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Abstract—In this work we present an overview of approaches
for the detection and attribution of synthetic images and highlight
their strengths and weaknesses. We also point out and discuss
hot topics in this field and outline promising directions for future
research.

I. INTRODUCTION

YNTHETIC media generation has seen tremendous

progress in the span of just a few years. On the one
hand, photorealism has fast improved with the advent of
generative adversarial networks (GAN) and, more recently,
diffusion models (DM). On the other hand, the ease and
flexibility of media generation has reached an unprecedented
level. Powered by large language models (LLMs), text-to-
image synthesis tools allow the user to create from scratch
and modify images at will by means of simple text instructions
(see Fig. 1). Generative Al offers numerous opportunities for
many industries, from entertainment, to healthcare, to finance
and manufacturing[1]. However, it can be used for all kinds
of illicit purposes, especially to strengthen disinformation
campaigns and political propaganda[2]-[3]. Such goals can be
now pursued faster than ever and on a large scale, with minimal
human intervention and with results that are extremely realistic
and well aligned with a specific narrative. This represents a
serious threat to our society and justifies the growing focus on
automated tools that distinguish synthetic images from natural
ones.

In this context, two slightly different objectives can be
pursued: i) detection provides a global score assessing the
probability that the image under test is synthetic; ii) attribution
goes a step further and aims to trace the specific generative
model used to synthesize the image. By providing more
specific information about the generation process, attribution
validates the detection output and improves its interpretability.
Early generative Al approaches could introduce certain visual
inconsistencies, such as asymmetries in shadows and reflected
images. However, more recent ones can achieve an unprece-
dented level of realism, that make detection methods based
on visual artifacts useless and push towards the discovery of
invisible traces. One possibility is to rely on subtle forensic
traces left by the generation process. In fact, each generative
model leaves a sort of artificial fingerprint, which depends on
the model architecture, the details of the synthesis process, and
even on the training dataset.
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In this article, we review the most effective approaches
for synthetic image detection and attribution. Then, we try
to establish what can and cannot realistically be achieved
with current methods and how reliable they are, especially
when dealing with difficult real-world scenarios. Finally, we
highlight the main current research challenges and indicate
what we believe are the most interesting directions for future
work.

II. SYNTHETIC IMAGE GENERATION

Several powerful generative approaches have been proposed
over the years, such as variational autoencoders, energy-based
models, normalizing flows, generative adversarial networks,
and diffusion models. Here we limit our attention to the last
two approaches, both for their ability to generate high-quality
images and for their easy support for text-image synthesis.
In fact, natural language-based image editing provides an
unprecedented level of flexibility and control over the gen-
eration process, paving the way for new and more advanced
applications. Tab. I lists the GAN- and DM-based image
generators used in our experimental analysis.

A. Generative Adversarial Networks

GANSs exploit the adversarial game between two networks,
a generator that creates synthetic images and a discriminator
that tries to distinguish them from natural images [29]. The two
networks are trained jointly with a min-max game: as the dis-
criminator becomes more effective, so does the generator, cre-
ating increasingly realistic samples over time. Among the first
successful GAN-based methods, we mention BigGAN, a class-
conditional image generator proposed by Brock et al., and
ProGAN, proposed by Karras et al. in 2018, which produces
high-quality images using a fast and stable training procedure
that increases resolution over time. Further improvements of
the latter led to the StyleGAN family, where the convolutional
kernels of the generator are controlled by latent code, allowing
tight control of the synthesis process. Appreciable results were
also obtained in 3D synthesis using EG3D, a method capable
of producing multi-view-consistent renderings and detailed
geometry of a synthetic face. Recently, the main research focus
has shifted to text-based image synthesis, and several GAN-
based methods have been proposed for this purpose. Both
StyleGAN-T and GALIP are jointly trained on images and
text descriptions, using CLIP (Contrastive Language-Image



Fig. 1: Top: examples of synthetic images, generated using (from left to right) Latent Diffusion, Stable Diffusion, Midjourney v5,
DALL-E Mini, DALL-E 2, DALL-E 3. The prompt used for their generation is the following: a photo of the Rome Colosseum
with a UFO over it, detailed, 8k. Bottom: Average Power Spectra of the artificial fingerprints for each of such model. Forensic
artifacts are clearly visible as spectral peaks in the Fourier domain, stronger or weaker based on the specific model. We can
observe that the first three images share very similar artifacts while the fingerprints of the three releases of DALL-E differ greatly
from one another, testifying to very different generative architectures[4].

