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Abstract

We define an almost sure bijection which constructs the directed landscape
from a sequence of infinitely many independent Brownian motions. This is
the analogue of the RSK correspondence in this setting. The Brownian mo-
tions arise as a marginal of the extended Busemann process for the directed
landscape, and the inverse map gives an explicit and natural coupling where
Brownian last passage percolation converges in probability to the directed land-
scape. We use this map to prove that the directed landscape on a strip can
be reconstructed from the Airy line ensemble. Along the way, we describe two
more new versions of RSK in the semi-discrete setting, build a general theory
of sorting via Pitman operators, and construct extended Busemann processes
for the directed landscape and Brownian last passage percolation.
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1 Introduction

The Kardar-Parisi-Zhang (KPZ) universality class is a collection of one-dimensional
random growth models and two-dimensional random metrics that are expected to
have the same limiting behaviour under rescaling. Over the past thirty years, our
understanding of this class has improved dramatically thanks to the discovery of
a handful of exactly solvable models. The directed landscape was constructed in
[DOV22] as the full scaling limit of one of these models, Brownian last passage per-
colation (LPP). More recently, other exactly solvable last passage models [DV21b],
the KPZ equation [Wu23] (see also [Vir20, QS23]), and coloured ASEP and the
stochastic six vertex model [ACH24] have been shown to converge to the directed
landscape. The directed landscape is conjectured to be the full scaling limit of all
KPZ models, including models of planar first and last passage percolation with only
weak restrictions on the weights. See Section 1.6 for more background.

The directed landscape L is a random variable taking values in C(R4
↑), the space of

continuous functions from

R4
↑ = {u = (p; q) = (x, s;y, t) ∈ R

4 ∶ s < t}

to R with the compact topology (i.e. the topology of uniform-on-compact conver-
gence). The construction in [DOV22] builds the directed landscape from its two-
dimensional marginal the Airy sheet S(x, y) ∶= L(x,0;y,1) in an analogous way to
how Brownian motion is built from the normal distribution. The Airy sheet is in
turn built as a complicated function of the Airy line ensemble, a sequence of paths
Ai ∶ R→ R, i ∈ N which is in turn defined via a determinantal formula1. As one of the
highlights of this paper, we give an alternate construction of the directed landscape
through a simpler and more classical object: independent Brownian motions.

1Though note that the Airy line ensemble has recently been given a more satisfying probabilistic
characterization, see [AH23].
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Our construction is an almost sure bijection mapping a sequence of independent
two-sided Brownian motions B ∶= (Bi ∶ i ∈ N) to the directed landscape L restricted
to the lower half-plane H2

↑ = {(x, s;y, t) ∈ R
4 ∶ s < t ≤ 0}. Here and throughout the

paper, our Brownian motions will have variance 2, as is the convention for KPZ
limits. The map taking L∣H2

↑
to B has a more natural geometric definition, so we

use this map to state our main theorem, even though the map taking L∣H2

↑
to B

is ultimately more interesting. The paths Bi, i ∈ N are defined from L through the
following multi-path Busemann function definition:

k

∑
i=1

Bi(x) = lim
t→−∞

L(0k,−t;xk,0) − Lk(0k,−t; 0k,0). (1)

Here we write L(xk, s;yk, t) for the maximal length in L of a collection of k disjoint
paths π1, . . . , πk from (x, s) to (y, t), see Section 1.4 for a more detailed definition.

Theorem 1.1. The environment B defined by the map in (1) is a sequence of
independent two-sided Brownian motions. Moreover, there is an explicit inverse
map that recovers L∣H2

↑
from B almost surely.

The inverse map in Theorem 1.1 can loosely be described in two steps:

• First, for every a ∈ R we construct a new environment of independent two-sided
Brownian motions Ba = (Ba

i , i ∈ N) of drift a by looking at multi-path Brow-
nian LPP Busemann functions in the environment B, in a certain direction
parametrized by a.

• By the main theorem of [DOV22] (see Theorem 1.6), there is a natural rescaling
of the environments Ba so that they converge to L∣H2

↑
distribution as a→ −∞.

It turns out that convergence also happens in probability, and hence recovers
L∣H2

↑
from B.

The reader may wonder about the restriction of L to the lower half-plane. By sym-
metry, we can also define L on the upper half-plane from a Brownian environment,
and hence by patching these constructions together construct L on the full plane
from a bi-infinite sequence of independent Brownian motions.

The map in Theorem 1.1 is a version of the Robinson-Schensted-Knuth (RSK) cor-
respondence in the scaling limit, where L corresponds to the integer-valued matrix
in classical RSK and B corresponds to the pair of Young tableaux. This RSK per-
spective is what drives the whole paper, and very roughly, we will obtain Theorem
1.1 by passing a classical version of RSK through three limit transitions. In the
remainder of the introduction, we will describe each of these limits in detail.
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1.1 Multi-path LPP and functional RSK

To introduce the RSK correspondence, we need to first define multi-path LPP across
a functional environment. Consider a continuous function f ∶ R → RI , where I ⊂ Z
is an interval. For a nonincreasing right-continuous function π ∶ [x, y] → {m, . . . , n}
(henceforth a path from (x,n) to (y,m)) define its length with respect to f by

∥π∥f = n

∑
i=m

fi(ti−1) − fi(ti) (2)

where ti = inf{t ∈ [x, y] ∶ πi(t) ≤ i}. We then define the last passage value

f[(x,n)→ (y,m)] = max
π∶(x,n)→(y,m)

∥π∥f , (3)

where the supremum is over all paths from (x,n) to (y,m). Last passage percolation
(LPP) is best thought of as a kind of directed metric on the set R× I with distances
distorted by the environment f , and where we maximize rather than minimize path
length. With this perspective in mind, paths that achieve the maximum in (3) are
called geodesics. We also need to define multi-path last passage values. First, for
a linearly ordered set X, we write

Xk
≤ = {(x1, . . . , xk) ∈ Xk ∶ x1 ≤ x2 ≤ ⋯ ≤ xk},

and similarly define Xk
< ,X

k
≥ ,X

k
> . Consider p = (x,n),q = (y,m) ∈ Rk

≤ × I
k
≤ . We say

that π = (π1, . . . , πk) is a disjoint k-tuple from p to q if each πi is a path from(xi, ni) to (yi,mi) and if πi(t) < πi+1(t) for t ∈ (xi, yi) ∩ (xi+1, yi+1). If there is at
least one disjoint k-tuple from p to q, we can define the multi-path last passage
value

f[p→ q] = sup
π∶p→q

k

∑
i=1

∥πi∥f ,
where the supremum is over all disjoint k-tuples from p to q. We call a k-tuple
achieving the above supremum a (disjoint) optimizer. To simplify the notation
for multi-path last passage values in the situations that occur most, we write xk ∶=(x, . . . , x) ∈ Rk. Typically, we will consider multi-path last passage when all the
points in p lie on a common vertical or horizontal line (and similarly for q). In this
case, we will write p = (x, n) ∶= (x, nk) and p = (x,n) ∶= (xk,n). See Figure 1 for
illustrations of this definition.

Via Greene’s theorem [Gre74], we can describe many classical versions of RSK in
terms of multi-path LPP across a continuous environment f ∶ [a, b] → Rn. Essen-
tially, the RSK map takes f to a pair of environments WUf,WRf which record
multi-path last passage values from the bottom corner (a,n) to the upper (U)
boundary [a, b]×{1} and the right (R) boundary {b}×{1, . . . , n} of [a, b]×{1, . . . , n},
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Figure 1: A disjoint optimizer for k = 3 from ((0,0,0.2),5) to ((0.7,0.9,1),1). Note
that in our coordinate system, we view paths as moving up and to the right across
the page.

respectively. More precisely, letting Tn ∶= {(i, j) ∈ {1, . . . , n}2 ∶ i ≤ n − j + 1}, define
two functions WUf ∶ [a, b] → Rn and WRf ∶ Tn → R, (i, j) ↦ (WRf)i(j) as follows:

k

∑
i=1

(WUf)i(r) = f[(ak, n)→ (xk,1)], 1 ≤ k ≤ n, x ∈ [a, b]. (4)

k

∑
i=1

(WRf)i(j) = f[(ak, n)→ (xk, j)], (k, j) ∈ Tn.

The map f ↦ Wf ∶= (WUf,WRf) has many remarkable properties. We highlight
three that are particularly important for this paper:

Invertibility: The RSK map W is invertible on its image with an explicit inverse.
Moreover, its image is easy to describe: a pair (h, g) equals Wf for some
continuous f if and only if h ∶ [a, b] → Rn is continuous function into the
ordered set Rn

≤ with h(a) = 0, g satisfies the Gelfand-Tsetlin inequalities gi(j) ≥
gi(j + 1) ≥ gi+1(j), and h(b) = g⋅(1). The inequalities in this description of
the image imply that h, g can be viewed as path representations of Young
tableaux, and the condition h(b) = g⋅(1) says that these tableaux have the
same shape. By restricting to certain classes of piecewise linear functions
f in our framework we can recover classical matrix versions of RSK (i.e. the
Robinson-Schensted correspondence for permutations, usual RSK, dual RSK).

Measure Preservation: The bijectivity of RSK implies that it maps nice mea-
sures to nice measures. For example, if a, b ∈ Z and f is an environment of
independent Bernoulli walks, then WUf consists of n independent Bernoulli
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walks conditioned to stay ordered. Similarly, if B ∶ [a, b] → Rn is an en-
vironment of independent Brownian motions, then WUB consists of n non-
intersecting Brownian motions. There are similar interpretations for WR.

Isometry: The map WU preserves bottom-to-top last passage values. More pre-
cisely, we have the boundary isometry

f[(x, n) → (y,1)] =WUf[(x, n)→ (y,1)] (5)

for all f,x,y. Similarly, WR preserves left-to-right passage values.

We refer the reader to [DNV22] for precise versions of the statements above and a
presentation of RSK in this framework, and [Ful97, Sta99] for more classical presen-
tations.

In this paper, we will take three successive limits of RSK so that at every stage
we have useful and interesting notions of invertibility, measure preservation, and
isometry. Our final limit of the RSK correspondence will make explicit the function
in Theorem 1.1.

1.2 The first limit: RSK for functions f ∶ R→ Rn

In Section 3, we define an RSK map on the domain

Cn(R) ∶= {f ∶ R→ Rn ∶ λ(f) ∶= lim
x→±∞

f(x)
x

exists}.
This map is the limit of RSK on functions f ∶ [a, b] × {1, . . . , n} where we take
a → −∞, b → ∞. We restrict to functions with an asymptotic slope for simplicity;
the map could be defined on a larger space, but we will not need this here. The
motivation for taking this limit is that when we let [a, b] tend to (−∞,∞), the RSK
correspondence becomes simpler and picks up additional symmetries. In particular,
the inverse map in this setting becomes a straightforward conjugation of the forward
map.

Since our right boundary {b}×{1, . . . , n} is tending to infinity, the information from
WRf should disappear in this limit, and the correspondence should now produce just
a single function Wf = (Wf1, . . . ,Wfn), which takes the place of WUf . The corner(a,n) that played the key anchoring role in (4) also converges to (−∞, n) in this
limit. For this reason, we need to define last passage from −∞: for m ∈ {1, . . . , n}k<,
let

f[(−∞,m) → (x,1)] ∶= lim
t→−∞

f[(t,m) → (x,1)] + k

∑
i=1

fmi
(t). (6)

This limit does not necessarily exist, but if we ask that f ∈ Cn< (R) ∶= {f ∈ Cn(R) ∶
λ(f) ∈ Rn

<} then it is always will. With the above setup in place, we can now take
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the limit of the RSK formula (4) to describe Wf when f ∈ Cn< (R):
k

∑
i=1

Wfi(x) = f[(−∞, (n, . . . , n − k + 1)) → (xk,1)]. (7)

With this definition, we have versions of invertibility, measure preservation, and
isometry.

Theorem 1.2. The map W in (7) has the following properties:

1. (Invertibility) W maps Cn< (R) bijectively onto Cn> (R) ∶= {f ∈ Cn(R) ∶ λ(f) ∈
Rn
>}. Moreover, the inverse map is given by RWR ∶ Cn> (R) → Cn< (R), where

R ∶ Cn(R)→ Cn(R) is the reflection map Rf(x) = f(−x).
2. (Measure preservation) Let µλ denote the law on Cn(R) of n independent

Brownian motions with drift vector λ and variance 2. Then if λ ∈ Rn
< and

B ∼ µλ, then WB −WB(0) ∼ µλ∗ where λ∗ = (λn, . . . , λ1).
3. (Isometry) The isometry (5) holds with Wf in place of WUf .

Parts of Theorem 1.2 are not completely new. Indeed, the isometry is essentially
immediate from the isometry in the finite setting, and the fact that RWR inverts
W is related to a similar description of the inverse RSK map on functions f ∶[0,∞) → Rn given in [DNV22]. The bijection W turns out to also be the same as a
certain queuing map described in Sorensen’s Ph.D. thesis [Sor23], see Section 2.3.3
and Lemma 2.3.18 therein. The description in terms of multi-path LPP and the
connection with RSK is not discussed there.

When n = 2, the measure preservation property in Theorem 1.2 is well-known: this
is one aspect of the so-called Brownian Burke theorem, first observed in [HW90] and
applied to LPP in [OY01]. To move from measure preservation for n = 2 to general
n, we will build the n-line map by repeatedly applying the 2-line map to pairs of
adjacent lines. This approach to RSK was first developed in the closely related
context of functions f ∶ [0,∞) → Rn by Biane, Bougerol, and O’Connell [BBO05],
building on work of [OY01, OY02, O’C03]. This approach was further studied in
[DOV22, DNV22]. We expand on these ideas here, and along the way describe
a whole family of useful and interesting maps on the space of functions Cn(R)
which generalize the maps W and RWR. This broader family will be crucial for
understanding the next limit transition. Each of these maps have nice invertibility,
measure-preservation, and isometry properties and are useful for studying different
aspects and models of LPP.

To describe things more precisely, define thePitman transform P ∶ C2(R)→ C2(R)
by letting P ∣C2<(R) be the 2-line map W described above, and setting P ∣C2≥(R) = id.
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Next, for i = 1, . . . , n − 1, define sorting operators τi, τ̄i ∶ R
n → Rn by

τi(x) =
⎧⎪⎪⎨⎪⎪⎩
x, xi ≥ xi+1,(x1, . . . , xi+1, xi, . . . , xn), xi < xi+1

and

τ̄i(x) =
⎧⎪⎪⎨⎪⎪⎩
x, xi ≤ xi+1,(x1, . . . , xi+1, xi, . . . , xn), xi > xi+1.

Equivalently, τ̄i = RτiR, where Rx = −x. Let Dn denote the monoid generated by
the τi, τ̄i, i = 1, . . . , n − 1. We then define operators Pτi ,Pτ̄i ∶ C

n(R) → Cn(R) by
setting

Pτi(f1, . . . , fn) = (f1, . . . , fi−1,P(fi, fi+1), fi+2, . . . , fn),
and letting Pτ̄i = RPτiR. It turns out that these definitions extend to an action
of the whole monoid Dn. For an arbitrary element σ = π1⋯πk ∈ Dn where πi ∈{τi, τ̄i, i = 1, . . . , n − 1}, we can define Pσ = Pπ1

⋯Pπk
; this definition is independent

of the choice of the decomposition π1⋯πk of σ, and we have the following theory for
this monoid action, which can be viewed as a generalization of Theorem 1.2.

Theorem 1.3. The maps Pσ, σ ∈ Dn have the following properties.

1. (Invertibility via last passage) Let f ∈ Cn≤ (R). Let O(f) denote the orbit of f
under the action of Pσ, σ ∈Dn and let O(λ(f)) denote the orbit of λ(f) under
the action of Dn. Then the map g ↦ λ(g) is a bijection from O(f) to O(λ(f))
and λ ○ Pσ = σ ○ λ as functions from O(f)→ O(λ(f)). Moreover, if g ∈ O(f),
then for all x ∈ R, k ∈ {1, . . . , n} we have

k

∑
i=1

gi(x) = f[(−∞,mk,g)→ (xk,1)],
where mk,g ∈ {1, . . . , n}k< is the minimal vector such that as multi-sets,

{λ(g)1, . . . , λ(g)k} = {λ(f)mk,g
1

, . . . , λ(f)
m

k,g

k

}.
2. (Measure preservation) If λ ∈ Rn and B ∼ µλ, then PσB −PσB(0) ∼ µσ(λ).

