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In this work, we develop an optomechanical formalism for macroscopic quantum states in exciton-
polariton systems with strong exciton-phonon interactions. We show that polariton optomechan-
ical interactions induce dynamical backaction, resulting in dispersive and dissipative shifts in the
complex vibrational response functions. Unlike conventional optomechanical systems, polariton
optomechanics features high-dimensionality and phase-space confinement due to the dispersion re-
lations of exciton-polaritons. Consequently, vibrational modes exhibit effective positive or negative
mass depending on the detuning parameter, and are capable for the vibrational Bose condensation
under the resonant conditions [1]. We demonstrate the potential for vibrational control of polariton
condensates at room temperature.

I. INTRODUCTION

Cavity optomechanics with molecules has recently
emerged as a new research frontier promising quantum
control over the vibrational states of matter coupled
to optical cavities at room temperature [2–4]. High
frequencies of molecular vibrations on the order of a
few tens of THz ensure quantum ground state prepara-
tion of the mechanical subsystem even at high temper-
atures [4, 5]. While ultra-small mode volume of plas-
monic cavities enables strong optomechanical interac-
tion with single molecules [6], achieving the coupling
strength of 20 meV (g ∼ 5 THz). Mostly implemented
within surface-enhanced Raman scattering (SERS) con-
figuration, molecular optomechanics holds the record
high single-photon optomechanical interaction strength
among existing platforms [4]. Besides fundamental in-
terest, such strong optomechanical interaction is practi-
cal for energy transduction, bridging mid-IR and visible
spectral ranges with applications in ultrafast photon de-
tection operational at room temperature [7, 8]. However,
the extreme optical mode localization in plasmonic cavi-
ties results in significant losses (κ ∼ 25 THz), which pre-
vent the observation of strong single-photon optomechan-
ical interactions (g/κ > 1) in current experiments. Addi-
tionally, high cavity losses necessitate high pumping rates
to develop coherent vibrational phases via parametric in-
stabilities and significantly constrain dynamical backac-
tion rates to the Doppler regime for vibrational modes be-
low a cut-off frequency (ωVib < κ/2) [9]. While sideband-
resolved optomechanical interactions can be implemented
for sufficiently high vibrational resonances, their ampli-
fication toward a coherent state is unlikely due to the
potential breakdown of molecular bonds at such high vi-
brational occupations [10].
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FIG. 1. Schematic of polariton optomechanics based on the
tripartite strong interaction between excitons, vibrations, and
cavity photons in molecular systems.

In this work, we explore a new regime in molecular
quantum optomechanics characterized by: (i) - collective
coupling of large molecular ensembles of ∼ 108 − 1012

molecules, within high-Q microcavities; and (ii) - simul-
taneous strong exciton-photon and exciton-vibration in-
teractions. Figure 1 illustrates the tripartite interac-
tion involved in the optomechanical coupling. It exhibits
a resonant polariton nature due to the strong exciton-
phonon interaction and low losses ωVib ≫ κ, γ provid-
ing conditions for the well-resolved sideband regime and
strong optomechanical backaction to lift the limits on
parametric control over vibrational states. Finally, under
the resonant blue-detuned laser drive we enter a macro-
scopic quantum state of polariton Bose–Einstein conden-
sation accompanied by the build-up of coherent vibra-
tional phases. In Ref. [1], we propose a new sympathetic
mechanism to achieve vibrational condensation via gen-
uine polariton optomechanics.

The article is organized as follows: in Section II, we
present the theoretical framework introducing Hamilto-
nian, commutation relations, interaction with the envi-
ronment, and the equations of motion for the collective
and localized excitonic and vibrational states. In Sec-
tion III, we develop a coherent optomechanical frame-
work for the vibrational mechanism of polariton conden-
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sation. We introduce an effective optomechanical Hamil-
tonian that leads to dynamical backaction effects analo-
gous to those in a cavity with a suspended mirror under
radiation pressure in the resolved-sideband regime. In
Section IV, we present numerical simulations of vibra-
tional and polariton occupation numbers as functions of
optomechanical detuning and laser drive power. In the
resonant blue-detuned optomechanical configuration, we
observe strong vibrational amplification leading to con-
densation of molecular vibrations into the lowest energy
state. We propose non-resonant methods for parametric
vibrational control over polariton Bose–Einstein conden-
sates, compatible with telecom wavelengths.

II. THEORETICAL FRAMEWORK

We explore a nonequilibrium microscopic model rep-
resenting an ensemble of molecules with vibrationally
dressed electronic transitions, coupled to cavity modes
characterized by differing in-plane momenta ℏk∥ (here-
inafter ℏk). Figure 1 sketches this setup, depicting vi-
brationally dressed excitons coupled to an optical cav-
ity mode, which leads to tripartite effective polariton
optomechanical interaction. The electronic excitations
being localized at molecules are effectively treated as
Frenkel-type excitons, where each excitation can be de-
scribed by the Pauli creation and annihilation operators
acting on a single molecule. We take into account a vibra-
tional state with eigenfrequency ωVib in each molecule.
The system Hamiltonian has the form

Ĥ =
∑
k

ℏωCav|kâ
†
Cav|kâCav|k+

Nmol∑
j=1

ℏωexcσ̂
†
Excj σ̂Excj +

Nmol∑
j=1

ℏωVibb̂
†
Vibj b̂Vibj+

Nmol∑
j=1

ℏΛωVibσ̂
†
Excj σ̂Excj

(
b̂Vibj + b̂†Vibj

)
+

Nmol∑
j=1

∑
k

ℏΩjk

(
σ̂†
Excj âCav|ke

ikrj + h.c.
)
, (1)

where â†Cav|k (âCav|k) is the creation (annihilation) op-

erator of a photon in the cavity with the wavevector k.
The corresponding eigenfrequency of the cavity photon

is ωCav|k. The commutation relation
[
âCav|k, â

†
Cav|k′

]
=

δk,k′ holds for the operators of the cavity, Nmol is the
total number of molecules in the illuminated region. We
assume, that each molecule can host one exciton with
the frequency ωexc independently on the state of nearby

molecules [11]. For j-th molecule σ̂†
Excj (σ̂Excj) is the

creation (annihilation) operator of the exciton. Exci-

ton operators obey commutation relation σ̂Excj σ̂
†
Excj′ +

σ̂†
Excj′ σ̂Excj = δj,j′ . Below we consider the case of small

probability for the exciton to be found in an excited

state, ⟨σ̂†
Excj σ̂Excj⟩ ≪ 1. In this case, the approximate

commutation relation
[
σ̂Excj , σ̂

†
Excj′

]
≈ δj,j′ is valid [12].

Also, we assume, that each molecule hosts one vibra-
tional mode with the frequency ωVib. For j-th molecule

b̂†Vibj (b̂Vibj) is the creation (annihilation) operator of the
molecular vibration. The constant Λ is the square of
the Huang–Rhys parameter [13, 14]. Here we suppose
that the electric field of the k-th mode is distributed
in the plane parallel to the mirrors according to eikr.
Vector rj points to the position of the j-th molecule,
Ωjk = −Ekdj/ℏ is a single-molecule Rabi frequency of
the interaction with the cavity [15], where dj is the ex-
citon transition dipole momentum of the molecule, Ek

is the electric field of the mode with in-plane momen-
tum ℏk inside the cavity. We assume, that the dipole
moments dj are distributed randomly and evenly over
the cavity. Also, here we focus on the rather resonant
condition ωexc − ωCav|k=0 ∼ ωVib.

In optical cavities, molecular electronic and vibrational
states can hybridize with photons, forming new polaron-
polariton eigenstates [13, 16–18]. Consequently, an accu-
rate description of these systems requires consideration
of both strong exciton-cavity and exciton-vibrational in-
teractions. We introduce the dressed excitonic and vi-
brational states with subsequent transition to the mixed
light-matter states: upper and lower polaritons. Then we
transform the Hamiltonian above Eq. (1) into the basis
of the light-matter states (see Appendix A)

Ĥ =
∑
k

ℏωUp|kŝ
†
Up|kŝUp|k+∑

k

ℏωLow|kŝ
†
Low|kŝLow|k +

∑
k

ℏωVibĉ
†
Vib|kĉVib|k−

∑
k,k′

ℏΛΩR√
Nmol

[(
cosφk′ ŝ†Up|k′ − sinφk′ ŝ†Low|k′

)
ĉVib|k′−k

(
cosφkŝLow|k + sinφkŝUp|k

)
+ h.c.

]
+∑

k,k′

ℏΛΩR√
Nmol

[(
cosφk′ ŝ†Up|k′ − sinφk′ ŝ†Low|k′

)
ĉ†Vib|k−k′

(
cosφkŝLow|k + sinφkŝUp|k

)
+ h.c.

