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Abstract—Quantum computing (QC) seems to show potential
for application in machine learning (ML). In particular quantum
kernel methods (QKM) exhibit promising properties for use in
supervised ML tasks. However, a major disadvantage of kernel
methods is their unfavorable quadratic scaling with the number
of training samples. Together with the limits imposed by currently
available quantum hardware (NISQ devices) with their low qubit
coherence times, small number of qubits, and high error rates,
the use of QC in ML at an industrially relevant scale is currently
impossible. As a small step in improving the potential applications
of QKMs, we introduce QUACK, a quantum kernel algorithm
whose time complexity scales linear with the number of samples
during training, and independent of the number of training
samples in the inference stage. In the training process, only the
kernel entries for the samples and the centers of the classes are
calculated, i.e. the maximum shape of the kernel for n samples
and c classes is (n, c). During training, the parameters of the
quantum kernel and the positions of the centroids are optimized
iteratively. In the inference stage, for every new sample the circuit
is only evaluated for every centroid, i.e. c times. We show that the
QUACK algorithm nevertheless provides satisfactory results and
can perform at a similar level as classical kernel methods with
quadratic scaling during training. In addition, our (simulated)
algorithm is able to handle high-dimensional datasets such as
MNIST with 784 features without any dimensionality reduction.

Index Terms—quantum computing, machine learning, kernel
methods, linear complexity

I. INTRODUCTION

Supervised Learning is an important branch of Machine
Learning (ML) where a model is trained on labeled data to
predict the labels of new, unseen data. It encompasses two
main types of tasks: classification, which predicts discrete
labels or classes, and regression, which forecasts continuous
values. Quantum Machine Learning (QML) is an emerging
field in the intersection of Quantum Computing (QC) and ML
with the goal of utilizing the potential advantages of QC - like
superposition, entanglement, and the exponential size of the
Hilbert space - for Machine Learning. In particular, Quantum
Kernel Methods (QKM) have recently gained attention because
of their ability to replace many supervised quantum models and
their guarantee to find equally good or better quantum models
than variational circuits [1]. In addition, theoretical results
are showing that QKMs can handle classification problems
that cannot be solved using classical ML techniques, such
as classifying numbers based on the discrete logarithm [2].
However, a significant drawback of using (quantum) kernels
is the quadratic time complexity of the kernel calculation, i.e.
O(n2train), since a kernel value must be estimated for each

pair of samples. For the inference stage, the time complexity
without using advanced techniques such as Support Vectors
is O(ntrainnpredict). Estimating a quantum kernel for the - by
classical ML standards very small - URL dataset [3] with
around 36,000 samples, requires approximately 109 kernel
value calculations. With the commonly-used number of 1,000
shots, this involves 1012 circuit executions. A state-of-the-art
IBM device with Eagle r3 processor (e.g. ibm sherbrooke [4])
achieves 5,000 CLOPS (circuit executions per second) and
hence the execution time for calculating the kernel would be
108 seconds, or over 6 years.

Quantum Kernel Alignment (QKA) is a fascinating tool for
QKMs that uses kernels with variational parameters which can
be trained to align the kernel to the ideal kernel for a given
dataset [5]. This could enable the use of a general quantum
kernel architecture that can be trained for different datasets.

The remainder of this paper is structured as follows: The
next subsection I-A gives an overview of the related work
in the fields of QKMs and QKA. The final part of the
introduction contains our contributions (subsection I-B). In
the following Background (section II), the fundamentals of
supervised learning, quantum kernels, and QKA are introduced.
Next, the Methods (section III) contain the implementation
of the model and the Experiments (section IV) describe
the numerical experiments carried out. In the Results and
Discussion (section V) we show the results of our experiments
and analyze them. Finally, Conclusion and Outlook (section
VI) highlights the key results of this work and gives future
research directions.

A. Related Work

In 2021, Hubregetsen et al. [5] described the algorithm of
QKA and defined the kernel-alignment measure. Moreover, they
theoretically assessed the influence of noise on the algorithm
and carried out numerical experiments on toy datasets, both
on simulations and on real hardware.

