
A decomposition-based approach for large-scale pickup and delivery problems

Gerhard Hiermann1 and Maximilian Schiffer2

1TUM School of Management, Technical University of Munich, 80333 Munich, Germany
gerhard.hiermann@tum.de

2TUM School of Management & Munich Data Science Institute,
Technical University of Munich, 80333 Munich, Germany

schiffer@tum.de

Abstract

With the advent of self-driving cars, experts envision autonomous mobility-on-demand services
in the near future to cope with overloaded transportation systems in cities worldwide. Efficient
operations are imperative to unlock such a system’s maximum improvement potential. Existing
approaches either consider a narrow planning horizon or ignore essential characteristics of the
underlying problem. In this paper, we develop an algorithmic framework that allows the study
of very large-scale pickup and delivery routing problems with more than 20 thousand requests,
which arise in the context of integrated request pooling and vehicle-to-request dispatching. We
conduct a computational study and present comparative results showing the characteristics of
the developed approaches. Furthermore, we apply our algorithm to related benchmark instances
from the literature to show the efficacy. Finally, we solve very large-scale instances and derive
insights on upper-bound improvements regarding fleet sizing and customer delay acceptance
from a practical perspective.

Keywords: large scale problems; pickup and delivery; ride-sharing; optimization

ar
X

iv
:2

40
5.

00
23

0v
2

 [
m

at
h.

O
C

]
 7

 M
ay

 2
02

4

2

1. Introduction

Cities worldwide struggle with overloaded transportation systems and related negative externalities:
CO2 emissions cause environmental harm by contributing to the greenhouse effect; health hazards
arise from particulate matter and NOx emissions; and economic harm stems from congestion-induced
lost working hours (Pishue 2023). Over the last decade, the sharing economy paradigm stimulated
new mobility services, above all mobility-on-demand (MoD) services to serve individual passenger
transportation requests in an urban context. With the advent of self-driving cars, experts envi-
sion these MoD services to be operated by autonomous vehicles in the near future. The resulting
autonomous MoD (MoD) systems promise to enable more efficient on-demand services that are
accessible by a large public as they can be offered at a lower cost. Municipalities, practitioners, and
scientists share high hopes that such AMoD systems will contribute significantly to reducing the
above mentioned negative externalities by allowing, among others, for efficient pooling of passenger
requests, congestion aware routing, and convenient feeding to public transport lines (Salazar et al.
2019). Yet, there is so far no consensus whether these benefits will finally lead to reduced negative
externalities, or if such a convenient on-demand service may lead to induced demand, such that
externalities will be reduced per passenger but not in total (Oh et al. 2020).

Independent of this debate, there is consensus that efficient operations are imperative to unlock
an AMoD system’s maximum improvement potential. To do so, one needs to develop effective, pos-
sibly anticipative, control algorithms for the related operational planning tasks: pooling–if possible–
passenger requests to shared rides, dispatching these rides to vehicles, and rebalancing vehicles to
anticipate future demand. Accordingly, these planning problems sparked the interest of scientists
in the field of optimal control, transport optimization, and operations research and led to vari-
ous algorithmic approaches that range from online control algorithms, often following a (partial)
planning-task decomposition scheme (Enders et al. 2023, 2024), to integrated algorithms that aim
to solve all planning tasks at once in a full information setting to identify an upper bound on the
possible system improvement.

In this context, existing approaches usually suffer from at least one shortcoming: (decomposed)
online control algorithms scale to large real-world instances but implicitly assume the performance
loss of sequentially deciding on the respective planning tasks to be limited without further discussion
(Alonso-Mora et al. 2017). Consequently, system improvement analyses are limited to comparisons
against the status quo or (naive) baselines. While this setting reveals many interesting insights, it is
not sufficient to rigorously analyze the upper bounds of a system’s improvement potential, which is
of interest for tactical and strategic transportation system analysis and planning. Algorithms that
solve the integrated planning problem in a full information setting are often limited in scalability
(Doerner & Salazar-González 2014, Sartori & Buriol 2020), such that the obtained full information
bounds are not interesting from a practitioner’s perspective as the limited problem size diminishes
the meaningfulness of the derived results. In the field of operations research, some first attempts
exist to solve large-scale pickup and delivery problems in a full information setting. However,
these works are motivated by freight transport applications, such that the studied instance size

3

still remains below the scale encountered in an AMoD context. Moreover, the instances studied
in this work reveal significantly different characteristics with respect to demand and time windows
such that it remains questionable whether existing–usually highly-tailored–algorithms will provide
a good solution quality within an AMoD context.

Against this background, we aim at developing an algorithmic framework that allows to solve
very large-scale pickup and delivery routing problems that arise in the context of integrated request
pooling and vehicle-to-request dispatching in AMoD systems. Focusing on offline full information
problem settings, we design this algorithmic framework in such a way that it allows us to analyze
not only a full information bound of the system’s performance improvement but also the impact of
taking pooling and dispatching decisions sequentially or in an integrated fashion.

In the following, we first briefly review related literature before we specify our contribution and
the paper’s organization.

1.1. State of the Art

From a general perspective, controlling a ride-hailing fleet is related to solving an pickup and delivery
problem with time windows (PDPTW) (Savelsbergh & Sol 1995, Ropke et al. 2007). Literature on
the PDPTW focuses overwhelmingly on deliveries of goods (Battarra et al. 2014). Apart from
its basic problem variant, several extensions for the PDPTW have been studied, e.g., focusing on
loading constraints (Iori & Martello 2010), selection of requests (Al-Chami et al. 2016), or recharging
of electric vehicles (Goeke 2019). Passenger transportation variants are studied under the umbrella
of the dial-a-ride problem (DARP), which was conceived to formalize a mobility service for elderly
and disabled people to maximize the quality of service while minimizing cost. Herein, not only
punctuality in service but the time passengers travel in the vehicle are considered using the aptly
called user-ride-time constraint to limit the ride duration and avoid long periods of waiting times
in the vehicle (Doerner & Salazar-González 2014). This work focuses on inner-city ride-sharing
operations with tight time windows regarding pickup and dropoff and short trips. As such, the
maximum ride times of users are bounded by the time windows, removing the necessity of using
explicit limits. For this reason, we consider the PDPTW as our modeling basis and focus our
literature review on this problem.

Only a few exact approaches exist to solve the PDPTW. Besides some early branch-and-price
solutions (Dumas et al. 1991, Savelsbergh & Sol 1998), branch-and-price-and-cut algorithms have
been developed by Ropke & Cordeau (2009) and Baldacci et al. (2011) with Bettinelli et al. (2014)
and Gschwind et al. (2018) focusing on how to apply bidirectional search in the pricing problem.
The largest instances that could be solved with these approaches comprise 100 requests for regular
instances and up to 500 requests for tightly constrained instances. Recently, Vadseth et al. (2023)
proposed a route modifying improvement model, which they initialized with best-known solutions
to find improvements for the large benchmark sets.

To solve larger instances, different metaheuristic resolution approaches have been developed,
covering Tabu Search (Nanry & J.W. 2000, Li & Lim 2001), genetic algorithm Pankratz (2005)

4

and hyper-heuristics (Nasiri et al. 2022). Nagata & Kobayashi (2010) proposed a guided ejection
search (GES) and focused on minimizing the fleet only. Current state-of-the-art methods include
an iterative approach by Curtois et al. (2018), using an adaptive guided ejection search (AGES),
large neighborhood search (LNS) and local search (LS) sequentially to repeatedly probe minimizing
the fleet before optimizing costs. Sartori & Buriol (2020) later improved upon this approach and
proposed a matheuristic composing of a AGES, LNS, and an set partitioning (SP) component. The
latter continuously tries to recombine routes of solutions found during the search to yield better
solutions. These components are nested in an iterated local search (ILS) framework to diversify the
search. Christiaens & Vanden Berghe (2020) proposed an ruin & recreate (R&R) using a novel slack-
induced string removal and greedy insertion with blinks operator. The approach showed excellent
performance on various problems, including the PDPTW.

In contrast with the literature, our focus lies on very large instances, ranging up to 21 thousand
requests compared to the currently studied 2500 available requests.

1.2. Contribution

With this work, we provide a new state of the art for solving very large scale PDPTWs in the
context of ride-sharing. We provide an algorithmic framework that comprises a decomposition-
based matheuristic which allows to solve instances with up to 5000 requests in a few minutes, an
ILS-based metaheuristic that yields a better solution quality within a computational time limit of
up to 15 minutes, as well as a hybrid approach that uses our matheuristic to warm-start the ILS in
order to further improve solution quality.

With this algorithmic framework, we provide a thorough computational study to compare the
proposed algorithms against each other and understand the respective algorithmic characteristics.
We then use our metaheuristic algorithm to solve the benchmark data set for the PDPTW in
the context of ridesharing Sartori & Buriol (2020). Here, we show that our algorithm improves
significantly over the algorithm of Sartori & Buriol (2020) and find new best-known solutions.
Lastly, we apply our algorithm to study very large-scale instances with up to 21375 requests that
have not been solved before. By so doing, we shed light on upper-bound improvements with respect
to fleet sizing and customer delay acceptance from a practical perspective.

1.3. Organization

The remainder of this paper is organized as follows: Section 2 formally introduces our problem
setting. Section 3 details the proposed solution approach. In Section 4, we outline our experimental
design and present the related numerical results in Section 5. Finally, Section 7 concludes this work
with a short summary and an outlook on future research.

5

2. Problem Setting

We study an offline problem setting in which a fleet operator has full knowledge about requests
that arrive in a certain time horizon, e.g., a peak hour, an operational shift, or a day. Formally,
we denote this time horizon by T . The fleet operator operates a fleet of constant size and offers a
ride-hailing service. In this context the operator decides on i) which customer requests to pool to a
shared ride, and ii) which vehicle to dispatch for operating each (shared) ride. Clearly, the operator
can also decide to not dispatch a vehicle to a ride, which implicitly models request rejections.

The fleet operates on a road network and we model respective operations on a fully connected
graph G = (N ,A) composed of a set of nodes N = P ∪ D ∪ K and a set of arcs A. Here, Set
P contains the pickup nodes of all passenger requests, D contains the respective drop-off nodes,
and set K contains vehicle nodes, i.e., nodes that indicate the initial positions of all vehicles. Arcs
(i, j) ∈ A represent paths through the street network with corresponding cost cij and travel time tij .

We represent a passenger request as a quadruple (pr, dr, er, lr), where pr ∈ P and dr ∈ D denote
the pickup and dropoff location of request r ∈ R, and er, lr define the request’s time window [er, lr].
This time window indicates the earliest time er ∈ T at which it is possible to pick up the passenger
at pr and the latest time lr ∈ T at which the passenger needs to be dropped at dr. In this context,
one can interpret er either as the time at which a passenger sends a request to the operator, or
as a specified pickup time that lies further in the future. To account for a passengers willingness
to accept a detour when participating in a shared ride, e.g., incentivized by a price reduction, we
calculate lr as

lr = er + tprdr + δr,

where tprdr is the travel time between pr and dr, and δ denotes a maximum time budget available
for detours. In the remainder of this paper, we will refer to this time budget as a request’s buffer.

With this notation, one can easily link a request’s time window information to its origin and
destination. We do so by defining a pickup time window [epr , lpr] as epr = er and lpr = er + δ, and
a delivery time window [edr , ldr] as edr = er + tprdr and ldr = lr = er + tprdr + δ for each request.
While these definitions appear to be redundant in the problem description, they will ease notation
and clarity when discussing our algorithmic framework.

Solution representation: A solution σ represents a set of routes σ = {ϑ1, . . . , ϑ|K|}, one for
each vehicle. Each route ϑk = (ν0, . . . , νn) is a sequence of nodes νi ∈ N that denotes in which
order a vehicle visits them. Here, ν0 is always the starting location of the corresponding vehicle.
Each sequence implicitly defines departure and arrival times, which can be trivially calculated by
propagating travel times, departing as early as possible from each node. We define τarr(ϑ, νi) and
τdep(ϑ, νi) to access the arrival and departure time of node νi ∈ N . Finally, we define U(σ) as the
set of unassigned requests that are not served by any vehicle within a solution σ.

Constraints: A valid solution σ has to adhere to the following constraints.

6

i Vehicles can never exceed their capacity Q and can thus operate at maximum Q requests in
parallel.

ii If served, request nodes pr and dr have to be visited by the same vehicle, i.e.,

pr ∈ ϑ ↔ dr ∈ ϑ, ∀r ∈ R (2.1)

iii Request nodes must be served in order and inside the corresponding requests’ time window
[er, lr]. If a vehicle arrives early, it has to wait until the request can be served. Formally

er ≤ τdep(pr) ≤ τarr(dr) ≤ lr, ∀r ∈ R, (2.2)

Objective function: We consider a hierarchical objective, minimizing two quantities: i) the number
of unserved requests in U(σ), and ii) the total travel cost considering the driving distance cij .

min |U(σ)|

min
∑
ϑ∈σ

|ϑ|∑
i=1

cνi−1νi

(2.3)

Among all feasible solutions fulfilling these constraints, we seek a solution σ∗ that minimizes the
objective function (2.3).

Discussion: Three comments on our problem setting are in order. First, we limit our problem
setting to a full information scenario, which omits directly leveraging our algorithm for fleet control
in practice. While limiting, this simplification is in line with our paper’s scope: solving large-scale
full information instances to obtain upper bounds on the system’s improvement potential, as well as
a temporally unbiased analyses on whether decomposing pooling and dispatching decisions affects
solution quality or not. Second, while we analyze the impact of decoupled or integrated pooling
and dispatching decisions, we ignore explicit rebalancing and rerouting. Omitting rebalancing is
reasonable as it is only beneficial during online decision making but not in a full information setting.
For (congestion aware) rerouting, recent works show significant improvement potential even if it is
conducted on a subsequent decision level (Jalota et al 2023). Accordingly, we ignore this aspect to
isolate the effect of decomposing or integrating pooling and dispatching decisions. Lastly, we like to
mention that the proposed problem setting differs from classical PDPTWs in three aspects: i) we
do not consider heterogeneous demand, instead each request has a demand of one, i.e., represents
one customer; ii) our setting resembles an orienteering problem where vehicles are initially scattered
within the service area instead of being located at a central depot and may also end their last service
at an arbitrary location; iii) we consider a different objective function that aims at minimizing the
number of unserved requests and subsequently the respective operational costs for a given fleet size.
All of these differences result from our ride-hailing application, which significantly differs from the
usually studied logistics context.

