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Abstract. Spin models like the Heisenberg Hamiltonian effectively describe the interactions 

of open-shell transition-metal ions on a lattice and can account for various properties of 

magnetic solids and molecules. Numerical methods are usually required to find exact or 

approximate eigenstates, but for small clusters with spatial symmetry, analytical solutions exist, 

and a few Heisenberg systems have been solved in closed form. This paper presents a simple, 

generally applicable approach to analytically solve isotropic spin clusters, based on adapting 

the basis to both total-spin and point-group symmetry to factor the Hamiltonian matrix into 

sufficiently small blocks. We demonstrate applications to small rings and polyhedra, some of 

which are straightforward to solve by successive spin-coupling for Heisenberg terms only; 

additional interactions, such as biquadratic exchange or multi-center terms necessitate 

symmetry adaptation. 

 

1. Introduction 

Spin Hamiltonians are used to model the properties of exchange-coupled magnetic solids 

and molecules [1], such as magnetic susceptibilities and heat capacities, or magnetic-resonance 

and neutron-scattering spectra. Based on matrix diagonalization, all physical quantities within 

the framework of the model can be calculated exactly. While the Hilbert space grows 

exponentially with the number of centers, the system-size limit for numerically exact or quasi-

exact calculations [2] can be increased by taking advantage of symmetries [3–9]. However, for 

simulating large systems, various approximations are essential [10].  

On the opposite side of the range, small clusters allow closed-form solutions, especially if 

the Hamiltonian is isotropic and invariant with respect to spin permutations [6] corresponding 

to spatial symmetries of the molecule or cluster. In addition to their pedagogical value, 
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analytical solutions yield insights that might be obscured or unavailable in numerical data. For 

example, they can facilitate parametric plots of spectra and provide exact expressions for phase 

boundaries in parameter space to map precise quantum-phase diagrams, which would only be 

approximated in numerical computations. 

Some Heisenberg systems are trivially integrable – solved without diagonalization or explicit 

adaptation to spatial symmetries – by Kambe’s coupling method [11], which relies on 

successively forming subsystem spins in a hierarchical manner to ultimately produce total-spin 

multiplets. However, not all analytically solvable cases can be subjected to this approach, as it 

requires certain conditions on the coupling topology [12]. Besides, as explained in the Results 

section, Kambe’s method ceases to be applicable when the model is extended to include 

additional isotropic terms, such as biquadratic exchange or multi-site interactions. 

Here we find closed-form solutions for small isotropic clusters by exploiting spin and point-

group (PG) symmetries to factorize the Hamiltonian into blocks, with each block corresponding 

to a specific irreducible representation (irrep) of SU(2) (quantum number S) and the point group 

(irrep label  ). If the size of a block does not exceed 4 4 , then closed-form solutions for 

eigenvalues (energies) are guaranteed to exist, and have already been obtained for some 

Heisenberg clusters [13–16]. Specifically, for 1
2

s =  rings with 5,6,7N =  sites [13,14], 

simultaneous adaptation to the z-component of spin (magnetization quantum number M) and 

the cyclic point group NC  was sufficient to obtain subspaces of manageable sizes. For 1
2

s = , 

8N =  or 1s = , 5N = , adaptation to total spin (S and M) and NC  was achieved by a recursive 

technique designed for rings [15]. Finally, the ground state of the antiferromagnetic 1
2

s =  

Heisenberg icosahedron was derived in a similar manner as presented here, but without 

explaining the method [16]. Our purpose is thus to provide a clear and easy-to-follow procedure 

to diagonalize any isotropic cluster that allows analytical solutions. 

In the upcoming Theory section, we briefly revisit the symmetries of isotropic spin models 

and discuss various existing approaches for partitioning the Hamiltonian. We then explain our 

strategy of setting up a generalized (non-orthogonal) eigenvalue problem within a selected 

subspace by applying Löwdin’s spin projector and a PG-projector to random states in an 

uncoupled basis. We also offer practical advice on implementing PG-symmetry. Our priority 

lies in providing a procedure that is as simple as possible to implement, rather than being the 

most computationally efficient, to enable the reader to calculate closed-form solutions for their 

cases of interest. 
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For small rings and polyhedra with various local spin values s, the Results section tabulates 

the dimensions of subspaces, provides selected energy expressions and boundary conditions in 

parameter space, and explores the ground state as a function of independent parameters. General 

isotropic spin Hamiltonians can involve a multitude of free parameters [17], making extensive 

tabulations of spectra or derived properties impractical. Our results are not directly intended to 

provide new insights into any exchange-coupled cluster but should assist in verifying 

independent implementations of the analytical diagonalization process, which could include 

additional terms. 

 

2. Theory 

Symmetries of isotropic Hamiltonians. In the Heisenberg model, pairwise interactions are 

parametrized by coupling constants ijJ , Eq. (1), 

 ˆ ˆ ˆ
J ij i j

i j

H J


=  s s  , (1) 

where , , ,
ˆ ˆ ˆ ˆ( , , )i x i y i z is s s=s  is the local spin vector of site i. Biquadratic exchange is another 

isotropic term, Eq. (2), 

 
2ˆ ˆ ˆ( )K ij i j

i j

H K


=  s s  . (2) 

Note that 2ˆ ˆ( )i js s  is a linear combination of scalar couplings of local spin operators of spherical 

tensor rank 1 (a Heisenberg-type contribution) and rank 2 [17]. The construction of rank-2 

operators requires 1
2

s  , and therefore ˆ
JH  is the only isotropic pairwise interaction for 1

2
s = . 