Gentinetta et al. [6] developed a Quantum Support Vector
Machine (QSVM) for which the quantum kernel is trained
with QKA using the Pegasos algorithm in 2023. Unlike the
default Support Vector Machine (SVM) implementation, their
algorithm solves the primal formulation of the SVM which
results in a min-min optimization and hence the SVM weights
and the kernel parameters can be optimized simultaneously,
increasing the efficiency of the algorithm.
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In the same year, Kölle et al. [7] introduced a one-class
QSVM, for which they reduced the training and inference
times compared to a default QSVM by up to 95% and 25%,
respectively, by applying randomized measurements and the
variable subsampling ensemble method while achieving a
superior average precision compared to a SVM with Radial
Basis Function (RBF) kernel.

Finally, in 2024 Bowles et al. [8] benchmarked 12 popular
QML models on six binary classification tasks. They concluded
that out-of-the-box classical ML models tend to outperform
the QML models and that entanglement does not necessarily
improve the models’ performance. Moreover, they noted that
QML models both in simulations and on hardware can usually
only handle input with size of the order of tens of features,
and therefore classical pre-processing techniques such as
principal component analysis are required to deal with higher
dimensional data like the famous MNIST dataset. This classical
pre-processing, however, influences the performance of the
model and hence dilutes the results of a benchmark.

B. Contributions

Our work aims to answer this question: Can the time
complexity of QKMs be improved while still achieving
satisfactory results?

We found a positive answer and report these contributions
of our work:

• We develop Quantum Aligned Centroid Kernel (QUACK),
a classifier based on quantum kernel alignment that
improves the time complexity compared to basic kernel
methods from O(n2train) to O(ntrain) during training and
from O(ntrainntest) to O(ntest) during testing.

• We benchmark our classifier by evaluating it on eight
different datasets with up to 784 features and different
class ratios ranging from balanced to highly unbalanced.

• Finally, we observe that QUACK performs on a similar
level as a classical SVM with RBF kernel

II. BACKGROUND

A. Supervised Learning

Let X ⊂ Rd be the data space and x = (x1, . . . , xd) ∈ X
the feature vector of a single d-dimensional sample. Let Y
denote the target variable space and y ∈ Y the target variable
or label of a single sample. For the case of binary classification,
we restrict the target variable to the set {1,−1}. Let further
Θ denote the space of model parameters. The general task of
supervised machine learning is to train a parameterized model
fθ : X ×Θ→ Y such that it approximates a mapping between
input x and output ŷ based on the learned parameters θ, as
described in (1). During training, the parameters θ are optimized
such that the loss L quantifying the difference between the
predicted output ŷ and the target y is minimized, as in (2).

ŷ = fθ(x) (1)
min
θ
L(y, ŷ) (2)

B. Quantum Kernels

Quantum kernels emerge as an important tool for encoding
classical data into quantum systems and subsequently classify-
ing the data. It is hoped that the unique properties of quantum
computing, such as entanglement and superposition, which
are utilized in quantum kernels, will enable them to be more
powerful than classical kernels. This hypothesis is supported
by theoretical results showing that a constructed classification
problem based on the discrete logarithm can be efficiently
solved by QKMs, but not by classical ML methods [2]. In
general, the encoding in QKMs is achieved through unitary
operations U(xi) that depend on individual data points xi,
often implemented via Pauli rotations. The state of the system
after the encoding is

|ψ(xi)⟩ = |ψi⟩ = U(xi) |0⟩ . (3)

Kernels are known from classical machine learning, where
they are real- or complex-valued positive definite functions of
two data points, i.e. κ : X ×X → K, where K ∈ {R,C}. This
definition can be extended to the quantum case, where a kernel
k between two pure data-encoding quantum states ψi and ψj

is calculated from the fidelity between these states

k(xi,xj) = F (ψi, ψj) = | ⟨ψi|ψj⟩ |2 (4)

= | ⟨0⊗n|U†(xi)U(xj) |0⊗n⟩ |2 (5)

with data encodig unitaries U(xj) and U†(xi). This quantum
kernel serves as a similarity measure between the states of two
encoded samples: If both samples are identical, i.e. xi = xj ,
so ψi = ψj as well, the kernel equation (4) simplifies to

k(xi,xj) = k(xi,xi) = F (ψi, ψi) = | ⟨ψi|ψi⟩ |2 = 1. (6)

On the other hand, if the encoded states ψi and ψj are
orthogonal, the kernel will evaluate to

k(xi,xj) = F (ψi, ψj) = | ⟨ψi|ψj⟩ |2 = 0. (7)

A quantum kernel can be implemented as an n-qubit circuit
that consists of a trainable unitary U(xj), encoding a single
sample, followed by the inverse U†(xi) of another sample, and
a measurement of all qubits, as shown in Fig. 1. The kernel
value of the two samples is then obtained as the probability
of measuring the all-zero state as given in equation (5). If a
state vector simulator is used, the kernel value of two samples
xi and xj is the fidelity of the states after application of the
unitary U(xi), respectively U(xj), as given in (4).

