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Abstract

A group G is complete group if it satisfies Z(G) = e and Aut(G) = Inn(G). In this
paper, on the one hand, we study the basic properties of generalized Cayley graphs and
characterize two classes isomorphic generalized generalized Cayley graphs of complete
groups. On the other hand, we give the sufficient and necessary conditions of complete
group to be GCI group and restricted GCI group. As an application, we complete the
classification of restricted GCI-groups for symmetric groups.
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1 Introduction

The generalized Cayley graph, as a generalization of the Cayley graph, was first proposed
in 1992 by D. Marušič et al. [5].

Definition 1.1. Given a finite group G, for S ⊆ G and α ∈ Aut(G), if they satisfy several
conditions below:

(a) α2 = id, where id is the identity of Aut(G);

(b) for any g ∈ G, (g−1)αg /∈ S;

(c) for g, h ∈ G, if (h−1)αg ∈ S, then (g−1)αh ∈ S.

Then the graph with vertices G and edges {{g, h} | (g−1)αh ∈ S} is denoted by
GC(G,S, α). We call S a generalized Cayley subset and GC(G,S, α) a generalized Cayley
graph of G with respect to the ordered pair (S, α).

Some basic properties about GC(G,S, α) deserve to be mentioned. Firstly, GC(G,S, α)
is a simple and undirected graph. Secondly, for each vertex g ∈ G, the set of vertices

∗This research was supported by NSFC (No. 12071484). E-mail addresses: liaoqianfen@163.com(Q.
Liao), wjliu6210@126.com(W. Liu, corresponding author).
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that adjacent to g is N(g) = {gαs | s ∈ S}, so GC(G,S, α) is |S|-regular. Thirdly, the
subsets ωα = {(g−1)αg | g ∈ G}, Ωα = {g | gα = g−1 and g /∈ ωα} and ℧α = {g | gα 6=
g−1} = G \ {ωα ∪Ωα} construct a partition of G. In addition, for generalized subset S, the
condition (b) implies that S ∩ωα = ∅ and the condition (c) yields that α(S) = S−1. Hence,
if s ∈ S ∩ ℧α, then α(s−1) ∈ S. At last, the condition (a) above implies that α is id or an
involutory automorphism of G. Particularly, if α = id, S is called a Cayley subset and it
gives the Cayley graph.

As is well-known, Cayley graphs are vertex-transitive, but the generalized Cayley graphs
may not be. Marušič et al. provide specific examples in the article to illustrate this point.
In fact, vertex-transitive generalized Cayley graphs are rare. Hujdurović et al. [2] con-
struct a series of non-Cayley vertex-transitive generalized Cayley graphs. Subsequently, to
investigate the isomorphism problem of generalized Cayley graphs, Yang, Liu and Feng [7]
introduce the definitions of GCI groups and restricted GCI groups. Then GCI groups and
restricted GCI groups for certain special groups have been studied, including cyclic groups,
dihedral groups, alternating groups and non-abelian simple groups, see references [4, 6, 8].

A group G is complete group if it satisfies Z(G) = e and Aut(G) = Inn(G). In this
paper, we study the basic properties of generalized Cayley graphs of complete group. As an
application, we complete the classification of restricted GCI-groups for symmetric groups.

We introduce some notations in group theory. For a group G and element g ∈ G,
let CG(g) = {h ∈ G | hg = gh} be the centralizer of g in G, and Z(G) = {h ∈ G |
gh = hg for all g ∈ G} = ∩g∈GCG(g) the central of G. Given a subset H of G, let
NG(H) = {g ∈ G | Hg = gH} be the normalizer of H in G. Two elements g and h
are conjugate in G if there exists element x ∈ G such that g = xhx−1. Let C(g) be
the conjugate class containing G, that is the set of elements that conjugate to g. Then
|C(g)| = |G : CG(g)|. The conjugate relation is an equivalent relation, and G can be
divided into some disjoint conjugate classes. Let [g, h] = g−1h−1gh be the commutator
of elements g and h. For each element g ∈ G, let σ(g) : h 7→ hg = ghg−1 be the inner
automorphism of G induced by g. Then Inn(G) = {σ(g) | g ∈ G} is an subgroup of Aut(G)
and called the inner automorphism group of G. Let α and β be permutations on G, for
any g ∈ G, define gβα = (gα)β. In the following discussion of this paper, we assume that
G is complete group and all generalized Cayley graphs are induced by some involutory
automorphism.