Pre-Training) [30] as the underlying language model, and
produce high-quality samples in a controllable manner. A
further improvement has been made by GigaGAN, the first
GAN-based method trained on billions of real-world images,
which is capable of synthesizing high-resolution images very
quickly, also supporting latent interpolation and stylization.

B. Diffusion Models

At the core of diffusion models are two interconnected
stochastic processes. A forward process transforms natural
images into random noise by adding Gaussian noise in small
steps. The samples generated in a single step of the forward
process are then used to train a neural network that inverts that
step, removing some noise from the input sample. A chain of
such networks performs the backward process, gradually con-
verting input Gaussian noise into synthetic images. The quality
of images generated by diffusion models is comparable to that
of GANs and better than that of other approaches.[16], [17]
Furthermore, training is easier and more stable than GANs,
without mode collapse, although more time-consuming. More
importantly, with their flexibility, DMs provide ideal support
for text-image synthesis, enabling the generation of complex
images based on diverse and arbitrary text descriptions. All
this has revolutionized the way of tackling complex gener-
ative artificial intelligence tasks, and lead to many different
architectures for text-image synthesis.

Most of these models rely on U-Net and its variations as a
backbone, like GLIDE and DALL-E 2, that use a text encoder
to condition generation on natural language descriptions based
on CLIP. The more recent Ediff-I adopts multiple U-Net
models specialized for different synthesis stages. To reduce
computational costs, Latent DM combines a diffusion model

with a variational autoencoder: the former operates in a low-
dimensional space to generate the latent vector needed by the
latter. A noteworthy model of this class is Stable Diffusion,
which is part of an open-source project and is trained on the
5.85 billion images of the LAION dataset [31]. A fast solution
that can well generalize to real images and user-written instruc-
tions is Instructpix2pix, that combines the knowledge of GPT-
3 and Stable Diffusion. Stable Diffusion XL leverages a three
times larger UNet backbone to generate very high resolution
images. In Diffusion Transformers (DiTs), instead, the usual U-
Net backbone is replaced by a transformer. Inspired by Saharia
et al., DeepFloyd IF has built a model, where the generation
process includes a cascade of multiple networks [32].

C. Forensic artifacts

The images generated by synthetic architectures often fea-
tured visual artifacts such as unnatural colors or incorrect
perspectives and shadows. These semantic inconsistencies are
typically referred to as high-level artifacts. Some models
however produce visually perfect images without any obvious
sign of their synthetic nature causing great concern among
end users. With the right methodology, it is still possible
to tell apart real from synthetic images, even when these
latter look perfectly realistic. The general principle is that
each image bears with it a number of distinctive marks
related to the acquisition or generation process, which can
be exploited to trace back its origin. This is well-known for
physical devices, where both hardware and software leave
precious forensic traces. However, something very similar
happens also for synthetic images. Al-based generative models
use complex processing chains involving a large number of
specific processes, including filtering, pooling, downsampling
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TABLE I: List of the Al generative models analyzed in this
work. Each model generates images with different content,
as specified in the following: generic objects (0) by training
on ImageNet/LSUN, faces (f) by training on FFHQ/CelebA,
scenes (s) by training on COCO, various (v) includes objects,
faces and scenes.

and upsampling. All such processes leave peculiar marks in
the images which may be exploited to accomplish multiple
forensic tasks, from source identification to forgery detection
[33]. These are imperceptible traces, called also low-level
artifacts, that can be exposed only by means of statistical
analyses. In the frequency domain, model-related artifact can
be often spotted as strong peaks in the power spectra of noise
residuals (see Fig. 1, bottom). Furthermore, it has been clearly
shown that synthetic generators struggle to perfectly reproduce
the spectral distributions of the real data used for training in
the medium/high frequencies [4]'[34].

III. SYNTHETIC IMAGE DETECTION

Early methods proposed to distinguish synthetic from real
images relied on CNN-based architectures trained with large
amounts of data. These methods work very well when test
and training data are perfectly aligned but exhibit a significant
performance drop in the presence of test-training mismatch.
In particular, two major problems are lack of robustness
and limited generalization ability. Robustness is necessary to
withstand image impairments, like the re-compression and re-
sizing of images posted on social networks, that weaken the

subtle traces exploited by most classifiers. On the other hand,
the ability to generalize allows the analysis of images that
come from generators not seen during training.