C. Trainable Quantum Kernels

A quantum kernel can contain not only parameters that
encode the data into the circuit, but also adjustable parameters
that affect the performance of the kernel for a particular
dataset. This can for example be achieved by alternating layers
of rotational gates, whose parameters consist of either one
or more features of the datum x or some other variational
parameter w. These parameters w can be optimized through
Quantum Kernel Alignment (QKA), as explained in subsection
II-D. For variational circuits, trainable encodings seem to be



...
...

U(xj) U†(xi)

Fig. 1. Architecture of the circuit if executed on hardware. The kernel entry
Kij for samples i and j is the probability of measuring the all-zero bit string.

promising, since they were found to improve the robustness and
generalization of the model [9]. A trainable encoding embeds
the datum x and the variational parameter w and bias b as
one parameter vector θ, where each entry of θ is a single
parameter used in a rotational gate. The parameter vector θ is
calculated as

θ = w ◦ x+ b, (8)

analog to the neurons of neural networks, where ◦ is the
element-wise product (Hadamard product).

D. Quantum Kernel Alignment

QKA is a powerful tool that can be used to align a trainable
kernel to the ideal kernel for a given dataset. It was originally
developed for classical kernels [10] but can be used for quantum
kernels as well. The implementation of QKA in this work is
based on [5]. Kernel Alignment is used to optimize the kernel
parameters for a specific task, improving the performance of
kernel-based algorithms. The ideal kernel k∗ is defined such
that it always outputs the correct similarity between two data
points:

k∗ (xi,xj) =

{
1 if xi and xj in same class
−1 if xi and xj in different classes

(9)

In general, this ideal kernel is not known, but for the training
set the ideal kernel matrix K∗ can be constructed from the
labels, i.e. K∗

ij = yiyj , or in vectorized form

K∗ = yyT . (10)

The kernel-target alignment is a measure of the similarity
between two kernels. To calculate it, we need the Frobenius
inner product between two matrices as defined in (11).

⟨A,B⟩F =
∑
ij

AijBij = Tr
{
ATB

}
(11)

With this, the kernel-target alignment TA between the current
kernel K and the ideal kernel K∗ can be calculated as in (12).

TA(K) =
⟨K,K∗⟩F√

⟨K,K⟩F ⟨K∗,K∗⟩F
=

∑
ij yiyjk (xi,xj)√(∑

ij k (xi,xj)
2
)(∑

ij y
2
i y

2
j

) (12)

The numerator of (12),
∑

ij yiyjk (xi,xj), is the kernel
polarity. If two samples are in the same class, yiyj = 1,
the kernel value k(xi,xj) will increase the sum and hence
the kernel-target alignment. For samples in different classes,
yiyj = −1, the kernel polarity decreases by k(xi,xj) and
subsequently the kernel-target alignment decreases, too. The
kernel-target alignment equals 1 if the matrices are perfectly
aligned and -1 if they are perfectly misaligned, i.e. perfectly
inversely correlated.

III. METHODOLOGY

Driven by the need of a NISQ compatible quantum classifi-
cation algorithm that can handle data on an industrially relevant
scale, we developed QUACK, a linear complexity algorithm for
supervised classification based on quantum kernel alignment.
QUACK is motivated by the desire to find a quantum kernel
algorithm that avoids the calculation of the pairwise distances
between the samples. Instead, our algorithm optimizes the
distance using centroids as a proxy for each class with labels
l ∈ {1,−1}. The centroids are intitialized as the means of
the classes in the original input data space. However, during
training of the embedding map, the initial centroids cease to
represent the center of the classes and we need to update
them. This results in a two step alternating training procedure,
where we iteratively optimize the parameters of the embedding
map, followed by the position of one of the centroids. Since
we do not want to store the centroids as a vector in the 2n-
dimensional embedding space, we optimize the preimage of
the centroids in embedding space, i.e. their positions in data
space. Additionally, we alternate the class of the centroid to
be optimized in each iteration.