2 Basic properties

In this section, we study the properties of generalized Cayley graphs of complete graphs.
Firstly, some observations about the involutory automorphism of complete group G are
presented.

Observation 2.1. For g ∈ G, σ(g) is involutory automorphisms of G if and only if g is
involution of G.

Observation 2.2. The automorphisms σ(g) and σ(h) of G are conjugate in Aut(G) if and
only if g and h are conjugate in G.

Proof. If σ(g) and σ(h) are conjugate in Aut(G), let σ(y) be an automorphism of G such
that σ(h) = σ(y)σ(g)(σ(y))−1 . Since (σ(y))−1 = σ(y−1), we obtain that for any element
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x ∈ G,

xσ(h) = hxh−1 = xσ(y)σ(g)σ(y
−1 ) = ygy−1xyg−1y−1 = (ygy−1)x(gyy−1)−1.

It follows that h−1(ygy−1) ∈ CG(x). From the arbitrary of x, we have h−1(ygy−1) ∈ Z(G).
Recall that G is complete group, then Z(G) = e, which yields that h = ygy−1.

Conversely, if g and h are conjugate in G, which means there exists element x such that
g = xhx−1. It can be verified that σ(g) = σ(xhx−1) = σ(x)σ(h)σ(x)−1. Thus, σ(g) and
σ(h) are conjugate.

Let σ(g) be any involutory automorphism of G, then we find the relationship between
subset ℧σ(g)(G) and the order of element.

Observation 2.3. x ∈ ℧σ(g)(G) if and only if gx is not involution of G.

Proof. x ∈ ℧σ(g)(G) is equivalent to xσ(g) = gxg 6= x−1. Since gxg 6= x−1 is equivalent to
xg 6= (xg)−1, the proof is complete.

Let Kσ(g)(G) = ωσ(g)(G) ∪ Ωσ(g)(G). The Observation 2.3 also indicates that x ∈
Kσ(g)(G) if and only if gx is involution of G.

Lemma 2.4. g ∈ Ωσ(g)(G).

Proof. Since gσ(g) = g, g ∈ ωσ(g)(G) ∪ Ωσ(g)(G). If g = [g, h] for some h ∈ G, then
g = g−1h−1gh. It follows that gh = h and then g = e, which is a contradiction. Thus,
g ∈ Ωσ(g)(G).

For any element x ∈ G, Lx : h 7→ xh for each h ∈ G is a permutation on G.
For any generalized Cayley graph GC(G,S, σ(g)), we find that there is a subgroup of
Aut(GC(G,S, σ(g))).

Proposition 2.5. L(CG(g)) ≤ Aut(GC(G,S, σ(g))).

Proof. For any element x ∈ CG(g) and h1, h2 ∈ G,

((hLx

1 )−1)σ(g)(hLx

2 ) = ((xh1)
−1)σ(g)xh2

= gh−1
1 x−1g−1xh2

= gh−1
1 g−1h2 = (h−1

1 )σ(g)h2.

Thus, {hLx
1 , hLx

2 } ∈ E(GC(G,S, σ(g))) if and only if {h1, h2} ∈ E(GC(G,S, σ(g))), which
implies Lx ∈ Aut(GC(G,S, σ(g))). Now we give an explanation for L(CG(g)) is a subgroup.
For any elements x, y ∈ CG(g) and h ∈ G, according to hLxLy = (hLy)Lx = xyh = hLxy

and xy ∈ CG(g), it follows that LxLy = Lxy ∈ L(CG(g)). Furthermore, from L(x)L(x−1) =
L(xx−1) = id, we have L(x)−1 = L(x−1) ∈ L(CG(g)). Therefore, L(CG(g)) is a subgroup
of Aut(GC(G,S, σ(g))).