]
+

NmolℏωExcn̂ExcD + NmolℏωVibn̂VibD
+ Ĥdark int, (2)

where ΩR is the collective Rabi frequency,

φk =
1

2
arctg

(
2ΩR

ωExc − ωCav|k

)
. (3)

is parameter φk determining the Hopfield coefficients
sinφk and cosφk, ωExc = ωexc − Λ2ωVib is the energy of
the dressed exciton states. The transition from Hamil-
tonian (1) to Hamiltonian (2) involves the introduction
of the collective bright states, namely upper and lower
polaritons as well as bright molecular vibrations defined
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FIG. 2. Dispersion relations of the upper polaritons (red
line), lower polaritons (blue line) and dark exciton states (or-
ange line). The bare cavity mode is illustrated by the black
dashed line. Here we use the following parameters of the
system: ΩR = 0.05 eV, ωCav|k = ωCav|k=0 + αCavk

2 with

ωCav|k=0 = 2.52 eV, αCav = 2 · 10−3 eVµm2 and ωExc =
2.72 eV, in agreement with the recent experiments [16, 19].

by the following operators

ŝLow|k = âCav|k cosφk−

1

ΩR

Nmol∑
j=1

Ωjkσ̂Excje
Λ(b̂†vibj+b̂vibj)e−ikrj sinφk (4)

ŝUp|k = âCav|k sinφk+

1

ΩR

Nmol∑
j=1

Ωjkσ̂Excje
Λ(b̂†Vibj+b̂Vibj)e−ikrj cosφk. (5)

ĉVib|k =
1√
Nmol

Nmol∑
j=1

(
b̂Vibj + Λσ̂†

Excj σ̂Excj

)
e−ikrj (6)

Upper and lower polaritons and bright molecular
vibrations are phase-coherent, many-body delocalized
states with a well-defined in-plane momentum ℏk, match-
ing the corresponding eigenstate of the cavity. The dis-
persions of the lower and upper polaritons are

ωLow|k =
ωExc + ωCav|k

2
−

√(
ωExc − ωCav|k

)2
4

+ Ω2
R

(7)

ωUp|k =
ωExc + ωCav|k

2
+

√(
ωExc − ωCav|k

)2
4

+ Ω2
R (8)

Besides the phase-coherent bright states there is also
a manifold of the dark excitonic and vibrational states.
The operators for the number of dark excitons n̂ExcD ,
and dark vibrations n̂VibD

per molecule, are defined

FIG. 3. Schematic of the main subsystems, namely collective
phase-coherent excitonic and vibrational states, polaritons; as
well as localized dark excitons and molecular vibrations. The
diagram illustrates the main energy exchange mechanisms in-
cluding the coherent G̃k and incoherent G optomechanical
interactions, the interaction between the bright and dark ex-
citons γB−D

Exc , as well as the interaction between the bright and

dark vibrations γB−D
Vib .

by (A7) and (A8). Figure 2 shows dispersion relations for
the polariton and dark exciton states. It is convinient to
divide the lower polaritons into bright excitons and po-
laritons based on wave vector as shown on Fig. 2. In
contrast, dark excitons and dark molecular vibrations,
lacking well-defined momentum, represent a manifold of
localized states.

The tri-particle interaction between the bright states in
Hamiltonian (2) results in the coherent energy exchange
between the bright excitons, polaritons, and bright vi-
brations as shown schematically in Fig. 3. The pro-
cess is nonlinearly dependent on the occupation of the
bright states involved and can be characterized by con-
stant Gk (see Fig. 3), which we rigorously introduce be-
low in Eq. (38). This constant is the direct analog of the
optomechanical damping rate [9] and is proportional to
both the square of the Huang–Rhys factor, Λ2, and the
square of the Rabi frequency, Ω2

R.
Although dark excitons do not directly interact with

the cavity to form polariton states, they significantly in-
fluence polariton dynamics [20]. The interaction between
lower polaritons, dark excitons, and dark molecular vi-
brations is described by the Hamiltonian Ĥdarkint within
Eq. (2). This interaction is resonant, involving the anni-
hilation of a dark exciton, the creation of a lower polari-
ton, and the emission of a dark vibration, as depicted in
Fig. 3. The resultant energy transfer also shows a non-
linear dependence on the occupation of these states and
is quantified by the constant G introduced in Eq. (39).
Given that the total number of dark exciton states sub-
stantially exceeds that of the bright states [18], this pro-
cess becomes increasingly significant below the conden-
sation threshold.

The system under consideration is inherently an open
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quantum system. It dissipates the energy to the en-
vironment and gets the energy from the external laser
drives. Here, we mostly focus on the blue-detuned res-
onant pumping conditions [1, 16] where the laser ex-
cites bright excitonic states with the rate κPump at high
wavevector k = kex as shown in Fig. 2. The dissipa-
tion rate of dark excitons is γExc and the corresponding
dephasing rate is ΓExc. Both dark and bright molecu-
lar vibrations have the same dissipation rate γVib. The
dissipation rates of the lower polariton states are γLow|k
and for upper polariton states are γUp|k. The formal
introduction of dissipation processes through Lindblad
superoperators can be found in Appendix B.

Recent microscopic theories have indicated that po-
lariton thermalization primarily arises from low-energy
molecular vibrations that are coupled to the mate-
rial component of polaritons [18]. The thermalization
rates for upward and downward transitions among the
lower polariton branch, denoted as γk2k1

therm, for states
with wavevectors k1 and k2, respectively, are connected
through the Kubo–Martin–Schwinger relation, as de-
tailed in Eq. (B9). Since the total number of dark ex-
citon states greatly exceeds the number of bright states,
dark excitons effectively act as a reservoir for the bright
excitons. We account for this mechanism phenomenolog-
ically, assuming that the corresponding relaxation rate is
γB−D
Exc = ΓExc/2 as shown in Fig. 3. A similar principle is

applied to the bright and dark vibrational states where
the corresponding relaxation rate γB−D

Vib = γVib/2.

III. COHERENT OPTOMECHANICS

In the following Section we focus on the coherent part
of the system. Here we analyse the Hamiltonian and
develop optomechanical formalism for the coherent light-
matter and vibrational states. We assume the laser drive
initially populates bright exciton state with wave vector
kex. On the later stages, the population partly reaches
polariton states via coherent interaction with vibrations
and through the incoherent dark states as shown in Fig-
ure 3. Eventually polaritons can undergo nonequilibrium
Bose–Einstein condensation when the laser drive is above
critical threshold [1]. The BEC manifests itself in macro-
scopic occupation of a single polariton state with in-plane
momentum ℏk = 0 accompanied by the build-up of the
coherence and long-range order [21]. In the following we
restrict our analysis to the regime above condensation
threshold.

In this optomechanical picture, we do not distinguish
between bright excitons and polaritons, instead address-
ing the entire lower polariton dispersion branch (see
Fig. 2). We consider coherent part of Hamiltonian (2)
excluding the dark states contributing to the incoherent

dynamics.

Ĥbright =
∑
k

ℏωLow|kŝ
†
Low|kŝLow|k+∑

k

ℏωVibĈ
†
Vib|kĈVib|k+

∑
k,k′

ℏgkk′ ŝ†Low|k′ ŝLow|k

(
ĈVib|k′−k + Ĉ†

Vib|k−k′

)
(9)

where we denote ĈVib|k = −iĉVib|k and

gkk′ = i
ΛΩR√
Nmol

sin(φk′ − φk). (10)

The Hamiltonian (9) governs the Hermitian dynamics
of the lower polaritons and bright molecular vibrations.
This Hamiltonian is analogous to those found in well-
established multimode cavity optomechanics [9], though
the modes involved differ significantly in nature. In our
system, the “optical” modes emerge from the strong
light-matter interactions and consist of matter compo-
nents, while the “mechanical” modes, represented by col-
lective molecular vibrations, which are delocalized across
an ensemble of molecules. These mechanical modes are
tightly bounded to the polariton states through strong
exciton-vibration interactions, resulting in the polariton
optomechanical coupling constant gkk′ .