The working principle of the algorithm is illustrated in
Fig. 2. The centroids are initialized as the mean of each class
in data space and initially, the embedding map performs a
random embedding of the data in Hilbert space, as shown
in the first figure. The first step of the algorithm, Kernel
Alignment Optimization (KAO) iteration 1 for class 1 optimizes
the parameters of the embedding map such that the distances
between the samples of class 1 and centroid 1 are minimized,
and the distances between the samples of class -1 and centroid
1 are maximized. This results in a new embedding map which
is shown in the second figure. Next, the Centroid Optimization
(CO) iteration 1 class -1 optimizes the position in data space
of the centroid of the other class (class -1) with the aim of
minimizing the distances between the centroid and the samples
of class -1 and maximizing the distances between centroid
-1 and the samples of class 1. The result of the CO step is



shown in the third figure. After this, the first epoch of the
QUACK algorithm is complete, and a new iteration of the two
step process starts. For the second iteration of the KAO, the
embedding map is optimized such that the distances between
the samples of class -1 and centroid -1 are minimal, and the
distances between the samples of class 1 and centroid -1 are
maximal. The resulting new embedding space is shown in the
fourth figure. Next, the second iteration of the CO is carried
out, where the position of centroid 1 is optimized in data space,
followed by the next epoch of the two step process and so on.

The parameterized circuit with trainable encoding used for
data encoding is described in subsubsection III-A1 Circuit
Design and Data Encoding. The two-step optimization pro-
cess is explained in subsubsection III-A2 Kernel Alignment
Optimization and subsubsection III-A3 Centroid Optimization.
Finally, the Prediction Stage - where the kernel entries of a
new sample with the centroids are estimated and the sample
is given the label of the class for whose centroid the kernel
entry is maximal - is explained in subsubsection III-A4. The
final part of this section, subsection III-B sketches very briefly
how our state vector simulator works.

A. QUACK

The QUACK training algorithm is sketched in algorithm 1
and can be summarized as follows: The algorithm estimates
a quantum kernel for the train samples X and the current
working centroid cl ∈ {c−1, c1}. Each of the nepochs training
epoch consists of a two-step optimization iterating between
nKAO epochs of optimizing the model parameters w, b and
nCO epochs of optimizing the centroids c−1, c1. For predicting
new data, the kernel values of the new data Xpredict and both
centroids will be calculated, and each sample is given the label
of the centroid with higher kernel entry. In the following, the
different parts of the algorithm will be described in more detail.

Algorithm 1 QUACK training
Input: initial guess for c−1, c1

1: l← random bit · 2− 1
2: Repeat nepochs times:
3: Repeat nKAO times:
4: LKAO ← LKAO(X,y, cl,w, b)
5: optimize model parameters w, b

6: l← −l
7: Repeat nCO times:
8: LCO ← LCO(X,y, cl,w, b)
9: optimize cl

1) Circuit Design and Data Encoding: We use a trainable
encoding map that was found to yield robustness and general-
ization improvements over fixed encodings [9]. In this context,
trainable encoding refers to encodings, where the parameters
of the gates depend on both, trainable weights and features of
the data. How exactly the gate parameters are composed will
be defined later.

The data encoding unitary U(xj) consists of m′ = m+ 1
layers of a unitary Um(θm), as in Fig. 3. For clarification, if we

have e.g. m′ = 5 layers, the first layer is U0(θ0) and the last
layer is U4(θ4). Each of the unitaries Um(θm) is built using a
layer of rotation gates and a ring of CNOT-gates, as sketched in
Fig. 4. The rotation gate is the general parameterized rotation
gate [11] with matrix representation shown in (13).

R(θm,1, θm,2, θm,3) = R(ϕ, θ, ω) = RZ(ω)RY (θ)RZ(ϕ) =

=

[
e−i(ϕ+ω)/2 cos(θ/2) −ei(ϕ−ω)/2 sin(θ/2)
e−i(ϕ−ω)/2 sin(θ/2) ei(ϕ+ω)/2 cos(θ/2)

]
(13)

Each parameter θm,i is calculated from the k-th feature of
the sample xj and weight wm,i as given in (14), where k is a
repeating counter from 1 to the number of input dimensions
d, i.e. k = (3nm+ i)mod d for the n-qubit system, the m-th
layer and the i-th parameter in the layer.