For any involutory automorphism α of G, let Fix(α) = {h ∈ G|hα = h} and we have
the following lemma.

Lemma 2.6. |ωα(G)| = |G|
Fix(α) .
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With the help of Lemma 2.6, we obtain the following result.

Proposition 2.7. The complete graph is not generalized Cayley graph of any complete
group G.

Proof. For any involutory automorphism σ(g) of G, note that

Fix(σ(g)) = {h ∈ G | hσ(g) = ghg−1 = h} = {h ∈ G | h−1gh = g} = CG(g),

hence |ωσ(g)(G)| = |G : CG(g)| = |C(g)|. It is clear that g ∈ C(g). We claim that |C(g)| 6= 1.
Otherwise, C(g) = g, which means that for any element x ∈ G, xgx−1 = g. It follows that
g ∈ Z(G), which contrary to G is complete group. Thus |ωσ(g)(G)| = |C(g)| ≥ 2 and for any
generalized Cayley subset S of G, |S| ≤ |G| − 2 holds. Therefore, any generalized Cayley
graph of G cannot be complete graph.

3 Several classes isomorphic generalized Cayley graphs

In this section, we discuss the isomorphism problem of generalized Cayley graphs of
complete groups.

Let g be an involution of G and σ(g) an involutory automorphism of G. Define [g] =
{[g, h] | h ∈ G} and call it the set of commutators induced by g. There is relationship
between subset ωσ(g) of G and [g].

Observation 3.1. ωσ(g) = {(h−1)σ(g) | h ∈ G} = {gh−1g−1h | h ∈ G} = [g].

Let σ(g) be an involutory automorphism and S a generalized Cayley subset of G induced
by σ(g). Then we obtain several classes isomorphisms between generalized Cayley graphs.

Lemma 3.2. For any element x ∈ Ωσ(g)(G) and commutator [g, h] ∈ [g], x−1[g, h]x−1 =
[g, hx−1].

Proof. Note that x ∈ Ωσ(g)(G) implies that xσ(g) = gxg−1 = x−1, hence gx = x−1g =
x−1g−1. Then

x−1[g, h]x−1 = x−1g−1h−1ghx−1 = gxh−1ghx−1 = [g, hx−1].

Theorem 3.3. For any x ∈ Ωσ(g)(G), GC(G,S, σ(g)) ∼= GC(G,xSx, σ(g)).

Proof. As mentioned in the proof of Lemma 3.2, x ∈ Ωσ(g)(G) implies that xσ(g) = x−1.

Since Sσ(g) = S−1, we obtain that

(xSx)σ(g) = xσ(g)Sσ(g)xσ(g) = x−1S−1x−1 = (xSx)−1.

If xSx∩ωσ(g)(G) 6= ∅, then there exists element s ∈ S such that xsx = [g, h] for some h ∈ G.
By Lemma 3.2, s = x−1[g, h]x−1 = [g, hx−1] ∈ [g], which is contrary to S ∩ ωσ(g)(G) = ∅.
Thus, xSx is a generalized Cayley subset of G induced by σ(g). Define the map ϕ : y 7→ yx
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for each y ∈ G. Clearly, ϕ is one to one mapping between vertices of GC(G,S, σ(g)) to
GC(G,xSx, σ(g)). For any vertices y1 and y2, since

((yϕ1 )
−1)σ(g)yϕ2 = (x−1y−1

1 )σ(g)y2x = (x−1)σ(g)(y−1
1 )σ(g)y2x = xgy−1

1 gy2x = x((y−1
1 )σ(g)y2)x,

{yϕ1 , y
ϕ
2 } ∈ E(GC(G,xSx, σ(g))) if and only if {y1, y2} ∈ E(GC(G,S, σ(g))). Therefore, we

conclude that GC(G,S, σ(g)) ∼= GC(G,xSx, σ(g)).