7

3. Methodology

This section details our algorithmic framework. To obtain a framework that allows to take decom-
posed as well as integrated pooling and dispatching decisions, we proceed as follows. In a first step,
we develop a matheuristic that decomposes the planning problem and takes pooling and dispatching
decisions sequentially. We then focus on integrated decision-making and develop a metaheuristic
that allows to take integrated pooling and dispatching decisions.

3.1. Sequential Pooling & Dispatching

To devise an algorithm for sequential pooling and dispatching decisions, we expand two of our recent
works that focused on the respective isolated decision tasks. Figure 1 illustrates the rationale of
our algorithm. In a first step (Figure 1a), we model potential request poolings as hyperedges in a
hypergraph, which allows us to effectively pool customer requests by obtaining a maximum weighted
matching. We then model these pooled requests in a dispatching graph (Figure 1b), which allows
us to calculate the request to vehicle assignments in polynomial time.

3.1.1. Generating feasible hyperedges

We define a hypergraph H = (V, E) with a vertex set V, a hyperedge set E , and its hyperedge
weights ω, which relates to our problem as follows:

i The vertex set is ordered V = [n], (with n = |V|) and each vertex represents a request r ∈ R.
The set is sorted by the earliest service time er in ascending order.

ii Each hyperedge ε with |ε| ≥ 2 represents a potential pooled ride that contains multiple requests.

iii The edge weights ω : E → R+, represent the utility of a potentially pooled ride.

The number of hyperedges can be potentially intractable, with up to
∑|R|

γ=2

(|R|
γ

)
possible combi-

nations. To tackle this issue, we limit the hyperedges generated in two ways. First, we limit the
rank of the hypergraph to γmax = 4, i.e., |ε| ≤ γmax, ∀ε ∈ E . Second, we define Nr as the set of
feasible neighbors of request r, where er ≤ er′ ≤ lr + δ. For each request r and its neighbors Nr, we

Figure 1: Outline of the sequential pooling and dispatching approach.

vehicles matched requests

(a) Step 1: Hypergraph matching. (b) Step 2: Create and solve a dispatching graph.

8

generate every combination π ∈ Πr of up to γmax requests, π ∈ {r} ∪Nr. We only allow r′ ∈ Nr if
r′ is positioned after r in the ordered vertex set V to avoid symmetries.

Note that not all possible hyperedge combinations may result in a feasible sequence as they
may violate the pickup time feasibility or capacity constraint, and can be ignored. Furthermore, a
set of requests can be sequenced in various ways while respecting the precedence constraint. For
example, π = {r, r′} can be sequenced in four ways: (pr, pr′ , dr, dr′), (pr, pr′ , dr′ , dr), (pr′ , pr, dr, dr′),
(pr′ , pr, dr′ , dr). To limit the computational complexity, we reduce the number of possible sequences
for each π ∈ Πγ

r by only considering the cheapest feasible sequence of visits in terms of travel cost.

3.1.2. Hypergraph matching

We define a matching M for hypergraph H as a subset of hyperedges M ⊂ E where all edges are
disjoint. Such a matching is maximal if it is not a strict subset of any other matching, and it is
maximum if no other matching with a greater cardinality exists. Then, the best pooling strategy
M∗ equals a maximum weight matching in H, formally

M∗ := arg max
X∈E

∑
ε∈E

ω(ε)

s.t. εi ∪ εj = ∅,∀εi, εj ∈ E

Clearly, the definition of the hyperedge weights ω is crucial for the actual matching performance.
In this work, we analyze four weight functions to evaluate hyperedges ε ∈ E as follows.

ω1(ε) = −γmax/γε (3.1)

ω2(ε) = (
∑

(i,j)∈ε

cij) · ω1 (3.2)

ω3(ε) = ((max
r∈ε
{lr} −min

r∈ε
{er})− (min

r∈ε
{lr} −max

r∈ε
{er})) · ω1 (3.3)

ω4(ε) = ω2(1− ρ) + ω3ρ (3.4)

Here, ω1(ε) parameterizes each edge based on the negative inverse of its cardinality normalized by
the maximum cardinality of hyperedge ε. While this negative inverse seems unintuitive at first sight,
it appears reasonable once we embedd the respective poolings in our dispatching algorithm, which
bases on solving a k-disjoint shortest path problem (k-dSPP) on a dispatching graph. To do so, it
requires a negative representation of each poolings benefit. We reach such a notion with respect
to each poolings utilization by considering the negative inverse of a utilization ratio expressed via
the hyperedge cardinality. In the remaining weight definitions, we use ω1 as a normalization factor
such that no further transformations are necessary to define the other weights in a metric that is
suitable for the subsequent dispatching algorithm. The remaining weights aim to either account for
the cost of the resepctive request sequence (ω2), the temporal overlap between the pooled requests
(ω3), or a convex combination of both (ω4).

9

To find M, we use a two-step matheuristic approach. First, we solve a continuous weighted set
covering (WSC) problem to select a subset of hyperedges that may be connected to the same request
nodes, i.e., a fractional matchingM. We then derive an integral matchingM based on the solution
of the WSC using a greedy selection procedure.

We define our continuous WSC as follows.

max
∑
ε∈E ′

ω(ε) · xε (3.5)

s.t. ∑
ε∈E ′

arεxε ≥ 1 ∀r ∈ R (3.6)

0 ≤ xε ≤ 1 ∀ε ∈ E ′ (3.7)

Here, arε = 1 if request r is connected to hyperedge ε and remains zero otherwise; while E ′ =
E ∪

⋃
r∈R εr is the set of hyperedges including hyperedges comprising only a single request r ∈ R.

After solving the continuous WSC problem, we obtain matchingM from the fractional matching
M using a greedy selection procedure. Herein, we traverse the hyperedges ε ∈ M, sorted by their
fractional solution value in descending order, to construct a matchingM. We only add a hyperedge
to our matching if it does not contain any request already covered in M. The process stops after
all requests have been selected or the list has been traversed.

We tested additional approaches to find good matchings in preliminary experiments, including a
simple greedy selection approach based on the hyperedge weight ω(ε), and a weighted set partition-
ing reformulation (see Appendix A). Although the aggregated results do slightly favor the greedy
approach, the disaggregated results on fleet sizes relevant in practice show better performance when
using the matheuristic approach with ω4 and ρ = 0.7.

3.1.3. Dispatching

Preliminarily analyses of the characteristics of our planning problem showed that requests in our
ride hailing content often tend to interlace less compared to classical DARP instances. Accordingly,
we often observe subsequences of visits that start and end with an empty vehicle, often referred to
as zero-split sequences Parragh et al. (2010), fragments Rist & Forbes (2021), or zero-sum blocks
Malheiros et al. (2021). We design our sequential approach and the respective dispatching algorithm
around this property: we create respective zero-sum blocks via the hypergraph matching described
in Section 3.1.2 and use these to construct a dispatching graph that allows us to obtain the respective
vehicle-to-request dispatching by solving a k-dSPP. The remainder of this section briefly outlines
how we create the respective dispatching graph and a polynomial k-dSPP algorithm.

We start by creating our dispatching graph as a weighted and directed source-sink graph G̃ =

(Ñ , Ã, θ), consisting of a set of vertices Ñ , a set of arcs Ã, and a vector of weights θ, containing
a weight θa for each arc a ∈ Ã (see Figure 2). The vertex set Ñ = {w,w∗} ∪ K̃ ∪ B̃, comprises a
dummy source w and a dummy sink node w∗, a subset of vehicle vertices K̃, and a subset of pooled

10

Figure 2: Dispatching graph transformed into a k-disjoint shortest path problem

{w,w∗}

K̃

B̃

0

0
0

θ1

θ2
θ3

θ4
θ5

θ6

θ7

θ8

θ9

θ10 θ11

θ12

θ13
θ14

θ15

θ16

requests B̃ which we refer as blocks. Here, we associate each vehicle vertex with a vehicle’s starting
position while associating each block vertex with a feasible sequence of pickup and delivery node
visits. More formally, a block b ∈ B̃ is a tuple (ϑ̃b, ẽb, t̃b) comprise of a sequence of visits ϑ̃ for a
set of requests, such that precedence, capacity and time window constraints are satisfied. Next, l̃b
defines the fixed starting time and t̃b the duration to serve ϑ̃.

Arcs are constructed as follows: we create an arc between two block vertices if a block-to-block
connection does not violate the time window constraint. Similarly, we create an arc between a
vehicle and a block vertex if the block can be reached in time by the vehicle. Finally, we connect
the dummy source with each vehicle vertex and connect all vehicle and block vertices to the dummy
sink.

A path in G̃ that starts at dummy source w and ends in dummy sink node w∗ represents a feasible
vehicle trip. We can directly associate the trip to the vehicle dependent on the vehicle vertex it
contains. We conclude the construction by assigning a weight θuv to each (u, v) ∈ Ã. Herein, we set
the arcs that leave the source or enter the sink to zero. Next, we set the weights of vehicle-to-block
arcs (v, b̃) to θvb = c

vϑ̃b
− ξ |ϑ̃b|

2 . The second part is the cost traveling from vehicle vertex v to the
first visit in b; the second part represents the profit of serving the requests of a block, with ξ being
a large profit term, such that serving requests is always preferred. The weights of the remaining
block-to-block arcs connecting block b to b′ are set to θbb′ = c

ϑ̃bϑ̃b′
− ξ

|ϑ̃b′ |
2 . The first part is the

cost of traveling from the last visit in ϑ̃b to the first visit in ϑ̃b′ , whereas the second part represents
again the profit of serving the requests.

With graph G̃ defined, we now briefly discuss the polynomial-time algorithm for the k-dSPP. As
proven by Suurballe (1974), it is possible to increase the number of disjoint paths on graph G̃ from i

to i+1 by finding the shortest interlacing on a modified graph G̃′. Herein, we initialize the algorithm
by finding the shortest path using the Bellman-Ford algorithm. Note that θuv could be negative,
depending on ξ. Therefore, we reweight the arcs similar to the well-known Johnson algorithm,
using the result from the Bellman-Ford algorithm. Afterward, we continue with a modified Dijkstra
algorithm to iteratively find the i+1-disjoint shortest paths until we reach k = |K̃|. For a detailed
description of the algorithm, we refer to Suurballe (1974) for the original implementation, or the
more recent use in Schiffer et al. (2021).

After identifying a set of disjoint shortest paths Π, we generate a complete solution by concate-
nating the visit sequence in blocks based on the paths and assigning them to the corresponding

11

vehicle represented by vehicle node uc ∈ K̃. Blocks that are not contained in any path remain
unassigned.

3.2. Integrated approach

In this section, we introduce an ILS-based algorithm that allows to take integrated pooling and
dispatching decisions. When solving large-scale instances, it is imperative to chose an efficient
solution represantation and respective evaluations to obtain a performant algorithm. Accordingly,
we first focus in Section 3.2.1 on the solution representation and evaluation methods used in our
algorithm. We then Focus on the ILS-based algorithm in Section 3.2.2, before detailing a ruin
and recreate procedure and further intensification techniques in Section 3.2.3. To keep this paper
concise, we focus all discussions on the cost-minimizing objective and detail the respective fleet
minimization component in Appendix C.

3.2.1. Solution representation and evaluation

Recall that we represent a solution for our problem as a set of |K| routes, one for each vehicle.
Typically, one stores each route as a list of nodes that denotes the order in which they are visited.
Although the number of required lists is known, the length of each list can vary and depends
on each instance’s properties, e.g., the number of requests or time horizon, and only materializes
throughout the search. In the most extreme case, a single route might contain all requests, thus
requiring O(2|R|) memory, such that we obtain an instance-dependent upper bound on a solution’s
memory requirement by O(|K| · 2|R|).

To maintain each list, we exploit that any node is not visited more than once and maintain the
following information for each node i ∈ N : while Pred(i) denotes the predecessor of i, Succ(i)

denotes its successor; Assign(i) yields the vehicle id node i is assigned to (receiving label |K| + 1

if unassigned); EvalFw(i) holds evaluation information up until node i, starting from the vehicle
node, whereas EvalBw(i) holds evaluation information starting from node i to the last visit.

The data in EvalFw(i) contains the evaluation information of sequence {v, . . . , i} and
EvalBw(i) holds {i, . . . , ϑ(−1)}, repectively, where ϑ(−1) is the last visit of route ϑ. We calculate
both iteratively using the distance and time window-related formulas of Vidal et al. (2012) and
demand calculations analogous to Bulhões et al. (2018) as follows.

Capacity evaluation: Let qsum(ϑ) be the current number of passengers served, and let qmax(ϑ)

be the maximum number of concurrent passengers served in σ. Given two subsequences ϑ1 and ϑ2,
we can calculate the concatenated sequence using operation ⊕ as follows:

qsum(ϑ
1 ⊕ ϑ2) = qsum(ϑ

1) + qsum(ϑ
2) (3.8)

qmax(ϑ
1 ⊕ ϑ2) = max{qmax(ϑ

1), qmax(ϑ
1 + ϑ2)} (3.9)

12

where a sequence ϑ′ containing a single node i is initialized as follows:

qsum(ϑ
′) =

1 if i ∈ P

−1 if i ∈ D

0 if i ∈ K

(3.10)

qmax(ϑ
′) = max{0, qsum(ϑ

′)} (3.11)

A route ϑ is feasible regarding the capacity constraint if qmax(ϑ) ≤ Q. Note that the load of a
vehicle cannot be negative as long as its route satisfies the respective the precedence constraint
(2.2).