3. (Isometry) The isometry (5) holds with Pσf in place of WUf .

Theorem 1.3 can be interpreted as saying that given an environment f , we can build
a family of boundary isometric environment Pσf which permute the slopes of the
lines of f in different ways. We can access different information about last passage
values across f by studying different elements in this family. Theorem 1.3 is proven
in the text as a combination of Corollary 3.5, Lemma 3.6, and Proposition 3.10.
The special case of Theorem 1.2 is given in Corollary 3.12.
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1.3 The second limit: RSK for functions f ∈ CN(R)

Next, we take a limit of RSK on Cn(R) as n→∞. This is the goal of Section 4. This
limit naturally results in Busemann functions for Brownian LPP, foreshadowing
the description of the maps in Theorem 1.1. Let B = (Bi, i ∈ N) ∈ CN(R) be an
environment of independent two-sided Brownian motions with no drift. For θ ∈[0,∞)k≤ and x ∈ Rk

≤ define the multi-path Busemann function

Bθ(x;B) = lim
t→−∞

B[(t, ⌊θ∣t∣⌋ + k)→ (x,1)] −Nθ(t) (8)

Here the notation ⌊θt⌋ should be understood coordinatewise: ⌊θt⌋ = (⌊θ1t⌋, . . . , ⌊θkt⌋).
We use similar coordinatewise notation throughout the paper. We have added +k
above to ensure that the Busemann function is well-defined even if θ = 0k. The
function Nθ(t) is a normalization term needed in order to ensure that the limit
(8) exists. There are a couple of different choices for this normalization term; we
choose the normalization that retains the most information. Letting θ̂ ∈ [0,∞)m< be
uniquely chosen so that θ = (θ̂ℓ11 , . . . , θ̂ℓmm ), set

Nθ(t) ∶= m

∑
j=1

B[(t, ⌊θ̂ℓii ∣t∣⌋ + k)→ (0ℓi ,1)],
where the operation θ̂ℓii ↦ ⌊θ̂ℓii ∣t∣⌋ + k should again be understood coordinatewise.
Busemann functions are closely linked to the study of semi-infinite optimizers.
A semi-infinite optimizer in direction θ ending at (x,1) is a k-tuple π = (π1, . . . , πk)
such that πi ∶ (−∞, xi] → Nk, π(t)/t → θ as t → −∞ and such that π∣[y,xk] is an
optimizer ending at (x,1) for any y < x1. A semi-infinite optimizer with one path
is called a semi-infinite geodesic.

The single-path Busemann process and semi-infinite geodesics in Brownian LPP
have been extensively studied in recent years. The state-of-the-art results are due
to Seppäläinen and Sorensen [SS23b], building on [ARAS20, SS23a]. They showed
that there is a random countable set Θ ⊂ [0,∞) such that for θ ∉ Θ, the limit (8)
exists for all x ∈ R and the process (θ,x) ↦ Bθ(x;B) is continuous in both x and θ

on R × [0,∞) ∖Θ. Moreover, semi-infinite geodesics exist ending at all points and
in all directions θ, and for θ ∉ Θ, all semi-infinite geodesics in direction θ eventually
coalesce. We use these results to help build an analogous toolkit for working with
multi-path Busemann functions for Brownian LPP, see Section 4.1 for details.

Now let us return to the problem of defining a limit for the RSK correspondence
on Cn(R) as n → ∞. Consider the Brownian environment B as above, and let
B′ ∈ CN(R) be an independent Brownian environment, where each B′i has drift a > 0.
For each n ∈ N, let W n = Pσn(B1, . . . ,Bn,B

′
1, . . . ,B

′
n), where σn is chosen so that the

slopes are reversed, i.e. λ(W n) = (an,0n). By Theorem 1.3.2, W n−W n(0) ∼ µ(an,0n).
In particular, W n−W n(0) converges in law as n→∞ to an environment Ba ∈ CN(Z)
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of infinitely many independent Brownian motions with slope a. It turns out that
this convergence also happens almost surely, and that Ba is described purely in
terms of Busemann functions for the unsloped environment B; the dependence on
B′ disappears in the limit. We have now defined a collection of maps indexed by
a > 0 that play the role of RSK on CN(R). It turns out they are invertible, measure-
preserving, and naturally satisfy a Busemann isometry.

To make things more precise, define Wλ(x;B) ∶= Bλ∣λ∣/2(x;B), which parametrizes
Busemann functions by the asymptotic slope of the function x ↦Wλ(x;B), rather
than the Busemann direction. For a ≥ 0 we can alternately define Ba ∈ CN(R) by
the formula

k

∑
i=1

Ba
i (x) =Wak(xk;B), k ∈ N. (9)

We also build environments for a < 0. First, for an environment f , define Rf(x) =
f(−x), and for x ∈ Rk

≤, let −x = (−xk, . . . ,−x1) ∈ Rk
≤. For θ ∈ (−∞,0]k≤,x ∈ Rk

≤, define

Wθ(x;B) = Bθ∣θ∣/2(x;B) ∶= B−θ∣θ∣/2(−x;RB),
See Figure 2 for an illustration of this definition when θ ∈ (−∞,0). Using this
definition, we can understand formula (9) for arbitrary a ∈ R. The full suite of RSK
transformations B ↦ Ba, a ∈ R exhibits a group structure, and acts on Busemann
functions via a simple parameter translation.

Theorem 1.4. Let B = (Bi, i ∈ N) be an environment of independent two-sided
Brownian motions with zero drift. Then:

1. (Invertibility and group structure) For any a, b ∈ R, almost surely:

B0 = B, (Ba)−a = B, (Ba)b = Ba+b.

2. (Measure preservation) For any a ∈ R, Ba is a sequence of independent Brow-
nian motions of drift a.

3. (Busemann isometry) Fix a ∈ R and λ ∈ (−∞,0]k≤ ∪ [0,∞)k≤. Suppose also that
λ + a ∈ (−∞,0]k≤ ∪ [0,∞)k≤. Then a.s. for all x ∈ Rk

≤ we have

Wλ+a(x;B) =Wλ(x;Ba).
Theorem 1.4.3 also allows us to define the function Wλ(x;B) when λ ∈ Rk

≤ but
possibly has coordinates of both signs: we simply set Wλ(x;B) =Wλ−λ1(x,B−λ1).
Theorem 1.4 is proven in the text as Theorem 4.12.

We can also take different limits of the RSK correspondence on Cn(R) that result
in new representations for the multi-path Busemann process for B. More precisely,
let θ ∈ [0,∞)k≤ and let B′ ∼ µθ. Let the transform Pσn , σn ∈ Dn+k be chosen so that

10



16cm

θ = 0

θ > 0
θ < 0

θ = 0

θ → ∞ θ → −∞

x1 x2 x3

Figure 2: Semi-infinite geodesics in B, indexed by the direction θ ∈ R. To make
sense of the direction when θ < 0, we look along down-right paths, or equivalently,
paths in the reversed environment.

W n ∶= Pσ(B1, . . . ,Bn,B
′) satisfies λ(W n) = (θ,0n). Again, the maps W n −W n(0)

have an almost sure limit W as n→∞ which comes from the Busemann process for
B. The next theorem describes this limit.

Theorem 1.5. Let θ ∈ [0,∞)k≤, and define W = (W1, . . . ,Wk) ∶ R → Rk by the
formula:

ℓ

∑
i=1

Wi(x) =W(θ1,...,θℓ)(xℓ;B), 1 ≤ ℓ ≤ k.

Then W −W (0) ∼ µθ. Moreover, consider any n ∈ {1, . . . , k}ℓ< for some ℓ ≤ k and
suppose that n ≤ m for any m ∈ {1, . . . , k}ℓ< with θni

= θmi
for all i. Then almost

surely, for all x ∈ Rℓ
≤ we have

B(θn1
,...,θnℓ

)(x;B) =W [(−∞,n)→ (x,1)]. (10)

The identity (10) may look familiar to the reader in the special case when n is
a singleton. Indeed, as part of their comprehensive study of Brownian Busemann
functions, Seppäläinen and Sorensen [SS23b] showed that given θ ∈ [0,∞)k<, there
exists an environment W̃ ∼ µθ such that the following identity holds in distribution,
as functions of (x, i) ∈ R × {1, . . . , k}.

W̃ [(−∞, i) → (x,1)] − W̃ [(−∞, i) → (0,1)] d=Wθi(x;B) (11)

One upshot of Theorem 1.5 is that we realize this as an almost sure identity, naturally
constructing W̃ in terms of B. A multi-path almost sure approach to the identity
(11) was previously suggested in [Dau23b, Remark 1.3.4] and developed there in the
context of the Airy sheet. Theorem 1.5 is proven in the text as Theorem 4.9.

11



θ → ∞θ → −∞ θ > 0θ = 0θ < 0

x1 x2 x3

Figure 3: Semi-infinite geodesics in L. The colouring of paths in Figures 2 and 3 is
chosen so that the start points and directions match in the two pictures under the
version of the RSK correspondence in Theorem 1.7.

1.4 The final limit: RSK for the directed landscape

At this point, we have constructed analogues of the RSK correspondence on an
infinite line environment on R×N indexed by a ∈ R. We can make one final limiting
transition. This transition can be either viewed through taking a→ ±∞ in Theorem
1.4, or equivalently by decreasing the spacing between lines to 0, in a manner that
takes Brownian LPP to the directed landscape. This is the goal of Section 5. We
start by recalling the main theorem of [DOV22], which defines the directed landscape
as the scaling limit of Brownian LPP.

Theorem 1.6 (Theorem 1.5, [DOV22]). For every a ∈ R, let Ba ∈ CZ(R) be an
environment of independent two-sided Brownian motions of common drift a. Let(x, s)a = (x − as/4, ⌊sa3/8⌋ + 1). Then as a → −∞,

La(x, s;y, t) ∶= Ba[(x, s)a → (y, t)a] − a2

4
(t − s) d

→ L(x, s;y, t).
In Theorem 1.6, the convergence in distribution is in the compact topology on C(R4

↑).
Just as with LPP, the directed landscape is best thought of as assigning distances
to pairs of points p = (x, s), q = (y, t). The value L(p; q) is best thought of as a
distance between two points p and q in the space-time plane, and indeed, it satisfies
a reverse triangle inequality

L(x, s;y, t) ≥ L(x, s; z, r) +L(z, r;y, t), (12)

just like LPP. Unlike a usual metric, L is not symmetric, does not assign distances
to every pair of points in the plane, and may take negative values.

12



We define the analogue of RSK for L by modifying the Busemann definition (9)
for the limiting context. To set things up properly we need to define path lengths,
geodesics, and optimizers in the directed landscape. For a continuous function
π ∶ [s, t]↦ R, referred to as a path, let π̄(r) = (π(r), r). Following [DOV22, Section
12], define the length of π by

∥π∥L = inf
k∈N

inf
s=t0<t1<...<tk=t

k

∑
i=1

L(π̄(ti−1); π̄(ti)) . (13)

Next, for s < t and x,y ∈ Rk
≤, define the extended landscape value

L(x, s;y, t) = max
π=(π1,...,πk)

k

∑
i=1

∥πi∥L, (14)

where the maximum is over all disjoint k-tuples of paths π = (π1, . . . , πk) with
π(r) ∈ Rk

< for r ∈ (s, t), and such that π(s) = x, π(t) = y. In [DZ21], the authors show
that the maximum in (14) is almost surely achieved for all s < t and x,y ∈ Rk

≤. As
before, we call a maximizer a disjoint optimizer, or geodesic if k = 1. Moreover,
the extended landscape is continuous, and is the limit of multi-path Brownian LPP.
Using this structure, we can define (multi-path) Busemann functions in L as in (8).
For θ,x ∈ Rk

≤, let

Bθ(x;L) ∶= lim
t→−∞

L(θ∣t∣, t;x,0) − m

∑
j=1

L(θ̂ℓi ∣t∣, t; 0ℓi ,0). (15)

Putting aside the question of Busemann existence for one moment, by analogy with
(9), for every a ∈ R we can define an RSK map for L. For a ∈ R, define BL,a(⋅) ∈
CN(R) by:

k

∑
i=1

B
L,a
i (x) =B(a/2)k(x;L). (16)

We can now ask for the usual properties of these maps: invertibility, measure-
preservation, isometry. The next theorem gives analogues of these properties here.

Theorem 1.7. Let L denote the directed landscape, and let H2
↑ = {(x, s;y, t) ∈ R4

∶

s < t ≤ 0}. For every a ∈ R define an environment BL,a ∈ CN(R) as in (16) from
L∣H2

↑
. Then:

1. (Measure preservation) For any a ∈ R, BL,a is a sequence of independent
Brownian motions of drift a. Moreover, the joint law of BL,a, a ∈ C is the
same as the joint law of the environments Ba, a ∈ C in Theorem 1.4 for any
countable set C ⊂ R (we restrict to countable C to avoid topological issues). In
particular, almost surely BL,a+b = (BL,a)b for any fixed a, b ∈ R.

2. (Busemann isometry) For any a ∈ R and λ ∈ Rk
≤, a.s. for all x ∈ Rk

≤ we have

Wλ+a(x;BL,a) =B(λ+a)/2(x;L).
13



3. (Invertibility) If we let the environment La∣H2

↑
be defined as in Theorem 1.6

where Ba = BL,a, then

La∣H2

↑

P
→ L∣H2

↑

as a → −∞, where the convergence in probability is in the compact topology on
functions from H2

↑ → R. Since any two of the environments Ba,L,Bb,L are a.s.
measurable functions each other by part 1, this implies that for every a0 ∈ R
there is a measurable map f ∶ CN(R)→ C(H2

↑) such that L∣H2

↑
= f(BL,a0) a.s.

Theorem 1.7 contains Theorem 1.1, and is proven in the text as part of the stronger
Theorem 5.8. To understand where Theorem 1.7 comes from, we should examine
what happens to the Busemann functions for Ba under the scaling in Theorem 1.6.
If we momentarily assume that we can exchange the order of the t→ −∞ limit in (8)
and the a→ −∞ limit in Theorem 1.6, we can use the coupling of the environments
Ba in Theorem 1.4 to see that:

Bθ(x;L) d= lim
a→−∞

Ba
3/(2a+8θ)(x;Ba) = lim

a→−∞
W ∣a∣

√
1/(1+4θ/a)(x;Ba)

= lim
a→−∞

W ∣a∣
√
1/(1+4θ/a)+a(x;B) =W2θ(x;B). (17)

Putting this together gives a candidate for the law of the extended Busemann pro-
cess Bθ(x;L), which is verified by Theorem 1.7.1,2. Comparing Figures 2 and 3
illustrates this part of the theorem. The law we have identified is consistent with
known results about the single-path Busemann process in the directed landscape
[RV21, Bus21, BSS24]. In [Bus21], the process Bθ(x,L) for θ,x ∈ R was termed the
stationary horizon, so naturally, we call the extended process (θ,x) ↦Bθ(x,L) for
arbitrary (θ,x) ∈ ⋃∞k=1Rk

≤ ×R
k
≤ the extended stationary horizon.

Now, given Theorem 1.7.1,2, the coupling of the environments La through the envi-
ronments BL,a given a sequence of maps converging to L in law, and whose multi-
path Busemann functions converge in probability. One may optimistically expect
that in such a coupling, we also have convergence in probability of the directed
landscape on the whole lower half-plane. Indeed, this is the case, and is verified by
Theorem 1.7.3! To prove this, we require a different suite of ideas, based around
proving optimizer rigidity in the directed landscape and constructing double-slit
Busemann functions, see Sections 5.3, 5.4, 5.5 for details.

