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Abstract— Tracking objects in three-dimensional space is
critical for autonomous driving. To ensure safety while driving,
the tracker must be able to reliably track objects across frames
and accurately estimate their states such as velocity and accel-
eration in the present. Existing works frequently focus on the
association task while either neglecting the model’s performance
on state estimation or deploying complex heuristics to predict
the states. In this paper, we propose STT, a Stateful Tracking
model built with Transformers, that can consistently track
objects in the scenes while also predicting their states accurately.
STT consumes rich appearance, geometry, and motion signals
through long term history of detections and is jointly optimized
for both data association and state estimation tasks. Since
the standard tracking metrics like MOTA and MOTP do not
capture the combined performance of the two tasks in the wider
spectrum of object states, we extend them with new metrics
called S-MOTA and MOTPS that address this limitation. STT
achieves competitive real-time performance on the Waymo
Open Dataset.

I. INTRODUCTION

3D Multi-Object Tracking (3D MOT) plays a pivotal
role in various robotics applications such as autonomous
vehicles. To avoid collisions while driving, robotic cars must
reliably track objects on the road and accurately estimate
their motion states, such as speed and acceleration. While
development of 3D MOT has made much progress in recent
years, most methods [1], [2], [3] still use approximated
object states as intermediate features for data association
without explicitly optimizing model performance on state
estimation. Although some tracking methods [4], [5], [6],
[7] exist that predict motion states, they often do so by
employing filter-based algorithms such as the Kalman filter
(KF) with complex heuristic rules [1], [3], [8] to estimate
object states and cannot easily utilize appearance features
or raw sensor measurements in a data-driven fashion [9].
While there are machine learning-based methods [10] that
add prediction heads to detection models to estimate motion
states, they struggle to produce consistent tracks from long-
term temporal information due to computational and memory
limitations.

To address the limitations of existing approaches, we
introduce STT, a Stateful Tracking model with Transformers,
which combines data association and state estimation into a
single model. At the core of our model architecture are a
Track-Detection Interaction (TDI) module that performs data
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association by learning the interaction between a track and
its surrounding detections and a Track State Decoder (TSD)
that produces the state estimation of the tracks.

All the modules are jointly optimized (Figure 2), which
allows STT to obtain superior performance while simplifying
the system complexity.

Existing tracking evaluation mainly use multi-object track-
ing accuracy (MOTA) and multi-object tracking precision
(MOTP) [11] to measure the association and localization
quality, but they do not take the quality of other states
into account such as velocity and acceleration. To explicitly
capture the full state estimation quality of the tracking per-
formance, we extend the existing evaluation metric MOTA
to Stateful MOTA (S-MOTA) which enforces accurate state
estimation during label-prediction matching, and MOTP to
MOTPS which applies to arbitrary state variables so that we
can assess the quality of the state estimation beyond position.

To demonstrate the effectiveness of our STT model, we
conduct extensive experiments on the large-scale Waymo
Open Dataset (WOD) [12]. Our model achieves competitive
performance with 58.2 MOTA and state-of-the-art results in
our extended S-MOTA and MOTPS metrics. We conduct
comprehensive ablation studies for STT, which allows us to
better understand its performance.

The contributions of this work are summarized as follows:
1) We propose a 3D MOT tracker which tracks objects

and estimates their motion states in a single trainable
model.

2) We extend the existing evaluation metrics to S-MOTA
and MOTPS to evaluate tracking performance that
explicitly considers the quality of the state estimation.

3) Our proposed model achieves improved performance
over strong baselines with standard metrics and state-
of-the-art results with the newly extended metrics on
the Waymo Open Dataset.

II. RELATED WORK

2D Multi-Object Tracking [14], [13], [15] aims to track
objects in crowd scenes [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [10], [31],
and the dominant methods follow a tracking-by-detection
paradigm [32], [33], [34], [35], [36]. 2D MOT approaches
rarely estimate the motion state of objects since it is chal-
lenging to perform 3D state estimation from 2D data and the
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GT velocity Predicted velocity

GT-Prediction Matching Results:
• MOTA (IoU only):
• positive 

• S-MOTA (IoU & state quality):
• negative

Fig. 1: Illustration of S-MOTA metric. MOTA [13] only
considers IoUs in label-prediction matching, and does not
reveal state errors (e.g., velocity error shown in the figure).
This limitation is addressed by S-MOTA via an additional
thresholding step to assess the accuracy of predicted state.

motion states estimated from a perspective view are often not
informative for downstream modules in autonomous driving.