Alike the standard optomechanical Hamiltonian that
describes the interaction of a movable mirror with the
cavity radiation field is fundamentally nonlinear involv-
ing three operators, the genuine polariton optomechan-
ical interaction is also three-partite. However, given
our primary focus is on optomechanics with light-matter
BEC the interaction term in Eq. (9) can be effec-
tively linearized around the average polariton amplitude
⟨ŝLowkex

⟩ =
√
nLowkex

e−iωLow|kex t. Introduction of new

operators ŝLow|k = ŜLow|ke
−iωLow|kex t leads to

Ĥ lin
bright = −

∑
k

ℏ∆ωkexkŜ
†
Low|kŜLow|k+∑

k

ℏωVibĈ
†
Vib|kĈVib|k+

∑
k

ℏgkkex

√
nLowkex

ŜLow|k

(
ĈVib|kex−k + Ĉ†

Vib|k−kex

)
+

∑
k

ℏgkexk
√
nLowkex Ŝ

†
Low|k

(
ĈVib|k−kex

+ Ĉ†
Vib|kex−k

)
(11)

where ∆ωkexk = ωLow|kex
− ωLow|k. The optomechanical

coupling strength depends on the wave vectors kex and k.
In the case, ∆ωkexk ≈ ωVib, the vacuum optomechanical
strength is gkexk and net one is gkexk

√
nLow|kex

.
We proceed further with the linear analysis of the cou-

pled polariton and vibrational modes. To determine op-
tomechanical response of the system, we consider a har-

monic weak test force f̂k acting on the bright molecular
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vibrations [9]. This interaction is set by the Hamiltonian
of the weak test force

Ĥtest =
∑
k

(
f̂ke

−iωtĈ†
k + f̂†

ke
iωtĈk

)
(12)

In the next step we derive the equations of motion for
complex amplitudes of polariton and vibrational states
under the linearized optomechanical interaction. The
optomechanical Hamiltonian (11) describes the process
where a polariton with wave vector kex is annihilated
and a polariton with wave vector k is created, accom-
panied by the creation of the bright molecular vibration
with wave vector kex − k. Here, we are mostly inter-
ested in the properties of this bright molecular vibration.

Therefore, we set the weak test force f̂k acting only on
the molecular vibrations with the wave vector kex − k.
As the result we obtain the equations of motion for the
complex amplitudes

dŜLow|k

dt
=

(
i∆ωkexk −

ΓLow|k

2

)
ŜLow|k−

igkexk
√
nLowkex

(
ĈVib|k−kex

+ Ĉ†
Vib|kex−k

)
(13)

dĈVib|k−kex

dt
=

(
−iωVib − γVib

2

)
ĈVib|k−kex

−

igkkex

√
nLowkex ŜLow|k − igkexQ

√
nLowkex Ŝ

†
Low|Q (14)

dŜ†
Low|Q

dt
=

(
−i∆ωkexQ −

ΓLow|Q

2

)
ŜLow|Q+

igQkex

√
nLowkex

(
ĈVib|k−kex

+ Ĉ†
Vib|kex−k

)
(15)

dĈ†
Vib|kex−k

dt
=

(
iωVib − γVib

2

)
Ĉ†

Vib|kex−k+

igkkex

√
nLowkex ŜLow|k + igkexQ

√
nLowkex Ŝ

†
Low|Q+

if̂†
kex−ke

iωt (16)

where we denote the wave vector Q = 2kex − k and
ΓLow|k = Γexc sin2 φk + γLow|k.

Here we neglect all fluctuations arising from thermal
and quantum noise, instead we focus on the coherent lin-
ear response of the system to an external force. From
Eq. (13)–(16) one can see immediately that the mechani-
cal motion changes the damping and shifts the frequency
of the polariton state, which in turn results in a change
of polariton density at the BEC, thus acting back on the
mechanical motion of the collective molecular vibrations.
This kind of feedback loop is known as optomechani-
cal backaction [9]. To understand how optomechanical
backaction alters the response of the vibrational subsys-
tem, we transition to the frequency space and express the

modified mechanical susceptibility, χVib,eff(ω), defined by

Ĉkex−k = χVib,eff(ω)f̂kex−ke
−iωt [22]

χ−1
Vib,eff(ω) = χ−1

Vib(ω) + ΣVib(ω) (17)

where χVib(ω) = (ω − ωVib + iγVib/2)−1 is the suscepti-
bility of molecular vibrations in the abscence of optome-
chanical coupling. The optomechanical contribution to
the linear response to an external force is expressed as
follows:

ΣVib(ω) =
|gkexk|2nLow|kex

ω − ∆ωkexk + iΓLow|k/2
−

|gkexQ|2nLow|kex

ω + ∆ωkexQ + iΓLow|Q/2
(18)

Being dependent on both k and kex, the susceptibility
χVib,eff(ω) allows us to determine the optomechanical
frequency shift, ∆ωVib|kex,k = −ReΣVib(ωVib), and op-
tomechanical damping ∆γVib|kex,k = 2ImΣVib(ωVib) of
the bright molecular vibrations with wave vector kex−k

∆ωVib|kex,k = −
|gkexk|2nLow|kex

(ωVib − ∆ωkexk)

(ωVib − ∆ωkexk)
2

+
(
ΓLow|k/2

)2 +

|gkexQ|2nLow|kex
(ωVib + ∆ωkexQ)

(ωVib + ∆ωkexQ)
2

+
(
ΓLow|Q/2

)2 , (19)

∆γVib|kex,k = −
|gkexk|2nLow|kex

ΓLow|k

(ωVib − ∆ωkexk)
2

+
(
ΓLow|k/2

)2 +

|gkexQ|2nLow|kex
ΓLow|Q

(ωVib + ∆ωkexQ)
2

+
(
ΓLow|Q/2

)2 , (20)

Given the typical frequencies of high-energy vibra-
tional modes (ℏωVib ∼ 100 meV) and the cavity
linewidth of exciton-polariton microcavities (ℏγCav|k ∼
1 meV) the system stays in a very well resolved-sideband
regime (ΓLow|k ≃ γCav|k ≪ ωVib). The character of
the linearized optomechanical interaction in Eq. (9) de-
pends on the laser detuning with respect to the polari-
ton state condensate ∆ωOM = ωLow|kex

− ωLow|k. In
the sideband-resolved regime one can distinguish between
three distinct resonant configurations: 1 – red-detuned
(∆ωOM = −ωVib); 2 – blue-detuned (∆ωOM = +ωVib);
and 3 – zero-detuned (∆ωOM = 0) interaction, as shown
in Figure 4.

In the first, red-detuned configuration the main con-
tribution comes from the resonant terms in the form
∼ ℏgkexk

√
nLowkex(Ŝ†

Low|kĈVib|k−kex
+ŜLow|kĈ

†
Vib|k−kex

).

Known as a “beam-splitter” type interaction [15] this
Hamiltonian results in the energy exchange between po-
lariton BEC and the collective vibrational mode. In
side-band resolved zero-dimensional optomechanics this
interaction imposes a positive optomechanical damping
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FIG. 4. Optomechanically-induced damping ∆γVib|kex,k –
(a) and frequency shift ∆ωVib|kex,k – (b) of the vibrational
mode at ∆ωOM = ∆ωkexk = ωLow|kex − ωLow|k, momentum-
independent value of the interaction constant gkexk and de-
phasing rate of resonantly-driven polariton states Γlow|kex .
The momentum dependence of the optomechanical detuning
∆ωkexk– (c) at different kex of the laser drive. Vertical dashed
lines correspond to the red-detuned ∆ωkexk = −ωVib; zero-
detuned ∆ωkexk = 0; and blue-detuned resonant interactions
∆ωkexk = +ωVib .

∆γVib|kex,k > 0 that counteracts mechanical motion lead-
ing to the cooling effect [9]. Figure 4a illustrates the ad-
ditional damping of the coherent vibrational mode that
results from the red-detuned optomechanical interaction.

The blue-detuned optomechanical configuration char-
acterized by fast-rotating terms which are dominant in

the interaction ∼ ℏgkexk
√
nLowkex(Ŝ†

Low|kĈ
†
Vib|kex−k +

ŜLow|kĈVib|kex−k). The creation (or annihilation) of col-
lective vibrational quanta of nuclear motion alongside
with polariton quanta at the BEC essentially represents
“two-mode squeezing” interaction. In conventional op-

tomechanical systems interaction of this type leads to
parametric amplification of mechanical motion [23]. In
our case we have polariton BEC instead of a bare cavity
mode, therefore, driven by the blue-detuned laser drive
this term leads to exponential growth of both the col-
lective vibrational mode and the BEC density, and gives
rise to strong correlations between the two. For vibra-
tional degrees of freedom it results in the substantial
decrease of the damping γVib, which is evident in Fig-
ure 4a as the polariton optomechanical antidamping ef-
fect ∆γVib|kex,k < 0, In the next Section we solely focus
on this regime discussing parametric amplification effect
toward vibrational condensation.

The frequency change of the collective vibrational
mode is another important consequence of the optome-
chanical interaction. According to Eq. (19), the fre-
quency shift depends heavily on the optomechanical de-
tuning and the polariton decay rate ΓLow|k. For practical
microcavity-based polariton systems and high-frequency
vibrational modes we operate in the well-defined side-
band resolved regime as shown in Figure 4b. The de-
crease or increase in the vibrational frequency around
the resonant detuning ∆ωOM = ±ωVib induced by the
optomechanical interaction can be interpreted as vibra-
tional spring softening or hardening, respectively. In the
Doppler regime (γCav|k > ωVib) it is known as an optical
spring effect [9].