θm,i = wm,i · xj,k + bm,i (14)

2) Kernel Alignment Optimization: During the Kernel Align-
ment Optimization, the parameters w and b of the embedding
map are optimized. This is achieved by estimating the kernel
between the train samples and one centroid and comparing it
to the ideal kernel to obtain the kernel alignment. Since we
use only one centroid to calculate the kernels, their matrices
are nsamples-dimensional vectors. The ideal kernel is simply the
label vector y if the centroid class is 1 and −y if the centroid
class is -1. The current kernel entries are the fidelities between
the current centroid cl and the samples, where l ∈ {−1, 1}
defines the class label of the current centroid:

k(cl,xi) = | ⟨ψl|ψi⟩ |2 (15)

To get the kernel alignment, equation (12) is adapted for vectors
as kernels and we obtain:

TA =
l ·∑i yik (cl,xi)√(∑

i k (cl,xi)
2
)∑

i y
2
i

(16)

The loss function fcl
is derived from the kernel-target align-

ment, with an additional regularization term with regularization
parameter λKAO. Note that in this loss function, the centroid
cl is fixed.

fcl
(w, b) = 1− TA+ λKAO||w||22 (17)

This loss function is then used to optimize the kernel
parameters w and b either through backpropagation if the
circuits are executed on a simulator or the parameter shift rule
if real hardware is used, by solving this minimization problem:

min
w,b

fcl
(w, b) (18)

3) Centroid Optimization: The Centroid Optimization op-
timizes the position of the current centroid cl in data space.
For this, the kernel alignment is calculated the same way it is
in the KAO optimization and then converted to a loss function
gw,b, in which the parameters w and b of the embedding map
are fixed:

gw,b(cl) = 1− TA+ λCOR (19)



Fig. 2. Alternating optimization procedure for QUACK. The blue (green) dots show samples of class 1 (-1) in the embedding space Φ. The superscript defines
the current epoch and the subscript the dimension. The diamonds represent the centroids of the classes, where the superscript is the epoch in which the centroid
has been optimized the last time and the subscript is the centroid class. For the KAO and CO steps, the superscript gives the epoch and the subscript the class
for which the optimization is carried out with + representing class 1 and − representing class -1.

. . .
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U0(θ0) U1(θ1) Um(θm)

Fig. 3. Architecture of the encoding unitary U.

...
...
· · ·

R(θm,1, θm,2, θm,3)

R(θm,4, θm,5, θm,6)

R(θm,7, θm,8, θm,9)

R(θm,3n′+1, θm,3n′+2, θm,3n′+3)

Um(θm)

Fig. 4. Architecture of the unitary of a single parameterized layer Um(θm)
with n′ = n− 1.

Since the features are normalized in the range (0, 1), the
regularization R introduces a penalty if the centroid position
in data space is outside the normalization range:

R =
∑
d

(
max(cdl − 1, 0)−min(cdl , 0)

)
, (20)

where cdl is the d-th entry of the vector cl. This loss is then
used to optimize the position of the working centroid cl in
data space, by solving the following minimization problem:

min
cl

gw,b(cl) (21)

4) Prediction Stage: After the training is complete, the
labels of new samples can be predicted. For this, the kernel

Kpredict of shape (nsamples, 2) between the new samples Xpredict
and both centroids c−1 and c1 is calculated. Each sample is
given a label according to (22), where Ki,1 represents the
kernel value for sample i and centroid 1, and Ki,−1 the value
for sample i and centroid -1.

ŷi = sign(Ki,1 −Ki,−1) (22)

B. State Vector Simulator

To speed up the simulations, a state vector simulator is
implemented using PyTorch [12]. The simulator builds up on
the nn.Module class where the forward function returns the
states of shape (nsamples, 2

nqubits) after applying all gates. The
main advantage of the simulator is that the unitary of each
gate is applied to all nsamples states in one operation, making
the execution of the circuits for multiple samples dramatically
faster when compared to other commonly used simulators.