3D Multi-Object Tracking is a popular problem in au-
tonomous driving [37], [38], [39], [40], [41], [42]. Compared
to 2D tracking, this problem space is less explored. Prior
works in 3D tracking have primarily relied on Kalman
Filters [2], [43], [3], as seen in numerous state-of-the-art
methods on the Waymo Open Dataset. Other works explore
learning-based solutions [44], [45]. Unlike these works that
either ignore or separate the state estimation task from
association task, our STT model can learn these two tasks
together.

State Estimation is a problem domain where the goal is to
predict the state of an object including its dynamic attributes
(e.g., speed, acceleration) and semantic attributes (e.g., object
type, appearance). Existing tracking solutions primarily focus
on the dynamic attributes for state estimation, as these
are highly correlated with tracking performance. Common
practices include predicting them using a motion filter that
smooths estimations over time [2], [3] and including them as
an output in an object detection model [10], [46]. Compared
to these methods, our approach has a dedicated machine
learning module that can encode the temporal features from
a detection model and predict accurate object state.

In Multi-Object Tracking Evaluation, the most commonly
used metric [12], [47] is the MOTA [11], [13]. It captures
both the detection box quality and tracking performance.
However, it only explicitly evaluates the position result and
does not directly evaluate other object states. MOTP [11]
also only considers the localization error of the positive
matches in MOTA. The stateful metrics we propose consider
a wider range of state estimates jointly with association,
and thus better reflect the overall tracking quality. While
MOTA can be combined with other standalone metrics for
assessing the state estimation [47], S-MOTA uses a single
unified metric that highlights the estimation quality across
all states and MOTPS offers fine-grained evaluation on any
generic state. Other tracking metrics like IDF1 [48] and
HOTA [49] put more emphasis on data association quality
and are complementary to our proposed metrics.

III. METHODOLOGY

In this section, we will first formalize the tracking problem
and then describe the architecture of our STT model. We will
cover its training and inference process and discuss our new
tracking metrics that cover a wide spectrum of the object
states. An overview of STT is shown in Figure 2.

A. The Tracking Problem

The goal of the tracking problem discussed in this paper is
to maintain a set of tracks τ⃗ t1, τ⃗

t
2, . . . , τ⃗

t
Nt for the N t objects

in a scene at time t, where each tracklet τ⃗ tn = [Stk
n , . . . , St

n]
consists of a list of state vectors St

n from tk to the current
time t. The state vector St

n is defined as St
n = [{s}|s∈S ],

where s ∈ Rds is a ds-dimensional vector representing state
type s, S is the set of state types being considered, and
[·] is the concatenation operation. In this work, we model
states St

n = [x,v,a] ∈ R6, i.e., the concatenation of position
x ∈ R2, velocity v ∈ R2, and acceleration a ∈ R2. Each
state type is defined over the XY plane, as objects on the
road rarely move alone the Z direction. Nevertheless, the
problem can be easily generalized to the Z direction.

Assume that the tracks are given as τ⃗ t−1
1 , τ⃗ t−1

2 , . . . , τ⃗ t−1
Nt−1

at time t−1, and a new set of 3D detection are given at time t
as p1, p2, . . . , pNt , where pi = (bi, oi, fi) with bounding box
bi, appearance features oi, and confidence score fi ∈ [0, 1].
The box bi ∈ R7 contains the position (x, y, z), sizes (width,
length, height), and heading. The tracking problem is then
defined as computing the tracks τ⃗ t1, . . . , τ⃗

t
Nt and their states

St
1, . . . , S

t
Nt at time t. Note that N t can be different from

N t−1, as new tracks can be created and the existing tracks
can be deleted due to the lack of observations.