In the following, we will review the main strategies proposed
to handle such issues. It is worth underlining that most papers
described in this Section focus on GANSs, but in recent years
there has been an ever increasing attention to DMs. However,
methods conceived originally for GAN image detection usually
turn out to work equally well on more recent Al-generative
approaches. A taxonomy of all the methods is presented in
Figure 2.

A. Data-driven methods

A first strategy to achieve robustness to possible impair-
ments is to leverage deep CNN architectures [35] and to
include suitable augmentation during training. In [36] it was
shown that good robustness can be achieved through simple
augmentation with compressed and blurred images, even if
the network is trained on a single generative architecture
(ProGAN). A qualifying aspect of the proposal was also
the training set diversity, ensured by the use of 20 different
categories of images. Subsequent papers [37], [38] confirmed
this to be a key factor to improve generalization ability. The
adoption of large datasets for model pre-training appears to be
important too. Extreme augmentation, instead, ensures only
marginal gains in robustness but improves generalization to
unseen models [38].

Another golden rule that applies equally well for GAN and
DM image detection is to avoid any loss of information. This
holds both during training and test, and regards all layers
of the detector architecture, especially those closest to the
input. In [39] this is achieved by using a patch-based classifier
and avoiding image resizing, in order not to erase the subtle
traces left by the generation process. To preserve the invisible
forensics cues, in [38] it is explicitly suggested to: i) train
the network on randomly cropped patches; ii) make the final
decision on the whole image by means of some fusion strategy;
iii) avoid any down-sampling in the first layers of the network.
In [40] patch-based analysis is further enhanced by combining
it with global spatial information extracted from the whole
image.

The main goal of [41], instead, is to single out transferable
features that allow for the design of universal detectors. In
particular, color is shown to be a critical transferable forensic
feature, and used in a suitable data augmentation scheme.
Another path towards improved generalization is the use of
few-shot or incremental learning strategies, as done in [42],
[43], [44], [45]. Of course, these methods need the availability
of some example images from the new architectures, data
that may not be available in the most challenging scenarios.
Along this direction a recent work investigated whether a
detector was able to perform correct detection in a simulated
online framework, where the detector is regularly re-trained
by preserving the temporal order of the synthetic generator
release date [46]. Results show that generalization is good to
unseen models as long as the architecture of unseen generators
is similar to that of old ones.
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Fig. 2: Taxonomy of synthetic image detection methods.

In [47] an investigative analysis is carried out with several
CNN-based methods for diffusion model detection. The results
show that calibration is critical for detectors to work across
different generators, and also that some form of fusion strategy
could help. In [48] it is shown that only higher-quality images
should be included in the training dataset to ensure gener-
alization across different categories. Explainable Al, instead,
has been only lately explored, with a few works that leverage
Gradient Class Activation Mapping to interpret the results [49].

Studies that consider backbone architectures different from
CNNs, like transformers and vision-language models, are
carried out in [50], [51], [52], [53], [54]. In particular, in [50],
the generalization ability of a CLIP-ViT model pre-trained
on internet-scale image-text pairs is empirically demonstrated.
Classification is performed using the fixed feature space of the
model, and a very good performance is obtained when trained
on GANSs and tested on DMs. Alternative strategies are pursued
in [55], [56], where the proposed detector leverages also on
the corresponding prompt during training. Finally, note that in
[51], [52], [53] large datasets of synthetic images are made
available to the community to foster research on synthetic
image detection for generative Al

B. Methods exploiting forensic cues

In this section we describe methods that more explicitely
rely on some specific forensic traces both low-level and high-
level cues.

1) Low-level artifacts: As already shown in Fig. 1, Al-
generated images show clear traces of their origin in the
Fourier domain. These artifacts are due to the up-sampling
operations typical of the synthesis network. Even when such
peaks are absent, synthetic images differ significantly from
natural images at the medium-high frequencies.[34], [4] The
artifacts in the Fourier domain were first exploited in [57]. The
idea was to simulate such artifacts and then use them to train
a spectrum based classifier. A similar idea was also pursued

in [58], where synthetic images were obtained trough an
adversarial autoencoder and in [59] that proposes to simulate
the fingerprints from real images by leveraging various types
of generative models.