However, for 4N  , multi-center terms occur, see Results section. 

Isotropy means invariance with respect to spin rotations [group SU(2)], due to commutation 

of the Hamiltonian with all components of the total spin ˆ ˆ
ii

=S s , ˆˆ[ , ] 0H S =  ( , , )x y z = . 

Each level of an isotropic Ĥ  is a multiplet encompassing 2 1S +  states with z-projections ( ˆ
zS  

eigenvalues) ranging from M S= −  to M S= + . All states of a single multiplet have an 2
Ŝ  

eigenvalue of ( 1)S S + . The basis can be spin-adapted by successive coupling, and the 

Hamiltonian matrix in a subspace with definite S is computed based on irreducible-tensor 

techniques, as explained in detail elsewhere [1,18]. In the frame of exact diagonalization of the 

Heisenberg model, the resulting reduction in matrix sizes is highly useful, and computational 

packages make such calculations accessible for studying various magnetic properties [19].  
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In addition to spin symmetry, the Heisenberg model, and indeed any isotropic spin model, 

is symmetric under permutations of sites according to the spatial symmetries of the cluster [6]. 

This spin-permutational symmetry (SPS) is often referred to as point-group (PG) symmetry. 

However, it is important to note that not all distinct PG symmetries of the electronic 

Hamiltonian are necessarily reflected in the isotropic spin model. For example, a planar 

hexanuclear cluster belonging to the molecular point group 6hD  could be represented as an 

6N =  Heisenberg ring, with the latter model exhibiting only 6D  SPS. The full group 

6 6h iD D C=   would pertain to an anisotropic spin Hamiltonian (not considered here) that more 

completely represents the physics by including the consequences of spin-orbit coupling [20]; 

some of the group operations would then represent combinations of spin permutations and spin 

rotations [21–23].  

Combining total spin ( 2
Ŝ  and ˆ

zS ) with PG is significantly more complex than using either 

of these two symmetries separately. It is usually impossible to successively couple individual 

sites into larger subsystems and ultimately into a total-spin multiplet in a way that is compatible 

with the full point group, making demanding transformations between different coupling 

schemes unavoidable [6] (which are still manageable under specific circumstances [8,9]). 

Consequently, the application of PG symmetry is frequently limited either to a compatible 

subgroup [6] or – far more commonly –the full PG symmetry is utilized only in conjunction 

with ˆ
zS  (instead of 2

Ŝ  and ˆ
zS ) by working in an uncoupled basis 1,..., Nm m  of definite local 

z-projections, ii
M m=  [6,7,24,25]. For a concise practical explanation of the latter strategy, 

see Ref. [7]. We briefly mention that an alternative technique for complete adjustment to full 

spin and PG symmetry relies on concepts from valence-bond theory but has not been widely 

adopted [26].  

In contrast, we combine a PG-projection operator (see below) with Löwdin’s projector [27] 

for full symmetry adaptation, with the aim of sufficiently reducing the dimensions of 

Hamiltonian blocks to enable analytical diagonalization. When used on a random state with 

definite M, Löwdin’s projector, Eq. (3), 

 

2ˆ ( 1)ˆ
( 1) ( 1)

S

l S

l l
P

S S l l

− +
=

+ − +


S
 , (3) 

affords a pure-spin state ,S M ; all other contributions ( )l S  are eliminated. A similar 

approach (also in conjunction with spatial symmetry) has occasionally been applied in 
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numerical calculations, e.g., in Lanczos exact diagonalization for triangular-lattice cluster 

models [4] but was apparently not yet employed to obtain analytical solutions. 

Point-group projectors. Here we will give a basic explanation of how to construct the PG-

projection operators acting in spin space, where the point group is the set of SPS operations that 

leave the isotropic Hamiltonian invariant. These operations usually correspond to rotations or 

reflections of a geometrical shape that reflects the coupling topology, like a ring or a 

polyhedron, with spins located at the corners. For N sites, the point group can be represented 

by permutation matrices C of size N N . To produce all C, we rely on a set of generators from 

which all other group elements can be derived. In other words, every permutation matrix in the 

group is obtained either by repeated multiplication of the generators among themselves (e.g., a 

cyclic group NC  of order N has a single generator that corresponds to a rotation by 2
N
 ) or 

through combinations and powers of several generators. The fundamental set of generators may 

not be unique, that is, different sets can generate the same group. For possible choices of the 

generating elements of the most relevant point groups, see, e.g., Ref. [28]. As an example, for 

the octahedral group hO  with inversion (e.g., regular octahedron or cube), the minimal number 

of generators is two. These can be chosen as any 6S  axis with any 4S  (or 4C ), where 6S  is a 

six-fold improper rotation axis and 4C  is a four-fold proper rotation axis. Alternatively, based 

on the group O (without inversion, isomorphic to dT , the group of the regular tetrahedron), 

which is generated by any 4C  with any 3C , one can add the inversion iC  as a third generator 

to obtain the full group h iO O C=  . 

Through matrix multiplication, starting with the generators, new matrices are produced. This 

process is repeated until no new matrices are generated by any pairwise multiplications [29]. 

At this point, a faithful group representation in terms of N-dimensional permutation matrices C 

has been obtained. To derive all irreducible representations (irreps), we assign irrep matrices 

(listed, e.g., in the book by Herzig and Altman [30]) to each generator. When a new matrix 

( )kC  emerges, ( ) ( ) ( )i j k=C C C , the irrep matrices are multiplied similarly, 

( ) ( ) ( )i j k  =D D D . 