B. Modeling

1) Detection Encoder and Temporal Fusion: As a track-
ing model, STT can interact with arbitrary 3D detection mod-
els. To ensure that STT can learn a descriptive embedding
that captures the geomtry, appearance, and motion features of
the detection, we design a Detection Encoder (DE) to encode
the detection outputs:

emb(deti) = DE(gi, ai,mi, θDE) (1)

Let deti denote the ith detection, and let gi, ai,mi be the
corresponding geometry, appearance, and motion features for
this detection respectively. θDE are the learned parameters of
DE. DE is implemented as a multilayer perceptron (MLP)
in our model.

After the DE comes a Temporal Fusion (TF) model that
combines these detection embeddings over time to create a
temporal embedding that describes each track’s history. To
better model the historical context of a track τ⃗ t−1

j , we apply
a self-attention model to the associated detection embeddings
and obtain the track query Qτ⃗t−1

j
at time t− 1:

Qτ⃗t−1
j

= TF({emb(deti)|i = 1, ..., t− 1}, θTF) (2)



LiDAR input of frame T

Context detections of the 
target track at frame T

Track-Detection
Interaction Module

Target track with 
history detections 

up to frame T-1

Association scores 

Track state at 
frame  T-1

Track 
query

Detector
Detection Encoder

Temporal
Fusion

Detection
Encoder

Track State 
Decoder

Track state
at frame T

Fig. 2: Overview of STT. We first use the Detection Encoder to encode all of the 3D detections and extract temporal
features for each track. The temporal features are fed into the Track-Detection Interaction module to aggregate information
from surrounding detections and produce association scores and predicted states for each track. The Track State Decoder
also takes the temporal features to produce track states in the previous frame t− 1. All modules are jointly optimized.

where deti ∈ Det(τ⃗ t−1
j ), and Det(τ⃗ t−1

j ) is the set of asso-
ciated detections for track τ⃗ t−1

j until time t− 1. After self-
attention, TF aggregates the embeddings R1×T×Dq across
time and outputs the self-attended embedding in R1×Dq at
time t− 1. T is the track length, Dq is the feature size, and
θTF are the learned parameters.

2) Track State Decoder: For a track τ⃗ t−1
j at time t, the

track query Qτ⃗t−1
j

encodes its history up to time t − 1.
Therefore, we can directly predict the state St−1 for every
track with a light-weight Track State Decoder (TSD) module:

St−1 = G(Qt−1, θg) (3)

where Qt−1 is the list of all the track queries. G is a MLP
and θg are its learned parameters. TSD helps us supervise
the track embedding, but it is also useful as a stand-alone
state estimator for a given track embedding at any given
timestamp. We will elaborate more on how this decoder is
used during a typical tracker update loop in Section III-D.

3) Track-Detection Interaction Module: The Track-
Detection Interaction (TDI) module calculates the relation-
ship between tracks and their surrounding context detections
at time t. For each track τ⃗ t−1

j from time t− 1, we select k
context detections Kn from all the detections M at time t
in a small area around the track:

Kn = {bi|D(pred(τ⃗ t−1
j ), bi) < d, bi ∈ pi, pi ∈ M} (4)

where D computes the distance between detection bi and the
track’s state estimation pred(τ⃗ t−1

j ) at time t. During training,
we directly use the ground truth state at time t to represent
pred(τ⃗ t−1

j ). During inference, we extrapolate the estimated
track state at time t − 1 to time t to search for the context
detections effectively before running the model. In practice,
we set threshold d to be small enough for efficiency, but
large enough to ensure that all the detections of true positive
association for track τ⃗ t−1

j are included in the context set Kn.
We use the same Detection Encoder to create the detection

embeddings Ci in Kn. The TDI module then takes the list of
queries Qt and Ci as input to predict the association scores
for all the tracks and detections:

AS = TDI(Qt,Ci, θTDI) (5)

where θTDI are learned parameters. AS = {AS}, where
AS ∈ R1×k are the association scores between a track query
Qτ⃗t−1

j
and the k context detections. TDI is a transformer-

based model [50] with an added MLP to predict the track
state at time t after cross-attending to the context detections.

