1)

where Fix(g) = {x € X | gz = x}.

Suppose that both G and G’ are subgroups of Aut(C) and that G is a subgroup of G’. It is easy to see
that the number of G’-orbits of C* is less than or equal to the number of G-orbits of C*. This suggests
that if we can find a larger subgroup G’ of Aut(C) and count the number of G’-orbits of C*, then we can
obtain a smaller upper bound on the number of non-zero weights of C.

2.2 )-constacyclic codes and primitive idempotents

The quotient ring Rff)A = Fylz]/(z™ — A\) is semi-simple when gcd(n,q) = 1. It is well known that
every irreducible A-constacyclic code of length n over I, is generated uniquely by a primitive idempotent
of Rflq_)w and that every A-constacyclic code of length n over [, is a direct sum of some irreducible
A-constacyclic codes of length n over F,. Thus each A-constacyclic code of length n over F, can be
generated uniquely by a idempotent of Rff)A
A-constacyclic code. '

This idempotent is called the generating idempotent of the

Let r be the order of A in ;. Since r[¢ — 1 and ged(n,q) = 1, we have ged(rn,q) = 1. Let m be
the order of ¢ in ZF, , that is, m is the least positive integer such that rn|¢™ — 1. Let w be a primitive

™o

element of Fym such that A = w . Let (=w" w;l, then ¢ is a primitive rn-th root of unity in Fym

and ¢ = A. Therefore, we have .

" == H(x — ¢,

i=0
It is easy to see that the set of all roots of 2™ — A in [F,. corresponds to a subset 1+ rZ,, of the residue
class ring Z,,,, which is defined as follows:

14712 ={1+7ri|i=0,1,--- ,n—1}.

It is easy to see that Z}, N (1 4+ rZ,) is a subgroup of Z,,.

There is a one-to-one correspondence between the primitive idempotents of Rflq)A and the ¢-cyclotomic
cosets modulo rn. Assume that all the distinct ¢-cyclotomic cosets modulo rn contained in the set 14+77Z,.,
are given by

1—‘0 = {1 +T‘G/O = 17q,. .. ,qk()_l — q’l‘ﬂ—l}7
I ={1+ra,(1+ra)gq,--- 7(14_7.@1)(11@1—1}7

s ={1+ras,(1+rag)g,---,(1+ ras)qks_l},

where k; is the cardinality of the g-cyclotomic coset I'; for 0 < i < s with kg = m. It is easy to check that
[o, Ty, -+, partition the set 1 + rZ,,. Hence, 2" — X can be decomposed into = — X\ = []7_, m;(x),
where m; () = [[ e, ( — ¢7) is irreducible over F, and mg(z), m1(x),- -+ ,ms(z) are pairwise coprime.
The quotient ring F,m [x]/(z™ — A) has exactly n primitive idempotents given by
1 n—1
ltri = — Z ¢l 0 <i<n-—1.

1=0
(9)
n,A

Moreover, R ", has exactly s + 1 primitive idempotents given by

er=» e, 0<t<s,
jel:



and Rglq)/\ is the vector space direct sum of the minimal ideals R(q)/\at for 0 <t < s, in symbols,

n )\ — R(‘Z) o @R(qi\fl @ @R(q)\ss

Using the Discrete Fourier Transform, we have, for each 0 <t < s,

ki—1 k¢—1

R(‘Z)}\Et { Z (Z C'U(lJrTat) )e(lJrTat)qJ

j=0 v=0

CUEFq,OSUSkt—l}.

2.3 Subgroups of the automorphism group of Rg{z\

Suppose that the cyclic group Fj is generated by £. It is easy see that both the A-constacyclic shift and

the scalar multiplication are F,-vector space automorphisms of RSJ))\ =T,[x]/(z™ — \), denoted by p and
o¢, respectively:

n—1 n—1
pi RO SR, (3 i) = 3 it (mod " — )
) i=0

and

n—1 n—1
o¢ Rglq))\ — Rgg))\, oe ( Z flx’) = Z Efix’ (mod ™ — \).
i=0 i=0

Clearly, the subgroups (p) and (o¢) of Aut(Rg{)/\) are of order rn and g — 1, respectively. It is easy to
verify by the definition that for any A-constacyclic code C of length n over Fy, (p, o¢) is a subgroup of
the automorphism group Aut(C) of C.

Let a € Z%, N (1 + rZ;,,). The multiplier p, defined on Rglq))\ denoted by
n—1 ) n—1 )
o RO, SR (5 1) = 5 i o 27— )
=0 =0

is a ring automorphism of Rglq))\ (see [I7]). It’s not hard to prove that the subgroup (u,) of Aut(R;q))\)
generated by fiq is of order ord,,(a), where ord,,(a) denotes the order of a in Z7,. It is easy to verify
by definition that for any A-constacyclic code C of length n over Fy, the multiplier p, € Aut(C) and (u,)
is a subgroup of order m of Aut(C), where m = ord,,(q).

Lemma 2.3. With the notation given above, then the subgroup (iia,p,o¢) of Aut(’R(q)) is of order
ordyn(a)n(qg — 1), and each element of (ia, p,0¢) can be written uniquely as a product pj! p" cr 3 where
0<r <ordpp(a)—1,0<ro<n—-1and 0<r3 <qg—2.

Proof. we note that poe = o¢p, then (p)(oe) = (o¢)(p), which implies that (p)(c¢) is a subgroup of
Aut(R n))\) For any polynomial f(z) = Z?:_Ol fixt € ’Rff_&, P (f(z)) = Z?:_Ol Azt = ZZ:Ol & fixt =
ag(f(x)) (mod 2™ — \) for some 0 < j < ¢ — 2. It follows that p" = ag for some 0 < j < ¢ — 2, hence
{p) N {oe) = (p").

For any p® € (p),o g € (o¢) for some 0 < a1 <rn—1and 0 < as < ¢g—2. Let a1 = kn+n’ and
as+kj=1 (mod g—1), where 0 <k<r—1,0<n"<n-1and 0<1<g—2. Then

p° O,az 7pkn+n 9“2 — ) '0.£2+k3 =p" 0,5 c <p,0.§>
Thus each element of (p, o¢) can be written as a product p" UTS forsome 0 <ry <n—1land0<rz <qg—2.
For any a € (p,0¢), a = p" U 3 for some 0 <ry <n-—1 and 0<r3< q—2 If @ can also be written
as a = préo?, where 0 <75 <n—1and 0 < 7§ < g — 2, then p> "2 = UE* e (p) N {og) = (p") and
nlrg—rh. Asl—n <ry—rh <n—1, we have ro = r}. Similarly rs = r4. Thus, each element of (p, o¢)
can be written uniquely as a product p™ 023 forsome 0 <ro <m—1and 0 <r3<gqg-—2.



Similarly, we note that fiap = p*lia, ppta = Hap®  and piaoe = O¢jia, then (pa)(p, o) = (p, 0¢){ta),
which implies that (uq)(p,o¢) is a subgroup of Aut(Rflq)A) Thus (e, p,0e) = {la)(p,0¢). Suppose
a € (pq) N {p,o¢), then a = ppt = p’”2ar3 for some 0 < r; < ordyp(a) — 1,0 < 79 < m— 1 and

0<r3<qg—2. Let f(x) =1¢ Rflq)/\, then 1 = pgt(f(x)) = p™o(f(x)) = ™ (mod 2™ — A), and

hence 173 = r3 = 0. So (uqe) N (p,0¢) = id, Where id is the identity element of Aut(R ))\) The rest
of the proof is similar to the previous one, so we can quickly conclude that each element of (fiq, p,oe)
can be written uniquely as a product pl'p" O'TS for some 0 < 7 < ordyp(a) — 1,0 <rg <n—1and
0<r3<q—2. O

3 Improved upper bounds

Let C be a simple-root A-constacyclic code of length n over Fy and let G be a subgroup of Aut(C). By
Lemma 2] the number of non-zero weights of C is bounded from above by the number of G-orbits of
C* = C\{0}. Zhang and Cao [26] chose G = (p,0¢) and obtained an upper bound on the number of
non-zero weights of C with the constraint of gcd(— r) =1 by counting the number of (p, o¢)-orbits of
C*. In this paper, we choose G to be a larger subgroup of Aut(C) which contains (p, o¢) as a subgroup,
and obtain an smaller upper bound on the number of non-zero weights of C than [26] by counting the
number of G-orbits of C*. As remarked at the end of subsection 3.1, our results significantly improve the
main results in [26].

3.1 An improved upper bound on the number of non-zero weights of an
irreducible constacyclic code

We know from subsection 2.3 that for a A-constacyclic code C of length n over Iy, the multiplier ji4, the
constacyclic shift p and the scalar multiplication o¢ are all automorphisms of the code C. We first assume
that C is an irreducible A-constacyclic code and we have the following result.