Theorem 3.4. For any element x ∈ NG(S), GC(G,S, σ(g)) ∼= GC(G, [g, x]S, σ(g)).

Proof. Note that

([g, x]S)σ(g) = g(g−1x−1gxS)g−1 = x−1gxSg = x−1gSxg

as xS = Sx. Recall that Sσ(g) = gSg = S−1, thus

([g, x]S)−1 = (g−1x−1gxS)−1 = (g−1x−1gSx)−1 = (g−1x−1S−1gx)−1 = x−1gSxg.

It indicates that ([g, x]S)σ(g) = ([g, x]S)−1. If [g, x]S ∩ ωσ(g)(G) 6= ∅, then there exists
element s ∈ S such that [g, x]s = [g, b] for some b ∈ G. This equality gives that s =
x−1g−1xb−1gb. Since xS = Sx, there exists s′ ∈ S such that s′ = xsx−1 = g−1xb−1gbx−1 =
[g, bx−1] ∈ ωσ(g)(G), which is a contradiction. Thus, [g, x]S is a generalized Cayley subset
of G induced by σ(g). Now we define the map ϕ : h 7→ hx for each h ∈ G. For any elements
h1 and h2 in G, observe that

((hϕ1 )
−1)σ(g)hϕ2 = gx−1h−1

1 g−1h2x.

If {h1, h2} ∈ E(GC(G,S, σ(g))), then (h−1
1 )σ(g)h2 = gh−1

1 g−1h2 ∈ S, which is equivalent to
h−1
1 gh2 ∈ gS. Assume that h−1

1 gh2 = gs and sx = xs′, where s, s′ ∈ S. Then

((hϕ1 )
−1)σ(g)hϕ2 = gx−1g−1sx = g−1x−1gxs′ = [g, x]s′ ∈ [g, x]S.

It follows that {hϕ1 , h
ϕ
2 ) ∈ E(GC(G, [g, x]S, σ(g))). Conversely, if {hϕ1 , h

ϕ
2 ) ∈

E(GC(G, [g, x]S, σ(g)), then ((hϕ1 )
−1)σ(g)hϕ2 = gx−1h−1

1 gh2x ∈ [g, x]S. Combining the fact

[g, x]S = g−1x−1gxS = gx−1gSx,

we have h−1
1 gh2 ∈ gS, which yields that gh−1

1 gh2 = (h−1
1 )σ(g)h2 ∈ S. Therefore, {h1, h2} ∈

E(GC(G,S, σ(g))) if and only if {hϕ1 , h
ϕ
2 ) ∈ E(GC(G, [g, x]S, σ(g))).

4 Complete group and (restricted) GCI-group

Since the complete group G of odd order does not contain involution, it does not have
involutory automorphism and generalized Cayley graphs. In this section, we only consider
the complete group of even order.

The definitions of restricted GCI-group and GCI-group are presented first.

Definition 4.1. For any two generalized Cayley graphs Xi = GC(G,Si, αi) (i = 1, 2) of G
with |Si| ≤ m,
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(a) if α1 = α2 = id, X1
∼= X2 implies there exists automorphism γ such that S2 = Sγ

1 , then
we call G a m-CI-group;

(b) if X1
∼= X2 implies α2 = αγ

1 = γα1γ
−1 and S2 = gα2Sγ

1 g
−1 for some g ∈ G and

automorphism γ, then we call G an m-GCI-group;

(c) if both α1 and α2 are involutions, X1
∼= X2 implies α2 = αγ

1 = γα1γ
−1 and S2 =

gα2Sγ
1 g

−1 for some g ∈ G and automorphism γ, then we call G a restricted m-GCI-
group.