Theorem 1.7 also allows us to prove a version of the same theorem restricted to a
strip, resolving a conjecture from [DZ21, Conjecture 1.10]. For this theorem and
throughout the paper, for a topological space X we let C(X) denote the space of
continuous functions f ∶X → R with the compact topology.

Theorem 1.8. Let L denote the directed landscape restricted to the strip S2↑ ={(x, s;y, t) ∈ ([0,1] × R)2 ∶ s < t}, and define A ∈ C(R × N), (i, x) ↦ Ai(x) by the
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formula
k

∑
i=1

Ai(x) = L(0k,0;xk,1).
Then A ∈ C(R × N) is a parabolic Airy line ensemble and there is a measurable
function f ∶ C(R ×N)→ C(S2↑) with f(A) = L almost surely.

The function f in Theorem 1.8 is not as useful as the function in Theorem 1.7, as we
do not have an explicit definition for it. However, its existence is almost immediate
given Theorem 1.7 and a multi-path RSK isometry proven in [DZ21], see Corollary
5.10 for details.

1.5 Future research directions

Our hope is that the present work opens up a new method both for understanding
the directed landscape, and for proving convergence to it. With this in mind, we
pose a set of future research directions that arise naturally from the work, and seem
accessible with current techniques.

While we prove that the directed landscape can be constructed from independent
Brownian motions, we use the existence of the directed landscape and properties to
help facilitate the proofs. We also use estimates on the shape of Brownian melon,
which stem from determinantal formulas for Brownian LPP and the Airy line en-
semble. Nonetheless, our approach suggests that an appeal to such formulas should
not be necessary for identifying the directed landscape since we do not use formulas
in an essential way. With this in mind, it seems natural to suggest the following.

Problem 1.9. Construct the directed landscape directly from Brownian last pas-
sage percolation without any appeal to determinantal formulas.

At the opposite end of the spectrum, there is the possibility of using exact formulas
to extract a quantitative convergence result from Theorem 1.7.

Problem 1.10. In the coupling in Theorem 1.7, show that there exists α > 0 such
that for any compact set K ⊂ H2

↑ we have

E sup
u∈K

∣La(u) −L(u)∣ ≤ ∣a∣−α+o(1)
as a→ −∞. Optimize α.

Currently, there are models in the KPZ universality class for which we do not have
sufficient access to exact formulas to prove convergence to the directed landscape,
but nonetheless have descriptions for their stationary distributions. Some examples
include multi-species (or coloured) versions of the totally asymmetric zero-range
process and q-PushTASEP, see [AMM22, ANP23], and [FM, Mar20] for older work
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on the more classical models of coloured TASEP and ASEP. The stationary distribu-
tions in these settings have queuing-theoretic descriptions that are discrete analogues
of the single-path Brownian Busemann process. All this work suggests that there is
multi-path RSK structure underlying these models, which would provide an avenue
for landscape convergence.

Problem 1.11. Prove that discrete particle systems whose multi-type stationary
distributions have queuing-theoretic descriptions converge to the directed landscape.

Our chief example for Problem 1.11 was going to be coloured TASEP; however,
shortly before posting this paper, coloured TASEP, coloured ASEP and the stochas-
tic six-vertex model were all shown to converge to the directed landscape! See
[ACH24] for details.

Finally, as a by product of the proof of Theorem 1.3, we show that certain models
of ‘zigzag’ Brownian LPP have Brownian stationary measures, see Example 3.9. An
extension of the ideas in this paper should show that such models have multi-path
Busemann functions with a tractable description close of that of Theorem 1.4, 1.5,
and hence these models should converge to the directed landscape. Proving this
seems like a natural testing ground for the ideas of the present paper. Here is one
concrete problem.

Problem 1.12. Let B = (Bi, i ∈ Z) be an environment of independent Brownian
motions of drift 1 if i is even and drift −1 if i is odd. For points (x,n), (y,m) ∈ R×Z
with n >m define

B[(x,n)↝ (y,m)] = sup
zn+1=x,...,zm=y

n

∑
i=m

Bi(zi) −Bi(zi+1),
where in the supremum, we require zi+1 ≤ zi if i is odd, and zi+1 ≥ zi if i is even. This
requirement along with the drift condition on the Brownian paths means the above
supremum is always finite. Prove that under some scaling, this model converges to
the directed landscape.

1.6 Background and related work

We give a brief review of the literature on KPZ, RSK, and the directed landscape,
focusing on papers closely related to the present work. For a gentle introduction to
KPZ suitable for a newcomer to the area, see [Rom15] or the introductory articles
[Cor16, Gan22]. Review articles and books that go into more depth include [FS10,
Qua11, WFS17, Zyg18].

The importance of RSK to problems in the KPZ universality class goes back at least
to [LS77, VK77], who identified the law of large numbers for the longest increasing
subsequence in a uniform permutation. The Baik-Deift-Johansson theorem [BDJ99]
went further, analyzing exact formulas for the Young tableaux arising from RSK
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to identify the one-point distribution L(0,0; 0,1) as a GUE Tracy-Widom random
variable, see also [Joh00]. Prähofer and Spohn expanded on these methods [PS02] to
prove convergence to the parabolic Airy line ensemble for the PNG droplet, see also
[Joh03]. The Prähofer-Spohn theorem can be viewed as taking the KPZ scaling limit
of the Young tableaux side of the RSK correspondence. More recent approaches to
studying KPZ limits have found exact formulas for multi-time distributions, see
[JR20, BL19] and [MQR] for the construction of the KPZ fixed point.

A series of papers by O’Connell and coauthors [OY01, OY02, O’C03, BBO05] devel-
oped RSK in the semi-discrete setting and started to understand the correspondence
in terms of Pitman transforms. One of the upshots of this work was a version of
the RSK isometry which had also been observed in [NY04]. This isometry was used
in [DOV22] as the key tool for constructing the directed landscape, and of course
drives much of the present paper.

The relevance of Busemann functions to studying KPZ models goes back to Hoff-
man [Hof05, Hof08] in first passage percolation. See [ADH17, Section 5] for discus-
sion surrounding open problems on Busemann functions in that setting. In solv-
able models of last passage percolation, Busemann functions have been used to
study competition and coexistence, to construct stationary solutions and establish
uniqueness of these solutions, and to establish results about semi-infinite geodesics,
see [CP12, CP13, BCK14, GRASY15, GRAS17a, GRAS17b] for a sample of re-
cent work in this direction. The last-passage/queuing-theoretic description for the
law of the stationary horizon in (11) has its roots in the work of Ferrari and Martin
[FM07, FM] on coloured TASEP and the Hammersley process. A similar description
in exponential LPP was given by Seppäläinen and Fan [FS20] before being adapted
to Brownian LPP [SS23a]. Busemann functions in the directed landscape were first
studied in [RV21]. The law of the whole stationary horizon found in [Bus21, SS23b],
connected to the directed landscape in [BSS24], and shown to be the scaling limit
for stationary measures in discrete models in [BSS22, BSS23].

The use of multi-path last passage values and disjoint optimizers to extract informa-
tion about underlying geometry in KPZ is a more recent phenomenon. Hammond
[Ham22, Ham20] first connected exact statistics about disjoint optimizers from a
common point in Brownian LPP to the rarity of disjoint geodesics. A precise combi-
natorial connection between disjoint optimizers and the RSK isometry was exploited
in [DOV22], and used there as a key tool in the original construction of the directed
landscape. The theory of disjoint optimizers at the level of the directed landscape
was developed in [DZ21]. This was used to help classify geodesic networks in the
directed landscape in [Dau23a], and to prove structural results about the spacetime
difference profile in [GZ22]. The phenomenon of optimizer rigidity for large k that is
so important in the proof of Theorem 1.7 was anticipated in the watermelon scaling
exponents uncovered in [BGHH22].
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2 Preliminaries

In this section, we gather a few basic results about LPP and the directed landscape.
For basic definitions, we refer the reader back to the introduction.

2.1 Basics of last passage percolation

Recall the definition of LPP, multi-path LPP, geodesics, and semi-infinite optimizers
in Section 1.2. We use the following basic facts about these objects throughout the
paper. We state all results here for k-path optimizers and multi-path last passage
values. When k = 1, these results specialize to the simpler setting of geodesics and
last passage values. Throughout Section 2.1, we fix f ∈ CZ(R). All results will also
apply for f ∈ CI(R) for integer intervals I, when the relevant objects are well-defined.
For p = (x,n),q = (y,m) ∈ Rk

≤ × Z
k
≤, we call (p,q) an endpoint pair if there is at

least one disjoint k-tuple from p to q.

Lemma 2.1 (Optimizer existence: Lemma 2.2, [DZ21]). Let (p,q) be an endpoint
pair. Then there exists an optimizer πL from p to q such that πL ≤ π for any
optimizer π from p to q. We call πL the leftmost optimizer. Similarly, there exists
a rightmost optimizer πR from p to q such that πR ≥ π for any optimizer π from
p to q.

Lemma 2.2 (Optimizer monotonicity: Lemma 2.3, [DZ21]). Let (p,q) and (p′,q′)
be two endpoint pairs of sizes k. Suppose that:

1. p = (x, n) and p′ = (x′, n) for some x ≤ x′ ∈ Rk
≤, or else p = (x,n) and

p′ = (x,n′) for some n ≤ n′ ∈ Zk
≤.

2. q = (y, n) and q′ = (y′, n) for some y ≤ y′ ∈ Rk
≤, or else q = (y,m) and

q′ = (y,m′) for some m ≤m′ ∈ Zk
≤.

Then letting π be the rightmost optimizer from p to q, and π′ be the rightmost
optimizer from p′ to q′ we have that π ≤ π′.

Technically, [DZ21, Lemma 2.2] only applies when p = (x, n),p′ = (x′, n) and q =(y, n),q′ = (y′, n). However, the proof goes through verbatim is the slightly more
general setting above.

Lemma 2.3 (Metric composition law). Let (p,q) = (x,n;y,m) be an endpoint pair
of size k and let ℓ ∈ {mk + 1, . . . , n1}. Then

f[p→ q] =max
z

f[p→ (z, ℓ)] + f[(z, ℓ − 1)→ q],
where the maximum is taken over z ∈ Rk

≤ such that both (p;z, ℓ) and (z, ℓ− 1;q) are
endpoint pairs. Similarly, if z ∈ [xk, y1], then

f[p→ q] =max
l∈Zk
<

f[p→ (z, l)] + f[(z, l) → q],
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where the maximum is taken over l ∈ Zk
< such that both (p; z, l) and (z, l;q) are

endpoint pairs.

Lemma 2.4 (Quadrangle inequality, Lemma 2.4, [DZ21]). Let (p,q) = (x,n;y,m), (p′ ,q′) =(x′,n′;y′,m′) be endpoint pairs satisfying the conditions of Lemma 2.2. Suppose
that (p,q′) and (p′,q) are also endpoint pairs. Then:

f[p→ q′] + f[p′ → q] ≤ f[p→ q] + f[p′ → q′]
with equality if there exists a point z ∈ [x′k, y1] and optimizers π from p to q, π′

from p′ to q′ such that π(z) = π′(z).
The ‘equality if’ claim in Lemma 2.4 is not contained in [DZ21], but it is easy to
see. In this case, the paths π∣(−∞,z)⊕π

′∣[z,∞) and π′∣(−∞,z)⊕π∣[z,∞) (here ⊕ denotes
paths concatenation), are disjoint k-tuples from p to q′ and p′ to q whose lengths
sum to f[p→ q]+f[p′ → q′], proving the reverse inequality in Lemma 2.4. We end
with a straightforward statement regarding last passage across lines and common
shifts of the environment, whose proof we leave to the reader.

Lemma 2.5 (Last passage commutes with shifts). Let g ∶ R→ R be any continuous
function, and let f + g ∈ CZ(R) be given by (fi + g, i ∈ Z). Then for any endpoint
pairs p = (x,n),q = (y,m) ∈ Rk

≤ × Z
k
≤, we have:

(f + g)[p → q] = f[p→ q] + k

∑
i=1

[g(yi) − g(xi)].
We will typically use Lemma 2.5 when g is a constant or linear function. We will
typically refer to these five results without reference, as they should be viewed as
part of the basic language for working with geodesics and optimizers.

2.2 Shape and continuity bounds for Brownian LPP

We will need two complementary limit shape theorems for Brownian LPP. For the
first proposition, for n ∈ N and x,α, b,w > 0 we define

Nb,w(n,x, a) =√8nx +√xn−1/6(a + b log2/3(n1/3∣ log(x/w)∣ + 1)).
Note that for any α > 0, we have

Nb,αw(n,αx,a) =√αNb,w(n,x, a). (18)

Proposition 2.6 (Proposition 4.3, [DV21a]). There exist positive constants b, c and
d such that for all w,a > 0 and n ≥ 1, the probability that

B[(−x,n)→ (0,1)] ≤Nb,w(n,x, a), ∀x ∈ (0,∞)
is greater than or equal to 1 − ce−da

3/2
.
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The bound in Proposition 2.6 is chosen to minimize the error term at x = w. Note
that in [DV21a], Proposition 2.6 is stated when w = 1. The general case follows
by Brownian scaling. We will typically use Proposition 2.6 when w = n/θ for some
θ > 0, in which case the mean term

√
8nx ∼ n

√
8/θ when x ∼ w and the error term is√

xn−1/6 = O(n1/3), as is expected for KPZ models. Note that Proposition 2.6 also
provides a uniform upper bound on multi-path last passage values, by virtue of the
bound

B[(x, n) → (y,1)] ≤ k

∑
i=1

B[(xi, n)→ (yi,1)].
A corresponding lower bound also holds. We only state this at the level of the
one-point bound.

Proposition 2.7 (Lemma A.4, [DV21a]). For every k ∈ N, there exist positive
constants ck, dk, k ∈ N such that the following holds. For all m > 0 and all endpoint
pairs (x, n), (y,1) with x,y ∈ Rk

≤ we have

P(∣B[(x, n) → (y,1)] − k

∑
i=1

√
8n(xi − yi)∣ ≥m√xn−1/6) ≤ cke−dkm3/2

.

Note that in the statement of Lemma A.4, [DV21a], there are restrictions on x,y.
However, these restrictions are not used in the proof of that lemma. A typical
application of Propositions 2.6 and 2.7 will be to bound the location of the argmax
in the metric composition law from Brownian LPP. This is why we need a uniform
upper bound but only a pointwise lower bound.

2.3 The directed landscape

In this final preliminary section, we collect basic results about the directed land-
scape. We start with the axiomatic description of L in terms of the marginal
S(x, y) = L(x,0;y,1), known as the Airy sheet. We have the following unique-
ness theorem, see Definition 10.1 and Theorem 10.9 of [DOV22].

Theorem 2.8. The directed landscape L ∶ R4
↑ → R is the unique random continuous

function satisfying:

1. (Airy sheet marginals) For any t ∈ R and s > 0 we have

L(x, t;y, t + s3) d= sS(x/s2, y/s2)
jointly in all x, y. That is, the increment over time interval [t, t + s3) is an
Airy sheet of scale s.

2. (Independent increments) For any disjoint time intervals {[ti, si] ∶ i ∈ {1, . . . k}},
the random functions {L(⋅, ti; ⋅, si) ∶ i ∈ {1, . . . , k} are independent.
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3. (Metric composition law) Almost surely, for any r < s < t and x, y ∈ R we have
that

L(x, r;y, t) =max
z∈R
[L(x, r; z, s) +L(z, s;y, t)].

Note that Definition 10.1 in [DOV22] states the independent increment property for
disjoint open intervals, rather than closed intervals. The two are equivalent by con-
tinuity. The directed landscape has invariance properties which we use throughout
the paper.

Lemma 2.9 (Lemma 10.2, [DOV22]). We have the following equalities in distribu-
tion as random functions in C(R4

↑). Here r, c ∈ R, and q > 0.