Theorem 3.1. Let C be an [n, k] irreducible A-constacyclic code over Fy. Suppose that the generating
idempotent element €; of C corresponds to the q-cyclotomic coset {1+ras, (1+rag)q, -, (1+ras)g®='}.
Then the number of {jq, p, o¢)-orbits of C* = C\{0} is equal to

_Z gcd( quk_l (1+mt)(qk—1))'

-1’ ™m
hlk

In particular, the number of non-zero weights of C is less than or equal to the number of (pq,p,0¢)-
orbits of C*, with equality if and only if for any two codewords ci,co € C* with the same weight, there
erist integers j1, jo and js such that MffﬂjQ (€%3¢q) = cg, where 0 < j; <m—1,0 < jo <n—1 and
0<jz3<qg—2.

Proof. Tt is enough to count the number of (i, p, o¢)-orbits of C*, since the rest of the statements are
clear from Lemma [ZT]l Tt follows from Equation (Z1]) and Lemma 23] that

m—1n—1 qg—2
‘</qu/’7‘7£ \C* ’— q—l Z Z le ‘uqlp""zo.gs)‘,
7‘1:0 : :

where Fix(u " O'T3) ={cecr ‘,uq prrog(c) = c}.

Take a typical non-zero element :E?Zé (Eﬁ;é CUCU(1+Tat)qj)8(1+Tat)qj €C*. Note that e(14yq,)qi =

n—1 . )
B X Ol and 0T (e o) = €T e g (see [25]). Tt follows tha
=0

£T2<(1+Tat)q] T2 Hrl (

ﬂ;lpr2023 (€(1+rat)q3) e(l‘H‘at)qJ)



= §TSC(1+mt)q]T2 . l Z C*(1+rat)q”xqul
"=

= 57"34(1+7“at)q]7"2 . l Z C*(1+mt)qrr1qulxqul
"=

= £T3<(1+7"at)q]7"2 . l Z C*(Hmt)qj’rllxl
"0

= §T3 C(1+Tat)qj r26(1+rat)qj7T1 ’

where the subscript (1 + ra;)¢’~" is calculated modulo rn and the fourth equality holds because
¢~(4ra)a’ "t ngn — 1 Then we have

k—1 k—
T T T T T T ’U Ta ‘]
w 1p2g 3( ) ﬂqlp 25 3( Z (14 t)q e(1+rat)qj)
j=0 v=0
k—1
v Ta ‘7 T T
= (ZC g (+racle )AU‘ lp 20—5 (e(1+'rat)qj)
Jj=0
k—1

M

T rat)qr v(l+4ras)q?
£2§(1+ t)q 2(26 ¢ (14rat)q ) €(1trar)gi—m1

v=0

?r- <.
Il
>_- <}

1
1 J=71 471 1 J
ngg( +rat)q q"lry (§ : Cv( +ra¢)q ) €(14rar)gi-m1

?ru
H

Tt
s branas “Z(Zc cv““‘“)"]) €(14ran)qi -

i=0 v=0

<.

11

Hence yip! p"2 0 (c) =c if and only if £™ ( Zf éc ¢Y 1+T“f)qj)q =(¢~(Frad™re for = 0,1, -+ k-1,

which is equivalent to f”(zk : cpC 1+Tat)) B
¢ltrar gyer Fy, is of degree k, the set,

= (~(4ra)d™ 2 GQince the minimal polynomial of

{CO + 61<1+Ta“ 4t Ckilc(k—l)(l-i-rat) | o EFL0< v <k — 1}

forms a subfield of Fym of size q*. It follows that
Fi(ugpoo)| = [{a € B | erar =t = (-0rmarny)|

Suppose that 34"~ = ¢~(47ra)d 2 for some o € F?. Let [}, be generated by 6. On the one

qk71 T 7‘ s
hand, for any B € (§«** -1} we have £ (aB)?" 1 =¢mad" ~1 = (~(Fra)d™ 2 On the other hand,
suppose y € IE‘:;,C satisfies €73~ —1 = ¢~(147a)a™ 72 " thep (704_1)‘1 "=l =1, and so ord(ya~ ‘gcd

gk —1

1,g" — 1) = ¢&d(m) _ 1 which implies that ya~' € (=i 0-1)  Hence v = af for some 3 €

k

q
<6‘ qeed (k1) > It follows that

’Fix(u p" 0 )’ =0 or ¢8d(kr) _ 1
Next, fixing r1 (0 <rq < m—1), we count the number of number pairs (rq, r3) such that |Fix (uglp” 023) | +
0,where 0 <1 <n—1,0<r3<q—2.

It’s not hard to see that {a?"' ~!|a € e} = (97" =1, which is a cyclic subgroup of F?. of order

W. Since () is a cyclic subgroup of F7, of order ¢ — 1, we see that (§) N (97" =1 is a cyclic

subgroup of Fy, of order ged(q — 1, %) and (£)(67" 1) is a cyclic subgroup of F?, of order



O™ 1| 1y _a "oy _
&=y AS ord(¢™1) = rn, ord(¢-(Fraatrz) = sed(r(Ttranara) = sedim(ifranrs): Lhen we
have
—(1+rar)q"try q"1—1 rn g1 —1
¢ SO0 & T e ]| YA
= ™™ _1
ged(rn, (1 + 7’(1,5)7’2)~gcd(m7 IGYZE)
PN ™ 1
ged(rn, (14 rag)r2|(€) (077 ~1)|)
& | ((L+ra)ral(€)e"" )
= ™™ ‘7-
r 2
ged(rn, (14 rac)[(€)(07 ~1)])
& n ‘T
god (n, Qtranl(e©@ 1]y >
Let

S(Tl) = {0 <z<n-1 ‘ C*(lJrTat)quz c <€><9qﬁ,1>}'

It follows from the above discussion that [S(r1)| = ged(n, (Hmt)‘(?(eq 171)'). Assume that ro € S(r1),
then there exists r3 (0 < r3 < ¢ — 2) such that (~(+7a)d™r2 ¢ ¢73(9a™ =1} Denote

R(r1,1m) = {O <z<qg-—2 ‘ C*(lJrrat)qurg c §z<9q7‘171>}.

On the one hand, for any ¢ € € (&) N7 1), we have (~(Hradr2 ¢ ¢ra(ga™ =1y — grate (09" 1) and
so r3 4+ 2’ (mod g — 1) € R(r1, 7). On the other hand, suppose z € R(r1,r9), that is, (~(+rada™ 2 ¢
€2(097 1) then €577 € (€) N (99" 1), and s0 z = r3 + 2’ (mod g — 1), where 2’ is an integer such that
€57 = ¢2 e (£) N (91" 1), Hence |R(r1,79)| = [(€) N (947 1)

To sum up, we have

{(ﬂqv P, 0¢ \C*’

Z Z Z (qgcd(k,rl) _ 1)

71—0 ro€8(r1) r3€R(r1,r2)

pET e Z |S(r1)|-|R(r1, m2) | (g5 ™) — 1)

mn
r1=0
Z zed (nl(g) n (67" ), 0 mt>|<s>||<aq”*1>|)(qgcd<k,m> )
r1=0 r
(q - 1) (1 + 7ﬁa‘t)(q — 1)(qk — 1) ged(k,ry)
Z() ng (TL gcd(k ry) 1 T(qgcd(k,rl) _ 1) )(q - 1)
71—
m—1 k
1 cd(kyry) k (1+7ra)(g—1)(¢" — 1)
=———— % " ged(n(g — 1)(¢*™ —1),n(¢" — 1),
mn(q—1) =0 ( r )
m—1
_1 gcd(qgcd(k,n) Y ¢ - 17 (1+ras)(¢" - 1))
m = q—1 rn
k—1 ke k
_1m gcd(kr) _ € —1 (1+rar)(¢” —1)
m k ZOng(q L qg—1" n )
ry=
1 k hoo @ =1 (L4ra)(d® 1)
k; thd(q L, qg—1" ™m )
We have completed the proof of the theorem. O

Remark 3.2. (1) Let C be the irreducible A-constacyclic code in Theorem Bl In [26, Lemma 3.5], the
authors assumed gcd(%, r) =1 and gave the number of (p, o¢)-orbits of C* = C\{0} as follows:



¢" =1 (1+rar)(¢® — 1)).

d 1
gc(q—l’ rn (3:1)

Indeed, (3.1) still holds when the restriction gcd(q:—l, r) =1 is removed. This can be verified by letting
r1 = 0 in the proof of Theorem [3.1]
(2) By Theorem Bl and Equation [BI), we have