So far, we have not addressed the direct implications of
the two-dimensional nature of polariton states. Figure 4b
showcases an effect that is zero-dimensional [9] neglecting
certain resonant conditions for the momenta kex and k
in the dispersion relation of polariton states (see Fig. 2).
In fact, the optomechanical detuning ∆ωOM inherits gen-
uine k-dependence from lower polariton states. In Fig-
ure 4c we represent only three dispersion relations tied to
particular momenta out of an infinite number of possible
realizations in the full two-dimensional ({E, k}) polariton
space. Here, one can see that the range of possible op-
tomechanical detuning values ∆ωOM is bound by the dis-
persion relation of polariton states. Therefore, the actual
frequency shift of the vibrational mode due to the po-
lariton optomechanical interaction is determined by the
convolution of the zero-dimensional change in Figure 4b
and detuning dependencies represented in Figure 4c.

The frequency shift of the vibrational mode
∆ωVib|kex,k in two-dimensional momentum space is
depicted in Figure 5a. Here, we focus on three specific
cross-sections along the polariton momentum ℏk, with
the momentum of the laser drive ℏkex held constant,
linking the comprehensive 2D polariton landscape to
the simplified 0D optomechanical picture represented
in Figure 4. The coherent interaction gives rise to the
dispersion relation for the vibrational mode. Being
dispersionless otherwise, molecular vibrations acquire
polariton like dispersion relation conditioned on the
optomechanical detuning. Importantly, the vibrational
dispersion is nearly parabolic at around k = 0 in the
resonant blue-detuned configuration ∆ωkex0 ≈ +ωVib,
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FIG. 5. Normalized frequency shift of the vibrational mode as a function of the momentum of both the resonantly-driven
polariton state kex and the polariton condensate k – (a). Blue, orange, and red lines correspond to the cross-sections taken
for the certain laser-driven states kex in accordance with Fig. 4(c). Energy change of the vibrational mode as a function of
polariton momenta of the condensate – (b). Dotted, dashed and solid lines represent the energy change obtained at the following
occupation of the resonantly-driven state nLow|kex : 105; 5 · 105; and 106 respectively. The effective mass ratio between the

vibrational mode mVib = ℏ/2αVib and lower polaritons mPol = ℏ/2αPol – (c). We use the following main parameters: Λ2 = 1,
ωVib = 200 meV, Nmol = 108, γExc = 10−5 eV, ΓExc = 10−2 eV, γVib = 2 · 10−3 eV, γCav|k = 2.5 · 10−3 eV.

such that we can approximate Eq. (19) by

∆ωVib|kex,k ≈ ∆ωVib|kex,0 + αVibk
2 (21)

where

αVib = αPol|gkexk=0|2nLow|kex

(ωVib − ∆ωkexk=0)
2 −

(
ΓLow|k=0/2

)2[
(ωVib − ∆ωkexk=0)

2
+
(
ΓLow|k=0/2

)2]2 (22)

The effective mass of coherent molecular vibrations can
be calculated as mVib = ℏ/2αVib. The effective mass re-
mains positive unless |∆ωkexk=0 − ωVib| < ΓLow|k=0. A
similar analysis can be applied to red-detuned optome-
chanical interactions, which may result in a negative ef-
fective mass for molecular vibrations. From Eq. (22),
the effective mass of coherent vibrations, mVib, can be
directly compared to the effective mass of polaritons,
mPol = ℏ/2αPol. This ratio depends on optomechani-
cal coupling strength and intensity of the laser drive in-
cluded here in nLow|kex

parameter. Figure 5 shows the
ratio between effective masses of the vibrational and po-
lariton subsystems as the function of excitation density
nLow|kex

/Nmol resonantly driven by the laser. The ef-
fective mass acquired from optomechanical interactions
allows for the formation of a nonequilibrium vibrational
Bose–Einstein condensate [1]. In the next Section we
study transition from thermal polariton and vibrational
states to their condensates at the resonant optomechan-
ical interaction.

IV. RESULTS AND DISCUSSION

The coherent optomechanical picture developed above
describes the regime of well-established polariton conden-
sation, where we can neglect manifolds of the dark states.
However, dark states play a significant role in the BEC
formation. In order to follow the condensation process
we turn to the Hamiltonian described in Eq. (2) and pro-
ceed to derive the dynamics of the average occupation
numbers for all states involved, as illustrated in Fig. 3.
This includes the average number of lower polaritons with

the wavevector k, nPol|k = ⟨ŝ†Low|kŝLow|k⟩, the average

number of dark excitons per molecule, nExcD = ⟨n̂ExcD⟩,
average number of the dark vibrations per molecule,
nVibD

= ⟨n̂VibD
⟩, bright excitons with the wavevector

kex, nExc|kex
= ⟨ŝ†Low|kex

ŝLow|kex
⟩ and the average num-

ber of bright vibrations with wave vector q, nVib|q =

⟨ĉ†Vib|qĉVib|q⟩,

dnExc|kex

dt
= −γLow|kex

(nExc|kex
− κPump)+

γB−D
Exc (nExcD − nExc|kex

) −
∑
k

J
(Bright)
k (23)

dnExcD

dt
= −γExcnExcD+

γB−D
Exc

Nmol
(nExc|kex

− nExcD) − 1

Nmol

∑
k

J
(Dark)
k (24)
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dnPol|k

dt
= −γLow|knPol|k + J

(Full)
k +∑

k′

{
γkk′

therm

(
nPol|k + 1

)
nPol|k′−

γk′k
therm

(
nPol|k′ + 1

)
nPol|k

}
(25)

dnVibD

dt
= −γVib

(
nVibD − nth

Vib

)
+

γB−D
Vib

Nmol

∑
k

(
nVib|kex−k − nVibD

)
+

1

Nmol

∑
k

J
(Dark)
k

(26)

dnVib|kex−k

dt
= −γVib

(
nVib|kex−k − nth

Vib

)
+

γB−D
Vib

(
nVibD − nVib|kex−k

)
+ J

(Bright)
k . (27)

where we approximated n̂ExcD ≈ N−1
mol

∑Nmol

j=1 Ŝ†
ExcjŜExcj ,

and n̂VibD
≈ N−1

mol

∑Nmol

j=1 B̂†
VibjB̂Vibj with ŜExcj being

the operator of vibrationally dressed excitons and B̂Vibj

being the operator of dressed molecular vibrations for
the jth molecule defined by (A1)–(A2). We introduce
the energy flows for the bright and dark states:

J
(Full)
k = −i cosφk

Nmol∑
j=1

ΛΩR√
Nmol

⟨Ŝ†
Excj ŝLow|kB̂Vibj⟩eikrj + h.c. (28)

J
(Bright)
k = i cosφk sinφkex

ΛΩR√
Nmol

⟨ŝ†Low|kex
ŝLow|kĉVib|kex−k⟩ + h.c. (29)

J
(Dark)
k = J

(Full)
k − J

(Bright)
k . (30)

The resultant equations (23)–(27) describe the dynam-
ics of the average occupation number in the system. Fig-
ure 3 illustrates the energy flow among distinct subsys-
tems, including bright and dark excitons, molecular vi-
brations, and polaritons at the state with ℏk momentum.
In densely packed molecular systems and semiconductor
materials at room-temperature, the dephasing rate of ex-
citons, ΓExc, is significantly faster than any other relax-
ation processes involved, such as γExc, γLow|k, or γVib.