Travel time evaluation: Let Tt(ϑ) be the accumulated travel time without potential waiting time,
and let Tls(ϑ), Tec(ϑ) be the latest start and earliest completion time, respectively; Tf(ϑ) indicates
whether the sequence is time windows feasible. Then, we define our concatenation operation ⊕ as
follows:

Tt(ϑ
1 ⊕ ϑ2) = Tt(ϑ

1) + tϑ1ϑ2 + Tt(ϑ
2) (3.12)

Tec(ϑ
1 ⊕ ϑ2) = max{Tec(ϑ

1) + tϑ1ϑ2 + Tt(ϑ
2), Tec(ϑ

2)} (3.13)

Tls(ϑ
1 ⊕ ϑ2) = min{Tls(ϑ

1), Tls(ϑ
2)− tϑ1ϑ2 − Tt(ϑ

1)} (3.14)

Tf(ϑ
1 ⊕ ϑ2) = Tf(ϑ

1) ∧ Tf(ϑ
2) ∧ (Tec(ϑ

1) + tϑ1ϑ2 ≤ Tls(ϑ
2)) (3.15)

A single-node sequence ϑ′ is initialized with Tt(ϑ
′) = 0, Tec(ϑ

′) = ei, Tls(ϑ
′) = li, and Tf(ϑ

′) =

true. A route ϑ satisfies the time window constraint if for any two subsequences ϑ1 and ϑ2,
Tec(ϑ

1) + tϑ1ϑ2 ≤ Tls(ϑ
2) holds, i.e., if we can reach the first visit of ϑ2 after serving ϑ1 exactly at

or before the latest start time of ϑ2.

Cost evaluation: Let C(ϑ) be the accumulated cost of sequence ϑ. Then, we define our concate-
nation operation ⊕ as:

C(ϑ1 ⊕ ϑ2) = C(ϑ1) + cϑ1ϑ2 + C(ϑ2) (3.16)

Efficiency: Each concatenation operation detailed above can be executed in O(1) time.
EvalFw(i) and EvalBw(i) can thus be calculated in O(|2N|) by traversing the route using
Succ(i), starting from the vehicle node v, to perform EvalFw(Succ(i)) = EvalFw(i) ⊕ i,
and Pred(i), starting from the last visit ϑ(|σ|), to set EvalBw(Pred(i)) = i ⊕ EvalBw(i),
respectively. When performing any changes to a route, EvalFw(i) and EvalBw(i) need to be
updated accordingly.

For each vehicle vj ∈ K, we additionally maintain Last(vj) which holds the information on the
last visit of route ϑj . The objectives can be obtained as follows: i) |{i ∈ N : Assign(i) = |K|+ 1}|
is the number of unassigned requests, and ii)

∑
j∈K C(EvalFw(Last(j))) the total travel cost.

13

3.2.2. Iterative local search

Algorithm 1 shows the pseudocode of our ILS-based metaheuristic. First, we generate an initial
solution using a simple but fast parallel insertion construction heuristic (l. 1). Herein, we randomly
assign one request to each vehicle and distribute the remaining requests sequentially to their best
position in any route.

Algorithm 1: Iterative local search approach
Input: Time limit ΩA; Average split size χ; Maximum iterations MA; Maximum iterations

per split solution MS ; Maximum perturbation size ZA

1 σ ← parallel_insertion_construction();
2 σ′, σ∗ ← σ;
3 iils ← 0;
4 while ΩA not reached do
5 ils ← 0;
6 T ← T init;
7 while ils < MA do
8 P ← decompose(σ′, χ);
9 for σi in P do

10 σi ← ruin_and_recreate(σi,MS , T , T
dec);

11 B ← extract_blocks(P);
12 G̃ ← create_graph(B);
13 Π← run_kdsp(G̃);
14 σ′′ ← build_from_kdsp(Π);
15 σ, σ′, σ∗ ← accept_solution_rnr(σ′′, σ′, σ, σ∗);
16 T ← T − TdecMS ;
17 ils ← ils +MS ;

18 σ∗, σ′ ← accept_solution_ils(σ′′, σ′, σ∗);
19 σ′ ← perturb(σ′, ZA);
20 iils ← iils + 1;

21 return σ

Then, we run the main ILS loop until we reach a time limit ΩA (l. 4). For each ILS iteration,
we perform our local search for MA iterations (l.7–l.17): herein, we first decompose the problem by
inspecting the current solution σ′ and randomly partitioning its routes such that each part contains
χ requests on average. Then, we distribute unassigned requests between the partitions. To do so,
we maintain a history comprising two counters tracking i) how often requests are scheduled directly
after another and ii) how often requests are assigned to the same route. For each unassigned request,
we sum up the counters for each request in a partition and use this sum as weight in a roulette-wheel
selection.

Each resulting partition constitutes a subproblem containing the respective vehicle and requests,
for which we use the vehicle’s sequence in σ′ to obtain an initial solution. We then improve these
solutions in parallel by using an R&R metaheuristic (l. 10). After a predefined number of MS

14

iterations, we collect the best solution found for each subproblem and recombine these. Herein, we
first identify and extract the block information from the partial solutions (l. 11). For each block, i.e.,
a sequence of pickup and delivery visits, we obtain the total time spent (service time, waiting time,
and travel time), the total distance traveled, as well as the earliest and latest beginning of service
time, such that the waiting time is minimal. Note that the block starting time window depends on
the partial solutions, resulting in tighter bounds than if computed in isolation.

Next, we create the dispatching graph G̃ = (Ñ , Ã) (l. 12), analog to Section 3.1.3. After solving
the k-dSPP in line 13, a set of disjoint shortest paths Π has been produced, which is used in line 14
to generate routes by concatenating the sequences of the corresponding routes until reaching the
sink.

During the search, we may allow a decrease in quality when accepting incumbent solutions to
balance exploration and intensification (l. 15). Here, we adopted the record-to-record aspiration
criterion, which performs well for the classical PDPTW instances (see, e.g., Santini et al. 2018), as
follows. New best solutions are always accepted; otherwise, a solution is only accepted if the gap
between it and the current best solution is smaller than a threshold T , which decreases linearly
by Tdec with each iteration. We use T init = 0.333 and Tdec = T init/M as parameters for the
initial temperature and decrement step-value. The R&R procedures run in parallel for each sub-
problem and start with the current criterion state. We update the temperature after recombining
the solutions by decreasing the temperature MS times (l. 16).

After the local search procedure finishes, we perform a second check for accepting the solution
found (l. 18). We accept any new best solution found so far. Otherwise, we either use the current
solution found by the cost-minimization component or revert to the best solution. This choice
is probability-driven and controlled by two counters, the total number of ILS iterations and the
number of ILS iterations iils without any improvements to the best solution ilast, dividing the
latter by the former, ilast/iils.

The perturbation procedure attempts to escape local optima (l. 19) by performing either a random
relocation or an exchange operation with a predefined probability αils for a total number of ZA times.
This random relocation moves a request to a feasible position in another route, which is again chosen
randomly: the exchange operations randomly select two requests in distinct routes and attempt to
insert them in the other routes at a random feasible location.

3.2.3. Ruin-and-recreate procedure

The core component of our algorithm follows the R&R approach (Schrimpf et al. 2000). In each
iteration, parts of the solution are ruined (l. 4) by removing requests and then recreated (l. 5) by
reinserting the unassigned requests again in a cost-improving manner. We follow the implementation
of the slack-inducing string removal approach from Christiaens & Vanden Berghe (2020). Herein,
the ruin operator is an adjacent string removal operator, which selects an assigned request randomly
and then iteratively removes sequences of visits from routes containing related requests to introduce
slack for potentially better re-insertions. The recreate operator is a variant of a simple greedy best

15

Figure 3: Example of a run of the recombination procedure.

c1 p1 p2

p3 p4

p5 p6

p7 p8

d1 d2

d3 d4

d5 d6

d8 d7

c2

c3

c4

c1 p1 p2

p3

p4p5

p6

p7 p8

d1 d2

d3

d4d5

d6

d8 d7

c2

c3

c4

c1
b1

b2 b3

b4 b5

b6

c2

c3

c4

σ1

σ2

z z∗

H

(a) Partial solutions σ1 and σ2.

(b) Auxiliary graph G̃ with the k-dSPP arcs in
solid black.

(c) Resulting recombined
complete solution.

insertion approach. Unassigned requests are sorted and then sequentially inserted to their best
position in any route. A so-called blink mechanic adds diversity to this approach, wherein insertion
positions may be skipped with a slight chance. We modified this approach to test the insertion of
at most 40 requests per operator call to reduce the computational runtime.

Finally, the R&R procedure stops after a predefined number of MA iterations has been performed.
In the following, we detail the operators and intensification methods applied.

Algorithm 2: Ruin and Recreate
Input: Feasible solution σ; Maximum iterations MA; Inital acceptance threshold T ;

Theshold decrement value Tdec

1 σ′ ← σ;
2 T ← T init;
3 for i← 1 to MA do
4 σ′′ ← ruin(σ′);
5 σ′′ ← recreate(σ′′);
6 σ, σ′ ← accept_solution(σ, σ′, σ′′, T);
7 T ← T − Tdec;

8 return σ

Ruin: Adjacent string removal. The ruin operator starts by selecting a request at random, which
we refer to as r∗. Let R(r∗) be a sorted set of related requests of r∗, including r∗, and let Assign(ri)

be the current vehicle assignment of the respective pickup node of ri. For every ri ∈ R(r∗), the
algorithm selects a consecutive sequence of ks visits from route Assign(ri) and either a) and removes
the corresponding requests (called split), or b) selects a substring ϑ̄ ⊂ ϑ, which is ignored, and
remove the requests of the remaining consecutive string (called split-string). This process continues
with the following requests, skipping routes already modified and terminating if a certain threshold
of routes ks has been considered.

Both the number of strings to remove ks and the length of the string lϑ are randomly chosen from
a uniform distribution. We bound them using two parameters: i) an average number of nodes to

16

remove c̄, and ii) a maximum number of removed strings Lmax, using the following equations

ks =

⌊
U(1, 4c̄

1 + lmax
s

− 1)

⌋
(3.17)

lϑ = ⌊U(1,min{|ϑ| , lmax
s })⌋ (3.18)

where, lmax
s = min{Lmax,

∣∣ϑ ∈ K∣∣} holds the maximum string cardinality, which is the minimum of
the parameter Lmax and the average cardinality of the current routes. We use c̄ = 15 and Lmax = 10

as identified in our parameter tuning (see Appendix B).

We randomly perform the split with probability αr&r = 0.75, or split-string sub-procedure oth-
erwise, aiming to remove lϑ nodes. The split procedure selects a consecutive string of nodes, which
are removed. In split-string, we first calculate the length of the substring m, where lϑ +m ≤ |ϑ|.
We start with m = 1 and increment m by one with probability βr&r = 0.10 until it has either not
been incremented or reached a maximum of |ϑ|− lϑ . After removal, we check whether requests were
only partially removed (either pickup or delivery node) and fully remove them from the solution.

Recreate: Greedy insertion with blinks. To recreate our solution, we use a greedy insertion
heuristic. The procedure sequentially tries to insert pickup-and-delivery-pairs, i.e., requests, to
their best possible positions, ensuring they satisfy the precedence constraint. Similar to Christiaens
& Vanden Berghe (2020), we ignore some insertion positions while searching for the best solution
with a low probability. These so-called blinks add randomness to the insertion procedure similar to
other noise-based methods from the literature, e.g., Ropke & Pisinger (2006).

The order in which requests are inserted is determined anew every time the procedure is called
using a weighted roulette-wheel selection. We use six different criteria (random, far, close, tw-length,
tw-start, tw-end) and their corresponding weights (6, 2, 1, 4, 2, 2) to order the unassigned requests
based on their related pickup nodes i) at random, ii) descending or iii) ascending by their distance
to the closest vehicle starting location, iv) ascending by the time window length, v) ascending by
the earliest start time, or vi) descending by the latest start time.

The routes are searched sequentially. First, routes already serving requests are considered. If
no insertion position is found – either because it cannot be inserted feasibly or was randomly
disregarded by the blinking mechanic – all currently empty routes are considered for insertion, and
one with the minimum additional cost is selected.

When traversing a route to look for a feasible insertion point, we consider insertion positions
by first considering the pickup node position and then testing all viable subsequent positions for
inserting the delivery node. By doing so in a lexicographical order, we can efficiently use the
preprocessed evaluation data EvalFw(i) and EvalBw(j), as follows.

When testing an insertion of request r = (i, j) after node i′ and before node j′ = Succ(i′), we
can use the preprocessed data defined in Section 3.2.1. Figure 4 shows the sequences after insertion
if done in a lexicographical manner. The corresponding concatenation operations are shown on the
right side using the preprocessed route data. We can observe that the first part of the sequence up

17

to but excluding the delivery node d is part of the following sequence. By reusing this data, we can
test all pickup-and-delivery positions efficiently in O(|ϑ|2).

Figure 4: Sequences considered when inserting request r = (p, d) between nodes i, j and the concate-
nation operations to evaluate them.

Sequence after insertion Evaluation using preprocessed data

ϑ′ = {. . . , i, p, d, j, j′, j′′ . . .} EvalFw(i′)⊕ p⊕ d⊕ EvalBw(j′)
ϑ′′ = {. . . , i, p, j, d, j′, j′′ . . .} EvalFw(i′)⊕ p⊕ j ⊕ d⊕ EvalBw(j′)
ϑ′′′ = {. . . , i, p, j, j′, d, j′′ . . .} EvalFw(i′)⊕ p⊕ j ⊕ j′ ⊕ d⊕ EvalBw(j′′)
...

Accepting solutions. During the search, we may allow a decrease in quality when accepting in-
cumbent solutions to balance exploration and intensification (l. 6). Herein, we follow the same
linear record-to-record approach described in Section 3.2.2. When encountering a better solution,
we always accept it and continue the search.