Finally, the C and 
D  sets are used to construct the PG-projector P̂

 , defined in Eq. (4), for 

irrep   and component   (the latter must be specified for multi-dimensional irreps, 1),d   

 *

1

ˆˆ [ ( )] ( )
h

g

d
P D g G g

h
 

 

=

=   , (4) 
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where h is the order of the group (the total number of elements g), ( )D g

  is a diagonal entry 

of ( )g
D , and ˆ ( )G g  is the respective symmetry operation in spin space; the asterisk (*) denotes 

complex conjugation. 

As any permutation can be composed from pairwise exchanges, the exchange operator ˆ
ijP  is 

needed to build ˆ ( )G g , cf. Figure 1. For 1
2

s = , ˆ ˆ ˆ1 4ij i jP = + s s  [31], but the exchange operator 

for arbitrary s is less well known. Following Brown [32], ˆ
ijP  is expanded in terms of powers of 

ˆ ˆ
i js s , Eq. (6). 

 
2

0

ˆ ˆ ˆ( )
s

n

ij n i j

n

P A
=

=  s s  (5) 

The real coefficients nA  (collected in vector A) are derived from the linear system of Eq. (7), 

 =MA v  , (6) 

where the vector v contains the exchange-parity (+1 or –1) of the coupled pair states with spin 

ijs ; starting with the symmetric ferromagnetic state ( 2ijs s= ), the coupled levels are alternately 

symmetric (eigenvalue +1) and antisymmetric (–1) under exchange. The elements of matrix M 

are the respective powers of the eigenvalues of 
21

2
ˆ ˆ ˆ[ 2 ( 1)]i j ij s s = − +s s s : 

  1
2

( , ) [ ( 1) 2 ( 1)]
n

ij ij ijM s n s s s s= + − +  . (7) 

It is then straightforward to construct the permutation operators Ĝ  from the N N  permutation 

matrices C and the exchange operators ˆ
ijP  by compounding pair exchanges. 
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Figure 1: PG-symmetry in a triangular isotropic spin model (dihedral point group 3D ). Two generators, a 3C  

rotation and a 2C  rotation, are illustrated, alongside their permutation and irreducible representation (irrep) 

matrices. The expressions for exchange operators presented here are specific for 1
2

s =  sites. 

 

Generalized eigenvalue problem. Symmetry projectors are idempotent, 2ˆ ˆP P= , and  self-

adjoint, †ˆ ˆP P= , where the dagger 
†( )  denotes the Hermitian adjoint (complex-conjugate 

transpose). Hence, their eigenvalues can only be 0 or 1. The dimension d of the respective 

subspace is given by the trace, ˆTr( )d P= . We calculate the Hamiltonian and overlap matrices, 

h and s (the latter is not to be mixed up with a spin vector), in a space 1( ,..., )d=R r r  of state 

vectors ir  comprising small random integers in a symbolic representation,  

 
†

S 

=h R HP P R  , (8) 

 
†

S 

=s R P P R  , (9) 

where H, SP  and 


P  are the Hamiltonian, spin- and PG-projector representations, respectively, 

in the uncoupled basis 
1,..., Nm m  for the selected magnetization M, and 

( , , , ) Tr( )Sd S M   = P P . The generalized eigenvalue problem, 

 E=hv sv  , (10) 
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where v is an eigenvector, has real eigenvalues E (energy levels). When solving Eq. (10) with 

symbolic computer algebra packages like Mathematica (Eigenvalues[h,s]) or the 

MATLAB symbolic toolbox (eig(s\h)), the energy expressions in spaces with 3d =  or 4d =  

are usually very long, even when explicitly assuming symbolic Hamiltonian parameters to be 

real, and the built-in functions for algebraic simplification might not always produce 

significantly shorter forms. We observed that it is sometimes possible to obtain more concise 

results by a similarity transformation of h, Eq. (12), 

 1 1 †( )− −=h L h L  , (11) 

based on the Cholesky decomposition, †=s LL ; h  has the same eigenvalues as the original 

problem, but, in contrast to 1−
s h , it is Hermitian. In our experience, the symbolic eigenvalues 

of h  may be simpler than the corresponding equivalent expressions obtained from h and s. Still, 

most solutions of cubic ( 3)d =  or quartic ( 4)d =  polynomial equations are impracticably 

lengthy functions of the parameters. Therefore, the Results section presents only a few 

illustrative and reasonably concise results for brevity. 

Additional considerations. The only prerequisites for following our recipe are symbolic 

representations of the ˆ
is  and the generators C for site permutations with their corresponding 

irrep matrices 
D . Instead of constructing the ˆ

is , one can directly compute the scalar products 

ˆ ˆ
i js s  of all relevant pairs in a magnetization subspace and build the projectors and all model 

terms considered in this paper (Heisenberg, biquadratic and four-center terms) from them.1 This 

avoids working in the full Hilbert space throughout. 