1. (Time stationarity)

L(x, t;y, t + s) d= L(x, t + r;y, t + s + r).
2. (Spatial stationarity)

L(x, t;y, t + s) d= L(x + c, t;y + c, t + s).
3. (Flip symmetry)

L(x, t;y, t + s) d= L(−y,−s − t;−x,−t).
4. (Shear stationarity)

L(x, t;y, t + s) d= L(x + ct, t;y + ct + sc, t + s) + s−1[(x − y)2 − (x − y − sc)2].
5. (1 ∶ 2 ∶ 3 rescaling)

L(x, t;y, t + s) d= qL(q−2x, q−3t; q−2y, q−3(t + s)).
As discussed in the introduction (see (13) and surrounding discussion), we can de-
fine path length and geodesics in the directed landscape. We record one strong
convergence lemma for geodesics that will be used in Section 5.1.

Lemma 2.10. For two L-geodesics π ∶ [s, t] → R, γ ∶ [s′, t′] → R, define the overlap
O(π,γ) to be the closure of the set {r ∈ (s, t) ∩ (s′, t′) ∶ π(r) = γ(r)}. Also let Γ(S)
denote the set of geodesics with endpoints in a set S ⊂ R4

↑. Then the following claims
hold almost surely:

1. (Theorem 1, [Bha24] or Lemma 3.3.2, [Dau23a]) For any L-geodesics π,γ,
O(π,γ) is always a closed interval.
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2. (Part of Proposition 3.5, [Dau23a]) For two geodesics, γ ∶ I → R, π ∶ I ′ → R,
define

do(γ,π) = λ(I) + λ(I ′) − 2λ(O(π,γ)),
For any compact set K ⊂ R4

↑, this is a metric on Γ(K) that turns Γ(K) into
a compact Polish space.

Lemma 2.10.2 ensures that any pointwise limit of a sequence of geodesics is also a
geodesic, and moreover, is also a limit in the stronger sense of overlap. The overlap
structure of landscape geodesics allows us to treat them more like their discrete
counterparts in LPP.

We move on to bounds on the extended directed landscape, see (14) for the definition.
We start with a version of Theorem 1.6 for the full extended landscape. For this
theorem, recall the scaling (x, s)a = (x−as/4, ⌊sa3/8⌋). In the introduction, we used

this notation only for singletons x. Here we extend its use to vectors in Rk
≤. We also

let X↑ be the space of all points (x, s;y, t), where s < t ∈ R and x,y lie in the same
space Rk

≤ for some k ∈ N.

Theorem 2.11 (Theorem 1.5/1.6, [DZ21]). For every a ∈ R, let Ba = (Ba
i ∶ R →

R, i ∈ Z) be an environment of independent two-sided Brownian motions of common
drift a, and for a point (x, s;y, t) ∈ X↑ with x,y ∈ Rk

≤, define

La(x, s;y, t) = Ba[(x, s)a → (y, t)a] − ka2

4
(t − s),

when the right-hand side exists, and simply set La(x, s;y, t) = −∞ otherwise. Then
as a → −∞,

La(x, s;y, t) d
→ L(x, s;y, t),

where the underlying topology is compact convergence of functions on X↑.

Theorem 2.11 is stated with drift-free Brownian motions in [DZ21]. The translation
between the two theorems is immediate since last passage commutes with common
shifts of the environment (Lemma 2.5).

Analogues of Lemmas 2.1, 2.2, 2.3, and 2.4 hold in the directed landscape, and we
record here the results we need in that context.

Lemma 2.12 (Optimizer existence in L: Theorem 1.7, [DZ21]). Almost surely, for
every choice of (x, s,y, t) there is a disjoint k-tuple π = (π1, . . . , πk) with

k

∑
i=1

∥π∥L = L(x, s;y, t).
That is, the maximum (14) is attained for every x, s,y, t. For any fixed (x, s,y, t),
almost surely this disjoint optimizer is unique.
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Unlike in the semi-discrete setting, Lemma 2.1 is actually quite a difficult result. Its
proof takes up a large part of the paper [DZ21]. In the k = 1 case of geodesics, the
result is easier, and was proven in [DOV22, Theorem 1.7, Lemma 13.2], where the
existence of leftmost and rightmost geodesics is also shown. Because Lemma 2.12
does not give the existence of leftmost and rightmost optimizers, the analogue of
optimizer monotonicity for L is slightly more subtle.

Lemma 2.13 (Optimizer monotonicity in L: see Lemma 7.7, [DZ21]). Almost
surely the following holds in L. Let x ≤ x′ ∈ Rk

≤, y ≤ y′ ∈ Rk
≤, s < t, and let π,π′

be optimizers in L from (x, s) to (y, t) and (x′, s) to (y′, t), respectively. Then if
either π or π′ is the unique optimizer between its endpoints, we have π ≤ π′.

Observe that in the setting of Lemma 2.2, we can also conclude that π ≤ π′ if there
exists x′′,y′′ with x ≤ x′′ ≤ x′ and y ≤ y′′ ≤ y′ such that there is a unique optimizer
from (x′′, s) to (y′′, t). Such x′′,y′′ will exist almost surely for all x,y,x′,y′ for
which xi < x′i, yi < y

′

i for all i.

Lemma 2.14 (Metric composition law, Proposition 6.9, [DZ21]). Almost surely,
for every r < s < t and x,y ∈ Rk

≤ for some k ∈ N we have

L(x, r;y, t) =max
z∈Rk

<

L(x, r;z, s) +L(z, s;y, t).
Lemma 2.15 (Quadrangle inequality, Lemma 5.7, [DZ21]). Almost surely, for all
x ≤ x′ and y ≤ y′ in Rk

≤ and s < t, we have

L(x, s;y′, t) +L(x′, s;y, t) ≤ L(x, s;y, t) +L(x′, s;y′, t).
We end with a shape bound on the extended directed landscape.

Lemma 2.16 (Lemma 6.7, [DZ21]). For any η > 0 and k ∈ N, there is a random
constant R > 1, such that for any x,y ∈ Rk

≤ and s < t, we have

∣L(x, s;y, t) + k

∑
i=1

(xi − yi)2
t − s

∣ < RG(x,y, s, t)η(t − s)1/3
where

G(x,y, s, t) = (1 + ∥x∥1 + ∥y∥1(t − s)2/3 )(1 +
∣s∣
t − s
)(1 + ∣ log(t − s)∣).

Also P(R > a) < ce−da for any a > 0, where c, d > 0 are constants depending on k, η.

3 The double sorting monoid and RSK on Cn(R)

In this section we build up the theory of Pitman transforms and the double sorting
monoid. One aspect of this theory is a version of the RSK correspondence for
functions f ∈ Cn(R). However, the theory as a whole offers a much richer picture.
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3.1 An abstract theory of sorting

Let Sn denote the symmetric group with n elements, and let πi = (i, i + 1) de-
note the adjacent transposition in Sn swapping i, i + 1. The adjacent transpositions
π1, . . . , πn−1 generate the symmetric group, together with the relations

πiπi+1πi = πi+1πiπi+1, i = 1, . . . , n − 2 (Braid relation) (19)

πiπj = πjπi, ∣i − j∣ ≥ 2 (Commutation relation) (20)

π2
i = id, i = 1, . . . , n − 1 (Involution relation) (21)

Now, let G(Sn) be the monoid of all functions f ∶ Sn → Sn (with the operation of
function composition). For i = 1, . . . , n − 1 define the adjacent sorting operator
τi ∈ G(Sn) by:

τi(χ) =
⎧⎪⎪⎨⎪⎪⎩
χ, χ−1(i) > χ−1(i + 1),
πiχ, χ−1(i) < χ−1(i + 1).

Define the sorting monoid Mn as the submonoid of G(Sn) generated by the ele-
ments τi, i = 1, . . . , n − 1. The following description of the operators τi may also be
enlightening. Recall that the inversion number of a permutation π is given by:

Inv(π) =#{(i, j) ∈ {1, . . . , n}2 ∶ i < j, π(i) > π(j)}.
Then the operator τi takes the permutation χ and applies the adjacent transposition
πi if and only if doing so increases the inversion number. The effect of this is that
composition by the element τi pushes χ further away from the identity permutation
and closer to the reverse permutation n⋯1. From this point of view, we can think
of repeated applications of τi as sorting into reverse order.

Abstractly the sorting monoid can be given by a set of relations that is quite similar
to the relations above for the symmetric group. Indeed, the τi still satisfy the braid
and commutation relations (19) and (20), but rather than satisfying the involution
relation (21), they satisfy an idempotent relation:

τ2i = τi, i = 1, . . . , n − 1 (Idempotent relation) (22)

Because the relations for the τi are so similar to the relations for the adjacent
transpositions πi, the theory of the sorting monoid is closely related to the theory
of the symmetric group itself. In fact, this theory is almost equivalent to the study
of reduced decompositions of elements of the symmetric group, and the map π ↦
π(id) defines a bijection from Mn → Sn that commutes with both the braid and
commutation relations.

The RSK correspondence across lines can be viewed as arising from an action of Mn.
This perspective was taken up in [BBO05]. In our setting, we will need to consider
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a related action of a larger monoid in G(Sn). Define the reverse adjacent sorting
operator τ̄i ∈ G(Sn) by

τ̄i(χ) =
⎧⎪⎪⎨⎪⎪⎩
χ, χ−1(i) < χ−1(i + 1),
πiχ, χ−1(i) > χ−1(i + 1).

The operators τ̄i sort permutations towards the identity, rather than towards the
reverse permutation. Let the double sorting monoid Dn be the submonoid of
G(Sn) generated by the elements τi, τ̄i, i = 1, . . . , n − 1. Unlike with Mn, it does
not seem straightforward to describe the double sorting monoid in terms of a set of
relations or to relate it directly to the symmetric group. Because of this, we will
need the following abstract proposition in order to define actions of Dn.

Proposition 3.1. Let D be a partially ordered set and suppose that we have maps
τ i ∶ D

n →Dn, τ̄ i ∶ D
n →Dn, i = 1, . . . n − 1 satisfying the following conditions.

(i) The maps τ i satisfy the braid, commutation, and idempotent relations (19),
(20), (22) as do the maps τ̄ i. Moreover, we have the mixed commutation
relation τ iτ̄ j = τ̄ jτ i whenever ∣i − j∣ ≥ 2.

(ii) τ id = d if di /> di+1 and τ̄ id = d if di /< di+1.
(iii) For d ∈ Dn, let Ξd be the set of elements ξ ∈ Sn such that for i, j ∈ {1, . . . , n}

we have
di < dj Ô⇒ ξ−1(i) < ξ−1(j).

Then for any d ∈Dn and i = 1, . . . , n − 1 we have Ξτ id = τiΞd and Ξτ̄ id = τ̄iΞd.

(iv) τ iτ̄ id = d if di /< di+1 and τ̄ iτ id = d if di /> di+1.
Then:

(I) For a word w in τ i, τ̄ i, let w be the corresponding word in τi, τ̄i in Dn. For
any d ∈ Dn,

Ξwd = wΞd.

(II) Consider d ∈ Dn, words w,w′ in τ i, τ̄ i and let w,w′ be the corresponding
words in τi, τ̄i in Dn. Suppose that there exists ξ ∈ Ξd such that wξ = w′ξ.
Then wd =w′d. In particular, if w,w′ evaluate to the same word in Dn, then
w,w′ define the same map from Dn → Dn.

(III) The map τ i ↦ τi, τ̄ i ↦ τ̄i extends to a monoid homomorphism between the
monoid T generated by the maps τ i, τ̄ i, i = 1, . . . , n− 1 and the double sorting
monoid Dn. If there is an element d ∈ Dn with d1 < d2 < ⋅ ⋅ ⋅ < dn then this is
a monoid isomorphism.
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Throughout the proof (and in claims (I, II) above) , we use the convention that for
a word w = wk⋯w1 where wi ∈ {τ i, τ̄ i ∶ i = 1, . . . , n − 1}, we write w = wk⋯w1 for
the word in Dn given by taking w and replacing all instances of τ i, τ̄ i with τi, τ̄i.
Similarly, we write w̃ = w̃k⋯w̃1 for the word in Sn given by mapping both τ i, τ̄ i to
the adjacent transposition πi = (i, i + 1).
Proof. Part (I). By induction, it suffices to check (I) for w = τ i and w = τ̄ i,
in which case it is the content of (iii).

Part (II). Let ξ ∈ Ξd be such that wξ = w′ξ. Let us call the letter wℓ in the
word wk⋯w1 ineffective for d if wℓ⋯w1ξ = wℓ−1⋯w1ξ. We call a word w effective
for d if it has no ineffective letters. By part (I), we have that wℓ−1⋯w1ξ ∈ Ξwℓ−1⋯w1d.
Therefore by (ii), we have that wℓ⋯w1d = wℓ−1⋯w1d. Therefore, we may drop all
ineffective letters from w,w′ along with the corresponding letters fromw,w′ without
changing wξ,w′ξ,wd,w′d. In other words, to prove part (II) it suffices to show that

wξ = w′ξ Ô⇒ wd =w′d (23)

whenever w,w′ have no ineffective letters.

Now, suppose that the left equation in (23) holds for two words w,w′ which are
effective for d. The effectiveness of w,w′ implies that every letter in w,w′ acts as
an adjacent transposition in the composition wξ,w′ξ and so

wξ = w̃ξ, w′ξ(d) = w̃′ξ.
This implies that w̃ξ = w̃′ξ, and so w̃, w̃′ represent the same element of the symmetric
group. Therefore there is a sequence of words w̃ = u1, . . . , w̃′ = uk in the alphabet
π1, . . . , πn−1 such that for all i = 1, . . . , k, w̃i and ui, ui+1 differ from each other by
one of the relations (19), (20), (21).

Next, given each of the words ui in the πi, there is a unique way to change each
letter πi to either τ i or τ̄ i so that every letter in the resulting word wi is effective.
Moreover, this change is consistent in the sense that the assignment of bars agrees
on consecutive words wi,wi−1 everywhere except where the relation is used. This
procedure also gives rise to a sequence of words w =w1, . . . ,wk =w′ in τ i, τ̄ i.

To complete the proof of (II), we just need to show that wid = wi−1d for all i =
2, . . . , k. First suppose that ui−1, ui differ by a commutation relation (20) so that
ui−1 = ãπℓπj b̃, u

i = ãπjπℓb̃. Then there is a unique choice of f(πℓ) ∈ {τ ℓ, τ̄ ℓ} and
f(πj) ∈ {τ j, τ̄ j} such that

wi−1 = af(πℓ)f(πj)b, wi = af(πj)f(πℓ)b.
By the commutation relation in (i), we have that wi−1 = wi. Next, suppose that
ui−1, ui differ by an involution relation (21) so that ui−1 = ãπ2

j b̃, u
i = ãb̃ (or vice versa,
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with the π2
j on ui). Then wi = ab and either

wi−1 = aτ j τ̄ jb or wi−1 = aτ j τ̄ jb.

Without loss of generality, assume that wi−1 = aτ j τ̄ jb. First, since the word wi is
effective for d we have that τ̄jbξ ≠ bξ and so [bξ]−1(j) > [bξ]−1(j +1). Now by part i,
bξ ∈ Ξbd, and so bdj /< bdj+1. Therefore by (iv), τ j τ̄ j acts as the identity in wi−1d,
and so wi−1d =wid.

Finally, suppose that ui−1, ui differ by a braid relation (19), so that ui−1 = ãπjπj+1πj b̃
and ui = ãπj+1πjπj+1b̃ (or vice versa). Without loss of generality, we may assume
j = 1. Here we divide into cases based on the relative order of α1, α2, α3, where
αi ∶= [bξ]−1(i), as the relative order of the αi determines the barring on the operators
τ 1,τ 2 in wi,wi−1.

Case 1: α1 < α2 < α3 or α1 > α2 > α3. In the first of these cases, wi−1 =
aτ 1τ 2τ 1b and wi = aτ 2τ 1τ 2b and in the second of these cases, wi−1 = aτ̄ 1τ̄ 2τ̄ 1b
and wi = aτ̄ 2τ̄ 1τ̄ 2b. In either case, wi−1 =wi by the braid relation in (i).