High-frequency traces can be also exposed by suppressing
the scene content and extracting the noise residuals [60]. In
this domain, real and synthetic images show different inter-
pixel dependencies, which can be exploited for detection [61],
[62]. Noise patterns can be also learned as done in [63],
[64] or estimated during the inverse diffusion process [65].
Indeed, the inversion process can be very useful for detection
as shown in [66]. The idea is that, unlike real images, DM-
generated images can be accurately reconstructed by a DM.
Therefore, by measuring the error between an input image
and its reconstruction counterpart it is possible to carry out
detection.

2) High-level artifacts: Some methods look for semantic
errors, such as asymmetries in faces, wrong perspective, odd
shadows. These works are either focused on faces [67], [68]
or on generic scenes [69], [70], [71]. In [71], based on the
observation that shadow and perspective errors are systematic
in diffusion models, a classifier is proposed that looks at the
perspective field, at lines, and at the relations between detected
objects and shadows.

C. Experimental evaluation

In this Section we carry out a comparison of the methods
proposed in the literature for which code and model were
publicly available: Wang2020 [36], PatchFor. [39], Grag2021
[38], Liu2022 [63], Corvi2023 [47], LGrad [60], Ojha2023
[50], and DIRE [66]. For each method we use the model
already trained by the authors as proposed in their original
paper.

1) Generalization analysis: In this Section, we show some
experiments on generalization. The test set comprises 1,000
synthetic images for each of the generators listed in Table I. To
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Fig. 3: Synthetic image detection results in terms of AUC with
and without post-processing (PP).

evaluate performance, the synthetic images of each generator
are compared with real images with the same content, so as
to avoid biases induced by different contents. In particular, we
used 5,000 real images, 1,000 per each dataset: LSUN, FFHQ,
ImageNet, COCO and LAION. For simplicity we aggregate
results for all GAN-based generated images and all DM ones.

To simulate a realistic scenario on the web, we also consider
a post-processed (PP) version of the datasets. First, it is taken
an image crop, that can vary in a range that goes from g to
the full image size. The image is then resized to 200 x 200
pixels and, finally, it is JPEG compressed with a random
quality factor between 65 and 100. Results are shown in
terms of Area Under the ROC Curve (AUC) in Fig. 3. We
can observe that DM images are harder to detect than GAN
images. This can be explained by the fact that most detectors
are trained on the ProGAN dataset except for Corvi2023 that
is trained on Latent Diffusion. Overall the best generalization
is ensured by Ojha2023, that relies on CLIP as backbone.
However all performance figures worsen in the presence of
a significant training-test mismatch (Fig. 3, bottom) and some
detectors exhibit an AUC very close to 50%, especially with
DM images. Interestingly the performance does not vary across
different categories as can be seen in Fig. 4. For example, both
0Ojha2023 and Liu2022 show very good performance on scenes
or faces even though they are not trained for these categories.

2) In the wild: To evaluate the performance in a more
challenging situation, we downloaded a total of 2,000 images
from a well known social network (X), both real and generated
from Midjourney v5, DALL-E 3 and Firefly (according to their
associated hashtag). Experimental results are shown in Fig. 5
in terms of AUC. In this case, methods behave quite differently
than before, with CNN-based architectures performing much
better than the others. In particular, Corvi2023 has a near-
perfect performance for Midjourney v5 and DALL-E 3. This is
easy to explain if we observe again Fig. 1: the forensic artifacts
for Midjourney v5 are almost identical to those embedded in
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Fig. 4: Synthetic image detection results in terms of AUC for
three methods over various contents.

Latent DM images, used in training.

3) Calibration: We presented all the results in terms of
AUC. However, when working in a practical scenario, it is
necessary to set a threshold to discriminate between real and
fake images. This is by no means a trivial problem: a fixed
threshold is hardly appropriate in all situations, especially
if training and test data are misaligned, and could lead to
disappointing results. An example is shown in Fig. 6, where
we show the distribution of the scores provided by Grag2021
trained on ProGAN. We can see that the distribution of
ProGAN test images is very well separated from the real
one if we choose a zero threshold. However, if we aim at
distinguishing Firefly (not included in training), then a lower
threshold should be used.