A symbolic calculation of SP  (with a significant fraction of non-zero elements) can become 

a bottleneck. Therefore, one may choose to first build the ( , , )M   basis. A direct full 

diagonalization of 


P , keeping only the eigenvectors with eigenvalue 1, is not always feasible 

with symbolic computer algebra, but is indeed not required, because the ( , , )M   space can 

be generated by scanning the rows of 


P  and selecting only the first column with a non-zero 

entry, discarding all other columns of 


P  that have a non-zero entry in the given row.2 The idea 

 
1 Typically, 0M =  or 1

2
M = ,  which encompasses all multiplets. 

2 The described construction of a ( , , )M   subspace does not explicitly require the 


P  matrices and could 

instead be achieved as detailed in Ref. [7]. However, we believe that our current method, which applies (at least 

conceptually) a combined PG- and spin-projector to random states, offers more pedagogical clarity and would be 
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behind this procedure is that each uncoupled state 
1,.., Nm m  appears in at most one distinct 

state in the ( , , )M   basis.3 The thus selected columns of 


P  are subsequently normalized and 

collected in a rectangular matrix 


p , which represents a complete orthonormal set in the 

( , , )M   space, †( ) 

  =p p 1 . Spin and Hamiltonian matrices are transformed accordingly, 

2 † 2( ) 

 =S p S p , †( ) 

 =H p Hp , and 
SP  is constructed from 2

S  instead of 2
S . Finally, H  and 

SP  are applied to a set of random states to set up the generalized eigenvalue problem in 

( , , , )S M  . 

As long as ( , , , ) 4d S M    for all S, it may be possible to directly diagonalize H , even 

when ( , , ) 4d M   . On the other hand, if spin adaptation is necessary, an alternative to 

forming 
SP  is to diagonalize 2

S  and to then transform H  into the space with the desired S. 

This method parallels how Schumann solved the Hubbard model on a square [33].4 However, 

there is no guarantee that 2
S  can be diagonalized in symbolic form (at least not within a 

practical time frame), and this has indeed turned out to be impossible in some cases, like 0M =

, gE =  ( 12)d =  in the 1s =  octahedron. Therefore, diagonalization of 2
S  is not a universal 

alternative to using Löwdin’s projector. 

 

3.  Results 

We focus on two rings (symmetric triangle and square) and three polyhedra (tetrahedron, 

octahedron and cube). Incidentally, except for the cube, these specific systems are trivially 

integrable within the Heisenberg model (see below), but they require matrix diagonalization 

when other isotropic terms are included. Tables of wave functions, energies, or other properties 

[21] are usually based on implicit assumptions about which independent parameters are 

 

slightly simpler to implement. Forming 


P  in a symbolic representation usually does not pose a significant 

computational cost for systems that are small enough to have closed-form solutions.  

3 As noted in Ref. [22], this is not true for all multidimensional irreps in all point groups if one does not separate 

components   but instead uses a simplified projector, 
* ˆˆ ( / ) ( ) ( )

g
P d h g G g

=  , based on characters, 

( ) Tr[ ( )]g g = D , that summarily includes all components   of a multidimensional irrep  . 

4 Schumann additionally used so-called pseudospin symmetry, where applicable. This symmetry of bipartite 

Hubbard lattices does not exist in spin-only models. He adapted a basis with definite particle number and spin 

magnetization first to pseudospin, then to total spin, and lastly to PG-symmetry. 
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negligible. The systematic construction of all possible terms, whose number rises quickly with 

N and s, was described in Ref. [17]. For instance, the isotropic Hamiltonian for a group of four 

1
2

s =  sites has 9 independent parameters, whereas ten sites permit 8523 parameters [17] (this 

number would be lowered by spatial symmetries), although most of these would be negligibly 

small in practice. In our analysis, we primarily consider nearest-neighbor (NN) Heisenberg 

exchange and additionally consider biquadratic exchange or four-center terms. Our tables 

therefore do not aspire to be useful for analyzing all specific cases but should allow to 

effectively verify independent implementations by others. All energies are reported in units of 

the uniform NN coupling constant J, which is chosen to be antiferromagnetic, that is, we set 

1J = .  

Triangle. An 1
2

s =  triangle with three different coupling constants is the smallest system that 

necessitates matrix diagonalization, because there are two 1
2

S =  levels. On the other hand, an 

isosceles triangle has exchange symmetry, 12
ˆ ˆ[ , ] 0H P = ; with 13 23J J= , the square of the pair 

spin 12 1 2
ˆ ˆ ˆ= +s s s  is a good quantum number, 2

12
ˆ ˆ[ , ] 0JH =s . This pair spin is then coupled with 

3ŝ  to obtain a total-spin multiplet, 

 
1312

12 1 2 13 1 2 3

2 2 2

12 122 2

ˆ ˆ ˆ ˆ ˆ ˆ( )

ˆˆ ˆ[ 2 ( 1)] [ ( 1)]

J

JJ

H J J

s s s s

=  + +  =

− + + − − +

s s s s s

s S s
  , (12) 

yielding the spectrum of Eq. (14): 

 1312

12 12 12 122 2
[ ( 1) 2 ( 1)] [ ( 1) ( 1) ( 1)]

JJ

JE s s s s S S s s s s= + − + + + − + − +  . (13) 

This is the simplest example of Kambe’s method. In the symmetric triangle, all three couplings 

are equal, thus Eq. (12) becomes 2

2
ˆˆ [ 3 ( 1)]J

JH s s= − +S , meaning that all multiplets with the 

same S are degenerate [1].  

However, when including biquadratic exchange in the isosceles triangle 13 23( 0)K K=  , 12P̂  

remains a symmetry, 12
ˆ ˆ[ , ] 0KH P = , but 2

12ŝ  is no longer a good quantum number, because 

2 2 2

1 3 2 3 12
ˆ ˆ ˆ ˆ ˆ[( ) ( ) , ] 0 +  s s s s s , rendering Kambe’s method inapplicable. 
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Table 1 lists the subspace dimensions for symmetric triangles up to 13
2

s = , which is the smallest 

s that does not permit obtaining the full spectrum in closed form, because there are five 

( 6, E)S =  =  levels. Note that Griffith had already classified terms in triangles, albeit for 

smaller s [34]. Table 1 shows that up to 3
2

s = , there is at most one level in each ( , )S   sector, 

so symmetry adaptation suffices to determine the eigenfunctions, and all energies depend 

linearly on any parameters; phase boundaries in a two- or three-dimensional parameter space 

would then be straight lines or planes, respectively. 