Consequently, the flows J
(Bright)
k and J

(Dark)
k almost in-

stantly adjust to the current occupation numbers of the
excitonic, vibronic, and polaritonic states. Thus, we ob-
tain

dnExc|kex

dt
= −γExc(nExc|kex

− κPump) + γB−D
Exc (nExcD−

nExc|kex
) −

∑
k

G̃kexk

Nmol

[
nExc|kex

(
nPol|k + 1

)
+

nVib|kex−k

(
nPol|kex

− nExc|kex

)]
(31)

dnExcD

dt
= −γExcnExcD +

γB−D
Exc

Nmol
(nExc|kex

− nExcD)−∑
k

Gk

Nmol

[
nExcD

(
nPol|k + 1

)
+ nVibD

(
nExcD − nPol|k

)]
(32)

dnPol|k

dt
= −γPol|knPol|k + Gk

[
nExcD

(
nPol|k + 1

)
+

nVibD

(
nExcD − nPol|k

)]
+

G̃kexk

Nmol

[
nExc|kex

(
nPol|k+

1) + nVib|kex−k

(
nExc|kex

− nPol|k
)]

+
∑
k′

{
γkk′

therm(
nPol|k + 1

)
nPol|k′ − γk′k

therm

(
nPol|k′ + 1

)
nPol|k

}
(33)

dnVibD

dt
= −γVib

(
nVibD

− nth
Vib

)
+

γB−D
Vib

Nmol

∑
k

(

nVib|kex−k − nVibD

)
+
∑
k

Gk

Nmol

[
nExcD

(
nPol|k + 1

)
+

nVibD

(
nExcD − nPol|k

)]
(34)

dnVib|kex−k

dt
= −γVib

(
nVib|kex−k − nth

vib

)
+ γB−D

Vib(
nVibD

− nVib|kex−k

)
+

G̃kexk

Nmol

[
nExc|kex

(
nPol|k + 1

)
+

nVib|kex−k

(
nExc|kex

− nPol|k
)]

, (35)

where we denote

ωPol|k = ωLow|k, (36)

γPol|k = γLow|k, (37)

G̃kexk =
Λ2Ω2

RΓExc cos2 φk sin2 φkex

(ωExc − ωPol|k − ωVib)2 + (ΓExc/2)2
, (38)

Gk =
Λ2Ω2

RΓExc cos2 φk

(ωExc − ωPol|k − ωVib)2 + (ΓExc/2)2
. (39)

Optomechanical constants Gk and G̃kexk play the cen-
tral role in polariton condensation and generation of
macroscopic vibrational states. In the blue-detuned con-
figuration, the system defines a net vibrational amplifi-
cation parameter G̃kexknLow|kex

, which is similar to the
previously mentioned optomechanical antidamping rate,
∆γVib|kex,k, as given by Eq. (39). The primary differ-
ence is that the latter includes ΓLow|k instead of ΓExc.
This is because our optomechanical setup requires the
continuous laser drive applied, locking the phase and ex-
cluding the dephasing rate of the polariton state from



9

optomechanical damping. Below, we focus on the blue-
detuned optomechanical interaction, aligning the laser
drive in resonance with high-k polariton states that fea-
ture a large wave vector kex, as depicted in Fig. 2. We
exclude the upper polariton states from consideration be-
cause they are far from the resonant excitation. Indicated
by φkex ≈ π/2, this approximation implies ωUp|kex

≈
ωCav|kex

and ωLow|kex
≈ ωExc, with γLow|kex

≈ γExc. Con-

sequently, G̃kexk ≈ Gk, which is applied in the simula-
tions. Additionally, we consider a cavity with a quadratic
dispersion relation.

ωCav|k = ωCav|k=0 + αCavk
2 (40)

where ωExc − ωPol|k=0 ≈ ωVib, such that from Eq. (A13)
it becomes

ωPol|k = ωPol|k=0 + αPolk
2 (41)

with

αPol = αCav
ω2
Vib

ω2
Vib + Ω2

R

(42)

A. Polariton condensation

Here we present the results of numerical simulations
for the steady-state density of polaritons at the ground
state. Figure 6b is the color plot of the polariton density
as function of the normalized detuning ∆ω = (ωPol|k=0+
ωVib−ωExc)/ΓExc and pumping κPump/Nmol parameters.
Polaritons exhibit superlinear increase in density when
the pump exceeds a certain threshold value (Pth) indi-
cating the onset of the BEC formation. The threshold
behaviour is illustrated in the cross-section taken along
the x-axis in Fig. 6a. In Ref. [1] we provide further ev-
idence of polariton condensation, which includes Bose–
Einstein distributions and off-diagonal long range order.
The central role of the exciton-vibration interaction in
the polariton condensation can be seen from the detuning
dependence in Fig. 6c, taken as the cross-section along
y-axis of the color plot. Under the resonant condition
ωPol|k=0 +ωVib−ωExc = 0 underlying polariton optome-
chanical interaction, this mechanism efficiently channels
the population from exciton states to the ground polari-
ton states. Indeed, the detuning dependence of polari-
ton density is fully consistent with the observed resonant
properties of the optomechanical coupling strength Gk,
as shown in Fig. 6d. Note, the width of the resonance
is quite broad comparing narowline vibrational modes
typically accessible in Raman spectroscopy. This is a
feature of the polariton optomechanical interaction that
encompasses exciton states. The large dephasing rate
ΓExc makes it broadband, within the exciton linewidth.

These results are in good agreement with experimental
observations. Early studies reported similar detuning de-
pendences in the total polariton density in microcavity

FIG. 6. Polariton occupation at the ground state as a func-
tion of pumping parameter – (a), taken at the particular value
of the normalized detuning (ωPol|k=0 + ωVib − ωExc)/ΓExc

(green line) from the density plot – (b). The black dashed
line shows the analytical threshold value derived in Ref. [1].
Polariton occupation at the ground state as a function of
the detuning taken at the fixed pumping conditions (brown
line cross-section) – (c). Dependence of the optomechani-
cal constant Gk=0 (Eq. (39)) as a function of the normal-
ized detuning. The parameters are the following Λ2 = 1,
Nmol = 108, γExc = 10−5 eV, γB−D

Exc = ΓExc = 10−2 eV,

γB−D
Vib = ΓVib, γ

kk′
therm = 10−5 eV for |k| < |k′| and T = 290 K,

γPol|k ≈ γCav|k = 2.5 · 10−3 eV, S = 500 µm2.

structures below condensation threshold [24, 25]. Re-
cent experiments discover correlations in the total po-
lariton density at the BEC with the vibrational reso-
nances following the detuning parameter controlled by
the cut-off frequency of the cavity and photon energy of
the laser drive [19]. Additionally, resonant nature of the
optomechanical interaction leads to sharp dependence in
condensation threshold indicated by the dashed line in
Fig. 6b. The lowest threshold for polariton BEC occurs
when ωPol|k=0 + ωVib − ωExc = 0 – under this resonant
condition we have achieved polariton condensation with
an order of magnitude lower pumping threshold, in our
previous experimental work [16].

B. Vibrational condensation

The resonant condition discussed above is equiva-
lent to the blue-detuned optomechanical configuration
(∆ΩOM = +ωVib) outlined in Section III which corre-
sponds to the laser drive aligned in resonance with re-
spect to polariton states at large wave vector kex as
shown in Fig. 2. This blue-detuned interaction intro-
duces anti-damping to the vibrational mode, resulting in
phonon amplification as depicted in Fig. 4. Under the
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resonant pumping conditions, one can accumulate a sig-
nificant population in this vibrational mode, transition-
ing into the nonlinear regime, sympathetically following
the polariton occupation at the ground state. In Ref. [1],
we demonstrate the macroscopic occupation of the bright
vibrational state when the system is pumped above the
polariton condensation threshold Pth.

Above the threshold, polaritons undergo a stimulated
thermalization process, resulting in a Bose–Einstein dis-
tribution in both momentum and energy representa-
tions [26]. Similarly, due to optomechanical interaction,
the vibrational degree of freedom experiences a stimu-
lated cooling effect within their dispersion relation, lead-
ing towards vibrational condensation [1]. Our investi-
gation of this transition, as a function of detuning and
pumping parameters, supports the sympathetic mecha-
nism of vibrational condensation. Figure 7 shows the
results of numerical simulations for the average number
of molecular vibrations. Indeed, the threshold, mani-
fested by the superlinear increase in vibrational occupa-
tion, coincides with polariton condensation and is weakly
dependent on the initial damping rate of the vibrational
mode [1]. Bright molecular vibrations, akin to polaritons
(Fig. 6), exhibit threshold behavior (Fig. 7a) at the same
pumping rate κPump. The change in the number of dark
molecular vibrations per molecule above the condensa-
tion threshold and their contribution remains relatively
small, at the level of thermal occupation ∼ 10−3. Fig-
ures 7c,d highlight the central role of the resonant con-
dition, where the transition from a thermal vibrational
state to the condensate appears at the onset of polariton
BEC around the resonance of the blue-detuned optome-
chanical interaction.