’<P7 U€>\C*’ - ‘(1“‘117 Ps U€>\C*’

4" =1 (L+ra)(d® =1y 1 k " =1 (L+ra)(¢" 1)
=], ) - L5 o1, )

q—1 ™ -1’ ™
h|k
1 k -1 A+4ra)(d" —1) h " =1 (1+ra)(¢"—1)
. ud d( 7 )— d( —1, 7 ) .
khzu;@(h) (gc q—1 ™n B\ q—1 ™m

It is easy to see that |<,uq,p,ag>\C*| < ‘(p,a@\C* ‘,With equality if and only if gcd(q—l,%,%) =

gcd(qqk__l1 , (Hm;)éqk*l) ). It follows from Theorem 3] that

[Gt0: 0N\ = [ (=14 [{p,00\e )]

and

0 < [{p, 0)\C*| = |{1q, p,oe)\C*| < {(k - 1)(|<Pa2§>\c*| - 1)J=

where for a rational number x, [x] denotes the smallest integer greater than or equal to = and |z]

denotes the largest integer less than or equal to x. If K > 1 is a prime, a; = 0, n = qi;ﬂ with N > 1

and ged(q — 1, N) = 1, then |<p, 0’5>\C*‘ — ‘<an 0, a§>\C*‘ meets the above upper bound, which is equal
(k—1)(N—1)
to ——~.
k

We present an example to show that the upper bound in Theorem B] is tight and in some cases
strictly smaller than the one given in Remark (1), i.e., Equation (&I).

Example 3.3. Take ¢ =3, n =8 and A = —1. All the distinct 3-cyclotomic cosets modulo 16 are given
by T'o = {1,3,9,11}, 'y = {5,7,13,15}. Consider the irreducible negacyclic code C = Rglql\al, where the
primitive idempotent £; corresponds to I'y. Let ¢ be the number of non-zero weights of C. By Equation
BI), we obtain £ < 5. Using Theorem [BI] we have ¢ < 2. Using the Magma software programming [4],
we see that the weight enumerator of C is 1 + 162 + 642°, which implies that £ = 2. Then Theorem [B.1]
ensures that all the non-zero codewords of C with the same weight are in the same (4, p, o¢)-orbit.

The following two corollaries show that Theorem Bl can be used to construct some new few-weight
irreducible A-constacyclic codes.

Corollary 3.4. Suppose that q = 2’”/, where m' > 1 is odd. Let C be an irreducible \-constacyclic code
of length n over Fy whose generating idempotent €, corresponds to the g-cyclotomic coset {1 + ray, (1 +

rag)q, (1 +rag)g?,---}. If n = %, where N | q;—l, and gcd(l + ray, %1) =1, then C is a one-weight or

two-weight \-constacyclic code.

Proof. Let k; be the least positive integer such that (1 + ra;)¢" = 14 ra; (mod rn), equivalently,
¢* =1 (mod m). Note that ¢*> = 1 (mod m), then k|2, and so k; = 1 or 2.
If k&t = 1, then rn| (1 4 ra;)(¢ — 1), that is, % [ (14 rat)(¢g — 1), implying % | (14 ra;)N.
Since ged(1 + ray, 21y — 1, we have 2t | N, which is impossible because N | (g — 1), % |(¢+1) and

3 3
ged(q —1,g+ 1) = 1. So ky = 2. Tt follows from Theorem B.] that

f 1 2 ¢ =1 (I+ra)(¢®—1
|(tta P, ) \C| :§%¢(E)g0d(qh -1, P ( ;)TE ))




(L +ra)(e®— 1) 2
=) 4 p(ged (g~ 1,q+ 1,

(1+ras)(q* — 1))]

™

l\DI»—ll\DI»—l N = N =

(1+ra)(q® — 1))}

{ (2)g0d<q -1,q+1,
™

) +o(1) - gea(g+ 1,
[1 +ged(q+1,3N(1 + rat))}
ot =

Therefore, the number of non-zero weights of C is less than or equal to 2, that is, C is a one-weight or
two-weight A-constacyclic code. O

Example 3.5. Take ¢ = 32, n = 11, A\ = 6, where 0 is a primitive element of F35. Consider the
irreducible A-constacyclic code C = R(Q)Aso, where the primitive idempotent £¢ corresponds to the 32-
cyclotomic coset Ty = {1,32}. According to Corollary[34 C is a one-weight or two-weight A-constacyclic
code. In fact, by use of Magma [], the weight enumerator of C is 1 + 341210 + 6821, that is, C is a
two-weight A-constacyclic code. Therefore, Theorem B.I] guarantees that any two codewords of C with
the same weight are in the same (g, p, o¢)-orbit.

Corollary 3.6. Suppose that (¢, k) # (2,3) and that k and 2k+1 are odd primes satisfying ged(qg—1,k) =
1, ged(q — 1,2k +1) =1 and ¢* =1 (mod 2k + 1). Let C be an irreducible \-constacyclic code of length
n over F, whose generating idempotent e, corresponds to the g-cyclotomic coset {1+ ray, (1 +ra)q, (1 +
rag)g,---}. If n = (ngjrﬁ, where N | q;—l, and gcd(l +rag, ¢ k_q

m) =1, then C is a one-, two- or
three-weight A-constacyclic code.

Proof. The proof is similar to that of Corollary B4l and we omit it here. O

Example 3.7. Take ¢ = 3, n = 11 and A = —1. Consider the irreducible negacyclic code C = R(Q)Asl,

where the primitive idempotent 1 corresponds to the 3-cyclotomic coset I'y = {7,13,17,19,21}. Ac-
cording to Corollary B.6] C is a one-, two- or three-weight A-constacyclic code. By use of Magma [4], the
weight enumerator of C is 1 + 13225 + 1102, that is, C is a two-weight A-constacyclic code.

3.2 An improved upper bound on the number of non-zero weights of a general
constacyclic code

We now turn to consider the action of (g, p,0¢) on a general A-constacyclic code C. Let j1,j2, -, ju

be positive integers and let ¢;,,%;,,--- ,t;, be integers with 0 < ¢; < t;, < --- < t;, < s. Suppose
that the irreducible )\-constacychc code R(q)xst] corresponds to the g-cyclotomic coset {1 + ra; o 1+

ra; )g, -, (1+ Tat].i)q i 'Y for 1 < i < u. Define

CJﬁl J2odu T R Agtn \{0} @ R(qAEtn \{O} @ e @ Rg{)}\gtm \{O}

The following lemma gives an upper bound on the number of {14, p, o¢)-orbits of Cgl e

Lemma 3.8. With the notation given above, then the number of (g, p, o¢)-orbits of Cgl nr gy 1S less
than or equal to

mz ( (A +rae, )11, o (tray I, (at;, —a1; )Mo, Iy, .

q—l — Coreged(I Iy ) 7 reged(L Iy, ) T ged(fyy  Iyy,) T

(atj _ath)Ith 1y (at;, —at;, M, 1y ) . d(ke. \h
u v u u— u— “Yeged(I, Iy, -, I ) gC(tji7)_1,
ng(Ith } Itju) ng(It]‘u71 , Itju) g ( t tgu) Zl;[l(q )

ktj.
where I = q — 1, I, = ﬁ fori=1,2,---,u
i q Ji 1

10



Proof. According to Equation (2]) and Lemma 23] we see that

n—1 q—2
qg—1 A ZO‘FiX(/LlemU&TS)‘v
T2=UTr3=

1 =
|</Lq7p7 UE>\C§1,J‘27~'7J@‘ - W) Z
7‘120

where Fix(,uglpwag?’) ={ce Cghjz)... i |MZIPT2‘723 (c) =c}.