Case 2: α3 < α1 < α2 or α3 > α1 > α2. We only deal with the first of these
options, since as in Case 1, the second option is symmetric after swapping bars and
non-bars. In this case, wi−1 = aτ̄ 1τ̄ 2τ 1b and wi = aτ 2τ̄ 1τ̄ 2b. Letting e = bd, we
have that bξ ∈ Ξe, and so

e3 /> e1, e3 /> e2, e1 /> e2.
Now, we have that

τ 2τ̄ 1τ̄ 2e = τ 2τ̄ 1τ̄ 2τ̄ 1τ 1e = τ 2τ̄ 2τ̄ 1τ̄ 2τ 1e.

Here the first equality follows from (iv). The second equality is a braid relation for
the bτi. Setting f = τ̄ 1τ̄ 2τ 1e, by (I) we have that τ̄1τ̄2τ1bξ ∈ Ξf and so the ordering
on the αi guarantees that f2 /> f3. Therefore τ 2τ̄ 2 acts as the identity on f by (iv),
and so τ 2τ̄ 1τ̄ 2e = τ̄ 1τ̄ 2τ 1e and hence wi−1d =wid, as desired.

Case 2’: α1 < α3 < α2 or α1 > α3 > α2. Again, we only deal with the first
option. In this case, wi−1 = aτ 1τ̄ 2τ̄ 1b and wi = aτ̄ 2τ̄ 1τ 2b, and the same proof as
in Case 2 will work with the roles of τ 1, τ̄ 1 and τ 2, τ̄ 2 reversed. This completes
the proof of (II).

Part (III). The fact that the map w ↦w is a monoid homomorphism follows
from (II). To see that it is an isomorphism when there exists d ∈ Dn be such that
d1 < d2 < ⋅ ⋅ ⋅ < dn, consider two distinct elements w,w′ ∈ Dn and a permutation χ

with wχ ≠ w′χ. Let w′′ ∈ Dn be an element with w′′id = χ, and let d ∈ Dn be such
that d1 < d2 < ⋅ ⋅ ⋅ < dn. Then Ξw′w′′d = w′w′′Ξd = w′χ, and Ξww′′d = ww′′Ξd = wχ.
Since wχ ≠ w′χ this implies that w ≠w′.
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Example 3.2. The following is essentially the simplest example of an application
of Proposition 3.1. Consider x ∈ Rn, and for i = 1, . . . , k − 1 define

τ i(x) =
⎧⎪⎪⎨⎪⎪⎩
x, xi ≥ xi+1,(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn), xi < xi+1,

τ̄ i(x) =
⎧⎪⎪⎨⎪⎪⎩
x, xi ≤ xi+1,(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn), xi > xi+1,

It is straightforward to check that these maps satisfy the conditions of Proposition
3.1, and hence extend to an action of Dn on Rn. We call this action the basic
action of Dn on Rn.

Example 3.2 shows that the double sorting monoid can be used to sorts lists with
possibly equal elements.

3.2 Dn-actions and Pitman operators

We next define a Dn-action on the space Cn(R) of continuous functions f ∶ R → Rn

with an asymptotic slope. First, define the Pitman operator P ∶ C2(R) → C2(R)
by following rules. If λ1(f) ≥ λ2(f), then set Pf = f . If λ1(f) < λ2(f), then define

Pf1(x) = f[(−∞,2) → (x,1)] = f1(x) + sup
z≤x
[f2(z) − f1(z)],

Pf2(x) = f1(x) + f2(x) −Pf1(x) = f2(x) − sup
z≤x
[f2(z) − f1(z)]. (24)

In the above expression and in the remainder of the paper, we write Pfi ∶= (Pf)i
to streamline notation. Next, define the co-Pitman operator P̄ ∶ C2(R) → C2(R)
by letting Pf = f if λ1(f) ≤ λ2(f), and setting

P̄f1(x) = f1(x) + sup
z≥x
[f2(z) − f1(z)],

P̄f2(x) = f2(x) − sup
z≥x
[f2(z) − f1(z)] (25)

if λ1(f) > λ2(f). The co-Pitman operator can be given by conjugating the Pitman
operator. Indeed, if we let Rf(x) = f(−x) denote the reflection map, then P̄ = RPR.

Similarly, if we let R̂f1(x) = −f2(−x) and R̂f2(x) = −f1(−x) denote the 180-degree
rotation of the environment, then P̄ = R̂PR̂.

Next, for f ∈ Cn(R) and i = 1, . . . , n − 2 define

Pτif = (f1, . . . , fi−1,P(fi, fi+1), fi+2, . . . , fn),
and similarly set Pτ̄i = RPτiR. Our goal in the remainder of this section is to extend
the Pitman operators P, P̄ to actions of the double sorting monoid on Cn(R). To do
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so, we check the conditions of Proposition 3.1. We first record an isometric property
for Pitman operators. This isometric property is one of the key reasons that Pitman
operators are so useful in the study of last passage percolation.

Following [DNV22], we say that two environments f, g ∈ Cn(R) are boundary iso-
metric and write f ∼ g if

f[(x, n) → (y,1)] = g[(x, n) → (y,1)] (26)

for any vectors x,y ∈ Rk
≤, k ∈ N. We say that a map F ∶ Cn(R) → Cn(R) is a

(boundary) isometry if Ff ∼ f for all f ∈ Cn(R).
Lemma 3.3. For all n ∈ N and i ∈ {1, . . . , n−1}, the operators Pτi ,Pτ̄i are boundary
isometries.

Proof. We will just check that Pτi is an isometry. The claim for Pτ̄i follows from
the fact that X is an isometry if and only if R̂XR̂ is an isometry for any map X.
If λi(f) ≥ λi+1(f), then Pτif = f and the claim is immediate. Now suppose λi(f) <
λi+1(f). We check that (26) holds for a fixed x,y. Let T = argmaxz≤x1

fi+1(z)−fi(z),
and let f ′ = f − f(T ). Observing that f ∼ f ′ and Pτif ∼ Pτif − f(T ) = Pτif ′, it
suffices to show that (26) holds for x,y with f, g replaced by f ′,Pτif

′. In this case,
f ′(T ) = 0 and by the definition of T , for x1 ≤ z we have that

Pτif
′

i(z) = f ′[(T,2) → (z,1)], Pτif
′

i+1 +Pτif
′

i = fi+1 + fi.

For an operator defined using the left-hand sides above on continuous functions
f ′ ∶ [T,∞) → Rn with f ′(T ) = 0, boundary isometry is proven as Lemma 4.3 in
[DOV22].

We are now ready to prove the basic algebraic relations for Pitman operators.

Lemma 3.4. The Pitman operators Pτi ,Pτ̄i have the following properties.

i. Recall that λ ∶ Cn(R) → Rn denotes the slope map, and let τ i, τ̄ i denote the
generators for the basic Dn-action on Rn introduced in Example 3.2. Then for
f ∈ Cn(R) and i = 1, . . . , n − 1 we have λPτif = τ iλf and λPτ̄if = τ̄ iλf .

ii. The maps Pτi satisfy the braid, commutation, and idempotent relations (19),
(20), (22) as do the maps Pτ̄i . Moreover, we have the mixed commutation
relation Pτ̄iPτj = PτjPτ̄i when ∣i − j∣ ≥ 2.

iii. PτiPτ̄if = f if λi(f) ≤ λi+1(f) and Pτ̄iPτif = f if λi(f) ≥ λi+1(f).
Proof. Part i. Here we just need to observe that if λ1(f) < λ2(f) then λ(Pf) =(λ2(f), λ1(f)).
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Part ii. The commutation relation (20) and the mixed commutation relation
are immediate. The idempotent relation (22) follows from part i, which implies that
λ1(Pf) ≥ λ2(Pf) for any f ∈ C2(R), and hence P acts as the identity on its image.
It suffices to check braid relation when n = 3, and by symmetry, only the unbarred
identity

Pτ1Pτ2Pτ1f = Pτ2Pτ1Pτ2f. (27)

We divide into cases, depending on the order of the slope λ(f).
Case 1: λ1(f) < λ2(f) < λ3(f). Letting g,h denote the left- and right-hand
sides of (27). Observing that Pitman operators Pτi preserve the sum f1 + f2 + f3,
it suffices to show that g1 = h1 and g3 = h3. We will only prove the first of these
equalities as the second follows from a symmetric argument. We claim that

h1 = (Pτ1Pτ2f)1 = g1. (28)

The first equality in (28) is immediate since Pτ2 does not affect line 1. For the
second equality, using that λ1(f) ∨ λ2(f) < λ3(f) we have that

(Pτ1Pτ2f)1(x) = f1(x) + sup
z2≤z1≤x

[f2(z1) − f1(z1)] + [f3(z2) − f2(z2)]. (29)

In other words, we get the top line (Pτ1Pτ2f)1 by reflecting f2 off of f3, and then
reflecting f1 off of the result. Next, we can rewrite the right-hand side of (29) as

sup
z2≤x

f3(z2) + f[(z2,2) → (x,1)].
By Lemma 3.3, this equals

sup
z2≤x

f3(z2) +Pτ1f[(z2,2) → (x,1)] = sup
z2≤x
Pτ1f3(z2) +Pτ1f[(z2,2) → (x,1)].

Now, by part i, the inequality λ1(f) ∨ λ2(f) < λ3(f) is preserved by the map Pτ1 .
Hence the equality (29) also holds with Pτ1f in place of f . Putting this together
with the previous three displays we get that (Pτ1Pτ2f)1 = (Pτ1Pτ2Pτ1f)1, giving the
second equality in (28).

Case 2: λi(f) ≥ λi+1(f) for some i ∈ {1,2}. In this case, using the slope-
interchange property in part i and working through different cases, in the composi-
tion Pτ1Pτ2Pτ1f we have that

• The rightmost Pτ1-operator acts as the identity if i = 1;

• The leftmost Pτ1-operator acts as the identity if i = 2.

Similarly, in the composition Pτ2Pτ1Pτ2f we have that

• The rightmost Pτ2-operator acts as the identity if i = 2;
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• The leftmost Pτ2-operator acts as the identity if i = 1.

Therefore if i = 1 then both sides of (27) are equal to Pτ1Pτ2f , and if i = 2 then both
sides of (27) are equal to Pτ2Pτ1f .

Part iii. This is also shown in the appendix of [SS23a], though the lan-
guage used there is different. We only check the first identity as the second fol-
lows by symmetry. If λi(f) = λi+1(f), then the identity holds since both Pτi and
Pτ̄i act as the identity. Now assume λi(f) < λi+1(f). Since the sum fi + fi+1
is preserved by both Pτi and Pτ̄i it suffices to check that Pτ̄iPτifi = fi. Define
Sf(x) = supz≤x fi+1(x) − fi(x) so that

Pτ̄iPτifi(x) = fi(x) + Sf(x) + sup
z≥x
[fi+1(z) − fi(z) − 2Sf(z)].

Noting that Sf ≥ fi+1 − fi and that Sf is non-decreasing we can see that

Pτ̄iPτif1(x) ≤ f1(x) + Sf(x) + sup
z≥x
[−Sf(z)] = f1(x).

On the other hand, since f1, f2 are continuous and the difference f2(z)− f1(z) →∞
with z, there must exist z0 ≥ x where f2(z0) − f1(z0) = Sf(z0) = Sf(x). Therefore
Pτ̄iPτif1(x) ≥ f1(x), yielding the result.

Given Lemma 3.4, we can use Proposition 3.1 to extend the definition of Pitman
operators to the whole monoid Dn. Indeed, for σ ∈ Dn, let ξk⋯ξ1 = σ where each
ξi ∈ {τi, τ̄i ∶ i = 1, . . . , n − 1} and define

Pσ = Pξk⋯Pξ1 .

Corollary 3.5. The map σ ↦ Pσ ∶ C
n(R)→ Cn(R) is a monoid isomorphism of Dn.

Moreover, letting λ ∶ Cn(R)→ Rn denote the slope map, for any σ ∈Dn we have

λ ○Pσ = σ ○ λ

where on the right-hand side of this equation σ acts on Rn through the basic action.

Proof. To prove that the map σ ↦ Pσ is unambiguously defined and yields a monoid
isomorphism we check the conditions of Proposition 3.1 where D = C1(R) is given
the partial order induced by the slope map λ. Property (i) in Proposition 3.1 is
guaranteed by Lemma 3.4.ii, property (ii) is guaranteed by the definition, property
(iii) is guaranteed by Lemma 3.4.i, and property (iv) follows from Lemma 3.4.iii.
The ‘Moreover’ claim then follows by Lemma 3.4.i again.

The Pitman transforms described in this section have more structure than the ab-
stract monoid actions in Proposition 3.1. In particular, we can describe orbits of
elements in Cn(R) using this structure.
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Lemma 3.6. Consider the action σ ↦ Pσ ∶ C
n(R) → Cn(R), and for f ∈ Cn(R) let

O(f) = {Pσf ∶ σ ∈Dn} denote its orbit. Let O(λ(f)) be the orbit of λ(f) under the
basic action of Dn on Rn. Then:

i. For any g ∈ O(f) there exists σ ∈Dn such that Pσg = f and so O(f) = O(g).
ii. The slope map g ↦ λ(g) is a bijection from O(f) to O(λ(f)).
Proof. For part i, if g ∈ O(f) then g = Pσf for some word σ = πk⋯π1 where πj ∈{τi, τ̄i ∶ i = 1, . . . , n−1}. Then from the definition of P and Lemma 3.4.iii there exists
a word σ′ = π′1⋯π

′

k where each π′j equals either πj or its barred/unbarred version,
such that Pσ′σf = Pσ′g = f .

For part ii, by Corollary 3.5 the map λ ∶ O(f)→ O(λ(f)) is onto. Now suppose that
g1, g2 ∈ O(f) are such that λ(g1) = λ(g2). Using the notation Ξg1 from Proposition
3.1, let ξ ∈ Ξg1 . We will aim to find σ ∈ Dn with σξ = ξ and Pσg1 = g2. If we can
find such a σ, then by Proposition 3.1(II), we have that g2 = Pσg1 = Pidg1 = g1, as
desired. First, since λ ∶ O(f)→ O(λ(f)) is onto we can find h ∈ O(f) = O(g1) with
λ(h)1 ≥ ⋅ ⋅ ⋅ ≥ λ(h)k. Let σ1 ∈Dn be such that Pσ1

g1 = h. Since O(h) = O(f) by part
i, we can then find σ2 such that Pσ2σ1

g1 = Pσ2
h = g2. We can write σ1 = τ̂ik⋯τ̂i1

and σ2 = τ̂jℓ⋯τ̂j1 where τ̂i ∈ {τi, τ̄i} for all i. We may also assume that σ1, σ2 are
effective, in the sense that for any a ≤ k or b ≤ ℓ we have

Pτ̂ia⋯τ̂i1 g1 ≠ Pτ̂ia−1⋯τ̂i1g1, Pτ̂jb⋯τ̂j1h ≠ Pτ̂jb−1⋯τ̂j1h.

Now, let σ̃1 = πik⋯πi1 and σ̃2 = πjℓ⋯πj1 be the corresponding products of adjacent
transpositions in Sn. Effectiveness of σ1, σ2 implies that σ̃2σ̃1ξ = σ2σ1ξ. Next,
let Π(h) be the set of adjacent transpositions πi such that λ(h)i = λ(h)i+1, and
let H(h) ⊂ Sn be the subgroup generated by Π(h). Consider κ̃ ∈ H(h), and let
πmk
⋯πm1

be a reduced word for κ̃, written in the alphabet Π(h). There is a unique
way to map the πmi

to {τmi
, τ̄mi
} such that the resulting element κ ∈Dn is effective

on σ1ξ. Hence κ̃σ̃1ξ = κσ1ξ. On the other hand, from the definition of the Pitman
transform applied to lines of equal slope, Pκσ1

g1 = Pκh = h for all κ ∈ H(h), so
by the effectiveness of σ2 on h we have that σ̃2κσ1ξ = σ2κσ1ξ. We also have that
Pσ2κσ1

g1 = g2 and hence σ2κσ1ξ = σ̃2κ̃σ̃1ξ ∈ Ξg2 = Ξg1. Finally, the map

κ̃↦ σ2κσ1ξ = σ̃2κ̃σ̃1ξ

from H(h) → Ξg1 is a bijection. Indeed, this map is one-to-one by the invertibility
of σ̃2, σ̃2 and it is easy to see that ∣H(h)∣ = ∣Ξg1 ∣ (these are conjugate subgroups).
Hence there must be some κ with σ2κσ1ξ = ξ. Setting σ = σ2κσ1 then gives the
desired sorting element.