C. Vibrational control over polariton BEC

All-optical control over the polariton condensation en-
ables building ultra-fast transistor devices [19] and logic
gates [27] with extreme low switching energy down to
single photon level [16], and compatible with silicon
photonics technologies [28]. However, the existing con-
trol methods necessitate signals to be resonant with the
energy of polariton condensates to efficiently steer be-
tween the logic levels. This imposes stringent conditions
on light sources and architecture of polariton devices,
mainly revolving around 400–500 nm for the practical de-
vices [19, 27, 28]. In this work, we introduce an entirely
different approach based on the optomechanical interac-
tion through vibrational control over polariton BEC. We
propose the use of non-resonant coherent anti-Stokes Ra-
man scattering (CARS) to seed the desired vibrational
mode coupled to the polariton BEC. The vibrational
control offers a powerful way to manipulate the conden-
sate, taking full advantage of the wide range of ultra-
fast and broadband coherent Raman microscopy meth-
ods that have been developed in recent years [29, 30].
Importantly, it makes our optomechanical approach in-

FIG. 7. Vibrational occupation at the bright state with wave
vector kex as a function of pumping parameter – (a), taken at
the particular value of the normalized detuning (ωPol|k=0 +
ωVib−ωExc)/ΓExc (green line) from the density plot – (b). The
black dashed line shows the analytical threshold value derived
in Ref. [1]. The gray dashed line in part (a) corresponds to
the occupation of dark vibrational states per molecule. The
vibrational occupation as a function of the detuning at the
fixed pumping conditions (brown line cross-section) – (c). The
dependence of the optomechanical constant Gk=0 (Eq. (39))
as a function of the normalized detuning. The parameters are
the same as in Fig. 6.

herently compatible with fiber laser telecommunication
technologies [31–33].

We extend our analysis provided in Section III to the
polariton degrees of freedom assuming small perturba-
tion introduced in the vibrational degree of freedom.
The interaction part of the Hamiltonian Eq. (9) reads

gkexkŝ
†
Low|kex

ŝLow|kĈVib|kex−k. As it holds certain sym-

metry with respect to the polariton and bright vibration
operators we suggest the mechanical control over polari-
ton BEC in close analogy to the already introduced opti-
cal (polariton) control over vibrational states [19, 27]. We
derive polariton susceptibility, χLow,eff(ω), at the ground
state k = 0 when the coherent drive is applied to the
bright vibrational state with the wave vector q

χ−1
Low,eff(ω) = χ−1

Low(ω) + ΣLow(ω) (43)

where χLow(ω) = (ω−ωLow|k+iγLow|k/2)−1 is the suscep-
tibility of the polaritons in the absence of optomechanical
coupling and the modification of the linear response to
an external force is

ΣLow(ω) =
|gkk−q|2nVib|q

ω − ωVib − ωLow|k−q + iΓLow|k−q/2
+

|gkk+q|2nVib|q

ω + ωVib − ωLow|k+q + iΓLow|k+q/2
(44)
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FIG. 8. Frequency shift (black dashed line) and net damping
of polaritons γ′

Lowk = γLowk +∆γLowk, (red solid line) at the
ground state k = 0 µm−1 when coherent drive is applied to the
bright molecular vibrations with wave vector q = 20 µm−1.
The parameters here are Λ2 = 1, ωVib = 0.2 eV, Nmol = 108,
γExc = 10−5 eV, ΓExc = 10−2 eV, γVib = 2·10−3 eV, γCav|k =

2.5 · 10−3 eV.

The susceptibility χLow,eff(ω) allows us to deter-
mine the optomechanical frequency shift, ∆ωLow|k =
−ReΣLow(ωLow|k), and optomechanical damping of the
polaritons, ∆γLow|k = 2ImΣLow(ωLow|k) due to the vi-
brational control.

Figure 8 demonstrates dissipative and dispersive ef-
fects induced by the coherent vibrational seed. We pro-
vide both dependencies as function of vibrational quanta
in the bright mode with the wave vector q normalized
by the total number of molecules. The coherent optome-
chanical interaction leads to the red shift in the energy
of polariton BEC as shown in Fig. 8. To induce mea-
surable red shift |∆ωLow|k| ∼ γLow|k one has to inject
significant amount of vibrational quanta into the bright
mode nVib|q ≥ 10−3Nmol.

We observe similar effect in the imaginary part of
the susceptibility. Figure 8 shows the reduced polari-
ton damping rate achieving |∆γLow|k| ∼ γLow|k at suffi-

ciently large vibrational occupation nVib|q ∼ 10−2Nmol.
It is worth mentioning we consider steady-state problem
throughout the work. Therefore, one can expect substan-
tial improvement of the effect in dynamics. Our recent
study of resonant polariton control over the BEC reveals
extreme nonlinearity when the seed population injected
in bursts synchronized with the onset of polariton con-
densation [16]. Based on the aforementioned symmetry
argument in the optomechanical term of Eq. (9) we be-
lieve non-resonant vibrational control should exhibit sim-
ilar performance in dynamics, subject for further inves-
tigations.

Besides methods relying on the non-resonant coherent
Raman seeding, vibrational population can be injected
directly via mid-IR photons shall the vibrational mode
be also dipole-allowed [7, 8]. This offers a new interface
between light-matter condensates in the visible and mid-
IR photons that is potentially capable for single photon
operation at room temperature [16].

V. CONCLUSION

In this work, we developed an optomechanical for-
malism for coherent light-matter and vibrational states
in exciton-polariton systems with strong exciton-phonon
interactions. Our analysis reveals two distinct configu-
rations: red- and blue-detuned optomechanical interac-
tions. Being linearized, the blue-detuned interaction re-
sults in a two-mode squeezing term in the Hamiltonian.
This genuinely gives rise to strong correlations between
vibrational and polariton states. Driven by the blue-
detuned laser, this term leads to exponential growth in
the occupation of both the collective vibrational mode
and polaritons at the BEC. This mechanism reduces the
threshold for polariton condensation, making it most effi-
cient at the resonant condition: ωPump = ωPol|k=0+ωVib.

Apart from dissipative effects, vibrational degrees of
freedom experience frequency changes under optome-
chanical interaction. The two-dimensional dispersion of
exciton-polariton states, when coupled to the vibrational
mode, gives rise to the effective mass of coherent molecu-
lar vibrations. Subject to laser detuning with respect to
the polariton states, the effective mass can be either pos-
itive for blue-detuned interactions or negative when red-
detuned. The effective mass acquired within the blue-
detuned interaction, along with sympathetic thermaliza-
tion above the threshold, allows for nonequilibrium vi-
brational condensation [1].

Additionally, we propose parametric vibrational con-
trol over the polariton BEC. By utilizing coherent Raman
scattering to excite vibrational modes, we introduce a
non-resonant method for altering the dissipative and dis-
persive properties of polariton states. Importantly, this
new optomechanical approach circumvents the stringent
resonant conditions required by existing all-optical meth-
ods, thus potentially making ultra-fast polariton logic
compatible with telecommunication wavelengths.

In summary, quantum optomechanics with light-
matter states not only serves as a convenient theoretical
formalism to describe dynamics within polariton systems
but opens a new avenue with extensive implications in
photochemistry, nonlinear and quantum optics. This en-
compasses vibrational condensation, parametric control
bridging visible and mid-IR spectral ranges, and the gen-
eration of bipartite entanglement between excitonic and
vibrational light-matter states, among many other possi-
bilities.
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Appendix A: Hamiltonian of a molecular system
with strong light-matter and vibronic interactions

Dressed vibrational and exciton states. Strong exciton-
vibration interaction is quite common in molecular sys-
tems. The interplay between electronic and vibrational
degrees of freedom requires transformation to the basis
of dressed states. Therefore, we substitute the initial op-

erators σ̂Excj and b̂Vibj with the operators of the dressed

excitons ŜExcj and dressed vibrations B̂Vibj as follows

σ̂Excj = ŜExcje
−Λ(B̂†

Vibj−B̂Vibj), (A1)

b̂Vibj = B̂Vibj − ΛŜ†
ExcjŜExcj . (A2)

This substitution preserves the commutation relations for
the operators ŜExcj and B̂Vibj , namely the dressed oper-
ators should have the same commutator relations as the
initial ones σ̂Excj and b̂Vibj .

The transition to the dressed state representation is
equivalent to diagonalization of the initial vibrational and
excitonic parts of the Hamiltonian (1) leading to

Ĥ =
∑
k

ℏωCav|kâ
†
Cav|kâCav|k+

Nmol∑
j=1

ℏωExcŜ†
ExcjŜExcj +

Nmol∑
j=1

ℏωVibB̂†
VibjB̂Vibj+

Nmol∑
j=1

∑
k

ℏΩjk

(
Ŝ†
Excj âCav|ke

ikrj + h.c.
)
−

Nmol∑
j=1

∑
k

ℏΛΩjk

(
Ŝ†
ExcjB̂Vibj âCav|ke

ikrj + h.c.
)

+

Nmol∑
j=1

∑
k

ℏΛΩjk

(
Ŝ†
ExcjB̂

†
Vibj âCav|ke

ikrj + h.c.
)
, (A3)

where we introduce the energy of the dressed exciton
states ωExc = ωexc − Λ2ωVib. In the Hamiltonian (A3)

we decomposed the operator e−Λ(B̂†
Vibj−B̂Vibj) ≈ 1 −

Λ(B̂†
Vibj−B̂Vibj). Thus, in the Hamiltonian (A3), we pre-

serve terms with coefficients up to Λ2nVib per mol, where
nVib per mol is the average occupation of the vibrational
states per one molecule. After we derive the main equa-
tions, we verify that Λ2nVib per mol ≪ 1 is always fulfilled
for the system described in the main text.