Intensification procedure. To support intensification, we perform an intra-route local search ap-
proach based on Balas & Simonetti (2001) to find efficient itineraries whenever we reach a new best
solution. Herein, a restricted neighborhood with visits up to a predefined number of positions, k,
from their current location can be exhaustively searched efficiently.

Let k be a positive integer and ϑ be a feasible initial route, where ϑ(u) denotes the position of
node u in route ϑ. The BS(k) neighborhood is defined as all permutations of visits π in ϑ, satisfying

π(u) < π(v) ∀u, v ∈ N : ϑ(u) + k ≤ ϑ(v) (3.19)

where π(u) denotes the position of node u in the permutated sequence. Equation (3.19) enforces
that permutations respect the maximum number of positions moved by any node, k, from their
original position in ϑ. Similar to Balas & Simonetti (2001) the search for the best permutation π

satisfying (3.19) reduces to a shortest path problem on an auxiliary acyclic graph G∗ = (V ∗, E∗).
This graph is arranged into layers so that only successive layers are connected by arcs. There are
2 |R| + 2 layers required at maximum. The first layer and last correspond to the departure of a
vehicle from its starting location, and a dummy node represents the end of the route. The other
layers correspond to the 2 |R| visits in π. Each layer contains multiple nodes representing distinct
states of anticipated and delayed visits to locations in relation to ϑ. More specifically, each node in
V ∗ represents a quadruplet (i, i+ j, S−(ϑ, i), S+(ϑ, i)), where i is the current position in π; j is the
offset from the current location, which visit allocated to position i in π, such that π(i) = ϑ(i+ j);
S−(ϑ, i) is the set of visits that are allocated at position i or later in ϑ and allocated at position i

or before in π; and, finally, S+(ϑ, i) is the set of visits allocated before position i in ϑ that will be
allocated at position i or after in π.

18

Figure 5: Graph G∗ with k = 3 and ϑ = {v, p1, p2, d1, p3, d2, d3} (Nodes contain the corresponding
pickup or delivery node for visualization). Arcs in black show the path of permutation
π = {v, p1, d1, p3, p2, d3, d2}. Note that the dashed arc from Layer 1, Node 1 to Layer 2, Node
4 is invalid as the resulting sequence would violate the precedence constraint.

1

1: (i,∅,∅,[1,2,4])

ϑ

2: (i+1,∅,∅,[3,5])

3: (i-1,{0},{-1},[1,2,4])

4: (i+2,∅,∅,[6,7])

5: (i+1,{0},{-1},[8])

6: (i-1,{1},{-1},[3,5])

7: (i,{1},{-1},[8])

8: (i-2,{0},{-2},[1,2,4])

Layers: 2 4 5 6 7 8 . . .

v

v

p1 p2 d1 p3 d2 d3

p1 p2 d1 p3 d2 d3 v̄

p2 d1 p3 d2 d3

p1 p2 d1 p3 d2

d1 p3 d2 d2

p2 d1 p3 d2 d3

p1 p2 d1 p3 d2

p1 p2 d1 p3 d2 d3

p1 p2 d1 p3

3

Observe that S−(ϑ, i) and S+(ϑ, i) provide enough information to restrict the search to solutions
satisfying Constraints (3.19), by restricting the search to nodes such that all visits in S+(ϑ, i) are
located in no more than k positions earlier than v in ϑ. The precedence constraint can be trivially
checked by maintaining the information of allocated pickup nodes in each node and prohibiting
traversing invalid arcs.

Figure 5 shows G∗ on a simple example with three requests, starting with route ϑ =

{v, p1, p2, d1, p3, d2, d3} and k = 3. Without considering capacity or time window constraints,
finding the shortest path in this graph can be done in O(k22k−2|ϑ|) time. Note that graph G∗ need
only to be built once – requiring O(k2k−2n) space – and can be reused. Furthermore, by fixing k,
we obtain a polynomial-time algorithm to locate the best permutation.

Time window constraints cannot be included in the graph structure and need to be checked
during the search, rendering the problem of finding the shortest path with resource constraints.
This problem is NP-hard (Irnich & Desaulniers 2005) and requires a labeling algorithm that no
longer runs in polynomial time. Each vertex in the graph now may contain multiple labels, each
representing a non-dominated path through the graph G∗. We reuse the evaluation mechanics from
Section 3.2.1 to define a label L(v∗, ϑ′) = (C(ϑ′), qsum(ϑ

′), qmax(ϑ
′), Tt(ϑ

′), Tec(ϑ
′), Tls(ϑ

′)), where
v∗ is the corresponding vertex in G∗ and ϑ the sequence of visits reaching and including the node
added at v∗. Note that each label at any vertex v∗ visited the same nodes in N but in a different
order.

19

When extending a label L to a compatible successor, we first check whether the new sequence
is feasible regarding the capacity and time window constraint. If so, we create a new label for the
extended sequence, add it to the corresponding label set, and perform a dominance check. Given
two labels L1(v∗, ϑ1) and L2(v∗, ϑ2), we say L1 dominates L2 if all the following hold:

C(ϑ1) ≤ C(ϑ2) (3.20)

Tec(ϑ
1) ≤ Tec(ϑ

2) (3.21)

While Equation (3.20) ensures that we keep the lowest cost label, 3.21 ensures that a label where
we arrive earlier stays as well, as further extensions may invalidate labels with later arrivals due to
violations in the time window constraint. As the number of labels per vertex can grow exponentially
due to the potential trade-off in cost and time, we limit the number to only consider the four least-
cost labels. Note that this adaption may lead to searches terminating without finding any feasible
solution.

4. Experimental Design

In this section, we first introduce our case-study data and instances. We then generate mid-sized
benchmark instances for our algorithmic component analysis.

We implemented the algorithms presented in Section 3 in the Rust programming language, com-
piled using rustc version 1.70 in release mode and with link-time optimization. The experiments
were conducted on a cluster setup consisting of Intel i9-9900 processors with 16 cores running at
3.10 GHz and 64GB RAM, using Ubuntu 20.04 LTS operating system. We limit our runs to four
cores and 8GB of RAM to allow conducting our experiments in parallel. Furthermore, we run
experiments with five different seeds to reduce the probability of outliers.

The source code, results, and documentation on building and running the algorithm are available
online at https://github.com/tumBAIS/LargeScalePDPTW.

4.1. Case-study instances

One of the largest and most regularly used data sources in the literature is the data from the NYC
Taxi and Limousine Commission (New York City Taxi and Limousine Commission 2015), which
provides historical taxi trip data. We use a preprocessed version of these trip data by Jungel et al.
(2023), available online at https : / / github . com/ tumBAIS/ML- CO- pipeline - AMoD- control. This data
includes origin and destination location information as well as timestamps. We use OpenStreetMap
(OSM) network data to map the trip data and calculate travel time and distances, assuming an
average travel speed of 20 km/h. Pickup and dropoff locations are matched to the nearest node of
the street network (see Figure 6a). The distance and travel time matrix is preprocessed once for
the whole network using an all-pair shortest path algorithm.

Figure 6b shows the 10-minute rolling average of trips arriving throughout the day in our sample
week, spanning January 5th to January 11th in 2015. We observe similar patterns for weekdays

https://github.com/tumBAIS/LargeScalePDPTW
https://github.com/tumBAIS/ML-CO-pipeline-AMoD-control

20

Figure 6: New York City trip and network data.

(a) New York City street network from
OSM with pickups and dropoff
points marked in red and blue, re-
spectively.

0 2 4 6 8 10 12 14 16 18 20 22 24

0

200

400

Time of day (h)

R
eq

ue
st

s
ar

ri
vi

ng

Mon
Tue
Wed
Thu
Fri
Sat
Sun

(b) Arriving trips per minute during the sample week (10-
minute rolling average). Selected time frames are high-
lighted in green.

(Mon-Fri) and diverging patterns for the weekend days (Sat, Son), e.g., at 2 a.m. For this reason,
we generate our large-scale instances only for weekdays and extract trip data for six distinct time
frames for one hour each: night (2-3 a.m.), early morning (6-7 a.m.), late morning (10-11 a.m.),
afternoon (2-3 p.m.), late afternoon (6-7 p.m.), late evening (10-11 p.m.).

Requests are generated from the trip data of a given day and time frame. We use the dropoff
time of the trip data as the fixed point and calculate the corresponding (earliest) pickup time based
on the direct travel time, i.e., ep = ed − tpd . The latest begin-of-service times lp, ld are implicitly
defined by the buffer δ.

Vehicles start at random trip destinations, sampled from the full data set. Capacities of vehicles
are set to three requests when pooling and one for taxi operations. We consider a base scenario
with a fleet of 1000 vehicles. Table 1 shows the number of requests in the generated instances.

Table 1: Number of requests for the instances generated from the NYC data set.

Date Day 2-3h 6-7h 10-11h 14-15h 18-19h 22-23h

2015-01-05 Mon. 1.385 6.742 11.457 13.094 18.736 10.070
2015-01-06 Tue. 1.035 7.085 11.922 13.441 19.490 12.150
2015-01-05 Wed. 1.669 7.296 14.086 15.256 21.375 15.633
2015-01-08 Thu. 1.815 7.705 15.126 15.212 21.170 17.115
2015-01-09 Fri. 2.869 6.878 13.552 14.820 21.222 18.691

Our experiments are designed to capture the marginal benefits of transitioning from classic taxi
operations to flexible ride-pooling offerings; see Figure 7. In the first setting (A), we do not allow
any deviation from the desired pickup and dropoff time, emulating the current operations of taxi
fleets. Nevertheless, we consider ride-pooling in this setting to identify (if any) on-route pooling
opportunities. In the second setting (B), we consider deviating from the desired dropoff time by

21

Figure 7: Time window settings considered in the case study (A: fixed pickup and dropoff; B: fixed
pickup, variable dropoff; C: variable pickup and dropoff).

pi di

t

tpidi

tpidi

tpidi
δ

δ

A

B

C

δ minutes, δ = {1, 2, 3, 4, 6, 8, 10, 12, 15, 20}. This does not impact taxi operations as the pickup
time is still fixed. However, ride-pooling operations may benefit from this increased flexibility,
allowing more requests to be served concurrently. In setting (C), which is the original problem
setting (see Section 2), we extend the time windows for pickup and dropoff, allowing for even more
flexibility on the operator side. For this setting, we conduct our experiments with taxi operations
and ride-pooling, as the former may also benefit from the flexibility.

Note that solutions found for a buffer setting δa are feasible for δb where δa < δb. We exploit
this property in our managerial experiments as follows. We start by solving the most restrictive
case of zero buffer (δ = 0) with a runtime of 8 hours for each day and time frame. All subsequent
settings with δ ≥ 0s are run for 4 hours but warm-started using the solution of the previous buffer
setting. With this approach, we avoid issues arising from the heuristic nature of the algorithm.
Note further, that for taxi operations with no flexibility, we only perform a single run per instance,
as the k-dSPP always finds the optimal solution in this setting.

4.2. Mid-sized benchmark set

We create two additional sets comprising mid-sized instances following the instance generation
protocol detailed in Section 4.1 – one for our computational study comparing the sequential and
integrated approach and one for algorithmic tuning and analysis. In both cases, we consider a
subset of requests for the same time horizon of one hour. To ensure the temporal properties of
the large-scale instances are retained, we do not select a subset of requests at random but equally
distanced.

Our first set, Mid25, comprises the period 18-19h only, where we select 25% of the original
requests. These instances comprise around 5000 requests. Here, the aim is to compare the sequential,
integrated, and combined approaches on high-demand instances. We consider buffer values from
δ = 1, . . . , 6 minutes to analyze their performances on varying degrees of freedom. Furthermore, we
compare three fleet size configurations: a) a low availability setting with 200 vehicles, b) availability
of 500 vehicles, where we have roughly one vehicle per 10 requests, and c) high availability of 800
vehicles.

22

The second set is created for analysis and tuning of the metaheuristic approach. For set Mid10,
we select 10% of the original requests and omit the early morning periods of 2–3 a.m. and 6–7 a.m.
due to their small size. We consider all buffer settings as in the large instances and generate three
different fleet size configurations with 100, 200, and 300 vehicles, respectively. From this setting,
we randomly select one instance per day, resulting in 18 instances in total.

5. Results

In the following, we discuss our numerical results. First, we focus on a pure algorithmic perspective
and compare the performance of our proposed algorithms: the sequential matheuristic (MATH),
the iterated local search that takes integrated decisions (ILS), and our ILS when using the solution
of MATH as a warmstart (COMB). Second, we compare our developed algorithm against a known
benchmark data set from the literature that provides instances for the PDPTW in a medium to
large-scale ride-hailing context. Finally, we use our best-performing algorithm to derive managerial
insights for the presented large-scale case study.

5.1. Computational Analyses

Figure 8 shows the performance of MATH, ILS, and COMB over the set of mid-sized instances Mid25

with 25% of the total requests for different fleet sizes. As can be seen, ILS and COMB outperform
MATH on our primary objective, which is to minimize the number of unassigned requests, see
Figure 8a. Figure 8b shows our secondary objective which is to minimize the total traveled distance.
Here, it is not possible to provide a direct comparison as the total traveled distance could only be
compared for the same primary objective values. However, it is worth notifying that COMB, which
performs equal or better than ILS on our primary objective, also outperforms ILS on the secondary
objective.

Beyond these objective-focused observations, we identify two additional effects: in settings with
an abundant supply of vehicles, all algorithms yield a similar performance on the primary objec-
tive. As soon as vehicle availability becomes a bottleneck, we observe a significant performance
difference between the studied algorithms. Analyzing Figure 8a, we further observe that the share
of unassigned requests remains too high from a practical perspective as an operator would aim
at expanding its fleet size to provide a better service level. With these observations in mind, we
focus the remaining discussions on the setting with a fleet size of 500 vehicles as i) the setting with
800 vehicles does not allow for meaningful algorithmic studies as it compensates bad algorithmic
decisions by abundant vehicle supply, and ii) the setting with 200 vehicles leads to unrealistically
high rates of unserved requests from a practitioners perspective.