Corollary 3.7. Let f ∈ Cn(R), and let g ∈ O(f), where O(f) is the P-orbit of f .
Let I be a set of the form {1, . . . , k} or {k, . . . , n}, and suppose that λ(f)j = λ(g)j
for all j ∈ I. Then fj = gj for all j ∈ I.
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Proof. We can find σ ∈ Dn with σλ(f) = λ(g), where σ acts through the basic
action and can be written as a product of adjacent transpositions that do not use
coordinates of I. By Lemma 3.6, Pσf = g, and since Pσ only affects coordinates in
Ic, fj = gj for all j ∈ I.

3.3 Sorting and last passage percolation

The goal of this section is to represent the Dn-action from Corollary 3.5 in terms
of last passage values. First consider f ∈ Cn(R) with λ(f) ∈ Rn

≤ , and recall the
definition of last passage from −∞ in (6). The limit in that definition exists when
m ∈ {1, . . . , n}k< satisfies the following property:

If mi is a coordinate of m but mi − 1 is not, then λmi−1 < λmi
. (30)

Moving forward, we will say m satisfies (30) with respect to λ when the slope
vector is not clear context. We call a k-tuple of paths π = (π1, . . . , πk), where
each πj ∶ (−∞, xj] → {1, . . . , n} is a nonincreasing cadlag path satisfying πj(xj) = 1
and limt→−∞ πj(t) = mj a disjoint optimizer from (−∞,m) to (x,1) if π∣[t,xk]
is a disjoint optimizer for all t < x1. The condition (30) guarantees that disjoint
optimizers from (−∞,m) to (x,1) exist and that they are pointwise limits of disjoint
optimizers from (t,m) to (x,1) as t→ −∞.

For f ∈ Cn(R), we can describe elements of its P-orbit O(f) using last passage
percolation. We start with a few examples before moving towards a general theory.

Example 3.8 (LPP to the top). Let f ∈ Cn(R) and suppose that λ(f)k < λ(f)j for
all j < k. Then

f[(−∞, k) → (x,1)] = Pτ1⋯τk−1f1(x). (31)

This is almost immediate from the definition and the fact that the Pitman transform
Pτi switches the slopes of fi, fi+1 when λ(f)i < λ(f)i+1.
Example 3.9 (Zigzag last passage percolation). Let f ∈ Cn(R), suppose that λ(f) ∈
Rn
< . Let g ∈ O(f), and let ξ ∈ Sn be such that

λ(g)ξ−1(1) < ⋯ < λ(g)ξ−1(n).
Then for every j ∈ {1, . . . , n},
f[(−∞, j) → (x,1)] = Pσj

g1(x), σj = σj,1⋯σj,ξ−1(j)−1, σj,i =
⎧⎪⎪⎨⎪⎪⎩
τi, j < ξg(i)
τ̄i, j > ξg(i)

Indeed, by the previous example we have that f[(−∞, j) → (x,1)] = Pτ1⋯τj−1f1(x),
and moreover λ(Pτ1⋯τj−1f)1 = λ(f)j . Similarly, by construction λ(Pσj

g)1 = λ(f)j .
Therefore by Corollary 3.7 we have that Pτ1⋯τj−1f1 = Pσj

g1. We can rewrite Pσj
g1
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more explicitly as a kind of zig-zag last passage percolation. Let k = ξ−1(j).
Then

Pσj
g1(x) = g1(x) + sup

y∈Rk

( k

∑
i=2

gi(yi) − gi−1(yi)) ,
where the supremum is over all vectors y ∈ Rk with y1 = x and satisfying the
inequalities yi ≤ yi−1 or yi ≤ yi−1 for all 2 ≤ i ≤ k depending on whether λ(g)k >
λ(g)i−1 or λ(g)k < λ(g)i−1. Remarkably, the Brownian Burke theorem (see Section
4) implies that we can construct models of zig-zag last passage percolation across
independent Brownian motions whose stationary measures are themselves Brownian
motions!

Both of the previous examples are special cases of the following general proposition.

Proposition 3.10 (Orbit elements as last passage values). Let f ∈ Cn(R) with
λ(f) ∈ Rn

≤, let g ∈ O(f), let k ∈ {1, . . . , n}, and let x ∈ Rk
≤. Recall that Ξg ⊂ Sn is the

set of permutations satisfying

λ(g)ξ−1g (1) ≤ ⋯ ≤ λ(g)ξ−1g (n). (32)

There exists a unique vector m ∈ {1, . . . , n}k< satisfying (30) for λ(f) such that
m = ξ{1, . . . , k} for some ξ ∈ Ξg (here thinking of m as a subset). We have

g[(−∞, (1, . . . , k)) → (x,1)] = f[(−∞,m)→ (x,1)]. (33)

In particular, if x = x1 = ⋅ ⋅ ⋅ = xn then

g1(x) + ⋅ ⋅ ⋅ + gk(x) = f[(−∞,m)→ (xk,1)].
The proof of Proposition 3.10 is an induction based on the following lemma.

Lemma 3.11. Let f ∈ Cn(R). Define σ = τn−1⋯τ1. If λ(f)1 < λ(f)i for all i > 1,
then for all x ∈ Rn−1

≤ :

f[(−∞, (2, . . . , n))→ (x,1)] = Pσf[(−∞, (1, . . . , n − 1)) → (x,1)]. (34)

In particular, if x1 = ⋅ ⋅ ⋅ = xn−1 = x then:

f[(−∞, (2, . . . , n))→ (xn−1,1)] = n−1

∑
i=1

Pσfi(x). (35)

Proof. We actually prove the restricted case (35) first and then use this to prove the
general version (34). To shorten notation, we write [i, j] ∶= (i, i + 1, . . . , j) ∈ Rj−i+1

through the proof. First, for t ≤ x we have

f[(t, [1, n]) → (xn,1)] = n

∑
i=1

fi(x) − fi(t) = n

∑
i=1

Pσfi(x) − fi(t). (36)
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The first equality is by definition, and the second equality uses that Pitman trans-
forms preserve the sum of all lines. Moreover, it is easy to check from the definition
that

f[(t,[2, n]) → (xn,1)]
= f[(t, [1, n]) → (xn,1)] + f1(t) − fn(x) + max

t≤y1≤⋅⋅⋅≤yn−1≤x

n−1

∑
i=1

fi+1(yi) − fi(yi).
Now, since λ(f)1 < λ(f)i for all i > 1, the final term above equals

max
y1≤⋅⋅⋅≤yn−1≤x

n−1

∑
i=1

fi+1(yi) − fi(yi).
for all small enough t, and this minimum is attained. Therefore by (36), to verify
(35) we just need to show that

Pσfn(x) = fn(x) − max
y1≤⋅⋅⋅≤yn−1≤x

n−1

∑
i=1

fi+1(yi) − fi(yi). (37)

As in Example 3.8, this is essentially immediate from the definition (24) and an
induction since λ(f)1 < λ(f)i for all i > 1.
We move to the general case. Fix t ≤ x1. By Lemma 3.3 we have that

f[(t, [2, n]) → (x,1)] = Pσf[(t, [2, n]) → (x,1)].
Now, since λ(f)1 < λ(f)i for all i ≥ 1, then there exists t0 such that the function

t ↦ f[(t, [2, n]) → (x,1)] + n

∑
i=2

fi(t)
is constant for t ≤ t0, and hence equals the left-hand side of (34). On the other
hand, since λ(f)1 < λ(f)i for i > 1 we have λ(Pσf)n = λ(f)1 < λ(Pσf)i = λ(f)i+1
for i < n. Therefore for all t small enough we have

Pσf[(t, [2, n]) → (x,1)] + n

∑
i=2

Pσfi(t)
= Pσf[(x1, [1, n − 1]) → (x,1)] + sup

y1≤⋅⋅⋅≤yn−1≤x1

n−1

∑
i=1

Pσfi+1(yi) −Pσfi(yi)
= Pσf[(−∞, [1, n − 1]) → (x,1)] + n−1

∑
i=1

Pσfi(x1) + sup
y1≤⋅⋅⋅≤yn−1≤x1

n−1

∑
i=1

Pσfi+1(yi) −Pσfi(yi)
Call the latter two terms on the right-hand side above G(x1). Combining all of the
above displays gives that for all small enough t we have the equality

f[(−∞, [2, n]) → (x,1)] = Pσf[(−∞, [1, n−1]) → (x,1)]+G(x1)+ n

∑
i=2

fi(t)−Pσfi(t).
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Therefore

f[(−∞, [2, n]) → (x,1)] − f[(−∞, [2, n]) → (xn−1,1)]
=Pσf[(−∞, [1, n − 1]) → (x,1)] −Pσf[(−∞, [1, n − 1])→ (xn−1,1)].

On the other hand, (35) ensures that the second terms on both the right- and
left-hand sides above are equal, and hence so are the first terms, yielding (34).

Proof of Proposition 3.10. First, we can construct m by recursively constructing
ξ ∈ Ξg. Indeed, for every i ∈ {1, . . . , n}, we always let ξ(i) be the minimal index
j ∈ {1, . . . , n} ∖ {ξ(1), . . . , ξ(i − 1)} with λ(f)j = λ(g)i. Since λ(g) is a permutation
of λ(f), this process results in a permutation ξ. Moreover, the use of minimal
indices in the construction implies that resulting vector m satisfies (30) for λ(f).
Uniqueness of m follows since λ(f) ∈ Rn

≤ .

To prove (33), first assume that mk > k. Let ℓ ∈ {1, . . . ,mk − 1} be the maximal
index with ℓ ∉ {m1, . . . ,mk−1}. Let m2 = (ℓ + 1, ℓ + 2, . . . ,mk) so we can write
m = (m1,m2). Since m satisfies (30), both m1,m2 also satisfy (30) and so we may
define last passage from (−∞,m1), (−∞,m2). Next, for y ∈ Rmk−ℓ

≤ , define

G(f,y,m1) ∶= lim
t→−∞

f[(t∣m1∣,y;m1, (ℓ − 1)mk−ℓ)→ (x,1)] + ∑
i∈m1

fi(t).
Using this kind of hybrid last passage value, we can write down the following metric
composition law:

f[(−∞,m) → (x,1)] = sup
y∈Rm−ℓ

≤

f[(−∞,m2)→ (y, ℓ)] +G(f,y,m1).
Now, the condition (30) implies that λ(f)ℓ < λ(f)j for all j > ℓ. Therefore by
Lemma 3.11 we may write the above as

sup
y∈Rm−ℓ

≤

f ′[(−∞,m′2)→ (y, ℓ)] +G(f ′,y,m1) = f ′[(−∞,m′)→ (x,1)],
where f ′ = τ ℓ⋯τm−1f , m′2 = {ℓ, . . . ,mk − 1} and m′ = (m1,m

′
2). Note that

G(f ′,y,m1) involves lines 1, . . . , ℓ − 1 only, which are equal in f and f ′. Now,
observe that our construction gives that λ(f ′)m′

i
= λ(f)mi

for all i, and that in the
new environment f ′, the vector m′ satisfies (30) for λ(f ′). Therefore if mk − 1 ≠ k
we can repeat the above argument with m′, f ′ in place of m, f to get m′′, f ′′ with
m′′k =mk − 2, λ(f ′′)m′′

i
= λ(f)mi

for all i, and m′′ satisfying (30) for λ(f ′′). Contin-
uing in this way, we end at an environment h satisfying

f[(−∞,m)→ (x,1)] = h[(−∞, (1, . . . , k)) → (x,1)] = h[(xk1 , k) → (x,1)] + k

∑
i=1

hi(x1)
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and satisfying λ(h)i = λ(f)mi
for all i. If mk =m, we can avoid the above argument

entirely and simply let h = f .

Now, there is a sorting operator σ ∈ Dn which can be written as a product of
τi, τ̄i, i ≤ k − 1 such that σλ(g)j = λ(h)j for all j ≤ k. Therefore by Corollary 3.7 we
have that Pσgj = hj for all j ≤ k, and so

h[(xk1 , k) → (x,1)] + k

∑
i=1

hi(x1) = g[(xk1 , k)→ (x,1)] + k

∑
i=1

gi(x1)
= g[(−∞, (1, . . . , k)) → (x,1)].

Here the first equality uses that Pitman transforms preserve sums and are boundary
isometries (Lemma 3.3). Putting this together with the previous display yields the
result.

The following corollary of Proposition 3.10 gives a clean formula for inverting the
full sort, where we completely reverse the order of the slopes. This corollary can be
viewed as describing the RSK correspondence in this setting.

Let Cn≤ (R),Cn≥ (R) be the subsets of Cn(R) such that if f ∈ Cn≤ (R) then λ(f) ∈ Rn
≤

and if f ∈ Cn≥ (R) then λ(f) ∈ Rn
≥ . By Lemma 3.6, for f ∈ Cn≤ (R) there is a unique

element PRSKf in the P-orbit of f such that PRSKf ∈ Cn≥ (R) and given g ∈ Cn≥ (R),
there is a unique element QRSKg in its P-orbit contained in Cn≥ (R). Lemma 3.6.1
guarantees that these maps are inverses, so we have defined a bijection

PRSK ∶ C
n
≤ (R)→ Cn≥ (R)

with inverse QRSK. The next corollary gives a simple global description of these
maps without appealing to iterated Pitman transforms. This is the analogue of
Greene’s theorem in the present setting.

Corollary 3.12. Let f ∈ Cn≤ (R), let g = PRSKf , and set Rg(x) = g(−x). For
every k ∈ {1, . . . , n} let nk ∈ {1, . . . , n}k< denote the unique maximal vector (in the
coordinatewise order) satisfying (30) for λ(f). Similarly, let mk ∈ {1, . . . , n}k< denote
the unique maximal vector (in the coordinatewise order) satisfying (30) for −λ(f) =(−λ(f)k, . . . ,−λ(f)1). Then:

f[(−∞,nk)→ (xk,1)] = g1(x) + ⋅ ⋅ ⋅ + gk(x), and

Rg[(−∞,mk)→ (−xk,1)] = f1(x) + ⋅ ⋅ ⋅ + fk(x).
Proof. The recovery formulas for g from f are both special cases of Proposition
3.10. To recover f from g , first let σ be such that Pσg = f . Now, from the formulas
Pτ̄i = RPτiR and the identity R2 = id, we have that Rf = Pσ̄Rg, where σ̄ is the
given by taking the word σ and mapping τi ↦ τ̄i and τ̄i ↦ τi everywhere. Moreover,
Rg ∈ Cn≤ (R) so we can apply Proposition 3.10 to recover Rf from Rg. Applying R

to Rf then yields the formula above.
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A different approach to the bijection in Corollary 3.12 was developed in Sorensen’s
Ph.D. thesis using queuing maps rather than multi-path last passage, e.g. see Sec-
tion 2.3.3 and Lemma 2.3.18 in [Sor23]. Another perspective on Corollary 3.12 is
in terms of the Schützenberger involution. Indeed, we can write QRSK = RPRSKR,
where Rf(x) = f(−x). From this point of view, the fact that PRSK inverts QRSK on
Cn≤ (R) says that PRSKR is an involution when restricted to Cn≥ (R). If we consider
Cn≥ (R) ⊂ Cn(R) as the analogue of the set of Young tableaux, we can understand
PRSKR as the Schützenberger involution in the present setting. See [Ful97, Ap-
pendix A] for discussion of the classical Schützenberger involution and [BOZ21]
for a comprehensive modern account of the connection between the Schützenberger
involution, last passage percolation, and directed polymer partition functions.