In particular, if m = |G|, we simply call G a CI-group, GCI-group or a restricted GCI-
group, respectively. The graph isomorphism among (a) is called CI isomorphism. The graph
isomorphisms among (b) and (c) are called GCI isomorphisms.

Regard to the GCI isomorphisms of generalized Cayley graphs, the following lemma
holds.

Lemma 4.2. [6] The GCI isomorphism relation is an equivalence relation.

Lemma 4.3. [3] GC(G,S, α) ∼= GC(G,Sβ , αβ) for any β ∈ Aut(G), where αβ = β−1αβ.

Observe that if S is a generalized Cayley subset of G induced by the involutory auto-
morphism σ(g) and it satisfies g /∈ S, then e /∈ S and Sσ(g) = gSg = S−1. It follows that
gS = S−1g−1 = (gS)−1, and then gS is a Cayley subset of G. Given generalized Cayley
graphs GC(G,S1, σ(g1)) and GC(G,S2, σ(g2)). It is interesting to see the relationship be-
tween the GCI isomorphism of generalized Cayley graphs and the isomorphism of Cayley
graphs.

Let S1 and S2 be generalized Cayley subsets of G induced by involutory automorphisms
σ(g1) and σ(g2) satisfying g1 /∈ S1 and g2 /∈ S2, respectively. Then the following conclusion
holds.

Proposition 4.4. If the generalized Cayley graph GC(G,S1, σ(g1)) is GCI isomorphic to
GC(G,S2, σ(g2)), then Cay(G, g1S1) is CI isomorphic to Cay(G, g2S2).

Proof. Since GC(G,S1, σ(g1)) is GCI isomorphic to GC(G,S2, σ(g2)), there exist elements
h and x such that σ(g2) = σ(g1)

σ(h) = σ(hg1h
−1) and

S2 = xσ(g2)S
σ(h)
1 x−1 = g2xg

−1
2 hS1h

−1x−1. (1)

Observe that σ(g2) = σ(hg1h
−1) implies that for any element y ∈ G,

yσ(g2) = g2yg
−1
2 = yσ(hg1h

−1) = (hg1h
−1)y(hg1h

−1)−1. (2)

It follows that g−1
2 (hg1h

−1) ∈ Z(G). Since Z(G) = e, we have g2 = hg1h
−1. Combining

Equalities (1) and (2), we obtain

g2S2 = xg−1
2 hS1h

−1x−1 = xhg−1
1 S1h

−1x−1 = xh(g1S1)(xh)
−1 = (g1S1)

σxh .

For any vertices y1 and y2, {y1, y2} ∈ E(Cay(G, g1S1)) if and only if y−1
1 y2 ∈ g1S1. Since

σxh ∈ Aut(G), y−1
1 y2 ∈ g1S1 if and only if

(y−1
1 )σxhyσxh

2 ∈ (g1S1)
σxh = g2S2.

Thus Cay(G, g1S1) ∼= Cay(G, g2S2) under the inner isomorphism σxh.
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For each generalized Cayley subset S induced by σ(g), gS is a Cayley subset. However,
the converse may not true, since for any generalized Cayley subset S and involution g of G,
gS may not be generalized Cayley subset. In some special case, the converse implication of
Proposition 4.4 holds.

Let g1, g2 be two conjugate involutions of G. Let S1 and S2 be Cayley subsets satisfying
S1 ∩ C(g1) = ∅ and S2 ∩ C(g2) = ∅. Then the following result holds.

Proposition 4.5. If Cay(G,S1) is CI isomorphic to Cay(G,S2), then the generalized
Cayley graph GC(G, g1S1, σ(g1)) is GCI isomorphic to GC(G, g2S2, σ(g2)).