Let c =c¢t; +cpy, +--+cy, € ct where ¢;; € sz)Aatji\{O} for i =1,2,--- ,u. Suppose

J1,J25 5w’
that
ke, —1 ke, —1

T T

2 : 2 : v(1+rar, )¢’ :
Ctj-; = ( ctj—;v'UC 7 )6(1+Tatj. )ad for 7 = 1’ 2’ U
=0 v=0

Then we have pg! p"20(° () = pgt p™2 0 (e, ) + -+ + pgt pr20* (cyy, ), where

ktji -1 ktji -1
r1+i i1
‘ug1 przags (Ct]‘i) _ Z §r3<(1+ratji )g"t 77"2( Z Ctji,’vcv(lJrratji )qj)q e(l"l""atji gi fori=1,2,---,u.
§=0 v=0
It follows that
‘uglpr2o'£3 (c)=c& ﬂzlp”ag?‘(cth) =cyy, for 1=1,2,---,u
kej, —1
1 _ _ i
& & Z Ctji,vcv(lJrTatji))q ! = (trae; Ja™re g 1,2, u.
v=0
Since the minimal polynomial of ¢' "% (1 <i <wu) over Fy is of degree &y, , the set

I4rag,, 1<(kt1i 71)(1+Tatji)

Clyw €Fys 1S 1< Ry, — 1}

{Ctjwo + Ct]‘iﬂlc toe At Ctii’ktji

forms a subfield of Fym with qktjz’ elements. So it turns out that

|Fix (g p" o)
It’s easy to prove that
u
[Fix (s p"20f*)| = 0 or T(g* "™ —1).
i=1

Next, fixing r1 (0 <r; < m—1), we count the number of number pairs (12, 3) such that |FiX (u;lp” 023) | #
0,where0<rys <n—1,0<r; <q-—2. |

For 1 < i < u, let 6, be a generator of F*,, . It’s not hard to see that {af;l_l | oy, €%, }:
K3 "Jq i K Ji

q - q
q Ji—1

qu —1 . . . * —
<0tji ), which is a cyclic subgroup of Fy.. of order [;; = PR

. Since (£) is a cyclic subgroup

IT
> for 1 <i < u. For

of F}. of order I = ¢ — 1, <§><9§1: ') is a cyclic subgroup of Fj. of order gcd(It,Itji)

I, It
. X ¢ —1 g1 -1\ . . L i
1 S 1< 7/ S u, <0tji ><9tji/ > 1S a CyChC Subgroup of ]FZm of order W Let

S'(r) = {O <z<n—-130<v<qg—2s.t. C_(Hmfji)quz IS 5”(9?;_1_1> forall 1 <i< u}
Then we see that

r€ 8 (r) = ¢TI e (60" ) for 1 < i < u,

11



_ _ 1 . ”
and( ’I‘(atji, atji)q T2 c <9gj.1—1><9gj.1/71> for 1 < i< i/ <u

n

= ro for1 <i<u
(1+7‘atji )IItji ‘ ’
ng(”’ r-gcd([,[tji) )
and (a‘?a_)I_I‘ rofor 1 <i<i <u
ged(n, ]gi;d( th ,It;:/ ) )
& — ‘
r
ged(dy, dy) |2
where
di — cd(n (1+ragy )11, o (1 +ray, )1y, )
1=8 ’ reged(I, Iy, ) b7 reged(IL 1)
and
do — gcd(n (Cbtj2 —ay;, )Itjl It].2 (atju —a;, )Itjl Itju (atju —a; )Itju,l Itju )
2 = ’ P R
ng(Ith ’ Itjz) ng(Ith ) Itju) ng(Itjufl ) Itju)
Hence
(1+'I"a,t. )IIt (1—|—Tat. )IIt (at. — Q. )It It-
S/ < dd,d — d(, J1 117.“7 Ju Ju, J2 J1 J1 127
1S"(r1)] < ged(d, da) = ged(n rgcd(I 1, ) rged(, 1, ) ecd(ly,  Ir,.)
. (atju — Wy, )Itfl Itju A (atfu —at;, )Itjufl Itju )
’ ng(ItjlaItju) ’ , ng(It]‘u71 aIt]‘u)

Suppose rp € S'(r1), and let
R'(ry,m2) = {o <z<q-2 ] ¢ 9 el forall 1< i < u}

Similar to the proof of Theorem [B.1] we obtain that |R'(r1,72)| = ged(L, I, -, Iy, )-
We conclude that

‘(1“‘117 Ps 0§>\C§1,j2,--- 2Ju

1 m—1 u s o
S D OID DD DR | !

r1=0ro€S/'(r1) r3€R’ (r1,r2) 1=1

m—1 u
. 1 ’ ! ged (ke yr1)
=D 2 S VLR ) [T~

r1=0

<t Wf ged (n A+ ray ) Ly, (4 ray )y, (ae, —ag )y Iy,
7mn(q— 1) =0 T-ng(I,Itjl) r'ng(I7Itju) ng(Ith’Itjg)
(at;, —ae; My, 1y (at;, —ae;, - e, Ty ) - d(k )
u u7...7 u u— u— u 'CdI7I.7"'7I. . gc tji’rl _1).
ng(Itjl 7Itju) ng(Itju71 7Itju) g ( tjy tju) E(q )
The proof is then completed. O

Based on Lemma [3.8 an upper bound on the number of non-zero weights of C is derived as follows.

Theorem 3.9. Let C be a A-constacyclic code of length n over F,. Suppose that

C= Rglq)))\atl @RSZ\EQ @ s @Rg{))\&‘tw,

where 0 <1y <o < -+ <ty < s, and the primitive idempolent &;, corresponds to the q-cyclotomic coset
+rac, (1+ras.)q, -, (L+rag,)g or each 1 < j < w. en the number of (uq, p,o¢)-orbits o
1 (1 ; 1 g h1<j<w. Then th b 4» s O¢)-0rbit
C* = C\{0} is less than or equal to
Z Nj1 o, s

{i1,92,,du yC{1,2,--- ,w}
1<j1<ja< - <ju<w

12



where the value of Nj, j, ... j, 5

1R O, (il G, o),
mn(qg—1) P ’ reged(I, Iy, ) T rged(L L)) gcd( t;,01t;,) o

ag, —ag, VI Iy, (ag,, —ay, )y, Iy v

( tjy tn) ZI tju tju—1/ i1 "t ) ng(I It]1 . 7Itju)'H(qg d(ktji 1h)_1)

ng(Ith ) o ng(Itju—l ;)

=1

Kt
with I = q —1 and Iy, :ﬁfw‘lgigu.
k2 q Ji ’ 71
In particular, the number of non-zero weights of C is less than or equal to the number of (iq, p,o¢)-

orbits of C*.

Proof. Note that
* #
= U CJI 225 s Ju

{d1,d2, Ju} C{1,2,--- ,w}
1<j1 <j2 < <ju<w

is a disjoint union. Thus

’</Lq7p705>\6*} = Z }<Mq’p’0£>\ G152 5 Ju

{J1,d2,,3u }C{1,2,- ;w}
1<]1 <j2 < <Ju<w

The desired result then follows from Lemma O

Remark 3.10. (1) Let C be the A-constacyclic code in Theorem In [26] Lemma 3.6], the authors
assumed gcd(q;—l, r) = 1 and then presented that

* 1
‘<p,05>\c ‘ = Z Wgcd(n,l—i—rath,--- ,1+T‘atju)

{71,925 Ju} C{1,2,-- ,w}
1<J1<J2< <]u<w

rn ™ Iul k.
. Cd( _1,—7...7 )' t‘“_l'
BT S ged(n 1 1 rat,, ) ged(n, 1+ ray,;, ) X )

i=1

The right-hand side of the equation above is in fact an upper bound of |<p, oe)\C *| rather than the value
of }(p, oe)\C* ’ This is because in the proof of Theorem [3.9] the following two conditions were considered
to be equivalent:
1) p*(et;,) = §hctji foralli=1,2,---,u
2) gt | gearary for all i = 1,2, u, where 1 < h < 42
However, condition 2) does not imply condition 1) as condition 1) is also dependent on the choice of
integer z.

In the proof of Lemma 3.8 let 1 = 0, then we can obtain

ﬁ (q" 1)
](,;,05)\6*]: Z Lgcd(rn,(l—t—rath)(q—l),r(atjz —ag;, )y yr(a, —ai, ). (3.2)

o rn(g—1)
{d1,92, du}C{1,2, ,w}
1<j1<jo < <ju<w

r) =1.

(2) We assert that the upper bound on the number of non-zero weights of C given by Theorem
is better than the upper bound |<p, 0’5>\C*‘, and of course better than the upper bound given by [26]
Lemma 3.6]. To prove this, it suffices to show that

Furthermore, the above equation does not require gcd(qzl,

1 - ke,
Nijy oy ju < mng(WL (I +ae,, )(q—1),r(a, —ay;, ), r(ay, —ay, ) E q i —1).