C. Training

Our model is jointly trained using a data association loss
Lt
d and state estimation losses Lt

s, Lt−1
s :

Ltotal = γLt
d + λLt

s + αLt−1
s (6)

where γ, λ, and α are the weight of each loss term. We
optimize the per-track query with per box association loss.
Let ASi be the association score between the track query
Qτ⃗t−1

j
and one of its context detections deti. And let y be

the ground-truth association with 0 as “not associated” or 1
as “association” Then the loss of this pair is:

L(Qτ⃗t−1
j

, deti) = −(y log(ASi) + (1− y) log(1−ASi))

(7)
For each track query, the total association loss is computed
against all of its context detections as:

Lt
d =

k∑
i=1

L(Qτ⃗t−1
j

, deti) (8)

where k is the number of context detections.
The state estimation losses are the L1 loss between the

predicted states and the ground truth states for each track at
time t (via the output of TDI module) and t − 1 (via the
output of the TSD module):

Lt
s =

∣∣St
j − S∗t

j

∣∣ , Lt−1
s =

∣∣St−1
j − S∗t−1

j

∣∣ (9)

where S∗t
j and S∗t−1

j is the ground truth state for the track
τ⃗ tj and τ⃗ t−1

j respectively.

D. Online Tracker Inference

During tracking inference, we apply STT over the laser
stream frame by frame. For each frame at time t, a 3D
object detection model is first applied over the laser spin



to get all N detection boxes. For each detection box, its
geometry features, appearance features, and confidence score
are collected as ptn, while pt is the list of all the detections’
feature vectors. For all tracks produced from the previous
frame at time t−1, we cache their learned track query Qt−1.
Then, the TDI module is applied over the queries Qt−1 and
all detection embeddings emb(pt) to produce the association
likelihood 2D matrix AS between all the tracks and boxes.

The Hungarian matching algorithm [51] is then applied
over AS to produce the assignment result. If the association
score is lower than a pre-defined threshold, a new track will
be created. Otherwise, the detection will be assigned to an
existing track query and appended to its history. For the first
frame of a track, all the detected boxes are treated as new
tracks and their initial states (e.g. velocity and acceleration)
will be set to 0. For all the subsequent frames, we use TSD
to predict state for the track at time t as we find that it is
slightly better than the output of TDI.

E. Stateful Evaluation Metrics

1) S-MOTA: MOTA [11] is one of the most commonly
used metrics for multiple object tracking. Computing MOTA
involves a matching step similar to the evaluation of object
detection. A given prediction-label pair (p, g) is only consid-
ered for matching if their IoU is larger than a given threshold:

C(p, g) =

{
1− U(p, g), if U(p, g) > tu

+∞, otherwise
(10)

U(·) is the IoU function and tu is a class-specific threshold.
C(·) denotes the cost function of the matching algorithm.
Consequently, MOTA primarily evaluates the quality of the
detections as well as the predicted associations. The only
component of the states defined in Section III-A evaluated
here is the location (i.e., the detection box center), and the
prediction accuracies of other states are only indirectly evalu-
ated through the improvements they may bring to association.

To better evaluate data association and state estimation,
we extend the MOTA to Stateful Multiple Object Tracking
Accuracy (S-MOTA). This is computed using the same pro-
cedure as standard MOTA, but with additional requirements
in the state estimation for a given prediction-label pair to
be matched. Accurate state estimation such as a vehicle’s
velocity is critical for autonomous driving. In S-MOTA, the
state estimation error of each pair must be below a class-
and state-dependent threshold to allow matching:

C(p, g) =

1− U(p, g),
if U(p, g) > tu and
∩s∈S∥ps−gs∥ < tu,s

+∞, otherwise
(11)

Let ps and gs denote predicted/ground-truth state vectors of
type s. S is the set of states considered for the evaluation,
and tu,s is the threshold for state type s and class u. Hence,
maximizing S-MOTA requires track predictions to both have
proper associations across time as well as reasonably close
state predictions. For this work, S consists of velocity and
acceleration. In principle, however, any combination of state
types from a tracker can be used to derive a S-MOTA metric.