Table 1: Dimensions of combined spin- and PG-subspaces ( , )S   in symmetric triangles (point-group 
3D ) for 

various values s (first column). Each cell represents the number of multiplets for ascending total-spin values S.a 

s 1A  2A  E 

1/2 0 1 0 0 0 0 1 0 0 

1 0 1 0 1 1 0 0 0 0 1 1 0 

3/2 0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 

2 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 2 1 1 1 0 

5/2 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 2 2 1 1 1 0 

3 0 1 0 2 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 2 2 2 2 1 1 1 0 

7/2 0 1 1 1 2 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 2 3 2 2 2 1 1 1 0 

4 1 0 1 1 2 1 2 1 1 1 1 0 1 0 1 0 2 1 1 1 1 0 1 0 0 0 0 1 2 2 3 3 2 2 2 1 1 1 0 

9/2 0 1 1 1 2 2 1 2 1 1 1 1 0 1 0 1 1 1 2 1 1 1 1 0 1 0 0 0 1 1 2 3 3 3 3 2 2 2 1 1 1 0 

5 0 1 0 2 1 2 2 2 1 2 1 1 1 1 0 1 1 0 1 1 2 1 2 1 1 1 1 0 1 0 0 0 0 1 2 2 3 4 3 3 3 2 2 2 1 1 1 0 

11/2 0 1 1 1 2 2 2 2 2 1 2 1 1 1 1 0 1 0 1 1 1 2 2 1 2 1 1 1 1 0 1 0 0 0 1 1 2 3 3 4 4 3 3 3 2 2 2 1 1 1 0 

6 
1 0 1 1 2 1 3 2 2 2 2 1 2 1 1 1 1 

0 1 

0 1 0 2 1 2 2 2 1 2 1 1 1 1 0 1 0 

0 0 

0 1 2 2 3 4 4 4 4 3 3 3 2 2 2 1 1 

1 0 

13/2 
0 1 1 1 2 2 2 3 2 2 2 2 1 2 1 1 1 

1 0 1 

0 1 1 1 2 2 2 2 2 1 2 1 1 1 1 0 1 

0 0 0 

1 1 2 3 3 4 5 4 4 4 3 3 3 2 2 2 1 

1 1 0 
aFor example, for 1

2
s = , there are 0, 1 and 0 multiplets with PG-label 1A  for S = 0, 1 and 2, respectively. 

For 2s =  and 5
2

s = , we exemplarily collect the full spectra as a function of the biquadratic-

exchange constant K in Table 2 and Table 3, respectively. (Our Hamiltonian is not exhaustive, 

e.g., three-center terms, which would occur for 1
2

s  , are ignored.)  

Table 2: Full spectrum of an 2s =  triangle as a function of biquadratic exchange (K), with 1J = . The second 

column attributes numbers to all levels for easy comparison with Figure 2. Conditions on K for a specific level to 

be the ground state are given in the last column. 

( , )S   # Energy Ground state 

(0, A1) 1 
9
2

27K −  1 1
30 4

K−    

(1, A2) 2 40 4K −    

(1, E) 3 31 4K −    

(2, A1) 4 72 3K −  
1

30
K  −  
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(2, E) 
5 

6 
93 3
2 2

193 | | 3K K −  
  

  

(3, A1) 7 
3
2

33K −    

(3, A2) 8 
3
2

15K −  1

4
K   

(3, E) 9 
3
2

51K −    

(4, A1) 10 
1
2

37K +    

(4, E) 11 
1
2

19K +    

(5, E) 12 24 3K +    

(6, A1) 13 48 6K +    

 

Table 3: Energy spectrum and ground-state conditions for an 5
2

s =  triangle as a function of biquadratic exchange 

(K), with 1J = . 

( , )S   # Energy Ground state 

(1/2, E) 1 
1

16
(975 102)K −  1 1

46 9
K−    

(3/2, A1) 2 
1

16
(867 90)K −  71

9 39
K   

(3/2, A2) 3 
1

16
(1155 90)K −    

(3/2, E) 4 
1

16
(1443 90)K −    

(5/2, A1) 5 
1

16
(2447 70)K −  1

46
K  −  

(5/2, A2) 6 
1

16
(1295 70)K −    

(5/2, E) 
7 

8 

1
16

( 70 1679 24 19 | |)K K− +   
  

  

(7/2, A1) 9 
1

16
(1971 42)K −    

(7/2, E) 
10 

11 

3
16

( 14 401 32 34 | |)K K− +   
  

  

(9/2, A1) 12 
1

16
(783 6)K −    

(9/2, A2) 13 
1

16
(399 6)K −  7

39
K   

(9/2, E) 14 
1

16
(1359 6)K −    

(11/2, A1) 15 
1

16
(1091 38)K +    

(11/2, E) 16 
1

16
(611 38)K +    

(13/2, E) 17 
1

16
(975 90)K +    

(15/2, A1) 18 
1

16
(1875 150)K +    
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Figure 2: Diagram of the ground-state regions in a range of K, B parameter space (see main text) of the 

antiferromagnetic 2s =  triangle ( 1)J = . Each colored region corresponds to a distinct ground state (numbered 

according to the second column of Table 2), identified through analytical conditions derived from the spectrum 

(third column of Table 2), where a Zeeman energy-contribution of BS  was subtracted, because each respective 

ground state has magnetization M S= −  in a magnetic field applied along the z-axis. 