Figure 9 and 10 show the search progress over the runtime for each buffer setting δ = 1, . . . , 6. The
result of MATH, which finishes in a few minutes, is shown as a horizontal line for comparison. The
combined approach, COMB, is warm-started with the solution from MATH. In terms of unassigned
requests, we observe that the integrated metaheuristic ILS reaches and improves the solution of

23

Figure 8: Computational study final results per fleet size.

200 500 800

0

500

1,000

1,500

2,000

2,500

3,000

Fleet

U
na

ss
ig

ne
d

re
qu

es
ts
U

MATH
ILS
COMB

(a) Requests not served by the fleet.

200 500 800

4,000

6,000

8,000

10,000

Fleet

T
ot

al
di

st
an

ce
[k

m
]

MATH
ILS
COMB

(b) Total distance traveled by the fleet.

MATH in at most 10 minutes on average. COMB is able to improve on the sequential solution and
produces better results than ILS approach in the runtime of one hour. However, the difference is
getting small with higher buffer settings δ ≥ 3. In any case, COMB converges faster to its final
value then ILS.

Focusing on the total distance traveled, we observe an increase during the search in COMB
when started with the solution from MATH. This effect correlates with a decrease in unassigned
requests; however, we see stagnation after a few minutes, i.e., even though improvements in terms of
unassigned requests are found, the total distance traveled by the fleet does not increase significantly.
This implies that the metaheuristic is able to find more efficient routing decisions, which is especially
visible for higher buffer settings, e.g., δ ≥ 5, where the total distance almost reaches initial solution
found by MATH. Remarkably, the COMB approach succeeds in serving more customers at a lower
totaled traveled distance compared to the ILS approach.

Figure 11 shows the final solutions for the instances with 500 vehicles, separated by the buffer
length δ. We see a similar performance of ILS and COMB for unassigned requests. MATH, however,
seems to stagnate with higher buffer settings. In the case of total distance traveled by the fleet, we
can see that MATH produces solutions with less distance traveled. This is not surprising, as these
solutions serve less requests than the solutions found by the metaheuristic. Furthermore, we can
observe that the best performing COMB approach does tend to produce solutions with not only
more requests served but less total distance traveled by the fleet.

In summary, we see MATH produces good solutions for scenarios with large fleets, where most
of the requests can be served. In these cases, improving these solutions using our metaheuristic
(COMB) may not result in significant improvements, especially with higher buffer settings (for

24

Figure 9: Search progress (best solution) over time regarding unassigned requests per buffer setting
for 500 vehicles.

0

300

600

900

1,200

δ = 1 δ = 2 δ = 3

MATH
ILS
COMB

0 20 40 60
0

300

600

900

1,200

t [m]

U
na

ss
ig

ne
d

re
qu

es
ts

|U
|

δ = 4

0 20 40 60
t [m]

δ = 5

0 20 40 60
t [m]

δ = 6

Figure 10: Search progress (best solution) over time regarding total distance traveled per buffer setting
for 500 vehicles.

7,000

7,500

8,000

8,500

δ = 1 δ = 2 δ = 3

0 20 40 60

7,000

7,500

8,000

8,500

t [m]

T
ot

al
di

st
an

ce
[k

m
]

δ = 4

0 20 40 60
t [m]

δ = 5

0 20 40 60
t [m]

δ = 6

MATH
ILS
COMB

more details, see Appendix A). For the under-saturated case, where the fleet is sparse, we can see
that solutions from MATH are outperformed by ILS. Comparing the results of the metaheuristic
ILS with the default initial solution generation and warm-started with the solution by MATH, i.e.,
COMB, we can see that the approach benefit from a good initial solution, resulting in better final
solutions – 6.8% fewer unassigned requests on average – after a time limit of just one hour.

25

Figure 11: Computational study final results per buffer length.

1 2 3 4 5 6

0

200

400

600

800

1,000

Buffer δ

U
na

ss
ig

ne
d

re
qu

es
ts
|U
|

MATH
ILS
COMB

(a) Requests not served by the fleet.

1 2 3 4 5 6

7,000

7,200

7,400

7,600

7,800

8,000

Buffer δ

T
ot

al
di

st
an

ce
[k

m
]

MATH
ILS
COMB

(b) Total distance traveled by the fleet.

6. PDPTW benchmark

We evaluate the efficacy of our approach by comparing its performance solving PDPTW instances.
Sartori & Buriol (2020) recently created a new benchmark based on real-world street network data
of Barcelona, Berlin, New York City, and Porto Alegre, ranging from 100 to 5000 nodes (50 to 2500
requests). Each consists of 25 instances, 5-7 per city. Current best-known solutions are curated by
the benchmark creator and available online at https://github.com/cssartori/pdptw-instances.

The classic PDPTW uses a hierarchical objective, where we prioritize minimizing the number of
vehicles used before the total distance traveled. Furthermore, no unassigned requests are allowed in a
feasible solution. Herein, we include a fleet minimization component to our ILS-based metaheuristic
approach. We refer to Appendix C for details.

Note that we limit our discussions to the benchmark of Sartori & Buriol (2020). In a preliminary
analysis, we looked at the structure of the best solutions produced in the literature for the Li & Lim
(2001) and Sartori & Buriol (2020) benchmarks. We assessed their similarity to our large-scale ride-
sharing case (see Appendix D). Our findings show that the classical Li & Lim (2001) instances tend
to have a higher tendency to result in routing decisions with long and sometimes route-spanning
blocks. In contrast, solutions for the Sartori & Buriol (2020) benchmark exhibit a higher rate of
blocks assigned to routes. This property overlaps with the solutions resulting from our large-scale
ride-sharing instances. To this end, we focused on the Sartori & Buriol (2020) benchmark instances
for our comparative analysis.

Table 2 compares our results with the literature for the Sartori & Buriol (2020) benchmark.
As is usually done in the PDPTW literature, we report our results as accumulated values (the

https://github.com/cssartori/pdptw-instances

26

number of vehicles and total cost, i.e., distance traveled) per instance size. Note that the best-
known solutions reported on https ://github.com/cssartori/pdptw- instances include unpublished work
without any additional information regarding runtime and hardware, and a recent contribution by
Vadseth et al. (2023), which improved 203 instances by warm-starting their approach using the
previously best-known solution. To our knowledge, the only published results produced without
using best-known solutions are from Sartori & Buriol (2020).

Our results show the competitiveness of our approach, especially for larger instance sizes, where
we improved on the previous results by 3.1% in terms of the cumulative number of vehicles. Fur-
thermore, we contribute to the research by providing 107 new best solutions, with 90 reducing the
number of vehicles.

Table 2: Sartori & Buriol (2020) benchmark results (cumulative values for the number of vehicles and
cost). We mark results in bold if they improve the results reported by Sartori & Buriol
(2020), and underline results improving on the previously best-known solutions.

BKS SB* HS* HS**

Instance Veh Cost Veh Cost Veh Cost Veh Cost

n100 164 25.264 164 25.388 164 25.349 164 25.326
n200 332 46.617 337 46.587 332 46.846 332 46.686
n400 585 85.277 589 85.887 589 87.604 587 86.834
n600 828 122.156 840 122.130 838 126.081 834 124.996
n800 1134 163.806 1150 163.341 1147 170.952 1147 169.756
n1000 1383 222.846 1401 226.228 1389 232.096 1385 230.305
n1500 2078 297.367 2115 303.478 2082 313.057 2076 311.215
n2000 2861 412.036 2924 425.343 2902 438.839 2886 433.970
n2500 3135 493.731 3201 506.436 3149 519.504 3128 513.210
n3000 4137 583.567 4276 625.072 4130 614.621 4105 605.405
n4000 5534 761.630 5944 866.430 5605 820.816 5541 796.389
n5000 6262 918.989 6802 1.089.677 6443 1.029.592 6335 982.320
BKS: best-known solutions from https://github.com/cssartori/pdptw-instances
(last-access: 2024-04-26); SB: Sartori & Buriol (2020); HS: this work

* time limit of 5, 15, 15, 30, and 60 minutes for n100, n200, n400, n600, and n800–n5000

** extended time limit of 15, 45, 45, 90, and 180 minutes for n100, n200, n400, n600, and n800–n5000

6.1. Managerial Analyses

In the following, we use our ILS to study the large-scale instances introduced in Section 4.1 from
a managerial perspective. In this context, we discuss the impact of fleet-sizing and delays incurred
on the customer side.

Comparison of fleet variations to ride-sharing flexibility. We evaluate the benefits of introducing
flexibility for the service level by comparing our results to a commonly used – although expensive –
alternative: increasing the fleet size. We focus on a single day and consider fleets of size 1000 to 2000

https://github.com/cssartori/pdptw-instances
https://github.com/cssartori/pdptw-instances

27

vehicles, with 200-vehicle increments. Figure 12 shows the corresponding results for four scenarios:
a) the aforementioned fleet increase of the classic taxi service, b) taxi operations with possible
delayed pickup (and delivery), c) ride-sharing with a fixed pickup time, but variable delivery, and
d) ride-sharing with flexible pickup and delivery time. We observe a slower growth in service level
when the fleet size increases, whereas increased allowed delay introduces more considerable gains
with lower values and diminishing increases with larger values. For the most flexible option (ride-

Figure 12: Change in service level comparison between fleet size and flexibility (T (taxi): single re-
quests; RS (ride-sharing): up to three requests / B: fixed pickup, variable dropoff; C vari-
able pickup and dropoff).

10 14 18 22

50

60

70

80

90

100

Hour of Day (start)

Se
rv

ic
e

le
ve

l(
%

)

Increasing fleet size

Fleet size
1000 1200
1400 1600
1800 2000

10 14 18 22

Hour of Day (start)
10 14 18 22

Hour of Day (start)

Increasing flexibilty (left: T/C, mid: RS/B, right: RS/C)

Buffer δ 0 1 2 3 4 5
6 8 10 12 15 20

10 14 18 22

Hour of Day (start)

sharing with variable pickup and delivery time up to δ minutes), we see that even a small buffer of
two minutes allows a similar service level than an increase of the fleet by 600 additional vehicles for
the time frame starting at 6 p.m. (18h).

Buffer effects on ride-sharing operations. We now continue with the most flexible case, i.e., ride-
sharing with increasingly flexible pickup and delivery times. Figure 13 shows the service level – the
percentage of requests served by the fleet – for increasing buffer levels δ, i.e., increasing flexibility
of arrival delays. Given the fleet limitation of 1000 vehicles, not all requests can be served for dense
time-frames, e.g., 6 p.m. (18h). We can see a larger relative gain in service level with smaller
allowed delays (buffer). Even a two-minute delay allows for an increase from approximately 60 %
to 80%, as shown for 10 a.m. (10h) and 2 p.m. (14h). We further observe a larger spread in the
service level for the latest time frame at 10 p.m. (22h). This effect originates primarily from the

28

results of the Thursday and Friday instances, which tend to compose of more a higher frequency of
requests compared to Monday to Wednesday.

Figure 13: Service level changes with increasing allowed delay (buffer) for weekdays per hour of the
day with a fixed fleet of 1000 vehicles.

10 14 18 22

50

60

70

80

90

100

Hour of Day (start)

Se
rv

ic
e

le
ve

l(
%

)

Buffer δ

0
1
2
3
4
5
6
8
10
12
15
20

Figure 14 shows the distance traveled per request served to increase the flexibility of arrival delays.
We can observe, as expected, that in the lower density time-frames at 10 a.m. (10h) and 2 p.m.
(14h), the distance traveled per request served is larger than for the dense evening time frame at
6 p.m. Furthermore, we see an increase in average distance traveled when introducing flexibility;
however, this effect does not necessarily continue but stagnates after the 2-minute allowed delay
(see 18h) or even decreases for the early time frame (10h). Comparing the distance progression
with the service level changes in Figure 13, we can see no clear correlation between those indicators,
especially for the dense time frame, with roughly similar average distance values of 800 meters for
2 to 20-minute flexibility, with an increase of 10 % of service level for the same range.

Figure 15 shows the effects of introducing ride-sharing and the induced allowed delay on the
experienced delay of customers. The average experienced delay is always below half the permitted
delay and settles at around 6 minutes for the highest delay setting of 20 minutes. For the high-
density time frames at 6 p.m., we see a lower increase in experience delay with higher permitted
delay settings.

29

Figure 14: Distance traveled per request served with increasing allowed delay (buffer) for weekdays
per hour of the day with a fixed fleet of 1000 vehicles.

10 14 18 22

800

1,000

1,200

1,400

1,600

Hour of Day (start)

D
is

ta
nc

e
tr

av
el

ed
(k

m
)

/
fu

lfi
lle

d
re

qu
es

t

Buffer δ

0
1
2
3
4
5
6
8
10
12
15
20

Figure 15: Average delay per customer due to introduced flexibility (buffer) for weekdays and grouped
by hour of day with a fixed fleet of 1000 vehicles.

10 14 18 22
0

1

2

3

4

5

6

Hour of Day (start)

A
ve

ra
ge

de
la

y
(m

in
)

Buffer δ

0
1
2
3
4
5
6
8
10
12
15
20

7. Conclusion

In this paper, we presented an algorithmic framework to solve very large-scale instances of an
PDPTW variant arising in the context of urban ride-sharing systems. Herein, we developed three
approaches: i) a decomposition-based matheuristic, which can solve instances with up to 5000

30

requests in a few minutes; ii) a ILS-based metaheuristic to handle very large-scale instances with
more than 20 thousand requests; and iii) a hybrid approach, where we warm-start the metaheuristic
with the solution from the matheuristic.

We conducted a thorough computational study using this algorithmic framework to derive insights
into the characteristics of the proposed algorithms. We saw that the metaheuristic improved on the
matheuristic within a time limit of 15 minutes. The warm-started hybrid approach produced better
results, with up to 6.8% fewer unassigned requests on average. Next, we compared our metaheuristic
approach to results for the PDPTW benchmark data set comprising instances with up to 2500
requests. The results showed the algorithm’s competitiveness and found 107 new best solutions,
with 90 solutions reducing the number of vehicles. Finally, we applied our algorithm to very large-
scale instances with up to 21375 requests. Our results show that by requesting passengers to allow
flexibility in their delivery by just 2 minutes, the mobility provider can operate on a comparative
service level as with a 50% larger fleet. Additionally, on average, the passengers would only delay
their arrival by less than a minute.