IV. SYNTHETIC IMAGE ATTRIBUTION

Image attribution extracts information about the provenance
of the image by linking it to its generative model. If the
“real” class is among those considered in the process, then
the attribution includes automatically the detection.

A. Artificial fingerprints

Early research in the field of synthetic image attribution fo-
cused primarily on adapting successful techniques and methods
from conventional multimedia forensics to this emerging do-
main. In particular, device and model fingerprints have proven
to be extremely valuable for a wide range of forensic tasks and
widely used especially for source identification. The concept
of device fingerprint was first introduced by Chen et al. [33]
who demonstrated that imperfections inherent in the camera
sensor generated a unique and stable pattern in each captured
image, a fingerprint in every way, called photo-response non-
uniformity (PRNU) pattern. As already mentioned, similar
fingerprints can also be extracted from synthetic images and
represent a valuable tool for image attribution. The procedure
requires removing the semantic content of the scene through
a denoiser and then averaging the residual images. As the
number of averaged images grows, a weak but stable quasi-
periodic pattern can be observed [72].

Such fingerprints allow discriminating different models but
can also provide information on the different datasets used
for training. In fact, the same architecture, trained in different
conditions, gives rise to slightly different fingerprints that
allow fine-grained model authentication. Overall, the observed
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Fig. 5: Synthetic image detection results in terms of AUC
on images from X generated by DALL-E 3, Midjourney and
Firefly.

fingerprint turns out to depend on the specific architecture,
the training dataset and also the training hyperparameters (e.g.
learning rate, optimizer, training iterations) [73]. A learned
fingerprint is also extracted in [74] through a hierarchical
Bayesian approach. It does not depend on the initial seed,
but is shown to change based on the training dataset and is
robust to benign image transformations, such as compression,
blurring and additive noise. The influence of the dataset was
further analyzed highlighting possible biases in the generated
data and extending the analysis of such traces to diffusion
models[4]. A slightly different perspective is taken in [75],
where a fingerprint estimation network is proposed to capture
the unique patterns used to predict the network architecture
and loss function that characterize a generative model. It is
worth underlining that, in any case, these fingerprints are due
to subtle traces present in the image, and therefore lay in the
medium/high frequency bands. Therefore, while exhibiting a
certain robustness, they can be vulnerable to adversarial attacks
or can even be replaced by alien fingerprints extracted from
real cameras [76].

B. Attribution via inversion

Attribution can also be pursued by image inversion, since a
generative model is not able to perfectly synthesize an image
coming from another model nor it can perfectly reproduce
a real image [77]. The idea is to know a set of possible
generators, both architectures and weights, and then compute
the input data of the generator that allows to produce an image
as similar as possible to the image under test. The likely source
is the generator that ensures the minimum reconstruction error
[78]. A robustness analysis and the extension to an open set
scenario can be respectively found in [79] and [80].

C. Attribution as a classification problem

The source attribution problem can be simply considered
as an N-ary classification, where the N classes can be as-
sociated for example with different architectures. In [81], in
order to learn an attribution model that is robust to different
categories and possible perturbations, it has proposed a mix-up
representation training strategy at the feature level. Interest-
ingly, the approach can effectively handle both detection and
attribution through a compound loss that takes into account

Real
| ProGAN
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40 30 -20 -10 0 10 20 30 40

Fig. 6: Scores distribution provided by the method [38] (trained
on ProGAN) for real images, and for synthetic images from
ProGAN and Firefly.

the hierarchical nature of the problem. The image can be
classified as real or fake and only in the latter case should
the problem of attribution be considered. Instead in [82] a
patchwise contrastive learning strategy is pursued with pre-
training on image transformation classification that have been
found to be similar to the generator components.

D. Open-set methods

When dealing with synthetic image attribution, several meth-
ods assume to work in a closed-set scenario, where test images
were generated by a limited set of architectures, known in
advance, whose samples were present in the training set.
However, this scenario is far from realistic, given that new
generation methods are proposed every day. In fact, images of
new architectures may not even be available. In this condition,
it is very important to be able to identify an out-of-distribution
sample, recognizing that it does not belong to any of the classes
observed in the training process. This more realistic scenario
is known as open set recognition.