 

 

Figure 3: Diagram of the ground-state regions in a range of K, B parameter space (see main text) of the 

antiferromagnetic 5
2

s =  triangle ( 1)J = . For further details, see caption to Figure 2. 

 

The ground states as a function of K and magnetic-field strength B (Zeeman term, ˆˆ
B zH BS= ) 

are plotted in Figure 2 ( 2)s =  and Figure 3 5
2

( )s = . These phase diagrams were built on simple 
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analytical conditions, which resemble the ground-state conditions in the last column of Table 2 

and Table 3, respectively, but also consider the magnetic field strength B as another independent 

parameter. 

Square. The Heisenberg square, with sites numbered consecutively, is again integrable by 

Kambe’s method, because 2 2

13 24
ˆ ˆˆ ˆ[ , ] [ , ] 0J JH H= =s s , but 2

13ŝ  or 2

24ŝ  do not commute with the 

biquadratic ˆ
KH . In addition, there exist two independent four-center interactions in the 1

2
s =  

square:5 the frequently discussed cyclic exchange, Eq. (15), 

  1 2 3 4 1 4 2 3 1 3 2 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )( ) ( )( ) ( )( )CH C=   +   −  s s s s s s s s s s s s  (14) 

and the less common non-cyclic exchange [17], Eq. (16), 

  1 2 3 4 1 4 2 3 1 3 2 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )( ) ( )( ) 6( )( )

C
H C=   +   +  s s s s s s s s s s s s  . (15) 

Except for 1
2

s = , ˆ
CH  and ˆ

C
H  do not commute with 2

13ŝ  and 
2

24ŝ . In other words, biquadratic 

exchange and multi-center interactions generally prevent trivial spin-coupling solutions. 

Dimensions of the ( , )S   sectors are listed in Table 4, and the spectrum for 1s =  as a function 

of biquadratic and cyclic exchange (K and C, respectively) is given in Table 5. 

 

Table 4: Dimensions of the ( , )S   spaces in the square (point group 4D ). For further information, see caption and 

footnote to Table 1. 

s 1A  2A  1B  2B  E 

1 2 0 2 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 2 1 1 0 

3/2 2 0 3 1 2 0 1 0 1 1 1 0 0 0 2 0 2 0 1 0 0 0 2 1 2 1 1 0 0 3 2 3 1 1 0 

2 3 0 4 1 4 1 2 0 1 0 2 1 2 1 1 0 0 0 2 0 3 1 2 0 1 0 0 0 2 2 3 2 2 1 1 0 0 4 3 5 3 3 1 1 0 

5/2 
3 0 5 2 5 2 4 1 2 0 

1 

0 2 2 3 2 2 1 1 0 0 

0 

3 0 4 1 4 1 2 0 1 0 

0 

0 3 2 4 3 4 2 2 1 1 

0 

0 5 4 7 5 6 3 3 1 1 

0 

 

The (K, C) ground-state criteria are rather complicated and thus not shown here. However, 

one clear observation, which could not be obtained directly from numerical computations, is 

that, under the assumption of antiferromagnetic Heisenberg coupling, 1J = , none of the levels 

1, 3, 4, 6, 8, 10, 11, 12, 14, or 15 is the ground state for any set (K, C). Phase diagrams including 

a magnetic field, setting either 0K =  or 0C = , are shown in Figure 4. 

 
5 For 1

2
s  , additional four-center (and three-center) interactions involve local rank-2 operators. 
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Table 5: Spectrum for an 1s =  square as a function of biquadratic (K) and four-center coupling (C), at 1J = . The 

ground-state conditions with K set to zero are defined in the last column. 

( , )S   # Energy 
Ground state 

( 0)K =  

Ground state 

( 0)C =  

(0, A1) 
1 

2 
2 23 3 1

2 2 2
8 64 96 32 41 34 9K C K KC K C C+ −  + − + − +  

  
1
4

C   

  
1
2

K   

(0, B1) 3 8 3 1K C+ −      

(1, A2) 4 
1
2

5 2K C− −      

(1, B2) 5 
5
2

9 2K C+ −  
1
4

C =    

(1, E) 
6 

7 
2 23 911 1

2 4 2 4
9 20 20 10K C K KC K C C+ −  + − + − +  

  

  

  
1
2

K =  

(2, A1) 
8 

9 
2 213 3 91

2 4 2 4
25 48 32 8K K KC K C C−  − + + + +  

  
131

4 2
C   

  
1
2

K   

(2, B1) 10 
1
2

5K +      

(2, B2) 11 4K      

(2, E) 12 
1
2

7 2K C− −      

(3, B2) 13 4 3K C−  
13
2

C     

(3, E) 14 4 1K C+ +      

(4, A1) 15 4 2K C+ +      

 

 

 

Figure 4: Ground-state regions for 0K =  (plot a) and 0C =  (plot b) in the 1s =  square ( 1)J = . For further 

details, see caption to Figure 2 and main text. 
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Polyhedra. Here we shall summarily discuss a few highly symmetric polyhedra. In the 

tetrahedron, all possible pairs are coupled equally, like in the triangle. Therefore, ˆ
JH  is 

proportional to 2
Ŝ , 2

2
ˆˆ [ 4 ( 1)]J

JH s s= − +S . Biquadratic exchange again lifts degeneracies 

because it does not commute with pair spins, 2

12
ˆ ˆ[ , ] 0KH s , etc. For 1

2
s = , where a single four-

center term is compatible with dT  symmetry, Eq. (17), 

 1 2 3 4 1 4 2 3 1 3 2 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[( )( ) ( )( ) ( )( )]TH T=   +   +  s s s s s s s s s s s s  , (16) 

the pair spins commute with ˆ
TH , but, as in the case of the square, the respective commutators 

are non-zero for 1
2

s  . Dimensions of symmetry subspaces are collected in Table 6. The 

dimensions for 2s =  were previously reported in Table 4 of Ref. [35]. 