2) MOTPS: The extended S-MOTA metric is designed to
provide a comprehensive evaluation of tracking performance,
including state estimation. As a complement, we extend the
MOTP to Multiple Object Tracking Precision for General
States (MOTPS) to provide more fine-grained evaluation on
the state estimation accuracy. Given the set M containing
pairs of predictions p and label g which are matched during
MOTA computation, MOTPS computes the average L2 error
for each state type to measure the magnitude of the state
error, i.e., for each state type s ∈ S∗:

MOTPs(M) = 1
|M|

∑
(p,g)∈M

∥ps − gs∥ (12)

We can further measure the count of objects with large
state estimation errors, i.e.,

|MOTPs(M)| = |{(p, g) ∈ M | ∥ps − gs∥ > αs}| (13)

where αs is a threshold for state s. Note that MOTPS is
consistent with the definition of MOTP. In fact, the latter
is a specific version of the former in the localization state.
Rather than defining a single metric that aggregates across
states, we use separate MOTPS metrics for each state type to
highlight the performance of each type of state individually.

The evaluation dataset has a disproportionate amount of
stationary objects. To ensure that the metrics properly evalu-
ate performance on objects with different types of motion, we
report the L2 state error in three different speed breakdowns:
static, slow moving objects, and fast moving objects. We also
count the number of predictions with L2 error larger than
the threshold αs to focus on challenging cases where the
predictions are off significantly.

IV. EXPERIMENTS

Datasets. We evaluate our STT model on the Waymo Open
Dataset [12], which contains 798 sequences for training,
202 sequences for validation, and 150 sequences for testing.
Each sequence lasts 20 seconds at 10 Hz. Following other
popular methods, we evaluate our method on vehicles and
pedestrians for the LEVEL 2 difficulty setting [12], which
is more diffcult than LEVEL 1 because it includes objects
with fewer than five laser points in their boxes. LEVEL 2
also includes all the objects in LEVEL 1.
Training details. Our model is jointly trained on 16 TPUs
with a batch size of 512. The AdamW [54] optimizer is used
with 0.03 weight decay. The initial learning rate is 0.0001
with linear learning rate decay of 0.5. The model is trained
for 125, 000 steps, including 1, 000 warm-up steps. We set
association loss weight γ = 10 and we have different loss
weights for different states: 1 for both position and velocity
and 10 for acceleration. Unless explicitly specified, we set the
maximum track length T = 10 for encoding track history and
select a maximum of 20 context detections for training the
model. We use SWFormer [53] as our detection backbone.

A. Overall Results

To demonstrate the effectiveness of our STT model, we
compare it with published state-of-the-art methods on the



TABLE I: Comparison with state-of-the-art tracking methods on the validation set of Waymo Open Dataset.

Method Vehicle Pedestrian

S-MOTA↑ MOTA↑ FP↓ Miss↓ Missmatch↓ S-MOTA↑ MOTA↑ FP↓ Miss↓ Missmatch↓

CenterPoint [8] - 55.1 10.8 33.9 0.26 - 54.9 10.0 34.0 1.13
SimpleTrack [1] - 56.1 10.4 33.4 0.08 - 57.8 10.9 30.9 0.42
CenterPoint++ [8] - 56.1 10.2 33.5 0.25 - 57.4 11.1 30.6 0.94
Immortal Tracker [3] - 56.4 10.2 33.4 0.01 - 58.2 11.3 30.5 0.26
Kalman Filter (Ours) 34.6 56.5 10.6 32.8 0.1 41.8 59.7 10.1 29.6 0.5
STT (Ours) 48.0 58.2 10.4 31.3 0.1 55.2 59.9 10.2 29.6 0.3

TrajectoryFormer [52] - 59.7 11.7 28.4 0.19 - 61.0 8.8 29.8 0.37

TABLE II: Comparisons for MOTPS on the validation set of Waymo Open Dataset.

Method Class
MOTPvelocity↓ ∣∣MOTPvelocity

∣∣↓ MOTPacceleration↓
|MOTPacceleration|↓Static Slow Fast All Static Slow Fast All

SWFormer[53]+SH
Vehicle

0.016 0.258 0.372 0.098 3063 0.013 0.864 0.758 0.179 11089
Kalman Filter 0.117 0.271 0.260 0.176 1890 0.217 0.683 0.665 0.418 25050
STT 0.049 0.214 0.235 0.095 794 0.026 0.425 0.412 0.116 1528