13



Indeed,

Ni o . < 1 7fgcd<n Atray )Ly, (A ray )y, (6, —ay )My Iy,
TIZI = (g — 1) = Coreged(I 1) 7 reged(IIy,) T ged(ly In,) T
(at;, —as; )Moy, 1 (at;, —ae;, )y, Tt = d(k )
u u o u u— u— u d.[.[ _I . gc tji,Tl —1
gcd(le, 1r,) 0 ged(l, i) )-eed (1, 1,) Tt )
1 Ju —1 Ju 1=1
1 m—1
= rmn(qg—1) ng(rn’ (Lt rae, My - (L4 rag e, (e, —ag, Mo Te, s
r1=0
“ d(k
r(atju—ath)Itletju’... 7r(atju—atju 1 L . ]u) H ged(ke; 1) 1)
i=1
1 m—1
S rmn(g=1) Z gcd(rn (I+rag ), (L +ray ), r(ay, —ay, ),
71=0
r(atm at“)7 m(atm at] 1)) It]l[t]z It]u H( ged(kt 1) 1)
i=1
1 m—1
- W chd(’/‘ﬂq (1 + Tat]l)(q 1)7. ’ '7(1 + ratju)(q - 1) ( tio _atj1)7
r1=0
yr(at;, at“)7 yr(at;, t., 1)) H(q i —1)
=1
1
= mgcd(rn, (1 —|—7‘ath)(q = 1), (T +rae;, )(qg—1),r(a t —ath)7
ok
. 77'(atju_atj1)7..- 7T(atju _atju—l)) H(q tiy — 1)
i=1
1 u
- mng(Tm (I +rae;, )(q—1),r(ay, —ay,, ), ,r(at, _atn)) H(q si=1).

i=1

This completes the proof.

We discussed above the action of the group (ug, p,0¢) on a general A-constacyclic code C, giving an
upper bound on the number of (i, p, o¢)-orbits of C* = C\{0}. Now let’s look at some special cases. In
these cases, we can explicitly give a formula for the number of (14, p, o¢)-orbits of C*.

Theorem 3.11. Let C = R )\atl @R(qAatQ, where 0 < t1 < to < s, and the primitive idempotent ey,

corresponds to the q-cyclotomic coset {1+ ray,, (1 +7rag,)q, -, (1+7ray,)g*~} fori=1,2. If ke, | ky,,
then the number of (liq, p, o¢)-orbits of C* = C\{O} is equal to s;, + S, + Sty ,1,, Where

1 kt, h qkti -1 (1 + Tat,)(qkfi — 1) .
. ~)ged -1 - f =1,2
St; = ktl ]; 90( h )gC (q ) q-— 1 " ) or 1 ) 4y

and

Sty,ta =

1
m

(

(g — 1)(g=dtum) —1) 7 n ’

an) (g — (@D 1) fas, = an )@ = D@2 D)
Tn(ngd(ktl'h) _ 1) ’ n(q — 1) .

ni A (@ ®nm — 1) - ged (=t — 1, (" = 1)@= — 1) (1+raw,)(g*2 — 1)
h=0
+

In particular, the number of non-zero weights of C is less than or equal to the number of (pq,p,0¢)-
orbits of C*, with equality if and only if for any two codewords ci,co € C* with the same weight, there
erist integers j1, jo and js such that MffﬂjQ (6%3¢q) = cg, where 0 < j; <m—1,0 < jo <n—1 and
0<jz3<qg—2.

14



Proof. Let s, s, and sy, 4, denote the number of (ug, p, o¢)-orbits of R(q) ‘e, \{0}, R(q) \et. \{0} and

Rier \{0} @R e\ {0}, xespectively. Then | {1, oe)\C*| = st, + 51z + 11,100 It follows from The-
orem 3] that

= Z ol (1+mti)(qktl_1)) for i =1,2
k¢, i q—l ™

In the proof of Theorem B9 let u = 2, j; = 1 and ja = 2. Since ky, | ky,, we have (gF1 — 1) | (¢F= — 1),
then F*,, < F*, ., that is, F*,, is a subgroup of F*,, . Let F*, = (6,,) and F*,, = (0,,), then
q "t q "2 q q "2 q 't q "2

6;, = 0;, for some non-negative integer i. Thus (9?;171> = (9;2‘1”71)} < (93;71) Then one can easily
check that

re € 8'(r) & (TOFTeI2 ¢ (699" T for ¢ = 1,2 and (7T Tan)d 2 ¢ (gd Ty
& ¢Trran)dir g gy 1) and ¢(Tren a7,

We see from the proof of Lemma that

2
Sty ,to :7 Z IS (r1)]| R (71, 72)] - H(ngd(kti’rl) -1
mn 7“1—0 i=1
m—1 11
1 moyy, (L+ra)(g = DO, ) S
= ng n, (at — Q¢ )|<0q >|7 ™ i ng q_17|<9q >|
mn(q—1) TIE::O ( : B reged(q — 1,107 " 1)) ) ( " )
2
. H (ngd(ktiv”"l) _ 1)
i=1
oy (L ran)(@ =108 )
}jgm( (¢ = 1), 208" "), (ar, — ary)(g — DI ), - :
7“1—0
2
A, — At i —1
(ass = ar)IOF" 0% 1) - T (@4 = 1)
i=1
- 14+ ra — et 1+r7ra — et
Z gcd( (1), n|<9?11,1>|7( tl)(qT )07, >|7( t2)(qr )I(07, >|7
7“1—0

(ngd(kti 1) 1)

.

Il
-

w@—wnmz“wwm”lm

7

—1 2 C r C r
ged( [J (= — 1) (" = 1)(g="™2 ) —1) (1 +7an,)(g" — 1)(g*! ™2 — 1)

qg—1 ’ ™m ’

a+m@m%—DWMW~ﬂ—n(mfwmm%—nm%—”)

™ ’ n(qg—1)
m—1 . . .
LS (gt 1) gea(geton ) g, @ D@ 1) (14 ran)(g )

m o (g = (gt —1) rn 7
ry=

(14 rag,)(g" —1)(g*Fem) — 1)) (at, — as,) (g —1)(¢" — 1))

rlg R 1) ’ n(g—1) |
We are done. O

The following two conclusions are direct corollaries of Theorem B.111

Corollary 3.12. Let C = 'R(q)katl EBRn \Ets» Where 0 <ty < to < s, and the primitive idempotent ey,

corresponds to the g-cyclotomic coset {1+ ray,, (1 +rag,)q, -+, (1 +ra,)g" 1Y fori=1,2. If ky, =1
and ki, = k, then the number of (jq, p, o¢)-orbits of C* = C\{0} is equal to

1+%Z‘P(%) (gcd(q 1, q -1 (1+Tat2)(qk_1))+gcd(qh—1, (a’tg_atl)(qk_]‘))>.

-1’ ™m n
hlk
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In particular, the number of non-zero weights of C is less than or equal to the number of (pq,p,0¢)-
orbits of C*, with equality if and only if for any two codewords ci,co € C* with the same weight, there
erist integers j1, jo and js such that MffﬂjQ (€%3¢q) = cg, where 0 < j; <m—1,0 < jo <n—1 and
0<jz3<qg—2.

Proof. According to Theorem BITl and its proof, we have | (g, p,0e)\C*| = s¢, + 51, + S,.1,, where

B (1+7ray)(g—1)\ _ L @1 (L4ray)(g* —1)
h —gcd(q—l,l, ™m ) =L su= kz ng( B Tqg—-1" ™ )
and
m—1 cd(k,rq) ged(k,r1) k
_1 scd(kyry) 1 (G5 —1) (I+ras,)(q —1) (I4raw)(¢"—1)
Sty by = Zogcd( qg—1)- gcd( -1, 1 , . ) . )7
1

(at, _a’tl)(qk_]‘))

n

I )

m—1 c r . .
= ged (g0 1 (I+ran)(g=1)(¢* ™™ —1) (1+7as,)(g=1)(¢"~1) (atg—atl)(qk—l))
m ’ rn m n

r1=0
m—1

_ Z ( ged(k,r1) 1, (1+Tat1)(q_1)(ngd(k'm)_1) (atz_atl)(q_l)(qk_l) (atz_atl)(qk_l))

) )

™™ n n
71—0
S | (ar —an)(¢" — 1)
_ ged(k,r1) to — Atq —
= 2 sed (s L)
71—0
1 k h (at, — atl)(qk -1
_kz¢(h)g0d(q L n )
hlk
We have completed the proof of the corrollary. O

We present an example to illustrate that the upper bound in Corollary[B.12 improves the upper bound

’(p, o¢)\C*| as stated in Equation ([3.2).
Example 3.13. Take q =5 n =39 and A\ = —1. Let £ be the number of non-zero weights of the
negacyclic code C = 5 EBRn \E9, where the primitive idempotents €9 and e9 correspond to the

5-cyclotomic cosets I'y = {1 5,25,47} and Ty = {39}, respectively. By Equation ([2), we have £ < 21.
By Corollary B.I2, we have ¢ < 13. After using Magma [4], the weight enumerator of C is 1 + 15622° +
468228 4+ 156230 4+ 780231 + 780232 + 312233 4+ 156234 4+ 31223° + 4237, which implies that the exact value
of £is 9.