IV. EXPERIMENTS

Our linear time complexity QUACK algorithm is bench-
marked on eight binary datasets from different areas and with
various numbers of features and class ratios. The performance
of our model is compared to three other models, containing
both classical and quantum approaches. The code will be made
available upon publication in a public code repository1.

A. Datasets

The model is benchmarked on eight datasets from different
areas, including IT security and handwritten digits. An overview
of the datasets is given in table I. The number of features varies
between 14 for the Census dataset and 784 for the image
datasets. The share of the smaller class in the total dataset
varies between 0.09 (0.07/0.09) and 0.50 (0.49/0.49) for the
train (validation/test) set, meaning there are both balanced and
highly unbalanced datasets. For the datasets that have not been
pre-split into test and train sets, the train (test) set is created
by randomly selecting 70% (30%) of the samples from the
dataset. Next, 1,000 samples are randomly selected from the
training set for training, 400 from the test set for validation,
and a further 400 from the test set for the final testing. The
class labels are {1,−1} according to the criteria specified in
table I.

1https://github.com/kilian106/QUACK

https://github.com/kilian106/QUACK


TABLE I
OVERVIEW OF THE DATASETS USED IN THE BENCHMARK. THE RATIOS SHOW THE RATIO OF THE MINORITY CLASS TO THE NUMBER OF SAMPLES IN THE SET.

Dataset Ref. Description Class 1 Class -1 Ratio Train Ratio Val. Ratio Test Features

Census [13] Income ≤ 50K > 50K 0.28 0.26 0.23 14
CoverT [14] Forest tree types 4 > 4 0.09 0.07 0.09 15

DoH [15] Network traffic Benign Malicious 0.24 0.23 0.21 33
EMNIST [16] Handwritten letters A-M N-Z 0.50 0.48 0.48 784
FMNIST [17] Clothing types 0-4 5-9 0.50 0.49 0.49 784

KDD [18] Network intrusion Normal Anomalous 0.50 0.44 0.47 42
MNIST [19] Handwritten digits 0-4 5-9 0.48 0.47 0.49 784

URL [20] URLs Benign Non-benign 0.15 0.14 0.15 79

B. Models for Benchmarking

For a comprehensive evaluation of our model, it is bench-
marked against these three other approaches: 1) A vanilla SVM
with RBF kernel and default parameters, implemented with
scikit-learn [21]. This model has a quadratic time complexity
during training and a linear during testing 2) An RBF centroid
classifier. This classifier first determines the mean of each class
in feature space and then calculates a RBF kernel of shape
(nsamples, 2) that contains the kernel values between the samples
and the means of both classes. Each sample is given the label
of the class for which the kernel value between the sample and
the respective centroid is larger. This classifier has a linear time
complexity and does not require any training. 3) A Quantum
Support Vector Machine that uses the trained kernel parameters
from our approach. However, the QSVM determines the kernels
in their quadratic form (ntrain, ntrain) for the training of the SVM
parameters and of the shape (ntest, ntrain) for testing. The SVM
hyperparameters are the default ones from scikit-learn.

C. Implementation Details

All models are trained three times with different random
seeds and the mean results with standard deviation are reported.
The hyperparameters used for the QUACK algorithm are shown
in tables II and III in Appendix A. The hyperparameter tuning
is achieved by a randomized grid search for each dataset where
the validation set is used to evaluate the model. The number
of layers and qubits were selected such that each feature is
encoded at least once and the model can still be simulated in
a reasonable time.

D. Verification of the Simulator

To make sure that the state vector simulator works as
intended, a small model is trained on both our simulator
and PennyLane’s [22] default.qubit simulator with identical
hyperparameters. After training, the weights, biases, loss, and
metrics of both models were identical, and therefore we can
conclude that our simulator works as intended.

V. RESULTS AND DISCUSSION

The newly introduced linear time complexity algorithm
QUACK is benchmarked together with three other models on
eight binary datasets from different areas with various numbers
of features and class ratios. Each model is run three times on
each dataset with different random seeds.