SWFormer[53]+SH
Pedestrian

0.061 0.179 0.307 0.162 147 0.066 0.155 0.340 0.135 121
Kalman Filter 0.116 0.15 0.183 0.149 25 0.212 0.345 0.422 0.336 6930
STT 0.066 0.112 0.205 0.100 39 0.082 0.155 0.324 0.141 27

Waymo Open Dataset. The majority of the 3D MOT algo-
rithms adopt the tracking-by-detection paradigm, and each
of them uses different detection backbones for their tracking
algorithms [1], [3], [8], [52], [55], [56]. As STT is a stateful
tracker that can be used with arbitrary detection models, we
need to compare it with a tracking method that uses the
same detection model as STT. Following [12], [2], [1], we
develop a Kalman Filter baseline that uses the same detection
backbone as STT.

We first compare our model with these state-of-the-art
methods as well as our KF baseline on the official 3D
tracking metrics of the Waymo Open Dataset. These met-
rics includes MOTA, MOTP, False Positives (FP), False
Negatives (FN), and mismatches (Identity Switches). The
results are shown in Table I. Our KF baseline, which uses a
strong detection backbone [53], already achieves competitive
performance compared with other existing methods. STT
achieves a MOTA score that is +1.7 higher than our KF
baseline on the vehicle type and on-par results on other met-
rics, demonstrating the benefit of including state estimation
into the learning process of our tracking model. Note that the
miss rate of the KF and STT models are slightly different
due to the different cut-off scores used by the two methods.
The strong performance of the KF baseline also indicates
that these official metrics heavily rely on the quality of the
detections. A simple tracker can achieve better performance
than other highly-tuned approaches by using a stronger object
detector (e.g. our KF baseline vs. CenterPoint [8]).

To demonstrate STT’s advantage on state estimation over
the KF baseline, we further compare them using the stateful
metric S-MOTA, as shown in Table I. This metric requires
prediction/ground-truth matches to have sufficiently high
predicted velocity and acceleration quality. The velocity and
acceleration thresholds are set to 1.0 m/s and 1.0 m/s2 for
vehicles and 0.5 m/s and 0.5 m/s2 for pedestrians. The S-
MOTA score of STT is 13.4 higher than the KF baseline
for both vehicles and pedestrians. This shows that while

STT performance is close to the KF baseline on the data
association metrics, it actually outperforms the KF model
significantly on state estimation. This result also indicates
that the S-MOTA metric is useful to distinguish between
methods having similar association quality in MOTA results.

To evaluate inference time, we compile the STT model
with XLA [57] and run inference on the same scenario
as reported in [53]. We use a Nvidia PG189 GPU which
shares the same hardware architecture as Nvidia T4 GPU
but with less memory to meet the power constraints of
autonomous vehicles. The inference time for STT alone is
2.9 ms. Combined with the fastest version of SWFormer as
reported in their paper, we can achieve real-time performance
for the end-to-end tracking.

We also compare our method to TrajectoryFormer [52],
which is the current state-of-the-art 3D MOT method on
the WOD. We report their CenterPoint [8] configuration.
It has higher MOTA score than STT due to improved
FN (vehicle) and FP (pedestrian) achieved by taking the
trajectory hypothesis from track history as model input. We
highlight it in a separate row for that a direct comparison
with ours is unfair, as TrajectoryFormer uses extra detection
boxes. This improvement is orthogonal to our approach. STT
still performs better in other two sub-metrics of MOTA.
Moreover, TrajectoryFormer does not predict or evaluate on
full state estimates, nor does it run in real-time.

B. MOTPS Results

To further understand the improvements of STT on state
estimation, we report the MOTPS metric results for STT and
two baselines: i) Kalman Filter, and ii) SWFormer+State
Head (SH), for which we add a state head to the original
SWFormer detector to predict velocity and acceleration for
each detected box. The three methods all use the same
detection model, which removes the impact of detection
quality and allows us to concentrate on the performance of
state estimation itself.



TABLE III: Ablation studies with the proposed STT model on the validation set of Waymo Open Dataset.