Corollary 3.14. Let C = n}\a N @R(qxstz, where 0 < &1 < ta < s, and the primitive idempotent

gs, corresponds to the g-cyclotomic coset {1 + ray,, (1 + rag,)q, -, (1 + rag, )¢ ~t} for i = 1,2. If
1, = ki, = k, then the number of (pq, p, o¢)-orbits of C* = C\{0} is equal to

q 1 (14 ray)(d* =1 -1 (14+ray)g®—1
P2 el (sals -1, S D) g, o, (el
h|k

q -1 (1+ ratl)(qk -1 1+ Tat2)(qk = 1)y (at, — atl)(qk - 1)2
+gcd((q —1)- gcd(q -1, 1 - , - ), Y )) .

In particular, the number of non-zero weights of C is less than or equal to the number of (iiq,p,o¢)-
orbits of C*, with equality if and only if for any two codewords ci,co € C* with the same weight, there
exist integers j1, jo and j3 such that uélph (€93¢y) = cg, where 0 < j; <m—1,0<jo <n—1 and
0<js<qg—2.

Proof. According to Theorem BITl and its proof, we have |(ug, p, 0¢)\C*| = ¢, + 51, + 8¢, 1,, Where

@ —1 (1+ra,)(g" —1)
. d -1, s fori=1,2
ti kZ gc q q—l’ . ) or 7 , 2,
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and

1 = cd(k,ry) cd(k,r1) qk -1 (1 +ra )(qk - 1) (1 tra )(qk - 1)
Stq,tyg = — E ng((qg ") 1)-ng(qg 1) 1, , 1 , 2 )7
= —1 ™ rn

(@, —as))(q" — 1)2)

(q -1
k k k k 2
1. o4 4 —1 (I+ray)(g"—1) (I+ray)(g"—1)\ (at, —ae)(g"—1)
% %;SO ng( ¢"—1)-ged(q" 1, -1’ m ' m ): n(qg—1) )
The proof is then completed. O

Example 3.15. Take q =3, n= 20 and A = —1. Let £ be the number of non-zero weights of the
negacyclic code C = 5 @R /\55, where the primitive idempotents £; and €5 correspond to the
3-cyclotomic cosets I‘1 = {5 15} and T's = {25,35}, respectively. By Equation (33), we have ¢ < 10.
Using Corollary B.I4, we have ¢ < 7. After using Magma [4], we know that the weight enumerator of C is
1+ 825 + 242'° 4 32215 + 1622°, which implies that ¢ = 4

3.3 New upper bounds on the number of non-zero weights of two special
classes of \-constacyclic codes

For some special type of A-constacyclic code C, we can find a subgroup G of the automorphism group
Aut(C) that is larger than (u,, p, o¢). According to Burnside’s lemma, it is possible to obtain a smaller
upper bound than |{ug, p,o¢)\C*| on the number of non-zero weights of C by counting the number of
G-orbits of C*. In this subsection, two classes of such A-constacyclic codes are presented.

3.3.1 New upper bound on the number of non-zero weights of the negacyclic code C =
R\t @ 1R e)

Assume that ¢ is a power of an odd prime and A\ = —1, that is, r = 2. For 0 < t < s, suppose that
the irreducible [n, k] negacyclic code sz)Ast corresponds to the g-cyclotomic coset Ty = {1 + raq, (1 +
ray)q, -+, (1+ra;)g® 1}, Since —1 € Z%, N (1 +7Z.y), p—1 is an Fy-vector space automorphism of Rflq)A
One can check that u,l(R( )/\at) is also an irreducible negacyclic code, and the primitive idempotent
generating u_l(R(q)Ast) corresponds to the g-cyclotomic coset —TI'y = {—(1+ras), —(1+ras)q,--- ,—(1+
ra;)¢" =1} ([IT7]). Therefore,

k—1 k-1

p-1(R ,\Et {Z ZC;C_U(lﬂat)qj)e—(1+rat)qj
=0

Jj=0

cgqu,Ogvgk—l}.

Suppose —(1 + ra;) ¢ Ty, then u_l(’R;q’))\at) N ’R(qut {0} and p* 1(73(‘1) ) = R;q)))\gt, Let

C = R,Elq’))\é‘t @H71 R(q)ké‘t)

It is easy to see that u—1 € Aut(C) and the subgroup (_1) of Aut(C) is of order 2. Obviously, (g, p, o¢)
is a subgroup of (p_1, g, p, 0¢), so the number of (u_1, g, p, o¢)-orbits of C* = C\{0} is less than or
equal to the number of (p4, p, o¢)-orbits of C*. In the following, the number of (1—1, iq, p, o¢)-orbits of
C* is given.

Lemma 3.16. With the notation given above. The subgroup (p—1, fiq, p, o¢) of Aut(C) is of order 2mn(q—
1), and each element of <,u,1,uq,p, O'E> can be written uniquely as a product u@lluzlp”age', where 0 <
ro<1L,0<r<m-1,0<r,<n—1and0<rs <q-—2.

Proof. The proof is similar to that of Lemma and thus omitted here. O
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Note that the group (pi_1, f14, p, 0¢) can act on the sets C’ := (Rflq)/\at\{()}) U (,u,l(R )\st)\{O}) and

Ct = sz)Aat\{O} @u_l(Rgg))\at)\{O}, respectively. The numbers of (yi_1, 114, p, o¢ )-orbits of C’ and C*
are given as below.

Lemma 3.17. With the notation given above, then the number of <u_1, s P 05>-07"bits of C' is equal to

¢ -1 (1+Tat)(qk—1)
E d -1, .
k o gc q g—1" rn )

Proof. Note that C' = (Rgfi\st\{O}) U (p-1(R )\st)\{O}) is a disjoint union. Then it follows from
Equation (ZI) and Lemma .16l that

1 m—1n—1 qg—2
|(i—1, pq> pr o )\C'| = (g = 1) q—1 (Z Z > ‘{C e RO} | wroyui p2op () = C}‘
07r1=07r2=07r3=0

o
m—1 n—1 g—2

’{c € p_ 1(R(qA5t N\{0} | P pgt p ot (e) = C}D
0

Let ¢ € Rgg))\st\{O}. If ro = 1, then p”® pg'p"2oi®(c) = p_ipg' p™ 0’ (c) € p—1(R ff)Ast)\{O} and so

npgtpot(e) # e If ro = 0, then p™® pgtp™o®(c) = pgtp™ o (c) € Rgg))\at\{O}. Combining these
facts and the proof of Theorem [B1] we have

1 m—-1n-1 qg—2
> [{e e RUAe\O} | oy 2ot (e) = e
ro=07r1=07r2=07r3=0
m—1n—1 qg—2
= ’{c € Rflq)Ast\{O} | ptp” 2o (c) = c}’
r1=07r2=01r3=0
m—1

ray)(q — k_
= 3 s (g~ (@) )it ), ETHEE ),

<

1

Similar discussion as above shows that

3
-
3
[
-

M-

q—
z [{e € ni(RPOMO} | ltipy 2o () = e}

ro=07r1=07r2=07
m—1 n—1 g—2
= ‘{C € 1 (RN e)\[0} | uft o207 (c) = C}‘
’I"1:0 T2:0 ’I"3:0
m—1
1 —1)(g* -1
Cd( (¢ — 1)(ngd(k;T1) _ 1),7’L(qk —1), (1+rat)(q )(g ))
T

’I"1:0

Therefore, we conclude that

|11, 11q: P 06)\C'| —an Z gcd( 1)(g24®r) Z 1) n(g* — 1), (1+ra)(g —1)(¢" - 1))

Tl =0 r
¢" —1 (1+ra)(d"—1)
d( _1, , )
k hzw gc 1 q—1 rn
Then the proof is completed. O
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Lemma 3.18. With the notation given above, then the number of (ji_1, jiq, p, o¢)-orbits of C* is equal to

2m ’

m—1 k h k
1 (gcd gcd(k ) _ 1, 2(¢" =1) (L+ra)(¢" —1)(¢" — 1))
P q—1 rn

_ k _ k_ 1)2
" gcd((qgcd(k,m 1) - ged(¢E9 1, ¢" =1 (1+ra)(q 1)), 2(1 +rag)(q” — 1) )) '

-1’ ™ rn(qg — 1)
Proof. According to Equation (2.]), Lemmas 2.3 and B.I6] we have

—1n

1 1 m -1 q— .
espoin e == 5 52 52 5 52 o)
ro=07r1=07r2=017r3=0

where Fix(ur_f’luglp”a?) ={ce? ’ npgtprrot(e) = c}.
Take ¢ = ¢; + ¢}, € C*, where ¢; € sz)Ast\{O} and ¢} € u_l(Rgg))\at)\{O}. Let