 

Table 6: Dimensions of the ( , )S   spaces in the tetrahedron (point group dT ). 

s 1A  2A  E 1T  2T  

1/2 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 

1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 

3/2 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 2 0 1 0 0 0 1 1 1 0 0 0 0 2 1 2 1 1 0 

2 1 0 2 0 2 1 1 0 1 0 0 1 0 0 0 0 0 0 2 0 2 1 2 0 1 0 0 0 2 1 2 1 1 0 0 0 0 2 2 3 2 2 1 1 0 

5/2 
1 0 2 1 2 1 2 1 1 0 

1 

1 0 1 0 1 0 0 0 0 0 

0 

2 0 3 1 3 1 2 0 1 0 

0 

0 2 2 3 2 2 1 1 0 0 

0 

0 3 2 4 3 4 2 2 1 1 

0 

3 
2 0 2 1 3 1 3 1 2 1 

1 0 1 

1 0 1 1 1 0 1 0 0 0 

0 0 0 

2 0 4 1 4 2 3 1 2 0 

1 0 0 

0 3 2 4 3 4 2 2 1 1 

0 0 0 

0 3 3 5 4 5 4 4 2 2 

1 1 0 

 

The complete analytical spectrum for the 3
2

s =  tetrahedron as a function of K and T is 

exemplarily provided in Table 7. 

 

Table 7: Spectrum of the 3
2

s =  tetrahedron ( 1)J =  as a function of biquadratic and four-center coupling, K and T. 

( , )S   # Energy 

(0, A1) 1 
327 327 15

8 16 4
K T+ −  

(0, A2) 2 
135 135 15

8 16 4
K T+ −  

(0, E) 3 
423 423 15
8 16 4

K T+ −  

(1, T1) 4 
179 99 13

8 16 4
K T+ −  

(1, T2) 
5 

6 
2 2299 227 13

8 16 4
81 120 46K T K KT T+ −  + +  



17 

 

(2, A1) 7 
315 267 9
8 16 4

K T+ −  

(2, E) 
8 

9 
2 2243 51 9 3

8 16 4 2
36 36 37K T K KT T+ −  + +  

(2, T1) 10 
219 27 9
8 16 4

K T+ −  

(2, T2) 11 
219 69 9
8 16 4

K T− −  

(3, A1) 12 
303 297 3
8 16 4

K T− −  

(3, T1) 13 
159 81 3

8 16 4
K T− −  

(3, T2) 
14 

15 
2 2279 93 3 3

8 16 4 4
144 360 289K T K KT T− −  − +  

(4, A1) 16 
287 153 5
8 16 4

K T− +  

(4, E) 17 
143 63 5

8 16 4
K T+ +  

(4, T2) 18 
191 153 5

8 16 4
K T− +  

(5, T2) 19 
171 27 15

8 16 4
K T+ +  

(6, A1) 20 
243 243 27
8 16 4

K T+ +  

 

For most of the levels, the (K, T) criteria for a level to be the lowest-energy state are again 

quite complex. For 1J = , none of the levels 4, 5, 7, 8, 10, 11, 14, 16, 17, 19, or 20 can be the 

ground state for any (K, T), and 1 is a ground state only on the line 2T = − , 1
28

K  − . Figure 5 

shows phase diagrams including a magnetic field, setting 0K =  or 0T = . 

 

 

Figure 5: Ground-state regions for 0T =  (a) and 0K =  (b) in the 3
2

s =  tetrahedron ( 1)J = . 
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For the octahedron, a formulation of ˆ
JH  as in Eq. (18),59 

 2 2 2 2

14 25 362
ˆˆ ˆ ˆ ˆ( )J

JH = − − −S s s s  , (17) 

shows that eigenstates have definite pair spins for diametrically opposite sites. Accidental 

degeneracies between terms belonging to different ( , )S   sectors are lifted when incorporating 

multi-center terms [17] or biquadratic exchange. Table 8 shows that the 1
2

s =  octahedron is 

solved directly by spin- and PG-adaptation, and that the full spectrum can be obtained in closed 

form for 1s =  (not detailed here, due to excessively long expressions for solutions in three- and 

four-dimensional spaces). 