Tracker Detector Track Length Joint Optimization w/
State Estimation

Vehicle Pedestrian

MOTA↑ S-MOTA↑ MOTA↑ S-MOTA↑

Joint Optimization of Association and State Estimation
STT SWFormer[53] 10 N 56.4 30.9 55.9 13.1
STT SWFormer[53] 10 Y 58.2 48.0 59.9 55.2

Long-term Temporal Modeling
STT SWFormer[53] 3 Y 58.1 37.7 59.9 52.9
STT SWFormer[53] 5 Y 58.2 40.4 60.0 54.1
STT SWFormer[53] 10 Y 58.2 48.0 59.9 55.2
STT SWFormer[53] 20 Y 58.2 49.2 60.0 55.4

Tracking Performance with Different Detectors
Kalman Filter UPillar[58] N/A N/A 55.7 34.0 57.1 39.8
STT UPillar[58] 10 Y 57.1 46.3 57.4 52.1
Kalman Filter SWFormer[53] N/A N/A 56.5 34.6 59.7 41.8
STT SWFormer[53] 10 Y 58.2 48.0 59.9 55.2

As shown in Table II, our STT model achieves the
best overall state estimation results compared with the two
baselines. In terms of velocity estimation, SWFormer+SH
is surprisingly the best state estimator for static objects, but
STT performs better for moving objects. SWFormer+SH also
produces the highest value of |MOTPvelocity| whereas STT
has the lowest, indicating that the superior performance of
SWFormer+SH on static objects may due to overfitting. On
the other hand, the KF baseline struggles to predict accurate
states for static objects but can achieve decent performance
on moving ones. This may be because small jittering from
static objects can create large noise in KF state estimation
while learning-based methods are more robust to this.

The relative gain of STT is more prominent for the
acceleration estimation. STT achieves the best accelera-
tion for moving objects and comparable performance with
the SWFormer+SH on static objects. STT has the lowest
variance compared to the two baselines as reflected by
|MOTPacceleration|. Acceleration, as a second order statistic, is
more challenging to estimate. Therefore, models must be able
to robustly handle small noise and effectively reason about
long-term motion. STT possesses both of these qualities, and
its robustness and consistency are reflected in the metric
results.

C. Ablation Studies

Joint optimization with state estimation is important.
One of the key innovations of STT is its unified learning
framework which jointly optimizes for both data association
and state estimation tasks. To validate the claim that the
joint optimization with state estimation can improve the
data association performance, we create a STT baseline that
is only trained with the data association loss. The results
are reported in the first two rows of Table III. With the
joint optimization of state estimation and data association,
STT achieves MOTA improvement of +1.8 and +4 for the
vehicle and pedestrian classes, respectively. Similarly, S-
MOTA improvements of +17.1 and +42.1 are observed for
these two classes from STT. These results suggest that data
association and state estimation are highly complementary
tasks that should be jointly optimized.
Longer-term temporal modeling improves data associa-

tion quality with more accurate state estimation. To verify
the impact of the temporal features on tracking performance,
we evaluate STT with different track history lengths. The
results, shown in rows 3 to 6 of Table III, demonstrate
that longer track history can lead to improved tracking
performance. The MOTA score increases as the track history
length increases to 5, after which it saturates. However, the
S-MOTA score continues to increase by a large margin, even
for track history lengths of 20. This suggests that longer-term
temporal modeling is critical for data association and state
estimation tasks.
Improvements from STT are robust with different detec-
tors. As our KF baseline experiment shows, the performance
of a tracking system can be significantly affected by the
quality of the upstream object detector. To understand the
sensitivity of STT to different detectors, we compared STT
and KF using two different detectors: SWFormer [53] and
UPillar [58]. The results in Table III show that our STT
model outperforms the Kalman Filter on all metrics with
different object detectors, which indicates that our model is
robust to the choice of detector.

V. CONCLUSION

In this paper, we propose STT, a transformer-based model
that jointly conducts data association and state estimation
in one model. We emphasize the importance of this joint
estimation task for autonomous driving, which requires con-
sistent tracking and accurate state estimation for objects in
3D real-world-space. To address the limitations of existing
evaluation methods, we extend MOTA metrics to S-MOTA,
which enforces the consideration of state estimation quality
when evaluating association quality, and MOTP to MOTPs,
which captures broader motion state of objects. Evaluation
has shown that STT achieves the competitive results on the
Waymo Open Dataset with strong performance in state esti-
mation. We hope that our proposed solutions and extended
metrics will facilitate future work in this area.
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