— k—1

1
v(1+ra )q /o / —v(1+7‘a,)qj .
E & C ¢ €(1+ra)gis Ct = ( CUC ‘ )e—(l-l-rat)qi'
J=0 v=0 g 0

E
—

k—

Il
=]

v

Suppose 79 = 1. One can easily check that 1 1(e(14ra;)g7) = €—(14ras)gi- Thus

p-1pigt pr o (c) =p— 1#210”0 (ct) + p™ pigt p"? 0 (ch)

k—1
r14d i\g"l
:Zw(“”*)ql (D el )T (1)
7=0 v=0
» k—1 -
+ Z§T3 (I+rar)q™ ]TZ ZC C 1+Tat)q ) €(1+7‘at)qj.
v=0
Then
fotpgpP o (e) = ¢ & pipgtpo () = ¢ and poypy p”ff”(CD:Ct
k—1
PN grgc 1+rat) T1r2 Z Cv 1+7"at) Z < v(1+ras)
v=0
and 57‘34— l+rat)qur2 Zc C v(l+7‘ar ZC C/U(1+Taf
v=0
Hence

|Fix (p—1p1g' "0 ) |
—|{(0,8) € Fpu x Fyu | gro¢trenara™ — g, grag-traatrgnt _ o}

:‘{a €T | 230 71 = <_<1+w)(qr1_1>an2}‘
: .

It’s easy to verify that ’Fix(u_luglp”a?)‘ =0 or ¢8°d(*:2m) _ 1. Next, fixing 71 (0 <7 < m — 1), we
count the number of number pairs (r9,73) such that |Fix(,u,1,u21p’”2023)‘ # 0, where 0 <79 <n—1,
0<r3<q—2. Let IFZk = (#) and denote

§"(r1) = {0 < 5 Sn—1 | (0o D= ¢ (g2) (g 1)),
Assume that 79 € §”(r1) and denote

RN(T17T2) _ {0 <z<qg-2 | <7(1+T‘at)(q7“1—1)q7'1’r2 c €2z<9q2T1—1>}.
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Similar to the proof of Theorem [3.1] we have

(L+rar) (@™ — HIEH T )]

157l = ng(”’ ) |R"(r1,72)| = ged(q — 1,2)-[{€2) n (87" 1],

It follows that

-
»

1 g—

3

n

’Fix(u 1hg p o)

ﬁ
-,
Il
=
3
N
I
o
3
w
Il
<)

3
[

_ Z (qgcd(k,Q'rl) _ 1)

r1=0ro€8"(r1) r3€R (r1,72)
1

= > 18" (r)[-|R (r1,m2) | (g% — 1)

r1=0
m—1 27y _
_ 2 g -1y (L ra(@ = DIED 1O DY geacean)
=2 sedla—1,2 ged (nl(€?) N (6" ), ; )@ -1)
m—1

n(g—1) n(@" —1)  (L+ra)(@™ —1)(a—1)(@" =D\, acatk2m)
= d(g - 1,2) - ged( : 7 (gt
zed(g ) & ged(g — 1,2)7 geed®2r) — 17 7. ged(q — 1,2)(ged™2r0) — 1) (@ )

r1=0

m—1 T
= > ged(n(g— 1) n(g—1(¢" =1) 2n(¢" —1) (I+ra)(g” —1)(g—1)(¢" — 1))( sed(k2r1) _ )
- Tl:og q ? qgcd(k,2r1) —1 ? qgcd(k,2r1) _ 1’ T(qgcd(k,Zrl) _ 1) q

m—1

T _ k_
_ gcd(n(q _ 1)(ngd(k727'1) _ 1),2n(qk ~1), (1+rae)(q i)(q 1)(q 1))

Suppose o = 0, then u'% pit p"2 o () = pit p"20g? (er) + pyt p"2 0 (c;). This leads to

Wy 0 (€)= o () = e and g (cl) = <]

We deduce from the proof of Corollary B.14] that

-

1

3
)

n

Q

’Fix (,u;l p? U” )
0

i
Il
Il

1=07r2=073

k k k 2
o cd(k,ry) cd(k,r1) g -1 (1 + Ta’t)(q - 1) (1 + rat)(q — 1)
= ged (n(q —1)(¢® Y —1)-ged(q® e T o )s ” .

= o

3

Il
<)

1
To sum up, we have
’(/1471, Haqs P Uﬁ)\cﬁ’

(Z ged (g — 1)(@F2r) 1) an(g* — 1, LFTa)@ = D@ =D ~ 1))

r

m—1 k k k 2
—1 (A4ra)(g —1) L+ra)(q” —1)
d( — )2 _ 1).ged (qEedEr) _ 1 4 7 7 )
+T1§:Ogc n(g—1)(g )-ged (g 1 o ) "

_1 N <gcd(qgcd<k,zm_172(q’f—1> (+ra)(g" ~1(a" - 1)

2m = q—1 rn

k k k 2
c r c r -1 (1+Ta’t)(q _1) (1+Ta’t)(q — 1)
d( gd(k,l)_l_ d gd(kyl)_lq ) )
+ ged((q )-ged(g S - ), g D)

The proof is then completed. O
By virtue of Lemmas BI7 and B8, the number of (p_1, tiq, p, o¢)-orbits of C* = C\{0} can be

immediately obtained.
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Theorem 3.19. Suppose that A = —1 (i.e., v = 2), the primitive idempotent £, (0 <t < s) corresponds
to the g-cyclotomic coset Ty = {1 + ray, (1 + ra;)q, -+, (1 + ra;)g* "} and —(1 +ra;) ¢ Ty. Let C =

RfZ)AEt @u_l(R(Q)Ast) Then the number of (i—1, g, p, o¢)-orbits of C* = C\{0} is equal to

k k
" —1 (L+7ray)(q" —1)
k Z@ Jacd(¢" 1, g—1" rn )
|k
m—1 k h k
1 cd(k,2h 2(¢"=1) (I4ra)(¢"=1(¢" 1)
L d(gecd®:2h) 4
+ 2m 112::0 (gc (q Tog—-1 7 rn )

k_ ko E_ 132
+ gcd<(qgcd(k,h) _ 1),gcd(qgcd(k,h) —1, q 17 (1+rad)(q 1))7 (1+ra)(qd” —1) ) .
-1 m rn(qg—1)

In particular, the number of non-zero weights of C is less than or equal to the number of (ji—1, fiq, P, 0¢)-
orbits of C*, with equality if and only if for any two codewords cqi,co € C* with the same weight, there
exist integers jo, ji1, j2 and j3 such that p’® pl po¢?®(c1) = ¢z, where 0 < jo < 1,0 < j1 <m—1,
0<jo<n—1and0<j3<q—2..

Proof. Note that C\{0} = C’ UC¥ is a disjoint union. Then
’<M—17 Hgs Py 05>\C*’ = ’</J'—17 Hgs P, 0-£>\CI} + ’</J'—17 Hgs P, 0-£>\Cﬁ}
The rest of the proof is clear with the help of Lemmas B.17 and 318 O

Remark 3.20. Let C be the negacyclic code in Theorem[3.19] It follows from Corollary B.I4land Theorem
3.19] that

|<uq7p705>\0*|-—}<u71,uq,p,ag>\c*}?>| qupng \C/}_‘|Qiflvﬂq7p705>\c/

—1 (14ra)(g® —1)
d — 1 .

Hence the upper bound on the number of non-zero weights of C given by Theorem [B.19 is less than that
given by Corollary .14

Example 3.21. Take ¢ = 3, n = 40 and A = —1. Let K be the number of non-zero weights of the
negacyclic code C =R, a(q) \Dr— 1( €3) = R(q) 5 @R /\56, where the primitive idempotents €3 and
g¢ correspond to the 3- cyclotomlc cosets I's = {11 19, 33, 57} and T'g = {23,47,61,69}, respectively. By
Corollary BT4l we have ¢ < 25; by Theorem B.I9 we have £ < 19. After using Magma [4], we know
that the weight enumerator of C is 14 16022 + 560222 + 320222 4 64022* + 64022 + 1120226 4+-4802%7 +
640228 4+ 4002%° + 96023° 4 32023! + 320232, which implies that the exact value of £ is 12.