3.4 Burke theorems

Pitman transforms behave well with Brownian inputs. At the level of the two-line
Pitman transform, this is the well-known Brownian Burke property, which has
been previously used in the study of LPP in [OY01, SS23a, SS23b]. For this theorem
and throughout the remainder of the paper, for a vector λ ∈ Rn we let µλ denote the
law of t↦ B(t)+λt, where B ∈ Cn0 (R) is k-tuple of independent, two-sided Brownian
motions of variance 2.

Theorem 3.13 (Brownian Burke property). Let B = (B1,B2) ∼ µ(λ1,λ2) for some
λ2 > λ1. Then PB −PB(0) ∼ µ(λ2,λ1).

Proof. This is part of [OY01, Theorem 4]. We translate the language in order to
assist the reader navigating between that paper and ours. It suffices to prove the
theorem when λ1 = 0, since the Pitman transform P commutes with a common
linear shift of both functions (Lemma 2.5).

In the language of that paper, O’Connell and Yor show the following. Let B′,C ∶

R→ R be two-sided, independent standard Brownian motions, and let m > 0. Define
functions q, e, d ∶ R→ R as follows:

q(t) = B′t +Ct −mt + sup
s≤t
(ms −Cs −Bs),

d(t) = B′t + q(0) − q(t),
e(t) = Ct + q(0) − q(t).

Theorem 4 in [OY01] states d, e are independent standard Brownian motions and
that (d, e)∣(−∞,t] is independent of q∣[t,∞) for any t ∈ R. We can rewrite their result

in terms of Pitman transforms. Define B1(t) = √2B′t,B2(t) = √2(mt − Ct) and
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observe that if m = λ2/√2, then B = (B1,B2) ∼ µ(0,λ2). Then√
2q(t) = PB1(t) −B2(t),√
2d(t) = B1(t) +B2(t) +PB1(0) −PB1(t) = PB2(t) −PB2(0).√

2(mt − e(t)) = B2(t) +PB1(t) −B2(t) −PB1(0) = PB1(t) −PB1(0)
The claim that d, e are independent standard Brownian motions gives that (√2(mt−

e),√2d) = PB −PB(0) ∼ µ(λ2,0).

The following corollary extends the Brownian Burke property to the double sorting
monoid. For this corollary and in the remainder of the paper, we write f0

∶= f −f(0)
for f ∈ CI(R), and write P0

σf = (Pσf)0.
Corollary 3.14. Let B ∼ µλ for some vector λ ∈ Rn. Then for any σ ∈Dn we have

P0
σB ∼ µσλ, (38)

where σ acts on λ by the basic action.

Proof. First, if σ = τi for some i = 1, . . . , n − 1 and λi < λi+1, then (38) holds by
Theorem 3.13. If λi ≥ λi+1, then (38) holds since PτiB = B and τiλ = λ. The case of
general σ follows by induction.

We end this section with a simple consequence of Corollary 3.14 and Proposition
3.10. This corollary can be viewed as implying the existence of stationary measures
for Brownian LPP.

Corollary 3.15. Consider vectors λ ∈ Rn, η ∈ Rm and suppose that λi > ηj for all
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Let W = (B′,B) ∼ µ(η,λ). Then for n ∈ {1, . . . , n}k<,x ∈
Rk
≤, we have

W [(−∞,n +m)→ (x,1)] −W [(−∞,n +m)→ (0k,1)] d= B[(−∞,n)→ (x,1)],
where here n +m = (n1 +m, . . . , nk +m), and the equality in distribution is joint in
all n,x.

Proof. Let σ ∈ Dn+m be such that σ(ν,λ) = (λ, ν) under the basic R-action. Then
by Proposition 3.10, we have

W [(−∞,n +m)→ (x,1)] = PσW [(−∞,n) → (x,1)]
for all x,n for which either side is defined. On the other hand P0

σW
d= (B,B′) by

Corollary 3.14, yielding the result.
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4 RSK on CN(R): From Pitman to Busemann

In this section we study limits of Pitman transforms on Cn(R) as n → ∞. As dis-
cussed in the introduction, this is natural when we work with a line environment
of independent Brownian motions. The resulting limits are expressed in terms of
Busemann functions. Because of this, in taking this limit we will simultaneously
build up a theory of multi-path Busemann functions in Brownian LPP. Throughout
this section, we let B = (Bi ∶ i ∈ Z) be an environment of independent 2-sided Brow-
nian motions. Also, recall from Section 1.3 the definition of multi-path Busemann
functions and semi-infinite geodesics and optimizers.

4.1 Multi-path Busemann functions

To study multi-path Busemann functions, we first need to understand single-path
Busemann functions. The theory in this setting was built by Seppäläinen and
Sorensen [SS23a, SS23b], and we use their results as a starting point.

Theorem 4.1. In the environment B, define the centered Busemann function end-
ing at (x,n) ∈ R × Z in direction θ ∈ [0,∞) by

Bθ(x,n) = lim
t→−∞

B[(t, ⌊θt + n⌋)→ (x,n)] −B[(t, ⌊θt + n⌋)→ (0,1)]. (39)

Then there exists a random countable set Θ ⊂ (0,∞) such that the following claims
hold on an almost sure set Ω:

1. (Busemann existence, [SS23b, Theorem 2.5(i)] and [SS23a, Theorem 3.5(viii)]).
For any (x,n) ∈ R×Z and θ ∈ (0,∞) ∖Θ the above limit exists and is equal to

lim
t→−∞

B[(t, π(t)) → (x,n)] −B[(t, π(t)) → (0,1)]
for any function π ∶ (−∞, x ∧ 0] → R such that π(t)/∣t∣ → θ as t → −∞. When
θ = 0, n = 1, the above limit exists and Bθ(x,1) = B1(x).

2. (Metric composition, [SS23a, Theorem 3.5(vi)]). We have the following metric
composition law for Busemann functions. For any n > m ∈ Z, x ∈ R, and
direction θ ∈ (0,∞) ∖Θ we have

Bθ(x,m) =max
z≤x
Bθ(z,n) +B[(z,n − 1) → (x,1)].

3. (Geodesic existence, [SS23a, Theorem 3.1(i), Theorem 4.3(ii)]). There exist
semi-infinite geodesics ending at every point (x,n) ∈ R × Z in every direction
θ ∈ (0,∞). Moreover, for every θ ∈ (0,∞), (x,n) ∈ R × Z there exist leftmost

and rightmost geodesics πL, πR from θ to (x,n) in the sense that for every
geodesic τ in direction θ ending at (x,n) we have πL ≤ τ ≤ πR.
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4. (Geodesic monotonicity, [SS23a, Theorem 4.3(iii)]). For θ1 ≤ θ2, n ∈ N and
x1 ≤ x1, if πL

i , i = 1,2 is the leftmost geodesic from θi to (xi, n), then πL
1 ≤ π

L
2 .

An identical statement holds for rightmost geodesics.

5. (Geodesic coalescence, [SS23b, Theorem 2.8(i)]). For θ ∈ (0,∞) ∖Θ, any two
semi-infinite geodesics π, τ in direction θ eventually coalesce, i.e. π(t) = τ(t)
for all small enough t. Moreover, there is a unique semi-infinite geodesic in
direction θ and ending at (x,n) for every x ∈ Q, n ∈ Z.

6. (0-directed geodesics, [SS23a, Theorem 4.3(iv, vi)]). For every (x,n) ∈ R × Z
the unique semi-infinite geodesic in direction 0 ending at (x,n) is the constant
path π ∶ (−∞, x]→ R, π ≡ n.

Moreover, by [SS23b, Theorem 2.5], P(θ ∈ Θ) = 0 for all θ > 0. Therefore we may
assume Q ∩Θ = ∅ on Ω.

We will write Bθ(x,n;B) in place of Bθ(x, ) if the environment is not clear from
context and let Bθ(x) ∶= Bθ(x,1). Moving forward, we will write I ∶= [0,∞) ∖Θ.

Remark 4.2. In the above theorem, we have aimed to follow the notation of
[SS23a, SS23b] but have made a few changes in order to better integrate it with
our present setup. Our Busemann functions follow semi-infinite paths starting at
t = −∞, whereas the semi-infinite paths in [SS23a, SS23b] end at t =∞ instead. We
also use Brownian motions of variance 2 instead of 1. A more important difference
is that our Busemann function in direction θ is their Busemann function in direction
1/θ. This choice is more natural for our eventual study of RSK in the directed land-
scape. Finally, the versions of Theorem 4.1.2 and Theorem 4.1.5 stated in [SS23b]
give queuing representations equivalent to our descriptions.

We now extend the definition of Busemann functions to multiple distinct directions.
Later we will use a continuity argument to allow for repeated directions. For this
definition, for θ ∈ Ik≤ , write πθ = (πθ1 , . . . , πθk), where πθi is the unique geodesic in
direction θi ending at (0,1).
Proposition 4.3. For θ ∈ Ik< ,x ∈ R

k
≤, define

Bθ(x) = lim
t→−∞

B[(t, ⌊θ∣t∣ + k⌋)→ (x,1)] − k

∑
i=1

B[(t, ⌊θi∣t∣ + k⌋)→ (0,1)]. (40)

Then the following claims hold on an almost sure set Ω′.

1. The limit (40) exists for all k ∈ N, θ ∈ Ik< ,x ∈ R
k
≤. Moreover, for any k-tuple of

semi-infinite paths π = (π1, . . . , πk) in direction θ, we have

Bθ(x) = lim
t→−∞

B[(t, π(t)) → (x,1)] − k

∑
i=1

B[(t, πi(t)) → (0,1)]. (41)
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2. There exists leftmost and rightmost semi-infinite optimizers in every direction
θ ∈ [0,∞)k≤ ending at every point (x,1),x ∈ Rk

≤. Moreover, if we let τx,θ

denote the leftmost semi-infinite optimizer in direction θ ending at (x,1), then
τx,θ ≤ τx

′,θ′ whenever x ≤ x′, θ ≤ θ′. Monotonicity similarly holds for rightmost
optimizers.

3. Any semi-infinite optimizer τ in a direction θ ∈ Ik< eventually coalesces with
the k-tuple of paths πθ in the sense that τ ∣(−∞,t] = π

θ ∣(−∞,t] for small enough
t.

To prove Proposition 4.3 we require two simple lemmas. For the first lemma, we let
πθ,y denote the rightmost geodesic in direction θ, ending at (y,1).
Lemma 4.4. The following event holds a.s. For every k ∈ N, a > 0 and every
compact box K = ∏k

i=1[θ−i , θ+i ] ⊂ Rk
< there exist vectors y,z ∈ Qk

≤ with y ≤ −ak ≤
ak ≤ z such that for any θ ∈ K, the k-tuples of semi-infinite rightmost geodesics
πθ,y

∶= (πθ,y1 , . . . , πθ,yk) and πθ,z
∶= (πθ,z1 , . . . , πθ,zk) are both disjoint k-tuples. In

particular, they are both disjoint optimizers.

Proof. By induction it is enough to prove the result when k = 2. Moreover, by
countable additivity it is enough to prove that the result for every fixed θ−i , θ

+
i ∈ Q

a.s. and it is enough to prove the existence of y since the existence of z follows by
symmetry. Finally, by monotonicity of geodesics (Theorem 4.1.3), πθ,y is a disjoint
k-tuple for all θ ∈K if and only if π(θ

+
1
,θ−

2
),y is. We will prove this latter statement.

For every fixed θ ≥ 0, the process x ↦ πθ,x(x + ⋅) is stationary, since the same holds
for the background environment B −B(x). Therefore for any pair θ1 < θ2 ∈ [0,∞),
any w ∈ R, and any function f ∶ (−∞,w] → R with f(t)/∣t∣ → θ2 as t → ∞ a.s.
there exists a random integer Y < w such that πθ1,Y (u) < f(u) for u ≤ Y . Setting
f = πθ−

2
,−a and y = (Y,−a), the lemma follows.

Lemma 4.5. The following holds almost surely. For every k ≥ 1, θ ∈ Ik< and a > 0,
there exists ǫ > 0, y ≤ −ak < ak ≤ z, and T < y1 such that whenever ∥θ1 − θ∥∞ <
ǫ, ∥θ2 − θ∥∞ < ǫ, we have:

• For any i = 1, . . . , k, any geodesics from θ1,i to yi and θ2,i to zi are equal at
time T .

• Any geodesics from θ1,i to yi, i = 1, . . . , k are mutually disjoint. Similarly, any
geodesics from θ2,i to zi, i = 1, . . . , k, are mutually disjoint.

For the proof of the lemma, it will be convenient to use the Hausdorff topology on
finite or semi-infinite paths. We say that a sequence of (nonincreasing cadlag) paths
πn ∶ [an, bn]→ N converges in the Hausdorff topology to a limiting path π ∶ [a, b] → R

for a < b if the graphs gπn ∶= {(r, π(r)) ∶ r ∈ [an, bn]} converge in the Hausdorff

42



topology on closed sets to the graph gπ. We define Hausdorff convergence on semi-
infinite paths by asking for Hausdorff convergence when restricted to every compact
interval. Path length is continuous and the disjointness required in the definition of
disjoint k-tuples is a closed property in this topology, making it convenient to work
with when studying LPP. See [DNV22, Section 2.3] for more discussion.

Proof. First, fix a compact set K = ∏k
i=1[θ−i , θ+i ] ⊂ Rk

< containing θ in its interior,
and choose ǫ0 > 0 so that if ∥θ′ − θ∥∞ < ǫ0 then θ′ ∈ K. Applying Lemma 4.4 with
K and a > 0 as in the statement of the lemma implies that the second bullet point
above holds as long as we choose ǫ < ǫ0. It remains to prove that we can choose ǫ

small enough so that the first bullet holds. For this, fix a coordinate θi. Consider
sequences π±i,n, n ∈ N of rightmost geodesics (for π+i,n) in direction θi ± 1/n ending at(yi,1) (for π−i,n) and (zi,1) (for π+i,n). By monotonicity of geodesics, we have that
π−i,1 ≤ π

−
i,2 ≤ ⋯ ≤ π

+
i,2 ≤ π

+
i,1. This implies that both of the sequence π±i,n, n ∈ N converge

in the Hausdorff topology, and that the limits π+, π− must be geodesics in direction
θ ending at (yi,1). In particular, by Theorem 4.1.5, these geodesics must be equal
on some interval (−∞, ti]. Hausdorff convergence of π±i,n then implies that for any
t < ti we have π−i,n∣[t,ti] = π+i,n∣[t,ti] for all large enough n. Choosing T < mini(ti), we
get that for large enough n, we have π−i,n(T ) = π+i,n(T ) for all i = 1, . . . , k. Applying
monotonicity of geodesics then yields the first bullet point.

Proof of Proposition 4.3. Let Ω′ be the intersection of the almost sure events in
Theorem 4.1 and Lemma 4.5, and let π be as in part 1 of the proposition. Fix a > 0,
and let y,z, ǫ, T be as in Lemma 4.5. Then for t < T , if θ1 < θ < θ2 satisfy ∥θi−θ∥∞ < ǫ
then the optimizers (t, πθ1(t)) to (y,1) and from (t, πθ2(t)) to (z,1) consist of k
geodesics, and all these geodesics agree at the common time T . Therefore for all
large enough t, by monotonicity of optimizers, all optimizers from (t, π(t)) to a
point x with y ≤ x ≤ z agree at time t, and so;

B[(t, π(t)) → (x,1)] = B[(t, π(t)) → (T,πθ(T ))] +B[(T,πθ(T ))→ (x,1)],
and similarly, for all i = 1, . . . , k we have

B[(t, πi(t))→ (xi,1)] = B[(t, πi(t)) → (T,πθ
i (T ))] +B[(T,πθ

i (T )) → (x,1)],
To complete the proof of part 1, we claim that for large enough t we have:

k

∑
i=1

B[(t, πi(t)) → (T,πθ
i (T ))] = B[(t, π(t)) → (T,πθ(T ))].