Bright and dark states. In the Hamiltonian (A3) the
wavevectors k belong to states of the electromagnetic
field in the cavity. In most experimental systems, the
number of states in an optical cavity is much smaller
than the number of molecules. Thus, a Fabry–Pérot
optical cavity with the fundamental mode characterized

by a wavelength λ has the number of states equal to
Nstates ≈ πk2maxS/(2π)2, where S is the area of interest
(typically active or illuminated area). In state-of-the-
art BEC experiments [16, 19] these parameters are the
following: λ ≈ 500 µm and S ≈ 500 µm2, which re-
sult in Nstates ≈ 104 number of states. But, the number
of molecules Nmol in the same area is ≈ 108, therefore
Nstates ≪ Nmol.

This analysis shows that most exciton states do not
couple to the cavity and do not form of the polariton
states. The excitons that couple with the cavity are the
bright excitons, while the rest states are the dark exci-
tons. Bright excitons are phase-coherent, many-body de-
localized states with a well-defined in-plane momentum
ℏk, matching the corresponding eigenstates of the cavity.
In contrast, the dark excitons, lacking well-defined mo-
mentum, represent a manifold of localized states. Anal-
ogous to excitons — with the sole distinction being their
lack of dipole coupling to the cavity (we assume Raman
active molecules) — we separate all molecular vibrations
into bright or dark. Bright vibrations represent coherent
and delocalized states. Similarly to bright excitons, they
have a well-defined momentum ℏkVib, unlike the local-
ized dark vibrational states.

It is convenient to introduce collective operators that
effectively describes all the bright excitons and the bright
vibrations with the wave vector k

ĉExc|k =
1

ΩR

Nmol∑
j=1

ΩjkŜExcje
−ikrj (A4)

ĉVib|k =
1√
Nmol

Nmol∑
j=1

B̂Vibje
−ikrj (A5)

where ΩR =
√∑

j |Ωjk|2 is the Rabi frequency which

we assume to be k independent. The operators of
bright molecular vibrations obey bosonic commutation

relation
[
ĉVib|k, ĉ

†
Vib|k′

]
= δk,k′ . In the limit of large

Nmol and small enough excitation density, the opera-
tors of the bright excitons also exhibit bosonic properties[
ĉExc|k, ĉ

†
Exc|k′

]
≈ δk,k′ [12]. Using operators (A4)–(A5)

we transform the Hamiltonian (A3)
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Ĥ =
∑
k

ℏωCav|kâ
†
Cav|kâCav|k+∑

k

ℏωExcĉ
†
Exc|kĉExc|k +

∑
k

ℏωVibĉ
†
Vib|kĉVib|k+

∑
k

ℏΩR

(
ĉ†Exc|kâCav|k + ĉExc|kâ

†
Cav|k

)
−

∑
k,k′

ℏ
ΛΩR√
Nmol

(
ĉ†Exck′ ĉVib|k′−kâCav|k + h.c.

)
+

∑
k,k′

ℏ
ΛΩR√
Nmol

(
ĉ†Exck′ ĉ

†
Vib|k−k′ âCav|k + h.c.

)
+

NmolℏωExcn̂ExcD + NmolℏωVibn̂VibD
+ Ĥdark int, (A6)

We denote the operator of the number of the dark exci-
tons per one molecule as n̂ExcD and the similar operator
for the dark vibrations as n̂VibD

n̂ExcD =
1

Nmol

Nmol∑
j=1

Ŝ†
ExcjŜExcj −

1

Nmol

∑
k

ĉ†Exc|kĉExc|k,

(A7)

n̂VibD
=

1

Nmol

Nmol∑
j=1

B̂†
VibjB̂Vibj −

1

Nmol

∑
k

ĉ†Vib|kĉVib|k.

(A8)
We also introduced the Hamiltonian of the indi-
rect interactions between the dark states and cavity
modes Ĥdark int

Ĥdark int =

−
Nmol∑
j=1

∑
k

ℏΛΩjk

(
Ŝ†
ExcjB̂Vibj âCav|ke

ikrj + h.c.
)

+

Nmol∑
j=1

∑
k

ℏΛΩjk

(
Ŝ†
ExcjB̂

†
Vibj âCav|ke

ikrj + h.c.
)

+

∑
k,k′

ℏ
ΛΩR√
Nmol

(
ĉ†Exc|k′ ĉVib|k′−kâCav|k + h.c.

)
−

∑
k,k′

ℏ
ΛΩR√
Nmol

(
ĉ†Exc|k′ ĉ

†
Vib|k−k′ âCav|k + h.c.

)
. (A9)

Polariton states. Strong interaction between the ex-
citons and the electromagnetic field of the cavity leads
to the formation of the new collective states – exciton-
polaritons. It follows from the Hamiltonian (A6), that
only bright excitons directly interact with the cavity. Un-
like bare photons in the cavity, polaritons have the mate-
rial component, that allows them to thermalize towards
BEC above the condensation threshold. We introduce
operators for the lower ŝLow|k and upper ŝUp|k polari-
tons

ŝLow|k = âCav|k cosφk − ĉExc|k sinφk (A10)

ŝUp|k = âCav|k sinφk + ĉExc|k cosφk, (A11)

where

φk =
1

2
arctg

(
2ΩR

ωExc − ωCav|k

)
. (A12)

The dispersion curves of the lower and the upper polari-
ton states are

ωLow|k =
ωExc + ωCav|k

2
−

√(
ωExc − ωCav|k

)2
4

+ Ω2
R

(A13)

ωUp|k =
ωExc + ωCav|k

2
+

√(
ωExc − ωCav|k

)2
4

+ Ω2
R

(A14)
Thus, we obtain (2).

Appendix B: Interaction with the environment:
dissipation, pumping, relaxation and thermalization

A density matrix ρ̂ characterizes the current state of
the system. The density matrix is governed by the master
equation [15, 34]

dρ̂

dt
=

i

ℏ

[
ρ̂, Ĥ

]
+
∑
n

Ln(ρ̂), (B1)

where Ln(ρ̂) is the Lindblad superoperator

Ln(ρ̂) = γn

(
Ânρ̂Â

†
n − 1

2
ρ̂Â†

nÂn − 1

2
Â†

nÂnρ̂

)
, (B2)

Ân is the relaxation operator, and γn is the relaxation
rate. The Lindblad superoperators can describe both the
dissipation and pumping of the system.

Below, we consider the relaxation processes in each of
the subsystems separately.

The energy relaxation rate of dressed exciton states in
the absence of a cavity is defined by γExc. The corre-
sponding relaxation operator for j-th molecule is ŜExcj .
The dressed exciton states also undergo dephasing pro-
cesses at the rate ΓExc that corresponds to the relax-

ation operator Ŝ†
ExcjŜExcj . Usually, in molecular systems

at room temperature the exciton energy dissipation rate
γExc is much smaller than the dephasing ΓExc. The cor-
responding Lindblad superoperators are

LExc(diss) =

Nmol∑
j=1

γExc

2

(
2ŜExcj ρ̂Ŝ†

Excj−

Ŝ†
ExcjŜExcj ρ̂− ρ̂Ŝ†

ExcjŜExcj

)
(B3)

LExc(deph) =

Nmol∑
j=1

ΓExc

2

(
2Ŝ†

ExcjŜExcj ρ̂Ŝ†
ExcjŜExcj−

Ŝ†
ExcjŜExcj ρ̂− ρ̂Ŝ†

ExcjŜExcj

)
(B4)
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The dressed vibrational states dissipate their energy
with the rate γVib. Since thermal fluctuations affect
the system at room temperature, the corresponding
relaxation operators of dressed vibrational states for

the j-th molecule are B̂Vibj and B̂†
Vibj with the relax-

ation rates (1 + nth
Vib)γVib and nth

VibγVib, where nth
Vib =

1/(exp(ℏωVib/kBT ) − 1) is the mean of the thermal dis-
tribution of molecular vibrations at the temperature T .
The corresponding Lindblad superoperators are

LVib =

Nmol∑
j=1

γVib(1 + nth
Vib)

2

(
2B̂Vibj ρ̂B̂†

Vibj−

B̂†
VibjB̂Vibj ρ̂− ρ̂B̂†

VibjB̂Vibj

)
+

Nmol∑
j=1

γVibn
th
Vib

2

(
2B̂†

Vibj ρ̂B̂Vibj − B̂VibjB̂†
Vibj ρ̂−

ρ̂B̂VibjB̂†
Vibj

)
(B5)