A first open-set approach was proposed in [83] with an
iterative algorithm that discovers new classes and re-trains
the network using them as pseudo-labels. This method uses
a fixed set of labeled images and then performs attribution on
a set of unlabeled data through a clustering procedure. More
recent works rely on classification with a rejection option, as
in [84] based on a hybrid ViT+ResNet50 architecture, or in
[85] where a metric-learning based embedding is developed
to measure the similarity between the source generators of
synthetic images. Finally, in [86] a progressive open space
solution is proposed. The idea is to simulate unknown classes
trough a set of augmentation models, based on lightweight
networks that can model the traces of a variety of unknown
models.

E. Closed-set vs Open-set analysis

In this Section we carry out a comparison of some of
the methods proposed in the literature for which code was
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Fig. 7: synthetic image attribution results in both closed-set
and open-set scenarios, considering two separate training sets
(GANs an DMs).

publicly available on-line: RepMix [81], DNA-Det [82], GAN
Discovery [83], Wang2023 [84], POSE [86]. All methods were
re-trained using exactly the same data. Along with the methods
specifically proposed for attribution, we also consider some of
the best detection methods analyzed in the previous section
re-trained in a multi-class configuration [36], [38], [50]. We
consider both closed-set and open-set scenarios and carry out
attribution at architecture-level. We evaluate the performance
of closed-set attribution in terms of accuracy, a widely uti-
lized metric for multi-classification problems. For the open-set
scenario, we measure the capacity to distinguish between in-
distribution and out-of-distribution samples in terms of AUC,
as is typically done in the literature [84], [85], [86]. More
specifically, We analyze different situations as described below.

1) GAN-based vs DM-based: To analyze the possible dif-
ferent performances among GANs an DMs, we consider
two separate sets of 7 synthetic generators, one is GAN-
based (ProGAN, BigGAN, StarGAN, GauGAN, StyleGAN?2,
StyleGAN3, Diffusion-GAN) the other is DM-based (ADM,
DDPM, Score-SDE, GLIDE, Latent Diffusion, Stable Diffu-
sion, DALL-E 2). These two sets comprise 2,500 images per
architecture, for a total of 17,500 images each. Then we carry
out an experiment in a closed set scenario (Fig. 7, top) and
in an open set scenario (Fig. 7, bottom) where we limit the
new unknown classes to come from 3 GAN-based generators
(EG3D, GALIP, GigaGAN) and 3 DM-based generators for
(DiT, DeepFloyd-IF, SDXL), respectively. In both scenarios,
we consider 500 images per generator under test. We can
observe that in the closed-set scenario the performance is
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Fig. 8: Robustness analysis in both closed-set and open-
set scenarios, by varying Gaussian blurring (top) and JPEG
compression quality (bottom).

very good both for GANs and DMs. It worsens for open-set
recognition, especially for DMs, where AUC can hardly reach
90%. Interestingly, detection-based methods perform very well
in this new setting, coherently with recent findings that the
ability of a classifier to make a reject-option decision is very
much correlated with its accuracy on the closed-set classes[87].

2) Robustness analysis: In the same scenario presented
above, we also evaluate robustness to JPEG compression and
blurring in order to check the sensitivity of the methods to
possible benign perturbations. Note that in this case, suitable
augmentation is included in all the approaches as also sug-
gested in the original papers. Results are presented in Fig. 8
and show that for most of the analyzed methods the decrease
in performance is quite limited.

3) Detection and attribution: In this last experiment we
consider a more challenging scenario where, beyond mixing
GANs and DMs architectures, also real images are present.
Note that in the literature, real images are separated based
on their dataset of provenance. However, this may introduce
biases that in turn help achieving a good performance and,
eventually, lead to unfair comparisons. To be completely fair,
we consider a single class that includes all real images, no
matter what the original dataset. In this situation, a very similar
behavior is observed in the closed-set and open-set scenarios
(Fig. 9). All methods suffer only a small performance loss in
the open-set scenario. Instead, a substantial loss is observed
with respect to the situation where only synthetic images are
considered (Fig. 7), especially in the closed-set scenario. It is
also worth noting that the probability of correctly classifying
the real class and the fake ones is balanced, with 94.8% and
93.9% respectively, for the best approach.
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Fig. 9: Synthetic image attribution results in the more chal-
lenging scenario where also the real class is included.