Proof. Firstly, we give an explanation for g1S1 and g2S2 are generalized Cayley subsets in-
duced by σ(g1) and σ(g2) respectively. Note that (g1S1)

σ(g1) = S1g1 = S−1
1 g−1

1 = (g1S1)
−1.

Since
g1S1 ∩ ωσ(g1)(G) = g1(S1 ∩ {x−1g1x | x ∈ G}) = g1(S1 ∩ C(g1)) = ∅,

Thus, g1S1 is generalized Cayley subsets induced by σ(g1). With the similar discussion,
it can be verified that g2S2 is generalized Cayley subsets induced by σ(g2). Assume that
Cay(G,S1) is CI isomorphic to Cay(G,S2) and g2 = gg1g

−1 for some g ∈ G. Then there

exists automorphism σ(h) such that S2 = S
σ(h)
1 . Let x = hg1g

−1g2. Then

S2 = hS1h
−1 = xg−1

2 gg−1
1 S1g1g

−1g2x
−1.

It follows that

g2S2 = g2xg
−1
2 gg−1

1 S1g1g
−1g2x

−1

= xσ(g2)g(g1S1)g
−1g2x

−1

= xσ(g2)(g1S1)
σ(g)x−1

Thus, GC(G, g1S1, σ(g1)) is GCI isomorphic to GC(G, g2S2, σ(g2)).

A corollary follows from Propositions 4.4 and 4.5.

Corollary 4.6. Let g1, g2 be two conjugate involutions of G. Let S1 and S2 be Cayley subsets
of G satisfying S1 ∩ C(g1) = ∅ and S2 ∩ C(g2) = ∅. Then Cay(G,S1) is CI isomorphic to
Cay(G,S2) if and only if GC(G, g1S1, σ(g1)) is GCI isomorphic to GC(G, g2S2, σ(g2)).

Next we study the restricted GCI-group and GCI-group of complete groups. An imme-
diate consequence of Lemma 2.4 is as following.

Theorem 4.7. Any complete group G of even order is not GCI-group.

Proof. Since the order of G is even, it must contain an involution g and then we obtain
the involutory automorphism σ(g) of G. By Lemma 2.4, g ∈ Ωσ(g)(G). Then we have

GC(G, {g}, σ(g)) ∼= Cay(G, {g}) ∼=
|G|
2 K2. But σ(g) is not conjugate to the identity map,

so G is not GCI group.

Let G2 be the subset containing all involutions of G. Then we obtain an equivalent
condition for G to be restricted GCI group.
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Theorem 4.8. Let g be an involution of G. Then G is restricted GCI group if and
only if G2 = C(g) and for any generalized Cayley subsets S1 and S2 induced by σ(g),
GC(G,S1, σ(g)) ∼= GC(G,S2, σ(g)) implies that there exists σ(x) ∈ Aut(G) such that
gS2 = (gS1)

σ(x).

Proof. Assume that G is restricted GCI-group. For any involution h of G, according to
the proof Theorem 4.7, we obtain that GC(G, {g}, σ(g)) ∼= GC(G, {h}, σ(h)) ∼=

|G|
2 K2.

From the definition of restricted GCI-group, it follows that σ(g) and σ(h) are conju-
gate in Aut(G). By Observation 2.2, g and h are conjugate in G. Thus, G2 = C(g).
If GC(G,S1, σ(g)) ∼= GC(G,S2, σ(g)), then from the definition of restricted GCI group, we

have σ(g) = σ(g)σ(x) = σ(xgx−1) and S2 = yσ(g)S
σ(x)
1 y−1 for some elements x, y ∈ G. The

latter equality is equivalent to gS2 = ygS
σ(x)
1 y−1. As the proof Proposition 4.4, Z(G) = e

and σ(g) = σ(g)σ(x) = σ(xgx−1) implies that g = xgx−1 = gσ(x). It follows that

gS2 = y(gS1)
σ(x)y−1 = (gS1)

σ(y)σ(x) = (gS1)
σ(yx).