Future research may expand on the instances’ scale by using only a subset of trips but expanding
the time frame to multiple hours or a full day. Herein, new challenges for the decomposition approach
may arise regarding split and recombination policy.

Acknowledgements

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - Project number 449261765 (BalSAM). This support is gratefully acknowledged.

References
Al-Chami, Z., Manier, H., & Manier, M.-A. (2016). New model for a variant of pick up and delivery problem. In

IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 1708–1713).
Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand high-capacity ride-sharing

via dynamic trip-vehicle assignment. Proceedings of the National Academy of Sciences, 3 , 462–467.
Balas, E., & Simonetti, N. (2001). Linear time dynamic-programming algorithms for new classes of restricted tsps:

A computational study. INFORMS Journal on Computing , 13 , 56–75. doi:10.1287/ijoc.13.1.56.9748.

Baldacci, R., Bartolini, E., & Mingozzi, A. (2011). An exact algorithm for the pickup and delivery problem with time
windows. Operations Research, 59 , 414–426.

Battarra, M., Cordeau, J.-F., & Iori, M. (2014). Pickup-and-delivery problems for goods transportation. In D. Vigo,
& P. Toth (Eds.), Vehicle Routing: Problems, Methods, and Applications chapter 6. (pp. 161–191). Society for
Industrial and Applied Mathematics. (2nd ed.).

Bettinelli, A., Ceselli, A., & Righini, G. (2014). A branch-and-price algorithm for the multi-depot heterogeneous-fleet
pickup and delivery problem with soft time windows. Mathematical Programming Computation, 6 , 171–197.

Bulhões, T., Subramanian, A., Güneş, E., & Laporte, G. (2018). The static bike relocation problem with multiple
vehicles and visits. European Journal of Operational Research, 264 , 508–523.

Christiaens, J., & Vanden Berghe, G. (2020). Slack induction by string removals for vehicle routing problems.
Transportation Science, 54 , 417–433.

Curtois, T., Landa-Silva, D., Qu, Y., & Laesanklang, W. (2018). Large neighbourhood search with adaptive guided
ejection search for the pickup and delivery problem with time windows. EURO Journal on Transportation and
Logistics, 7 , 151–192.

http://dx.doi.org/10.1287/ijoc.13.1.56.9748

31

Doerner, K., & Salazar-González, J. (2014). Pickup-and-delivery problems for people transportation. In D. Vigo, &
P. Toth (Eds.), Vehicle Routing: Problems, Methods, and Applications (pp. 193–212). Society for Industrial
and Applied Mathematics. (2nd ed.).

Dumas, Y., Desrosiers, J., & Soumis, F. (1991). The pickup and delivery problem with time windows. European
Journal of Operational Research, 54 , 7–22.

Enders, T., Harrison, J., Pavone, M., & Schiffer, M. (2023). Hybrid multi-agent deep reinforcement learning for
autonomous mobility on demand systems. In 5th Annual Conference on Learning for Dynamics and Control,.

Enders, T., Harrison, J., Pavone, M., & Schiffer, M. (2024). Hybrid multi-agent deep reinforcement learning for
autonomous mobility on demand systems. arXiv preprint arXiv:2212.07313 , .

Goeke, D. (2019). Granular tabu search for the pickup and delivery problem with time windows and electric vehicles.
European Journal of Operational Research, 278 , 821–836.

Gschwind, T., Irnich, S., Rothenbächer, A., & Tilk, C. (2018). Bidirectional labeling in column-generation algorithms
for pickup-and-delivery problems. European Journal of Operational Research, 266 , 521–530.

Iori, M., & Martello, S. (2010). Routing problems with loading constraints. TOP , 18 , 4–27.
Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints. In G. Desaulniers, J. Desrosiers,

& M. M. Solomon (Eds.), Column Generation chapter 2. (pp. 33–65). Boston, MA: Springer US.
Jungel, K., Parmentier, A., Schiffer, M., & Vidal, T. (2023). Learning-based online optimization for autonomous

mobility-on-demand fleet control. arXiv:2302.03963 [math.OC], .
Li, H., & Lim, A. (2001). A metaheuristic for the pickup and delivery problem with time windows. International

Journal on Artificial Intelligence Tools, 12 , 173–186.
Malheiros, I., Ramalho, R., Passeti, B., Bulhões, T., & Subramanian, A. (2021). A hybrid algorithm for the multi-

depot heterogeneous dial-a-ride problem. Computers & Operations Research, 129 , 105196.
Nagata, Y., & Kobayashi, S. (2010). Guided ejection search for the pickup and delivery problem with time windows. In

Evolutionary Computation in Combinatorial Optimization: 10th European Conference, EvoCOP 2010, Istanbul,
Turkey, April 7-9, 2010. Proceedings 10 (pp. 202–213). Springer.

Nanry, W., & J.W., B. (2000). Solving the pickup and delivery problem with time windows using reactive tabu
search. Transportation Research Part B: Methodological , 34 , 107–121.

Nasiri, A., Keedwell, E., Dorne, R., Kern, M., & Owusu, G. (2022). A hyper-heuristic approach for the PDPTW. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 196–199). Association
for Computing Machinery.

New York City Taxi and Limousine Commission (2015). TLC Trip Record Data. https://www.nyc.gov/site/tlc/
about/tlc-trip-record-data.page.

Oh, S., Seshadri, R., Lima Azevedo, C., Kumar, N., Basak, K., & Ben-Akiva, M. (2020). Assessing the impacts of
automated mobility-on-demand through agent-based simulation: A study of singapore. Transportation Research
Part A: Policy and Practice, 138 , 367–388.

Pankratz, G. (2005). A grouping genetic algorithm for the pickup and delivery problem with time windows. OR
Spectrum, 27 , 21–41.

Parragh, S., Doerner, K., & Hartl, R. (2010). Variable neighborhood search for the dial-a-ride problem. Computers
& Operations Research, 77 , 58–71.

Pishue, B. (2023). 2022 INRIX Global Traffic Scorecard . Technical Report INRIX.
Raghavan, P., & Thomson, C. (1987). Randomized rounding. Combinatorica, 7 , 365–374.
Rist, Y., & Forbes, M. A. (2021). A new formulation for the dial-a-ride problem. Transportation Science, 55 ,

1113–1135.
Ropke, S., & Cordeau, J.-F. (2009). Branch and cut and price for the pickup and delivery problem with time windows.

Transportation Science, 43 , 267–286.
Ropke, S., Cordeau, J.-F., & Laporte, G. (2007). Models and branch-and-cut algorithms for pickup and delivery

problems with time windows. Networks, 49 , 258–272.
Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery problem

with time windows. Transportation Science, 40 , 455–472.
Salazar, M., Lanzetti, N., Rossi, F., Schiffer, M., & Pavone, M. (2019). Intermodal autonomous mobility-on-demand.

IEEE Transactions on Intelligent Transportation Systems, 21 , 3946–3960.
Santini, A., Ropke, S., & Hvattum, L. M. (2018). A comparison of acceptance criteria for the Adaptive Large

Neighbourhood Search metaheuristic. Journal of Heuristics, 24 , 783–815.

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

32

Sartori, C., & Buriol, L. (2020). A study on the pickup and delivery problem with time windows: Matheuristics and
new instances. Computers & Operations Research, 124 , 105065.

Savelsbergh, M., & Sol, M. (1995). The general pickup and delivery problem. Transportation Science, 29 , 17–29.
Savelsbergh, M., & Sol, M. (1998). Drive: Dynamic routing of independent vehicles. Operations Research, 46 ,

474–490.
Schiffer, M., Hiermann, G., Rüdel, F., & Walther, G. (2021). A polynomial-time algorithm for user-based relocation

in free-floating car sharing systems. Transportation Research Part B , 143 , 65–85.
Schrimpf, G., Schneider, J. J., Stamm-Wilbrandt, H., & Dueck, G. (2000). Record breaking optimization results

using the ruin and recreate principle. Journal of Computational Physics, 159 , 139–171.
Suurballe, J. W. (1974). Disjoint paths in a network. Networks, 4 , 125–145.
Vadseth, S. T., Andersson, H., Cordeau, J.-F., & Stålhane, M. (2023). Mixed integer programs to improve solutions

of vehicle routing problems with intra-route constraints. Preprint available at AXIOM Research Project , . URL:
http://www.axiomresearchproject.com/publications.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A hybrid genetic algorithm for multidepot
and periodic vehicle routing problems. Operations Research, 60 , 611–624.

http://www.axiomresearchproject.com/publications

33

Appendix A Computational study for the hypergraph matching

In Section 3.1, we described the best-performing hypergraph matching approach we found in our
research. In the following, we provide more details on the variations we tested, the experiments
conducted, and the results obtained. We start by introducing a simple greedy procedure for se-
lecting a matching. Next, we provide a weighted set partitioning (WSP) formulation based on the
WSP formulation from Section 1a. Next, we show the alternative fractional selection policy, based
on randomized rounding. Finally, we conclude this section by providing detailed results on the
performance of these approaches, which justifies the final selection for our matheuristic approach.

A.1 Greedy matching

We initially considered a naive approach to handle the matching process. Herein, we first simply
sort all hyperedges by one of the weight functions. Then, we traverse this list and pick the next best
item if none of the associated requests have been part of a previously selected hyperedge. Finally,
we stop if all requests are part of selected hyperedges, or we reach the end of the list.

A.2 Weighted set partitioning problem

A matching M for hypergraph H is defined as a subset of hyperedges M ⊂ E where requests are
only part of at most one hyperedge. To find M, we tested different approaches. Apart from the
greedy selection approach, we considered two two-step approaches. One is the formulation as a
WSC problem, as described in Section 3.1.2. In the other approach, we solve a continuous WSP
problem to select a subset of hyperedges that may be connected to the same request nodes, i.e., a
fractional matchingM. In a second step, we derive matchingM based on the solution of the WSP
using either a greedy selection procedure, or a randomized rounding approach.

We can formulate the WSP by replacing (3.6) from Section 3.1.2 with∑
ε∈E ′

arεxε = 1 ∀r ∈ R (A.1)

Note that in preliminary experiments we tested an ILP formulation, to avoid fractional solutions.
However, run times of over one hour turned out to be impractical, and the solutions obtained did
not considerable improve on the two-step approach.

Selection from fractional solution. When solving the relaxed WSC (WSP) problem, we need to
deal with fractional solution values. We test two strategies: a) a simple greedy selection procedure
(see Section 3.1 and b) a standard randomized rounding scheme.

The randomized rounding scheme follows the standard technique introduced by Raghavan &
Thomson (1987). Herein, a cover (i.e., a pooling option) is selected at random with a probability
defined by its fractional solution value. The resulting selection may cover requests multiple times.

34

We enforce non-overlapping pooling options by using a simple repair procedure, where the request
will be removed from all but one of the selected options.

Table 3: Summary of the proposed pooling selection procedures.

Components greedy WSCLP
greedy WSCLP

RR WSPLP
greedy WSPLP

RR

Greedy matching x
Set Covering x x

Set Partitioning x x
Greedy selection x x

Randomized rounding x x

A.3 Results

We test our approach on mid-sized instances, considering 25% of trips, for the high-volume time
frame of 18-19h. Our instances consist of approximately 5000 requests. Note that we preprocess the
request pooling options. This process requires several hours of computation, espacially for larger
settings of δ. For this reason, we limited δ ≤ 6. Furthermore, we do not report any results on a
setting of δ = 0, as the prepocessing showed that no pooling option with two or more requests could
be found.

In Table 4 we show the average results over all instances. These results indicated that the naive
greedy selection procedure outperforms the WSC and WSP approaches. Finally, Table 5–Table 11
show the results for each fleet size setting separately.

Table 4: Comparison of the matching approaches averaged over all fleet sizes (200, . . . , 800) buffer set-
tings δ = 1, . . . , 6 (U/Cost).

ω ρ greedy WSCLP
greedy WSCLP

RR WSPLP
greedy WSPLP

RR

ω1 1180.0/7194.355 1334.6/7385.635 1438.9/7467.493 1311.7/7341.306 1373.3/7466.447

ω4(ρ)

0.0 870.7/6838.231 890.7/6703.879 1018.5/7017.773 895.4/6708.495 1021.9/7040.573
0.1 871.4/6838.329 888.4/6701.300 1016.6/7012.572 894.0/6701.676 1014.9/7043.129
0.2 871.6/6836.022 887.2/6699.581 1014.8/7012.429 891.9/6699.279 1013.0/7031.272
0.3 873.1/6842.598 885.6/6701.048 1010.2/7009.539 890.6/6701.106 1008.7/7036.593
0.4 875.7/6845.000 882.9/6698.400 1003.1/7004.935 888.0/6699.360 1005.3/7041.258
0.5 883.1/6854.974 881.5/6701.853 1001.5/7009.856 886.8/6697.925 1001.9/7026.194
0.6 891.4/6878.164 879.6/6710.580 999.1/6996.288 883.8/6709.140 994.2/7028.833
0.7 908.0/6916.147 880.1/6713.553 993.5/6995.961 884.2/6715.881 995.3/7024.404
0.8 942.4/6968.142 881.7/6737.104 988.1/6990.832 886.1/6733.913 986.0/7020.154
0.9 1017.0/7097.965 891.5/6778.400 974.4/6984.691 890.2/6777.310 973.0/6992.534
1.0 1153.5/7254.055 1180.3/7196.074 1675.3/7336.007 1180.0/7194.355 1675.5/7335.932

Appendix B Parameter tuning

In this section, we detail our parameter tuning process for the metaheuristic approach presented
in Section 3.2. We conducted incremental experiments in a one-factor-at-a-time (OFAT) fashion

35

Table 5: Comparison of the matching approaches for the 200 vehicle instances, averaged over buffer
settings δ = 1, .., 6.