A. Model Performance

Figure 5 shows the average of the test area under the ROC
curve (AUC) for each model and dataset, and the values are
listed in table IV in Appendix B. Our model performs equally
or almost equally as the SVM RBF on five out of eight datasets.
More precisely, for CoverT, DoH, FMNIST, KDD, and MNIST,
the difference in AUC is 0.02 at most. The performance gap is
highest on EMNIST with an AUC difference of 0.06, followed
by Census and URL with 0.03. Fig. 7 shows the test AUCs of
the best run of each model. The main difference to Fig. 5 is
that the best QUACK run additionally achieves equal results
as the SVM on the Census dataset. From this, we conclude
that QUACK performs on a similar level as the SVM and may
be a reasonable alternative to the SVM.

The QSVM that uses the trained weights from our model to
compute the full kernel, achieves very similar AUCs compared
to our model, with the highest difference being 0.02 in both
directions. This suggests, that once the kernel training is
completed and the kernel parameters are set, the SVM training
and inference methods do not notably improve the model’s
performance.

The RBF centroid classifier is the worst model on all datasets,
which is intuitive since this model does not require any training
at all. It is surprising, however, that this classifier comes
relatively close to the performance of the other models for the
DoH and KDD datasets. Together with the particularly good
performance of the other models on these two datasets, we
suspect that DoH and KDD are relatively easy datasets for
binary classification.

Finally, the observed standard deviation for QUACK across
datasets is consistently low, being 0.01 or below, except for
Census and CoverT. These two datasets are notable outliers
with a standard deviation of 0.04 and 0.02, respectively. From
this, we conclude that the performance of QUACK is largely
independent of the initialization of the trainable parameters. The
QSVM shows a similar standard deviation as QUACK which
was expected since both algorithms use the same optimized
weights and biases. The SVM RBF and RBF Centroid exhibit
no standard deviation, as they are deterministic algorithms.

B. Number of Circuit Evaluations

We compare the number of circuit evaluations required dur-
ing the training of our model with a standard kernel method. All
circuit evaluations that result from an evaluation of the models



Fig. 5. Test AUCs of the different models.

during training are ignored. Fig. 6 shows the number of circuit
evaluations over the number of train samples for the number of
epochs used throughout the numerical experiments (see table III
in Appendix A). The QUACK algorithm scales linearly with
the number of training samples ntrain, and the number of circuit
evaluations is NQUACK = nepochs · (nKAO + nCO) · ntrain, where
nepochs is the number of two-step iterations performed, nKAO
and nCO are the numbers of the Kernel Alignment Optimization
steps and Centroid Optimization steps, respectively. A standard
kernel on the other hand, requires a quadratic number of
circuit evaluations Nstandard kernel = nepochs · n2train. As soon as
the number of samples exceeds the sum of the number of
epochs for kernel alignment and centroid optimization, i.e.
ntrain > nKAO + nCO, QUACK needs fewer circuit evaluations
than the default kernel. With a further increase in the sample
size, the number of circuit evaluations required for QUACK
grows quadratically slower than for the standard kernel.

VI. CONCLUSION AND OUTLOOK

We developed QUACK, a classifier based on quantum kernel
alignment that improves the time complexity compared to basic
kernel methods from O(n2train) to O(ntrain) during training and
fromO(ntrainntest) toO(ntest) during testing. QUACK’s training
time complexity is a polynomial improvement compared to the
SVM. The algorithm was benchmarked by evaluating it on eight
different datasets with up to 784 features and various class ratios
ranging from balanced to highly unbalanced. The performance
was compared to a vanilla SVM with an RBF kernel, an RBF
centroid classifier, and a QSVM. We conclude that QUACK
performs on a similar level as the classical SVM and that
the training of the SVM parameters does not improve the

Fig. 6. Comparison of the number of evaluation steps between QUACK and
a standard kernel. The inset shows a zoom-in of the plot for the number of
train samples in the range from 0 to 30.

predictions of the model once the kernel parameters are trained.
Finally, our algorithm works on data with up to 784 features
without dimensionality reduction, which is often required for
other state-of-the-art QML models.

Thanks to the linear scaling of QUACK, the algorithm



can be used as quick baseline for future classification tasks:
If the performance of QUACK is satisfactory, using more
costly classification algorithms does not offer an advantage. If,
however, QUACK performs poorly, the application of more
costly algorithms, e.g. the quadratic-scaling (Q)SVM, should be
considered. Furthermore, there is an intuitive explanation for the
classification results of the algorithm: If QUACK performs well,
it has found an encoding circuit and centroids which separate
the classes into different clusters around these centroids in
Hilbert space.