Conversely, G2 = C(g) means that each involution of G is conjugate to g. Accord-
ing to Lemma 4.3, it follows that each generalized Cayley graph is GCI isomorphic to a
generalized Cayley graph induced by σ(g). Moreover, Lemma 4.3 tells us the GCI isomor-
phism relation is an equivalence relation. Thus, to show that G is restricted GCI complete
group, it suffices to prove that the isomorphism between the generalized Cayley graphs
induced by σ(g) is GCI isomorphism. For any generalized Cayley graphs GC(G,S1, σ(g))
and GC(G,S2, σ(g)), assume that GC(G,S1, σ(g)) ∼= GC(G,S2, σ(g)). Then there exists
σ(x) ∈ Aut(G) such that gS2 = (gS1)

σ(x). Let y = xg. Thus we infer that

S2 = g(gS1)
σ(x) = g(gS1)

σ(y)σ(g) = g((gS1)
σ(g))σ(y)

= g(S1g)
σ(y) = gyS1gy

−1 = gxgS1gy1 = gxS
σ(g)
1 y−1

Observe that yσ(g) = gxgg = gx. It follows that S2 = yσ(g)S
σ(g)
1 y−1. Clearly, σ(g)σ(g) =

σ(g). Therefore, G is restricted GCI group.

In Lemma 2.4, we state that for any involutory automorphism σ(g) of G, g ∈ Ωσ(g)(G).
Especially, if G is restricted GCI-group, then we further obtain the following result.

Proposition 4.9. If G is restricted GCI complete group of even order, then Ωσ(g)(G) =
{g}.

Proof. If there exists element h ∈ Ωσ(g)(G) and h 6= g, then from Observation 2.3, gh is
involution of G. Since G is restricted GCI group, by Theorem 4.8, gh and g are conjugate.
It follows that there exists element x ∈ G such that gh = x−1gx, which implies xghg =
gxg = xσ(g). Then

(x−1)σ(g)x = g−1h−1gx−1x = g−1h−1g = (h−1)σ(g) = h.

Thus, h ∈ Ωσ(g)(G) ∩ ωσ(g)(G), which is a contradiction. Therefore, Ωσ(g)(G) = {g}.

If G is complete group but 4 ∤ |G|, we have the same result as Proposition 4.13.
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Proposition 4.10. If G is complete group of even order and 4 ∤ |G|, then for any involutory
automorphism σ(g) of G, Ωσ(g)(G) = {g}.

Proof. Assume that there exists element h ∈ Ωσ(g)(G) and h 6= g. From Lemma 2.4, we
know that {g, h} is a generalized Cayley subset. For any vertex x in GC(G, {g, h}, σ(g)),

x → gx → xgh → gxgh is a cycle of length 4. Thus, GC(G, {g, h}, σ(g)) ∼=
|G|
4 , which is

contrary to 4 ∤ |G|. Therefore, Ωσ(g)(G) = {g}.

Next is a application of Theorem 4.8. It is known that the symmetric group Sn(n 6= 6)
is complete group. There are two basic facts about symmetric groups:

(1) Without the consideration of order, each permutation of Sn can be decomposed into
product of some disjoint cycle;

(2) two elements of Sn are conjugate if and only if their cycle form are the same.
For example, (12) and (34) are elements of S4, and they are conjugate since both them

have a cycle of length 2. But (12) is not conjugate to (12)(34).
As an application of Theorem 4.8, we determined the restricted GCI group among

symmetric groups Sn.

Corollary 4.11. The symmetric group Sn(n 6= 6) is restricted GCI-group if and only if
n = 3.