ω ρ greedy WSCLP
greedy WSCLP

RR WSPLP
greedy WSPLP

RR

ω1 2985.5/3278.944 3069.4/3322.791 3090.8/3361.338 3039.9/3322.971 3041.1/3351.332

ω4(ρ)

0.0 2489.9/3195.219 2620.8/3254.686 2685.7/3300.255 2648.5/3260.037 2717.7/3299.972
0.1 2490.0/3195.425 2618.0/3254.441 2684.3/3300.273 2647.2/3253.786 2714.2/3294.868
0.2 2490.4/3196.507 2618.0/3250.695 2683.0/3295.981 2644.9/3254.973 2710.3/3297.761
0.3 2492.7/3198.575 2615.7/3255.910 2682.9/3296.203 2642.3/3257.690 2708.6/3304.740
0.4 2497.5/3198.114 2610.7/3262.320 2675.2/3309.270 2640.8/3261.455 2703.8/3311.012
0.5 2505.7/3208.025 2608.4/3265.880 2676.0/3305.797 2638.6/3266.643 2702.4/3304.229
0.6 2522.3/3209.043 2608.3/3273.450 2674.5/3310.582 2636.7/3271.027 2696.7/3310.412
0.7 2555.1/3219.217 2611.4/3276.985 2676.4/3310.786 2639.7/3271.269 2703.4/3310.447
0.8 2605.6/3225.229 2616.3/3289.606 2676.7/3314.049 2639.7/3290.767 2698.2/3318.870
0.9 2714.2/3234.905 2630.3/3298.426 2675.4/3312.252 2645.4/3298.910 2691.4/3301.927
1.0 2914.1/3240.492 2970.8/3281.692 3214.6/3111.353 2965.2/3284.368 3213.6/3111.950

Table 6: Comparison of the matching approaches for the 300 vehicle instances, averaged over buffer
settings δ = 1, .., 6.

ω ρ greedy WSCLP
greedy WSCLP

RR WSPLP
greedy WSPLP

RR

ω1 2186.1/4818.741 2323.8/4870.416 2368.3/4922.043 2293.9/4867.301 2309.1/4917.445

ω4(ρ)

0.0 1640.0/4665.494 1749.3/4759.670 1856.7/4833.735 1777.8/4761.643 1887.0/4831.570
0.1 1640.7/4669.768 1745.1/4760.180 1855.1/4828.085 1775.4/4758.757 1879.9/4837.343
0.2 1642.3/4662.946 1744.3/4759.608 1849.6/4827.459 1772.2/4762.537 1875.3/4830.555
0.3 1643.1/4671.965 1744.5/4756.601 1847.8/4837.390 1771.1/4758.564 1875.2/4839.483
0.4 1649.1/4672.658 1738.6/4763.288 1840.5/4838.725 1768.1/4764.814 1870.4/4840.993
0.5 1660.9/4682.427 1736.5/4767.726 1839.8/4842.356 1767.2/4767.261 1863.7/4843.515
0.6 1678.0/4690.973 1735.8/4778.772 1837.8/4848.617 1763.5/4776.552 1858.2/4854.202
0.7 1708.5/4717.316 1737.7/4786.482 1834.3/4856.879 1765.9/4783.888 1866.1/4839.318
0.8 1765.5/4727.801 1741.4/4802.599 1833.3/4852.144 1767.2/4797.778 1855.3/4859.506
0.9 1889.9/4757.937 1757.0/4821.188 1825.3/4852.615 1769.7/4823.612 1843.0/4842.762
1.0 2127.1/4765.809 2173.0/4820.209 2549.8/4596.665 2167.0/4825.327 2548.5/4594.403

Table 7: Comparison of the matching approaches for the 400 vehicle instances, averaged over buffer
settings δ = 1, .., 6.

ω ρ greedy WSCLP
greedy WSCLP

RR WSPLP
greedy WSPLP

RR

ω1 1532.6/6201.295 1701.0/6266.906 1745.8/6400.404 1654.5/6267.748 1669.1/6392.717

ω4(ρ)

0.0 981.8/6068.406 1054.0/6138.428 1196.0/6270.627 1080.8/6143.080 1221.1/6276.299
0.1 980.9/6072.116 1050.9/6138.227 1192.8/6273.384 1077.8/6147.392 1216.0/6278.538
0.2 981.1/6073.267 1049.5/6134.004 1187.2/6277.110 1075.8/6145.362 1213.1/6268.704
0.3 984.0/6074.576 1046.2/6143.305 1185.3/6274.331 1073.8/6146.142 1208.2/6286.012
0.4 988.2/6080.514 1043.7/6142.247 1177.8/6274.005 1068.0/6157.526 1204.4/6284.090
0.5 1002.2/6083.441 1040.2/6152.210 1176.8/6271.122 1067.7/6150.915 1199.1/6281.223
0.6 1016.8/6099.991 1037.2/6166.595 1172.0/6281.990 1061.4/6171.651 1189.7/6290.304
0.7 1047.0/6119.708 1040.5/6163.533 1169.5/6277.818 1062.5/6170.538 1192.6/6286.092
0.8 1105.9/6130.786 1044.2/6184.225 1162.2/6290.867 1067.0/6184.524 1180.4/6306.789
0.9 1234.7/6162.225 1061.9/6215.387 1152.1/6293.486 1072.4/6226.208 1165.1/6296.625
1.0 1489.3/6165.207 1521.1/6206.850 1983.5/6069.544 1515.6/6212.933 1982.3/6064.973

36

Table 8: Comparison of the matching approaches for the 500 vehicle instances, averaged over buffer
settings δ = 1, .., 6.

ω ρ greedy WSCLP
greedy WSCLP

RR WSPLP
greedy WSPLP

RR

ω1 946.0/7565.772 1118.2/7719.513 1217.5/7818.608 1077.9/7710.161 1144.0/7809.088

ω4(ρ)

0.0 493.1/7347.679 504.0/7432.558 691.2/7571.052 523.8/7455.587 713.6/7563.534
0.1 492.9/7353.706 500.1/7433.571 688.4/7562.421 522.3/7449.192 703.9/7590.416
0.2 493.2/7351.611 496.6/7441.297 686.2/7562.654 519.1/7446.008 705.0/7571.226
0.3 496.2/7357.245 494.5/7443.295 679.6/7569.114 518.4/7452.287 696.0/7584.730
0.4 499.7/7360.454 493.1/7436.825 670.0/7585.827 513.5/7451.000 692.3/7595.029
0.5 510.7/7367.604 492.4/7443.115 670.1/7579.171 511.9/7453.013 688.7/7575.356
0.6 519.8/7391.090 489.3/7452.531 664.7/7576.530 508.1/7465.410 677.1/7592.963
0.7 545.2/7420.917 488.6/7459.393 659.2/7573.059 506.7/7478.322 679.3/7569.343
0.8 595.3/7447.010 495.4/7471.887 653.2/7561.762 514.2/7481.435 663.8/7598.104
0.9 707.5/7508.623 514.2/7495.982 637.5/7573.198 524.4/7505.240 648.0/7567.485
1.0 939.2/7569.863 935.4/7579.394 1518.0/7429.612 930.9/7586.929 1515.7/7430.132

Table 9: Comparison of the matching approaches for the 600 vehicle instances, averaged over buffer
settings δ = 1, .., 6.

ω ρ greedy WSCLP
greedy WSCLP

RR WSPLP
greedy WSPLP

RR

ω1 474.0/8792.016 643.0/9042.051 802.4/9057.959 609.9/9001.867 728.6/9034.953

ω4(ρ)

0.0 187.1/8358.231 171.4/8255.163 343.0/8630.545 179.8/8308.890 359.7/8637.470
0.1 187.4/8349.654 168.3/8252.061 341.7/8633.042 178.1/8296.004 349.5/8648.709
0.2 187.6/8346.485 165.1/8259.377 339.5/8620.907 175.4/8299.075 347.1/8648.782
0.3 187.9/8365.431 163.4/8262.530 331.8/8639.139 173.4/8311.725 341.1/8650.158
0.4 190.0/8376.003 161.4/8258.889 327.7/8608.274 170.5/8301.769 337.3/8658.075
0.5 196.2/8384.167 160.9/8261.204 324.6/8625.020 169.5/8298.686 335.1/8642.884
0.6 200.7/8423.686 158.7/8269.980 322.3/8587.326 167.0/8308.498 325.8/8631.863
0.7 213.5/8474.981 157.9/8273.689 313.7/8600.174 165.1/8328.017 320.5/8646.648
0.8 246.8/8527.777 157.3/8321.315 305.5/8588.429 167.7/8343.331 311.0/8627.828
0.9 323.0/8681.856 166.5/8379.565 287.8/8599.603 171.7/8399.199 290.0/8622.919
1.0 520.0/8782.141 467.8/8800.594 1117.9/8783.759 464.5/8810.612 1115.1/8785.587

Table 10: Comparison of the matching approaches for the 700 vehicle instances, averaged over buffer
settings δ = 1, .., 6.

ω ρ greedy WSCLP
greedy WSCLP

RR WSPLP
greedy WSPLP

RR

ω1 156.2/9658.758 317.5/9999.219 479.7/10143.806 274.4/9973.591 406.9/10126.834

ω4(ρ)

0.0 58.8/8745.881 46.1/8458.867 159.2/9227.587 48.9/8519.776 157.2/9323.046
0.1 59.3/8741.495 45.7/8448.529 158.9/9218.709 48.8/8505.500 150.6/9312.502
0.2 59.2/8741.943 44.9/8443.738 156.8/9215.348 48.2/8496.357 150.7/9283.886
0.3 59.0/8760.754 44.3/8442.400 151.6/9210.082 47.6/8495.190 145.2/9285.294
0.4 59.5/8761.770 44.0/8430.118 145.9/9193.266 47.0/8484.818 143.4/9292.794
0.5 60.2/8792.172 43.0/8430.900 144.3/9201.860 45.6/8481.239 141.0/9261.781
0.6 60.3/8846.850 41.9/8439.314 143.6/9167.630 43.5/8495.277 133.2/9262.294
0.7 61.5/8947.845 40.3/8447.715 134.7/9170.654 42.4/8501.484 128.7/9268.173
0.8 68.1/9123.182 38.9/8487.215 123.7/9177.005 40.5/8537.091 121.3/9227.817
0.9 91.8/9485.880 39.2/8580.213 111.1/9138.746 40.6/8610.422 108.7/9180.898
1.0 202.2/9879.019 151.2/9669.139 788.6/10049.986 149.0/9683.299 785.5/10056.420

37

Table 11: Comparison of the matching approaches for the 800 vehicle instances, averaged over buffer
settings δ = 1, .., 6.

ω ρ greedy WSCLP
greedy WSCLP

RR WSPLP
greedy WSPLP

RR

ω1 15.7/9912.701 74.8/10720.931 281.1/10809.396 64.4/10634.283 211.2/10865.947

ω4(ρ)

0.0 15.3/8800.945 8.5/8449.284 114.0/9186.774 8.4/8510.451 96.7/9352.123
0.1 15.3/8801.367 8.3/8438.259 111.6/9184.487 8.2/8501.105 90.0/9339.523
0.2 15.2/8799.070 8.2/8428.931 110.8/9174.575 7.9/8490.644 89.5/9317.990
0.3 15.3/8813.072 8.2/8424.803 109.1/9144.491 7.8/8486.144 86.1/9305.730
0.4 15.2/8823.105 7.8/8417.973 103.9/9133.980 8.0/8474.138 85.4/9306.812
0.5 15.1/8853.028 7.6/8418.018 100.9/9145.333 7.4/8467.719 83.6/9274.370
0.6 15.2/8900.045 7.4/8418.666 101.4/9104.079 6.8/8475.566 79.0/9259.791
0.7 15.1/8994.387 7.1/8422.948 95.0/9087.233 7.0/8477.652 76.7/9250.806
0.8 15.5/9190.426 6.4/8456.321 87.6/9074.320 6.5/8502.463 71.7/9202.167
0.9 17.0/9613.796 7.3/8542.373 71.3/9069.061 7.3/8577.582 64.6/9135.124
1.0 35.2/10432.105 16.8/9900.367 504.9/11323.463 17.8/9906.190 502.7/11328.454

to identify promising parameter values for our resolution approach. We start with initial settings
identified during development and preliminary experiments. Then, one by one, we vary the param-
eters in the following, arbitrary order: i) weights of the sorting criteria or the recreate operator,
ii) acceptance criterion, iii) number of iterations in R&R (MS and MA), iv) average number of
routes per decomposed problem, v) number of labels per balas-simonetti node (thickness value),
vi) ruin parameters c and L, vii) ruin parameters α and β, viii) blink rate in recreate operator,
ix) perturbation relocate-exchange ratio, x) k-dSPP limits, xi) k-dSPP start time policy, and xii)
recreate request limit. Tables 12–24 show the results of the tuning process steps.

Table 25 summarizes the final parameter settings after concluding the tuning.

Table 12: Tuning results for the recreate sorting criteria weights.

Weights Gap

6,2,1,2,2,2 0.163%/0.180%
6,2,1,2,2,4 0.104%/0.093%
6,2,1,2,4,2 0.000%/0.000%
6,2,1,4,2,2 -0.758%/-0.340%
6,2,4,2,2,2 -0.312%/-0.136%
6,4,1,2,2,2 0.208%/0.152%
8,2,1,2,2,2 0.074%/0.062%

Notes: Sorting criteria (random,
far, close, pickup, start, delivery-
end, time window length). We re-
port the gap (unassigned requests /
total distance) to the baseline set-
ting (6,2,1,2,4,2).

38

Table 13: Tuning results for the acceptance criteria (Lin.R2R: Linear Record-to-Record; Exp.M: Ex-
ponential Metropolis).