The dissipation rate remains the same γVib for both
dark and bright vibrational states. The same applies to
dark excitons. The energy dissipation rate of the dark
excitons equals γExc. However, due to the strong inter-
action between the cavity and bright exciton states, the
dissipation rates of the polariton states are different. The
dissipation rates of the lower polariton states γLow|k and
for upper polariton states γUp|k are determined by the

Hopfield coefficients and equal γLow|k = γCav|k cos2 φk +

γExc sin2 φk and γUp|k = γExc cos2 φk + γCav|k sin2 φk,
where γCav|k is the dissipation rate of cavity photons with
the wave vector k. The corresponding relaxation opera-
tors are ŝLow|k and ŝUp|k. The corresponding Lindblad
superoperators are

LLow =
∑
k

γLow|k

2

(
2ŝLow|kρ̂ŝ

†
Low|k−

ŝ†Low|kŝLow|kρ̂− ρ̂̂̂s†Low|kŝLow|k

)
(B6)

LVib =
∑
k

γUp|k

2

(
2ŝUp|kρ̂ŝ

†
Up|k−

ŝ†Up|kŝUp|kρ̂− ρ̂ŝ†Up|kŝUp|k

)
(B7)

Being hybrid light–matter states, polaritons inherit
properties from both the molecules and the electromag-
netic field of the cavity. Recent a microscopic theory
suggested that polariton thermalization originates from
the low-energy molecular vibrations coupled to the ma-
terial component of the polaritons [18] and thermaliza-
tion processes between lower polariton states with the
wavevector k1 and k2 can be described by the relaxation

operators ŝLow|k2
ŝ†Low|k1

, ŝLow|k1
ŝ†Low|k2

and thermaliza-

tion rates γk2k1

therm and γk1k2

therm. The corresponding Lindblad

superoperators are

Ltherm(ρ̂) =
∑
k1,k2

γk1k2

therm

2

(
2ŝlowk2

ŝ†lowk1
ρ̂ŝlowk1

ŝ†lowk2
−

ŝlowk1 ŝ
†
lowk2

ŝlowk2 ŝ
†
lowk1

ρ̂−

ρ̂ŝlowk1
ŝ†lowk2

ŝlowk2
ŝ†lowk1

)
(B8)

The ratio between the rates upward and downward ther-
malization processes γk1k2

therm and γk2k1

therm is determined by
the Kubo–Martin–Schwinger relation [35]

γk1k2

therm = γk2k1

therm exp

(
ℏωlowk2 − ℏωlowk1

kBT

)
. (B9)

where T is the temperature of the environment.
We consider the resonant pumping scheme where the

laser excites bright excitonic states at high wavevector
k = kex (the lower and upper polaritons). This process
can be described by the relaxation operators ŝLow|kex

,

ŝ†Low|kex
, ŝUp|kex

and ŝ†Up|kex
and corresponding rates

κLow|kex
, κLow|kex

, κUp|kex
and κUp|kex

[26, 36]. We dis-
tinguish between the lower polaritons having relatively
small in-plane momenta within kT ≃ 30 meV range of
energy around the ground state ℏk = 0 and the polari-
ton states with the large momentum ℏkex as represented
by the dispersion curves in (Fig. 2). The former we
call “polaritons” and the latter we call “bright excitons”.
The reason for this separation is that lower polaritons
with small wave vectors have a dominant electromag-
netic component and are not pumped directly, whereas
the polaritons with large wave vectors have a dominant
exciton component and undergo direct optical pumping.
For large wave vector kex we do not consider upper po-
lariton state, because we assume that ωUp|kex

≈ ωCav|kex
,

ωLow|kex
≈ ωExc, and the optical pumping is aligned in

resonance with the exciton energy as shown in Fig. 2.
Therefore, we can omit the dynamics of the upper po-
laritons with the wavevector kex and denote

κLow|kex
= κPump (B10)

and set

ŝLow|kex
≈ ĉExc|kex

. (B11)

Thus, we obtain the Lindblad suparoperators for the res-
onant pumping

LPump =
κPump

2

(
2ĉExc|kex

ρ̂ĉ†Exc|kex
−

ĉ†Exc|kex
ĉExc|kex

ρ̂− ρ̂ĉ†Exc|kex
ĉExc|kex

)
+

κPump

2

(
2ĉ†Exc|kex

ρ̂ĉExc|kex
− ĉExc|kex

ĉ†Exc|kex
ρ̂−

ρ̂ĉExc|kex
ĉ†Exc|kex

)
. (B12)

The lower polariton states with large wavevectors have
a dominant excitonic nature, unlike upper polaritons
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with the same momentum. Practically, they degenerate
in energy with the localized, dark excitons. The total
number of dark exciton states significantly outnumbers
that of the polariton states. As a result, the dark excitons
effectively act as a reservoir for the polariton states with
large wavevectors, especially for the lower polariton state
with a given wavevector kex. We phenomenologically ac-
count for this mechanism, assuming that the correspond-
ing relaxation rate is γB−D

Exc = ΓExc. A similar principle
applies to the bright and dark vibrational states. We set
the corresponding relaxation rate γB−D

Vib to γVib/2.

Appendix C: Discretization of the system

To provide a numerical simulation, we discretize the
system and map its momenta states onto the energy
space, moving from the continuum of wavevectors to a
discrete set of frequencies. We consider a discrete finite
set of frequencies (ω0, ω1, ω2, ..., ωN ) with a sampling
rate equal to δω, such that ωj+1 − ωj = δω. The to-
tal number of frequencies that we account for is N + 1.
For the sake of simplicity, we introduce the ground state
frequency as ω0 = ωPol|k=0. Likewise, we introduce
φj = φk|ωPol|k=ωj We denote the frequency intervals

Rj = (ωj − δω, ωj ] and introduce occupation numbers
and parameters of the discretized system

nPol0 = nPol|k=0, (C1)

nPolj =
∑

k: ωPol|k∈Rj

nPol|k, 1 < j < N, (C2)

nVib0 = nVib|k=0, (C3)

nVibj =
∑

k: ωPol|k∈Rj

nVib|kex−k, 1 < j < N, (C4)

γPolj = γPol|k
∣∣
ωPol|k=ωj

, (C5)

γjm
therm = γk′k′′

therm

∣∣∣
ωPol|k′=ωj , ωPol|k′′=ωm

, (C6)

Gj =
Λ2Ω2

RΓExc cos2 φj

(ωExc − ωj − ωVib)2 + (ΓExc/2)2
, (C7)

G̃j = Gj sin2 φkex
. (C8)

The total number of the lower polariton states within
the frequency interval δω close to ωj we denote as Dj

and define as follows

D0 = 1 (C9)

Dj =
∑

k: ωPol|k∈Rj

1, 1 < j < N. (C10)

One can show that Dj = Sδω/(4παPol) for 1 < j < N
where S is the pumped area.

As a result we obtain the following discrete version of
Eq. (31)–(35)

dnExc|kex

dt
= −γExc(nExc|kex

− κpump) + γB−D
Exc (nExcD−

nExc|kex
) −

N∑
m=0

G̃m

Nmol

[
nExc|kex

(nPolm + Dm) +

nVibm

(
nExc|kex

− nPolm

Dm

)]
(C11)

dnExcD

dt
= −γExcnExcD +

γB−D
Exc

Nmol
(nExc|kex

− nExcD)−

N∑
m=0

Gm

Nmol
[nExcD (nm + Dm) + nVibD (DmnExcD − nm)]

(C12)

dnPolj

dt
= −γPoljnPolj + Gj [nExcD (nPolj + Dj) +

nVibD
(DjnExcD − nPolj)]+

Gj

Nmol

[
nExc|kex

(nPolj + Dj) +

nVibj

(
nExc|kex

− nPolj

Dj

)]
+

N∑
m=0

{
γjm
therm

(nPolj + Dj)nPolm − γmj
therm (nPolm + Dm)nPolj

}
(C13)

dnVibD

dt
= −γVib

(
nVibD

− nth
Vib

)
+

γB−D
Vib

Nmol

N∑
m=0

(nVibm

−DmnVibD) +

N∑
m=0

Gm

Nmol
[nExcD (nPolm + Dm)

+nVibD
(DmnExcD − nPolm)] (C14)

dnVibj

dt
= −γVib

(
nVibj −Djn

th
Vib

)
+ γB−D

Vib (DjnVibD

− nVibj) +
Gj

Nmol

[
nExc|kex

(nPolj + Dj) +

nVibj

(
nExc|kex

− nPolj

Dj

)]
, (C15)

where j = 0, 1, ..., N . The total amount of the equa-
tions is 2N + 7. For our simulations, we set N =
100 that fill the bottom of lower polariton dispersion
within the momenta range of [|kmin| = 0 µm−1, |kmax| =
2 µm−1] (Fig. 2).
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