 

Table 8: Dimensions of the ( , )S   spaces in the octahedron (point group hO ). 

s 1gA  
2gA  

1uA  2uA  gE  
uE  1gT  

2gT  
1uT  2uT  

1/2 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 

1 
3 0 3 1 2 

0 1 

0 2 0 2 0 

0 0 

1 0 0 0 0 

0 0 

0 1 0 1 0 

0 0 

1 2 4 2 2 

1 0 

0 1 1 0 0 

0 0 

0 2 1 1 0 

0 0 

2 1 3 1 1 

0 0 

0 4 2 3 1 

1 0 

1 2 3 2 1 

0 0 

3/2 
0 5 2 7 3 

4 2 2 0 1 

3 1 4 3 4 

1 2 0 0 0 

0 2 0 2 0 

0 0 0 0 0 

3 0 3 1 2 

0 1 0 0 0 

1 6 8 8 7 

6 3 2 1 0 

1 2 4 2 2 

1 0 0 0 0 

2 4 6 5 4 

2 1 0 0 0 

0 7 5 8 4 

4 1 1 0 0 

5 4 11 7 

9 4 4 1 1 

0 

1 7 7 9 6 

5 2 1 0 0 

 

Finally, the Heisenberg cube cannot be solved by Kambe’s method, as it lacks conserved 

subsystem spins. The dimensions of the symmetry spaces for 1
2

s = , the only s value for which 

the cube is fully solvable, are collected in Table 9. As far as we know, the complete spectrum 

of ˆ
JH  was not derived previously, and we therefore present it in Table 10. We note accidental 

degeneracies for 1,0, 1, 1 2E = − + −  . 

 

Table 9: Dimensions of the ( , )S   spaces in the 1
2

s =  cube (point group hO ). 

1gA  
2gA  

1uA  2uA  gE  
uE  1gT  

2gT  
1uT  2uT  

3 0 2 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0 1 0 2 0 2 0 0 0 1 1 0 0 0 2 0 0 0 1 2 2 1 0 0 3 1 1 0 1 1 1 0 0 
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Table 10: Spectrum of the 1
2

s =  Heisenberg cube. 

( , )S   # Energy 

(0, A1g) 

1 

2 

3 

2 7 2 215
3 3 3

4 75
3 3

cos sin

cos

 



− + 

− −
 

(0, A1u) 4 0 

(0, Eg) 
5 

6 
1 2−   

(0, T2g) 7 –1 

(0, T2u) 8 –2 

(1, A2u) 
9 

10 

–4 

0 

(1, Eu) 11 –1 

(1, T1g) 
12 

13 
1
2
(1 5)−   

(1, T2g) 
14 

15 
1
2
(3 5)−   

(1, T1u) 

16 

17 

18 

10 302
3 3 3

2 102
3 3

cos sin

cos

 



− − 

− +
 

(1, T2u) 19 0 

(2, A1g) 
20 

21 
1 2−   

(2, Eg) 
22 

23 
1
2
(1 5)  

(2, Eu) 24 0 

(2, T2g) 
25 

26 1  

(2, T1u) 27 –1 

(2, T2u) 28 1 

(3, A2u) 29 0 

(3, T2g) 30 1 

(3, T1u) 31 2 

(4, A1g) 32 3 

( )1 3 5911
3 13
tan −= , ( )11

3
tan 3 111 −=  
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4. Summary and Conclusion 

While numerical methods are commonly used to investigate spin models of magnetic solids 

and molecules, small clusters with spatial symmetry allow for analytical diagonalization of the 

Hamiltonian, and a symbolic representation of spectra or wave functions may provide deeper 

insights that go beyond mere numerical data. To factor the Hamiltonian into symmetry 

subspaces and thus enable analytical diagonalization, we provided a simple yet effective 

approach to adapt the basis to both total-spin (using Löwdin’s projector) and point-group (PG) 

symmetry. The construction of PG-projectors was extensively discussed. Overall, our 

procedure for employing spin- and PG-symmetry to set up a generalized eigenvalue problem in 

a subspace is not intended to be computationally optimal but designed to be easily followed and 

implemented. We chose small rings and polyhedra as examples and elucidated how additional 

interactions (beyond the Heisenberg model) prevent trivial integrability. Our aim was not to 

compile exhaustive tables but rather to highlight specific results that may be useful for verifying 

independent implementations of the analytical diagonalization scheme. 

It is worth noting that a similar procedure would also be applicable to anisotropic systems. 

Although a general anisotropic Hamiltonian does not conserve spin, 2ˆˆ[ , ] 0H S  and 

ˆˆ[ , ] 0zH S  , one can still make use of PG-symmetry and apply respective projectors to random 

states. With anisotropy, most site permutations must be combined with spin rotations to 

represent symmetries [21–23], and this necessitates working with the respective double group 

for systems with half-integer spin. Analytical solutions for anisotropic models are more 

severely restricted in terms of system size, because the group is smaller (lacking spin 

symmetry). Lastly, the present method could also be adapted for use with the Hubbard model, 

whose additional pseudospin symmetry on a bipartite lattice allows to further block-diagonalize 

the Hamiltonian [33,36]. However, the Hubbard model has itinerant electrons, and, at half-

filling, its state space is larger than that of the 1
2

s =  Heisenberg model with the same number 

of sites. Therefore, the limits on system size are stricter. 

Note that we leveraged symmetry to factor H into subspaces for easier diagonalization, but 

a classification of multiplets in terms of S and   holds qualitative value too, e.g., for deducing 

spectroscopic selection rules [20,37,38] or for assessing the momentum-transfer dependencies 

of inelastic neutron scattering intensities [20,38,39]. Symmetry classifications also aid in 

analyzing the mixing of multiplets by anisotropic terms [23,37].  
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Analytical solutions can be directly transferred when adding a further spin that has equal 

couplings to all other sites. The interaction of the original system with such a central site can 

be handled with Kambe’s method, as detailed in Ref. [6]. However, the number of non-trivial 

systems that allow for closed-form solutions of their entire spectrum is naturally limited by the 

requirement that neither subspace dimension exceeds 4. In some situations, analytical 

diagonalization could still be used in the smaller spaces of large S values, which are important 

to consider for ferromagnetic coupling or in high magnetic fields. 
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