Method T init Gap

Lin.R2R 0.111 1.063%/0.076%
Lin.R2R 0.222 0.734%/0.141%
Lin.R2R 0.333 0.000%/0.000%
Lin.R2R 0.444 0.629%/0.425%
Exp.M 100 7.681%/3.631%
Exp.M 200 7.097%/3.251%
Exp.M 1000 6.228%/2.686%

Notes: We report the gap (unassigned
requests / total distance) to the baseline
setting (Lin.R2R 0.333).

Table 14: Tuning results for the number of iterations in the R&R (MA) and for each sub-problem
(MS).

MA MS Gap

20e4 10000 1.183%/0.520%
20e4 5000 0.434%/0.099%
10e4 10000 1.228%/0.589%
10e4 5000 0.000%/0.000%
10e4 2500 0.284%/0.174%
5e4 5000 1.123%/0.667%
5e4 2500 -0.090%/0.078%

Notes: We report the gap (unas-
signed requests / total distance)
to the baseline setting (MA =
10e4,MS = 5000).

Table 15: Tuning results for the average number of nodes per sub-problem (χ).

Range Gap

[500, 500] -2.008%/-1.444%
[500, 1000] -1.229%/-0.850%
[1000, 1000] 0.000%/0.000%
[1500, 1500] 2.907%/1.687%

Notes: We report the gap (unas-
signed requests / total distance) to
the baseline setting ([1000,1000]).

Appendix C Fleet minimization

The classic PDPTW benchmark sets use a hierarchical objective function, prioritizing minimizing
the fleet size over cost. We integrate a fleet minimization component to compare our approach to
such sets and show its efficacy. We use a modified AGES, proposed by Sartori & Buriol (2020),
outlined in Algorithm 3.

39

Table 16: Tuning results for the number of labels maintained per node (thickness) in the Balas-
Simonetti neighborhood.

Thickness Gap

4 -0.321%/-0.132%
8 0.000%/0.000%
12 0.046%/0.016%
16 0.107%/0.059%

Notes: We report the gap (unas-
signed requests / total distance) to
the baseline setting (8).

Table 17: Tuning results for ruin parameters c and L.

L

c 5 10 20

5 -0.061%/-0.004% – –
10 0.046%/-0.081% 0.0%/0.0% 0.046%/-0.153%
15 -0.015%/-0.118% -0.215%/-0.115% 0.614%/0.477%
20 – -0.169%/-0.136% –

Notes: We report the gap (unassigned requests / total distance) to
the baseline setting (c = 10, L = 10).

Table 18: Tuning results for ruin parameters αr&r and βr&r.

αr&r

βr&r 0.25 0.50 0.75

0.01 0.200%/0.119% 0.00%/0.00% -0.046%/-0.032%
0.10 – 0.277%/0.148% -0.384%/-0.242%
0.50 – 0.200%/0.110% -0.031%/0.056%

Notes: We report the gap (unassigned requests / total distance) to
the baseline setting (αr&r = 0.50, βr&r = 0.01).

Table 19: Tuning results for the blink rate in the recreate operator.

Blink Gap

0.01 0.401%/0.387%
0.05 0.000%/0.000%
0.10 0.448%/0.258%

Notes: We report the gap
(unassigned requests / total
distance) to the baseline set-
ting (0.05).

40

Table 20: Tuning results for the number of perturbation moves in the ILS, relative to the number of
requests in the instance.

Factor Gap

1.00 0.401%/0.218%
1.66 0.000%/0.000%
2.00 0.448%/0.296%

Notes: We report the gap
(unassigned requests / total
distance) to the baseline set-
ting (1.66).

Table 21: Tuning results for the ratio of relocate moves performed during permutation in the ILS.

Ratio Gap

0.25 0.370%/0.214%
0.50 0.000%/0.000%
0.75 0.015%/0.054%

Notes: We report the gap
(unassigned requests / total
distance) to the baseline set-
ting (0.50).

Table 22: Tuning results for KDSP distance and time limits when generating the auxiliary arc.

Time [s]

Dist. [m] 600 1200 1800 2400

3000 – – 0.525%/0.340% –
4000 33.812%/25.852% 0.046%/-0.153% 0.0%/0.0% 0.046%/0.057%
5000 – – 0.448%/0.197% –
6000 – – 0.355%/0.215% –

Notes: We report the gap (unassigned requests / total distance) to the baseline setting (dis-
tance: 4000, time: 1800).

Table 23: Tuning results for the recombination methods.

k-dSPP (start time policy)

Earliest Average Latest Naïve

-0.386%/-0.132% 0.0%/0.0% 0.525%/0.310% 7.623%/7.566%

Notes: We report the gap (unassigned requests / total distance) to the
baseline setting (average).

It uses ejection search Nagata & Kobayashi (2010), where an item in a list of unassigned requests
is iteratively tested to be inserted into the current solution by potentially removing (ejecting) other
requests if necessary. The ejection search is performed sequentially in the number of ejections con-
sidered. First, all ejections of a single request are tested. If no feasible insertion is possible, all

41

Table 24: Tuning results for the number of requests considered during recreate.

Limit Gap

20 1.549%/0.852%
40 0.000%/0.000%
60 0.186%/0.078%
80 0.496%/0.258%

Notes: We report the gap
(unassigned requests / total
distance) to the baseline set-
ting (40).

Table 25: Summary of the final settings found after parameter tuning.

Parameter Value Parameter Value

Acceptance criterion / T init Lin.R2R / 0.333 Ruin parameters
ILS perturbation moves ZA 1.66 · |R| c 15
ILS relocate / exchange move ratio αils 0.50 L 10
MA, MS 5000, 2500 αr&r 0.75
Avg. number of nodes per sub-problem χ 500 βr&r 0.10
Balas Simonetti Nbh. thickness 4 Recreate parameters
k-dSPP distance and time limits 4000, 1800 blink rate 0.05
k-dSPP start time policy Earliest sorting criteria weights 6,2,1,4,2,2

request limit 40

ejections of two requests are tested. To guide the search, a penalty counter, ρ, of failed insertion
attempts for each request is maintained during the search and used to prioritize ejections of po-
tentially easy-to-reinsert requests (the fewest number of failed insertion attempts). The counter
is maintained throughout multiple procedure calls and reinitialized in line 6 by applying a decay
factor λ to each entry to nudge the search toward promising regions. If an insertion attempt fails,
the penalty counter increases in line 15. When encountering ties, one possible ejection and insertion
opportunity with minimal penalty is randomly selected using reservoir sampling. The sum of the
failed insertion attempts is used to guide the search for two ejections. A perturbation procedure at
line 17, right after attempting a potential ejection, aims to diversify the search for the next iteration
by performing ZF permutation moves. Herein, we either apply a relocate move with probability
αages or an exchange move otherwise. The search stops when a predefined number of perturba-
tions MF have been attempted. The corresponding tracker is reset if the stack size (the number of
unassigned requests) decreases to a new minimum for the given fleet size.

Our main deviation from existing implementations is introducing the penalty decay factor λ. In
our preliminary experiments, we observed tendencies of the guided search to reach similar prior
penalty values before identifying more promising ejections. We avoid some of these time-consuming
steps by not completely dismissing prior knowledge. However, we identified a larger factor neces-
sary to prevent inverse effects on the search, where previously hard-to-insert requests need to be
considered early to find improvements.

42

Algorithm 3: Adaptive guided ejection search
Input: Feasible solution σ; Maximum perturbation MF ; Penalty counter ρ

1 while i < MF do
2 ϑ ← select_random_route(σ);
3 σ′ ← remove_route(σ, ϑ);
4 E ← initialize_stack(ϑ);
5 min|E| ← |E|;
6 ρ[u]← (1− λ)ρ[u], for every request u;
7 while E ̸= ∅ ∨ i < MF do
8 u← remove_request(E);
9 if there is a feasible insertion of u in σ′ then

10 σ′ ← insert_request(u, σ′);
11 if |E| < min|E| then
12 min|E| ← |E|;
13 i← 0;

14 else
15 ρ[u]← ρ[u] + 1;
16 σ′ ← eject_and_insert(u, σ′, E);
17 σ′ ← perturb(σ′, ZF);
18 i← i+ 1;

19 if E = ∅ then σ ← σ′;

20 return σ

We integrated the described fleet minimization component into our algorithm by running AGES
at the beginning of each iteration of our ILS approach, defined in Algorithm 1, right before line
8. The penalty counter ρ is initialized once with a value of 1 for every request and passed to the
procedure each iteration. Table 26 lists the parameters used in our experiments.

Table 26: Final parameters settings used in the comparative experiments for the PDPTW benchmark.

DB-ILS AGES

MA MS χ ZA λ MF ZF αages

100000 10000 500 |R| · 1.66 0.8 1000000 10 0.58

Appendix D Solution structure

With the new set of instances generated based on the NYC Taxi and Limousine Commission (New
York City Taxi and Limousine Commission 2015) data (abbreviated as NYC in this section) and
their intended large-scale nature, we set out to identify how good solutions tend to be structured to
compare ourselves with the best-fitting benchmark. To analyze the structure of efficient solutions
for instances from the literature, we use the best-known solution details from https://www.sintef.no/

https://www.sintef.no/projectweb/top/pdptw/
https://www.sintef.no/projectweb/top/pdptw/

43

projectweb/top/pdptw/ and https://github.com/cssartori/pdptw-instances. In Figures 16–18, we compare
the average number of requests per route (Figure 16), the average number of interleaving requests,
i.e., how many requests are served concurrently (Figure 17), and the average number of blocks
present per routes (Figure 18).

Requests per route. We observe in Figure 16 that NYC solutions have a low count of requests
per route, similar to the Sartori & Buriol (2020) benchmark. The solutions for the Li & Lim (2001)
instances tend to have a slightly higher average but spread to up to 8 requests per route.

Interleaving width. Figure 17 shows a stark difference in solution structure between Li & Lim
(2001), with many concurrently served requests, and the others, which tend to be similarly low.
One reason for this difference lies in the capacity restrictions present. The NYC instances allow up
to 3 requests. Sartori & Buriol (2020) instances are generated in two ways: For the New York City
instances, they consider passenger transportation with a request demand of up to 6 persons, which
is also used as the maximum capacity of vehicles. For the other cities, they consider maximum
capacities of between 100 to 300 units of goods, and between 10 to 0.6 times the maximum capacity
as demand per request. This leads to an average of 4 to 5.45 requests per vehicle, also reflected in
the figure. Li & Lim (2001) instances are based on the classical Solomon instances for the VRPTW
and do result in a wider spread with up to more than 30 concurrent requests served.

Blocks per route. Figure 18 shows that NYC solutions do consist of more blocks per route (se-
quences of visits where the vehicle is occupied) with lower buffer settings and gradually move to only
two blocks with higher settings. Routes in Sartori & Buriol (2020) solutions tend to be composed of
more blocks (up to more than 6), similar to lower buffer solutions. Li & Lim (2001) solution routes
do average below two blocks, which implies that some vehicles may be occupied from the first visit
to a pickup, to their last visit to a delivery.

Summary. We observe that solutions of our NYC instances share more similarities with the Sar-
tori & Buriol (2020) benchmark set. This informed our decision to focus our design, tuning, and
comparison efforts on these instances in our work.

https://www.sintef.no/projectweb/top/pdptw/
https://www.sintef.no/projectweb/top/pdptw/
https://www.sintef.no/projectweb/top/pdptw/
https://github.com/cssartori/pdptw-instances

44

Figure 16: Requests per route for each set in the Li & Lim (2001), Sartori & Buriol (2020) benchmarks,
and the NYC instances.

20
0

40
0

60
0

80
0

10
00

0

20

40

60

80

Set

R
eq
/R

ou
te

a
v
g

LiLim

10
0

20
0

40
0

60
0

80
0

10
00

15
00

20
00

25
00

30
00

40
00

50
00

Set

SartoriBuriol

10 14 18 22
0

20

40

60

80

StartHour

R
eq
/R

ou
te

a
v
g

NYC

Buffer
0
1
2
3
4
5
6
8
10
12
15
20

45

Figure 17: Maximum number of interleaving requests per block for each set in the Li & Lim (2001),
Sartori & Buriol (2020) benchmarks, and the NYC instances.

20
0

40
0

60
0

80
0

10
00

0

10

20

30

Set

I
n
te
rl
ea
v
in
g
W

id
th

a
v
g

LiLim

10
0

20
0

40
0

60
0

80
0

10
00

15
00

20
00

25
00

30
00

40
00

50
00

Set

SartoriBuriol

10 14 18 22
0

10

20

30

StartHour

I
n
te
rl
ea
v
in
g
W

id
th

a
v
g

NYC

Buffer
0
1
2
3
4
5
6
8
10
12
15
20

46

Figure 18: Blocks per route for each set in the Li & Lim (2001), Sartori & Buriol (2020) benchmarks,
and the NYC instances.

20
0

40
0

60
0

80
0

10
00

0

2

4

6

8

10

Set

B
lo
ck
s/
R
ou

te
a
v
g

LiLim

10
0

20
0

40
0

60
0

80
0

10
00

15
00

20
00

25
00

30
00

40
00

50
00

Set

SartoriBuriol

10 14 18 22
0

2

4

6

8

10

StartHour

B
lo
ck
s/
R
ou

te
a
v
g

NYC

Buffer
0
1
2
3
4
5
6
8
10
12
15
20

	Introduction
	State of the Art
	Contribution
	Organization

	Problem Setting
	Methodology
	Sequential Pooling & Dispatching
	Generating feasible hyperedges
	Hypergraph matching
	Dispatching

	Integrated approach
	Solution representation and evaluation
	Iterative local search
	Ruin-and-recreate procedure

	Experimental Design
	Case-study instances
	Mid-sized benchmark set

	Results
	Computational Analyses

	PDPTW benchmark
	Managerial Analyses

	Conclusion
	Appendix Computational study for the hypergraph matching
	Greedy matching
	Weighted set partitioning problem
	Results

	Appendix Parameter tuning
	Appendix Fleet minimization
	Appendix Solution structure