On the other hand, QUACK is limited by the assumption
that there exists an embedding in which each class forms a
cluster around a different centroid. Finally, the performance of
QUACK is heavily dependent on the choice of hyperparameters,
and a extensive tuning of these hyperparameters is strongly
recommended.

This work is only a first effort toward increasing the potential
of QKMs and the next logical step is to benchmark QUACK
on hardware. Further work can extend the algorithm to perform
multi-class classification by using k centroids for k classes
and running a one-versus-all classification in each iteration of
the algorithm. In addition, the stability of the algorithm should
be improved to make its performance less dependent on the
choice of hyperparameters.
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APPENDIX A
HYPERPARAMETERS

TABLE II
OVERVIEW OF THE OPTIMIZED HYPERPARAMETERS FOR EACH DATASET.

Datasets lrkao lrco rdecay regkao regco

Census 0.5 0.5 0.9 0.001 0.001
CoverT 0.5 0.1 0.9 0.001 0.001

DoH 0.5 0.5 0.9 0.001 0.001
EMNIST 1.0 5.0 0.9 0.001 0.001
FMNIST 5.0 0.5 0.8 0.0001 0.001

KDD 0.5 1.0 0.9 0.001 0.001
MNIST 5.0 1.0 0.9 0.001 0.001

URL 0.5 0.5 0.9 0.001 0.001

TABLE III
OVERVIEW OF THE HYPERPARAMETERS SHARED BETWEEN QUACK ON ALL DATASETS. THE NUMBER OF EPOCHS FOR THE TWO-STEP TRAINING, KERNEL
ALIGNMENT OPTIMIZATION AND CENTROID OPTIMIZATION ARE GIVEN BY n, nkao , AND nco RESPECTIVELY. INIT WEIGHTS SCALE GIVES THE MAXIMUM

VALUE FOR THE WEIGHTS DURING RANDOM INITIALIZATION.

layers qubits ntrain nval ntest n nkao nco init weights scale seeds

53 5 1000 400 400 40 10 10 0.1 42, 123, 1234

APPENDIX B
DETAILED RESULTS

TABLE IV
OVERVIEW OF THE AUCS OF THE MODELS.

Dataset train auc val auc test auc qsvm train auc qsvm val auc qsvm test auc

Census 0.91 ± 0.03 0.85 ± 0.02 0.84 ± 0.04 0.91 ± 0.03 0.85 ± 0.02 0.84 ± 0.04
CoverT 0.85 ± 0.03 0.75 ± 0.04 0.84 ± 0.02 0.88 ± 0.02 0.73 ± 0.05 0.82 ± 0.01

DoH 0.98 ± 0.00 0.96 ± 0.00 0.96 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.97 ± 0.00
EMNIST 0.99 ± 0.01 0.84 ± 0.01 0.81 ± 0.00 0.99 ± 0.00 0.84 ± 0.01 0.82 ± 0.01
FMNIST 0.98 ± 0.00 0.96 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 0.95 ± 0.01 0.94 ± 0.00

KDD 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
MNIST 0.99 ± 0.00 0.95 ± 0.01 0.97 ± 0.00 1.00 ± 0.00 0.96 ± 0.01 0.98 ± 0.00

URL 0.93 ± 0.01 0.89 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 0.92 ± 0.01 0.97 ± 0.00

Dataset svm rbf train auc svm rbf val auc svm rbf test auc rbf centroid val auc rbf centroid test auc

Census 0.88 ± 0.00 0.87 ± 0.00 0.87 ± 0.00 0.73 ± 0.00 0.77 ± 0.00
CoverT 0.92 ± 0.00 0.79 ± 0.00 0.85 ± 0.00 0.63 ± 0.00 0.61 ± 0.00

DoH 0.98 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.90 ± 0.00 0.90 ± 0.00
EMNIST 0.99 ± 0.00 0.89 ± 0.00 0.87 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
FMNIST 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.50 ± 0.00 0.50 ± 0.00

KDD 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.96 ± 0.00
MNIST 1.00 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.50 ± 0.00 0.50 ± 0.00

URL 0.97 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.71 ± 0.00 0.79 ± 0.00



Fig. 7. Test AUCs of the best run of each model for each dataset.
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