V. DISCUSSION AND OPEN CHALLENGES

We are now in the condition to outline the main strengths
of state-of-the-art methods for synthetic image verification as
well as the current and future challenges that remain to be
solved. On the positive side we have:

1) Low-level artifacts: These forensic cues have been
widely studied and exploited in several powerful methods. In
the most favourable cases they allow for reliable detection and
attribution. However, they provide valuable information also
in more challenging situations. For example, they may help
identifying the “family” of generative architectures used to
generate the test image, thus restricting the search to a limited
number of candidates.

2) Generalization: In the favourable closed-set scenario,
model attribution is extremely reliable. However, a very good
performance is obtained also when the generators are used
in slightly different conditions (different seed, loss function,
training dataset). This means that if a malicious attacker relies
on publicly available models, fine-tuning them on personal
data, detection and attribution are still possible.

3) Robustness: There is plenty of experimental evidence
that suitable forms of augmentation ensure good robustness
to image impairments. Of course, it is important to know in
advance the possible scenarios of interest. For example, if
images are JPEG or Webp compressed, augmentation should
be coherent with these formats, otherwise robustness is not
necessarily guaranteed.

There is also a number of problems yet to be solved:

1) Detection vs. attribution: In the literature, these are often
treated as separate and almost unrelated problems. Instead,
they depend strongly on one-another, and should be dealt with
jointly to optimize the performance.

2) Open-set analysis: Currently, in this scenario, sources
that are not included in the training set are simply classified as
unknown. However, many generative architectures are strongly
correlated to one-another because they share common com-
ponents. Therefore, there may be significant prior knowledge
also on unknown samples which can be exploited to refine
the analysis. Furthermore, it is worth highlighting that some

methods suffer a large performance drop when moving from
the closed-set to the open-set scenario.

3) Calibration: Results are often presented using average
measures such as the AUC. However, a large AUC ensures
only that two distributions can be well separated. The problem
remains of how selecting the optimal decision threshold. The
default threshold may provide dismaying results and hence
some forms of calibration is needed to make decisions in a
real-world scenario.

VI. FUTURE DIRECTIONS

As clear from the previous Section, there is still much
room for research in this field, and there are many aspects
that deserve deeper investigation. Here, we outline only a few
directions for future research, topics that, in our opinion, hold
the most potential for real breakthroughs.

1) Intent characterization: The boundary between real and
fake is becoming thin. Al is already customarily used for
compression, enhancement, super-resolution, and many more
legitimate tasks. In the near future, generative Al will be
everywhere. Should we keep calling these images “fake”? In
a world soon to be flooded by Al-generated content the major
focus should be to characterize the intent of a media asset, be
it real or generated: is it malicious or not?

2) Explainability: Along a very similar path, the ability
to explain the meaning of an image generated by artificial
intelligence, especially in relation to its context, will allow
to make sound decisions about its harmful potential. More in
general, being able to provide an interpretation of the score
provided by the detector would help to make more convincing
decisions. For example, it would be easier to trust a detector
that can associate a sensible confidence level with its decisions.

3) Robustness to adversarial attacks: Although there are
works that analyze the performance of detectors in the presence
of adversarial attacks, only a few detectors are designed with
the aim of withstanding such attacks. In particular, adversarial
attacks can easily remove the low-level traces that many
current detectors rely on.

4) Universal approaches: Beyond fully generated images,
nowadays it is also possible to make local modifications to
an image using a prompt, e.g. by adding/removing an object
or even expanding the image. It would be desirable to design
methods that can detect at the same time both global and local
Al-generated content.

5) Active methods: In recent years, research has mainly
focused on passive methods, neglecting active methods due
to their well-known risks (e.g., privacy issues). However,
modern active methods provide ingenious tools that should
be considered to enrich the available forensic toolkit. Some
approaches embed a watermark into an image in a visually
imperceptible manner to certify image authenticity. Some other
methods instead protect the images from malicious use and
insert an invisibile signal with the purpose of disrupting editing
tools and make them fail.

It is difficult to predict whether these efforts will ensure
the integrity of information in the era of generative artificial
intelligence. However, this is an ongoing arms race, with



neither side having a significant advantage. The availability
of a wide variety of tools that follow different approaches and
exploit complementary information is the main guarantee that
ever new and reliable detectors can be designed and used to
safeguard institutions and individuals.
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