Proof. For n ≥ 4 and n 6= 6, (12) and (12)(34) are involutions of the symmetric group Sn.
Since the cycle form of (12) and (12)(34) are different, (12) and (12)(34) are not conjugate.
By Theorem 4.8, Sn(n ≥ 4 and n 6= 6) is not restricted GCI-group. Now it suffices to prove
that S3 is restricted GCI-group. Observe that S3 = {(1), (12), (13), (23), (123), (132)} and
all involutions of it are conjugate. Choose the involution σ(12). Then we have ω(12)(S3) =
{(1), (123), (132)}, Ω(12)(S3) = {(12)} and ℧(12)(S3) = {(23), (13)}. For any positive integer
d ≤ 3, the d-valent generalized Cayley graph of G induced by σ(12) is unique. By Theorem
4.8, S3 is restricted GCI-group.

In reference [9], the author depict the automorphism of S6 in detail. Note that S6 can
be generated by A = {(12), (13), (14), (15), (16)}. Define a map φ on S6 as follows:

(12)φ = (12)(36)(45), (13)φ = (16)(24)(35), (14)φ = (13)(25)(46),

(15)φ = (15)(26)(34), (16)φ = (14)(23)(56).

It can be verified that φ is outer automorphism of S6. Let x = (12345), σ(x) is the inner
automorphism induced by x. Let δ = σ(x)φ, then δ is an involutory outer automorphism
of S6.

Lemma 4.12. [9] For any element h ∈ S6 , define the map δg : hδg = ghδg−1 = (hφ)σ(gx).
Then Aut(S6) = {σ(g) | g ∈ S6} ∪ {δg | g ∈ S6}.

Using Lemma 4.12, we prove the next proposition.

Proposition 4.13. S6 is not restricted GCI group.
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Proof. Note that both σ(12) and σ ((12)(34)) are involutory automorphisms of S6, and

GC(S6, {(12)}, σ(12)) ∼= GC(S6, {(12)(34)}, σ ((12)(34))) ∼= 360K2.

Now we aim to prove that σ(12) and σ ((12)(34)) are not conjugate in Aut(S6).
Firstly, for any element g ∈ S6, σ(12)σ(g) = σ(g)σ(12) (σ(g))−1 = σ

(

g(12)g−1
)

. If
σ
(

g(12)g−1
)

= σ ((12)(34)), then for any element h ∈ S6,

hσ(g(12)g
−1) = g(12)g−1hg(12)g−1 = (12)(34)h(12)(34) = hσ((12)(34)).

It indicates that (12)(34)g(12)g−1 ∈ Z(S6) = e, and then (12)(34) = g(12)g−1 . But this
equality cannot hold, as (12) is not conjugate to (12)(34) in S6. Thus, for any element
g ∈ S6, σ(12)

σ(g) 6= σ ((12)(34)).
We consider the conjugation map for σ(12) under the automorphism in {δg | g ∈ S6}.

For any automorphism δg, let γ = δ(g−1)δ . Since δ is involutory automorphism, for any
element h ∈ G,

hγδg = (hδg )γ = (ghδg−1)γ = (g−1)δ(ghδg−1)δgδ = (g−1)δgδh(g−1)δgδ = h.

Then we deduce that (δg)
−1 = δ(g−1)δ . It follows that

hδgσ(12)(δg )
−1

= h
δgσ(12)δ(g−1)δ

= g
(

(12)(g−1)δhδgδ(12)
)δ

g−1

= g(12)δg−1hg(12)δg−1

= hσ(g(12)
δg−1).

Since (12)δ = (12)(36)(45), and (12)(36)(45) is not conjugate to (12)(34) in S6, g(12)
δg−1 =

((12)(36)(45))σ(g) 6= (12)(34). Thus, δgσ(12)(δg)
−1 6= σ ((12)(34)).

In conclusion, σ(12) is not conjugate to σ ((12)(34)) in Aut(S6). Therefore, S6 is not
restricted GCI.

Combining Corollary 4.11 and Proposition 4.13, we give the characterization of restricted
GCI groups for symmetric groups.

Theorem 4.14. The symmetric group Sn is restricted GCI group if and only if n = 3.

To determine the GCI groups in symmetric groups completely, we only need to consider
S6.
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