3.3.2 New upper bound on the number of non-zero weights of the constacyclic code C;, =
,R’(q)kat @ :u )l()pz (R(q)\st)

Let g = p©, where p is a prime and e is even. For 0 <t < s, let R(q) €; be an irreducible A-constacyclic code

of length n over [F, whose generating idempotent corresponds to the g-cyclotomic coset Ty ={1+ras, (1+

rag)q, - (1—1—7“(1,5) k=11 and let lo € {0, 1}. In this subsection, we assume that (—1)"p2 € Z*, N(1+7Z;,),
. (R(‘I) Et)

(=1)top2 n,A

is also an irreducible A-constacyclic code whose generating idempotent corresponds to the g-cyclotomic

coset (—=1)op=5{1 +ras, (1 +ras)q, -, (1 +ra;)g" '} (see [I7]). Therefore,

then clearly 7|p? — 1 when [y =0, and r |p% + 1 when Iy = 1. One can check that p

k-1 k-1
_1Dlop— 5 ray)q’
H(_1ylops (sz)AEf) = {Z (chvcv( Ve R radd )e(—l)lr)p*%(lmt)qj ¢y €F0<v <k 1}'
j=0 v=0
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Suppose (—1)p~3(1 + ra;) ¢ I'y, then By (szq)/\at) =

g (R( ))\at) Let

L5 (R e) N R\ e, = {0} and pi2

)to (~1)lops

R(qkat@la( 1 l()p% nq)>\at)

It is easy to see that B _1yiops € Aut(Cy,). Since pg=p ( Dyiop$? (fq,p,0¢) is a subgroup of <“(71)10p% P,0¢).

og¢)-orbits of Cf = Cj,\{0} is less than or equal to the number of

)lo
Hence the number of <N(_1)lop%vpv
(11q, p, o¢)-orbits of Cff . Further we will show that the former is strictly less than the latter.

As a preparation, we first prove the following lemma.

Lemma 3.22. Let m be the order of q in Zy,, and let m, = be the order of (—1)lop% in Z7, . Suppose that
(=1)lop=5(1+ray) ¢ I'y, then m, = 2m.

Proof. Since (~1)op~% (14 7ar) ¢ {1+ ras, (1+7a))q, - , (1 +rar)g"1}, we then have (~1)op~%q! # 1

(mod rn), or equivalently, ((—1)"p )2l !

# 1 (mod rn) for any nonnegative integer I, and hence m, s
even. It is easy to see that qu = ((—1)l0p§) o =1 (mod rn) and ((—l)lop%)%n =¢"™ =1 (mod rn),

and so m | mQZO and m, [2m, which implies that m, = 2m. O

Theorem 3.23. Suppose that the primitive idempotent £, (0 <
coset Ty = {1+ ras, (1 +7ras)q, -, (1 +7ra;)g" 1} and (—1)lop~

R(qkat@la( 1 l()pz nq)>\at)

Then the number of <,u(_1)l0p%,p, ag¢)-orbits of Cf = Ci,\{0} is equal to

t < s) corresponds to the q-cyclotomic
%( +ray) ¢ Ty, where lyp € {0,1}. Let

k k
" —1 (1+7ra)(q" —1)
k%;p )ged (g -l - )

m—1

* o 2 (ng(ngd(k'%H) _p 2@ =) [EDp7E 4 g0 4 ra (e D)

I

qg—1 ™m

& & 1 _e k 2
ged(koh) gcd(kn) 4 ¢ —1 (L4+ra)(g”" —1) [(=1)°p 2 —1](1 +rae)(q” — 1)
+ gcd((q l)gcd(q 1, —1 oy )’ rn(qg — 1) ) .

In particular, the number of non-zero weights of Cy, is less than or equal to the number of <.U(,1 lop% P:0¢) -
orbits of C , with equality if and only if Jor any two codewords c1,c2 € Cj with the same weight, there
exist integers ji, jo and j3 such that p’* s p2(E%%¢y) = co, where 0 < j3 <2m—1,0<jo <n—1

and 0 < js < q—2,.

(=Dtop

Proof. Denote
Cly = (RYAEMOD) U (11,5 (RiAE\{0}) and €f) = RIAAO} D 1110, 5 (RiAE)\{O)
Note that C;,\{0} = C; U ClﬁU is a disjoint union, and hence

‘<M(71)10p%7pv 05>\Cl*o’ = ’<M(71)10p%7pv 05>\Cl/0’ + ‘</‘(71)10p%=pv 05>\Clﬁo"

r -1 ry

= “(71)1010%“‘17 if r1 is odd and uzl_l)lop% = [

Similar calculations as in Lemmas

For 0 <r; < 2m—1, it is easy to see that ,u( 1)10 s 1
P
if 71 is even; in addition, B _1yt0p5 (e(14rang) =

B.I7 and show that

€(—1)lop™ 5 (14rar)gd”

’<“(—1)lop% 2 Ps U€>\Cllo’
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2m—1 n—1 q—2

2mn q—1 (Z Z Z‘{CeRnst\{o}’H 1ytop$ ep 2o’ (c —c}‘

L= 07‘2 07‘3 0
2m—1 n—1 q—2

EpIPIDI ‘{C € 1 1yt0ps (Rne) O} [ 10,8 P08 (€) = C}D

r1=0 ro=07r3=0

m—1
2 (1+rae)(g —1)(¢" — 1)
- - d _ 1 ng(k,’r‘l) _ 1 k _ 1
e Zogc (n(qg—1)(q ),n(q" —1), . )
r1=
_1 mz (ggedhr) qk —1 (14ra)(¢" - 1))
m = -1’ n
1 qk—l (14 7ras)(g" — 1)
- d
"k hz gc L q—1" ™ ):
and
{(ﬂ(71)10p§7p7 0—§>\Cﬁ ‘
2m—1 n—1 q—2
T1 T2 T3 —
2mn q—l Z Z Z‘{ce ( 1)lop%p 3 (c)fc}‘
71=0 ro=07r3=0
m—1 k lp, — € r k
1 (k2 20¢* —1) [(=1)'op~5 +q™](1+ -1
5 (pagsann (Z— D) (207 0 reg >)
r1=0
k k l
ged(k,r1) . ged(k,r1) q — 1 (1 + Tat)(q — 1) [(_1) 0 — 1](1 + 7ﬁa‘t)(q — 1)
+g0d((q 1)-ged(q Lo ™ ), rn(q— 1) ) '
The desired result then follows immediately. O

Remark 3.24. Let C;, be the A-constacyclic code in Theorem It follows from Corollary B4 and
Theorem [3.23] that

|<Mq7p7 05>\Cl*0| - ‘<ﬂ(_1)lop%7p7 05>\Clt)‘ Z|<Mq7p7 05>\Cl/0‘ - |<N(_1)lop%7p705>\cllo‘

k k
¢ =1 (L+ra)(d" —1)
d .

Therefore, the upper bound on the number of non-zero weights of C;, given by Theorem [B.23]is less
than that given by Corollary B14

Example 3.25. Take q = 9 n = 40 and A = 2. We first consider the the A-constacyclic code Cy =
R(q "\€0 P us (R(q) g0) = E @Rff)le, where the primitive idempotents £y and 1 correspond to the
9- cyclotomlc cosets 'y = {1 9} and T'; = {3, 27}, respectively. Let £y be the number of non-zero weights
of Cy. By Corollary 314, we have ¢y < 14. However, using Theorem I we have fp < 9. After using
Magma [4], we know that the weight enumerator of Co is 1+ 320227 4 6240:1:36 which implies that £g = 2.

In addition, consider the A-constacyclic code C; = )\8 0P p— 3( n )\8 0) = E ) R(qxsn, where
the primitive idempotents g and £17 correspond to the 9- cyclotomlc cosets Tg = {1 9} and I'y7 = {53, 77},
respectively. Let £1 be the number of non-zero weights of C;. One can verify that by Corollary B.14] we
have /1 < 26, and by Theorem we have ¢1 < 14. After using Magma [4], we see that the weight
enumerator of C; is 1+ 160228 4 1280232 + 800234 4 272023 4+ 640238 + 9602%°, which implies that £; = 6.

4 Concluding remarks and future works

In this paper, we improve the upper bounds in [26] on the number of non-zero weights of any simple-root
A-constacyclic code by replacing (p, o¢) with larger subgroups of the automorphism group of the code.
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Firstly, by calculating the number of (u,, p, o¢)-orbits of C\{0}, we present an explicit upper bound on
the number of non-zero weights of C and propose a necessary and sufficient condition for C to meet the
upper bound. Many examples in this paper show that our upper bound is tight, and in some cases,
it is strictly smaller than the one presented in [26] (see subsections 3.1 and 3.2). In addition, for the
constacyclic code C belonging to two special types, we obtain a smaller upper bound on the number of
non-zero weights of C by substituting (14, p, 0¢) with a larger subgroup of Aut(C) (see subsection 3.3).
A possible direction for future work is to find new few-weight constacyclic codes based on the main
results presented in this paper. It would be valuable to investigate tight upper bounds on the number of
Hamming weights of repeated-root constacyclic codes.
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