Indeed, by the construction in Lemma 4.5, for any i ∈ {1, . . . , k}, the geodesics from(πθ2
i (t), t) to (yi,1) and from (πθ1

i+1(t), t) to (zi+1,1) are disjoint. These geodesics go
through the points (T,πθ

i (T )), (T,πθ
i+1(T )). Therefore by monotonicity of geodesics,
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for any i ∈ {1, . . . , k} the two geodesics from (t, πi(t)) to (T,πθ
i (T )) and from(t, πi+1(t)) to (T,πθ

i+1(T )) are also disjoint as long as t is large enough so that

πi(t) ≤ πθ2
i (t) < πθ1

i+1 ≤ πi+1(t).
Therefore for large enough t, the k geodesics from (t, π(t)) to (T,πθ(T )) are all
disjoint, yielding the above equality and proving part 1.

We move on to existence of optimizers. We first consider the case when θ ∈ Ik< . Let
all notation be as in the proof of part 1. In this case, if y ≤ z are as in part 1, then
the k-tuples of semi-infinite geodesics to (y,1) and (z,1) are (unique) optimizers,
and these agree on the interval (−∞, T ] with πθ. By monotonicity of optimizers, for
y ≤ x ≤ z, if we then concatenate πθ ∣(−∞,T ] to an optimizer from (T,π(T )) to (x,1),
this must be a semi-infinite optimizer in direction θ to (x,1), and all optimizers
must be of this form. Existence of rightmost and leftmost optimizers for θ ∈ Ik< then
follows from existence of rightmost and leftmost optimizers in the finite setting.

Now let θ ∈ [0,∞)k≤,x ∈ Rk
≤, and let θn ∈ Ik< be such that θn ↓ θ. Let πn be an

optimizer to (x,1) in direction θn. Then by monotonicity of optimizers, we have
π1 ≥ π2 ≥ ⋯ and so πn has a limit π in the Hausdorff topology satisfying

limsup
t→∞

π(t)
∣t∣ ≤ lim

n→∞
lim
t→∞

πn(t)
∣t∣ = θ.

Since being an optimizer is a closed property in the Hausdorff topology, π is also an
optimizer. We check that π has direction θ. Let θ = (0ℓ, θℓ+1, . . . , θk), where θℓ+1 > 0.
Let η = (0ℓ, ηℓ+1 < ⋅ ⋅ ⋅ < ηk) be such that ηi ∈ I for all i and η ≤ θ. As in the proof
of part 1, we can find yi ≤ xi, i = ℓ + 1, . . . , k with y ∈ Qk

≤ such that all the leftmost
geodesics τ

η
i in direction ηi to (yi,1), i = ℓ + 1, . . . , k are disjoint. Therefore we can

find yℓ < yℓ+1 so that defining τ
η
i ∶ (−∞, yℓ]→ N by τ

η
i (x) = i for all i, τη is a disjoint

optimizer in direction η. Monotonicity of optimizers then guarantees that τη ≤ πn

for all n and so τη ≤ π. Hence

η = lim
t→∞

τη(t)
∣t∣ ≤ lim inf

t→∞

π(t)
∣t∣ ,

so combining the two displays and letting η ↑ π gives that π is an optimizer in
direction θ. This completes the proof of existence of an optimizer for general θ.

To argue that there must exist rightmost and leftmost optimizers for general θ, let
ρ, ρ′ be two optimizers in direction θ, ending at (x,1). By a standard argument (see
the proof of Lemma 2.2, [DZ21]), the pointwise minima and maxima ρ∧ρ′ and ρ∨ρ′

are also both optimizers, to the left and right of ρ, ρ′. Moreover, if ρn is a sequence
of semi-infinite disjoint optimizers with ρ1 ≥ ρ2 ≥ ⋯ then ρn has a Hausdorff limit ρ,
which is itself an optimizer to (x,1) in direction θ. Indeed, the direction is preserved
since all the ρi must be bounded between τη, η ≤ θ and πn, n ∈ N for all n, and the
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optimizer property is preserved since path length is continuous and disjointness is a
closed property in the Hausdorff topology. These two facts allow us to apply Zorn’s
lemma to the set of optimizers to (x,1) in direction θ, yielding a leftmost optimizer
(and similarly a rightmost one).

Our next goal is to extend the process Bθ(x) defined in Proposition 4.3 to general
θ. We do this by continuity; later we will argue that doing so produces Busemann
functions. To facilitate the proof, we need two short lemmas.

Lemma 4.6 (Quadrangle inequality). For x ≤ x′ ∈ Rm
≥ and θ ≤ θ′ ∈ Im< we have

Bθ(x′) +Bθ′(x) ≤ Bθ(x) +Bθ′(x′)
with equality if there are semi-infinite optimizers π,π′ in directions θ, θ′ ending at(x,1), (x′,1) such that π(T ) = π′(T ) for some T ≤ x1.

Proof. The quadrangle inequality is immediate from appealing to Proposition 4.3.1
with π = πθ for direction θ and π = πθ′ for direction θ′, and then using the usual
quadrangle inequality (Lemma 2.4).

Lemma 4.7. The following holds almost surely. For every k ≥ 1, θ ∈ Ik< and a > 0,
there exists ǫ > 0, such that if ∥θ′ − θ∥∞ < ǫ with θ′ ∈ Ik< we have Bθ(x) − Bθ(0k) =
Bθ
′(x) − Bθ(0k) whenever x ∈ [−a, a]k≤.

Proof. Let y,z, ǫ be as in Lemma 4.5. Then by the ‘equality if’ claim in Lemma 2.4,
for θ1 ≤ θ2 such that ∥θ − θj∥∞ < ǫ, j = 1,2 we have

Bθ1(y) + Bθ2(z) = Bθ1(z) +Bθ2(y).
The quadrangle inequality in Lemma 2.4 forces this equality to hold when we replace
y,z with any points in [−a, a]k, yielding the result.

We will move to the case of repeated endpoints by first extending the process by
continuity. When we extend to the case of repeated endpoints, we cannot normalize
our Busemann functions by subtracting off k single-path last passage values as in
(40). Rather, we need a normalization that treats repeated endpoints together.
First, define the over-normalized Busemann function

B̂θ(x) = lim
θ′↓θ,θ′∈Ik<

Bθ
′(x) −Bθ′(0k). (42)

This Busemann function exists by a simple monotonicity argument, but loses some
information about the process. We also define a minimally normalized Busemann
function B which has a more involved definition. First, for θ ∈ Rk

≤, let Π(θ) =(I1(θ), . . . , Im(θ)(θ)) be the partition of {1, . . . , k} such that θi = θj if and only if
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i, j are in the same part of Π(θ). Also, for x ∈ Rk
≤ and I = {i1, . . . , iℓ} ⊂ {1, . . . , k},

write xI = (xi1 , . . . , xiℓ) ∈ Rℓ
≤. We use the same notation when I = (i1, . . . , iℓ) is a

vector in {1, . . . , k}ℓ<. Then for x ∈ Rk
≤ and θ ∈ [0,∞)k≤ we can define the Busemann

function

Bθ(x) = lim
θ′↓θ,θ′∈Ik<

Bθ
′(x) −m(θ)

∑
j=1

Bθ
′Ij(θ)(0∣Ij(θ)∣) (43)

The strategy for proving that (43) is well-defined will be to first work with the over-
normalized function B̂, and then compare normalizations. To do this comparison,
we will need the following definition. Consider θ ∈ [0,∞)k≤. We say that x ∈ DJ(θ)
if there exists ǫ > 0 such that if ∣θ′ − θ∣ ≤ ǫ and πθ′,i is the leftmost optimizer ending
at (xIi(θ),1) in direction θ′Ii(θ), then (πθ′,1, . . . , πθ′,m(θ)) is a (semi-infinite) disjoint
k-tuple. We can argue exactly as in Lemma 4.4 that almost surely, for all θ ∈ [0,∞)k≤
the set DJ(θ) is non-empty.

Proposition 4.8. Almost surely, the limits (42) and (43) exist for every x ∈ Rk
≤

and θ ∈ [0,∞)k≤. Moreover, for every x ∈ Rk
≤ and every partition Π of {1, . . . , k},

θ ↦ B̂θ(x) is a right-continuous function on [0,∞)k≤.
The two Busemann functions are compatible in the following sense. Let Π(θ) =(I1, . . . , Iℓ). Then almost surely, for any θ ∈ [0,∞)k≤ and any z ∈ DJ(θ) we have

Bθ(x) = B̂θ(x) − B̂θ(z) + ℓ

∑
j=1

B̂θ
Ij (zIj). (44)

Proof. For θ ∈ [0,∞)k≤ and x ≤ y, define

B̂θ(x,y) = lim
θ′↓θ,θ′∈Ik<

Bθ
′(y) −Bθ′(x). (45)

By Lemma 4.6, the function θ ↦ Bθ(x)−Bθ(y) is nondecreasing in θ, so the limit in
(45) exists in R∪{−∞}. To see that it cannot be −∞, observe that by a quadrangle
inequality (Lemma 2.4), we have the lower bound

B[(−∞, (1, . . . , k)) → (y,1)] −B[(∞, (1, . . . , k)) → (x,1)] ≤ Bθ(y) −Bθ(x)
for all θ ∈ Ik< . To prove right continuity of B̂θ(x,y) in θ, given a sequence θm ↓ θ,
pick θ′m ∈ [θm, θm + 1/m] ∩ Ik< so that ∣Bθ′m(y) − Bθ′m(x) − B̂θm(x,y)∣ ≤ 1/m. By
(45), Bθ

′
m(y)−Bθ′m(x)→ B̂θ(x,y), and so B̂θm(x,y) → B̂θ(x,y). Finally, for x ∈ Rk

≤

picking y ∈ Rk
≤ with y ≤ x and y ≤ 0k, we see that

B̂θ(x) = B̂θ(y,x) − B̂θ(y,0k),
which implies the existence of the limit (42).
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We move to (44) and the existence of the limit (43). For z ∈ DJ(θ) and θ′ ∈ Ik<
sufficiently close to θ, we have that Bθ

′(z) = ∑ℓ
i=1B

θ′Ii(zℓii ). Therefore
lim

θ′↓θ,θ′∈Ik<

Bθ
′(0k) − m

∑
i=1

Bθ
′Ii(0∣Ii∣)

= lim
θ′↓θ,θ′∈Ik<

Bθ
′(0k) −Bθ′(z) + lim

θ′↓θ,θ′∈Ik<

( ℓ

∑
i=1

Bθ
′Ii(zℓii ) − ℓ

∑
i=1

Bθ
′Ii(0∣Ii ∣))

= B̂θ(x) − B̂θ(z) + ℓ

∑
j=1

B̂θ
Ij (zIj).

This yields both (44) and (43).

For fixed θ, Bθ can alternately be defined in terms of Busemann functions in the
original Brownian environment. In a weak sense, this is immediate from the quad-
rangle inequality. However, to prove a stronger result it will be convenient to have
a full characterization of the law of Bθ. This is the goal of the next subsection.

4.2 The law of the multi-path Busemann process

Next, we find the law of the process Bθ constructed in the previous section. The
identification of the full law will follow from taking a limit of Pitman maps on Cn(R).
Theorem 4.9. Consider θ ∈ [0,∞)n≤ for some n ∈ N. Define W ∈ Cn(R) by:

k

∑
i=1

Wi(x) = Bθ{1,...,k}(xi) (46)

for x ∈ R, k ∈ {1, . . . , n}. Then:

1. W 0
∶= W −W (0) ∈ Cn0 (R) is a sequence of independent two-sided Brownian

motions of drift
√
2θi.

2. Suppose that n ∈ Nk
< is such that n ≤ m for any m ∈ Nk

< with θni
= θmi

(equivalently, n satisfies (30) for θ). Then almost surely, for x ∈ Rk
≤, we have

Bθ
n(x) =W [(−∞,n)→ (x,1)].

3. For every k ∈ N, let {ℓk, . . . , k} be the largest interval with θℓk = θk. We can
recover W from its centered version W 0 via the formula

Wℓk(0) + . . .Wk(0) = −W 0[(−∞, (ℓk, . . . , k)) → (0k−ℓk+1,1)]. (47)

The n = 1 case of Theorem 4.9 is part of [SS23b, Theorem 3.7]. We will use this
as an input for proving Theorem 4.9. As mentioned in the introduction (Equation

47



(11)), that theorem also contains a distributional identity for the joint law of the
single-path Busemann process that Theorem 4.9 realizes almost surely. Theorem
4.9 is a more detailed version of Theorem 1.5.

Proof. First assume that all of the θi are distinct and nonzero. LetW 0
∶= (W 0

1 , . . . ,W
0
n) ∼

µ√
2θ
, be chosen independently of the environment B. For m = 0,1, . . . , consider the

environment Wm
∶= (B1, . . . ,Bm,W 0), and consider the function

Km(n,x) ∶=Wm[(−∞,n +m)→ (x,1)] −Wm[(−∞,n +m)→ (0∣n∣,1)].
For every m, Corollary 3.15 implies that Km

d= K0. Now consider the metric com-
position law for Wm:

Wm[(−∞,n +m)→ (x,1)] ∶=max
z≤x

W 0[(−∞,n)→ (z,1)] +B[(z,m) → (x,1)]. (48)
The shape theorems for Brownian last passage percolation (Propositions 2.6 and
2.7) imply that for any fixed n ∈ {1, . . . , n}k<,x ∈ Rk

≤, the argmax in this metric
composition law is contained in the box

A(m,θ) ∶= k

∏
i=1

[−m/θi −m3/4,−m/θi +m3/4]
with probability tending to 1 asm →∞. Note also that the location of this argmax is
monotone in x by monotonicity of optimizers, so for any fixed a ∈ R, with probability
tending to 1, for all x ∈ [−a, a]k≤, this argmax is contained in A(m,θ), and so (48)
holds with A(m,θ) in place of R. Therefore if for z ∈ A(m,θ), all of the functions

B[(z,m) → (x,1)] −B[(z,m) → (0∣n∣,1)], x ∈ [−a, a]k≤
above are equal, then all of these functions equal Km(n,x). Equality of all these
functions holds with probability tending to 1 as m →∞ by Lemma 4.7, and more-
over, equals B̂θ

n(x;B) = Bθn(x;B)−Bθ(0k;B) with probability tending to 1. There-
fore for any compact set K in n,x, with probability tending to 1 we have that

Km(n,x) = B̂θn(x;B)
for x ∈ [−a, a]k≤, and hence in distribution we have the equality

B̂θ
n(x) d=W 0[(−∞,n) → (x,1)] −W 0[(−∞,n) → (0k,1)], (49)

jointly in all x,n, where W 0 ∼ µ√
2θ
. Before moving on to using (49) to establish

the theorem, let us extend to the case of general θ.

First, observe that the right-hand side of (49) is continuous in law in the uniform-on-
compact topology on functions of (n,x) with respect to the drift vector

√
2θ, even
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when we allow repeated elements in θ. Next, let θn = θ+(1/m,2/m, . . . , n/m) so that
θm ↓ θ. By the right-continuity in Proposition 4.8 we have that B̂θ

m,n(x) → B̂θn(x)
for fixed n,x. Therefore by the case when the θi are distinct and non-zero, (49) holds
at the level of finite-dimensional distribution. To show that it holds as continuous
functions of (n,x), we just need to check that B̂θ is continuous.

Let gn = B̂θ
n

−B̂θ. Then gn ↓ 0 pointwise, and for x ≤ y, the increment gn(y)−gn(x) ≥
0 by the quadrangle inequality. Therefore for any a > 0, k ∈ N,

sup
x∈[−a,a]k≤

∣gn(x)∣ ≤ sup
x∈[−a,a]k≤

∣gn(x)−gn(−ak)∣+ ∣gn(−ak)∣ = ∣gn(ak)−gn(−ak)∣+ ∣gn(−ak)∣,
where the final equality uses the quadrangle inequality. Hence gn → 0 uniformly on
compacts, and so B̂θ is continuous, yielding (49).

Now, consider a coupling of W 0,B where (49) holds. Define an environment W

from W 0 by the formula (47). We claim that Theorem 4.9.2 then holds. This
immediately implies (46), and hence the entire theorem. To see why Theorem 4.9.2
holds, fix a vector n as in that part of the theorem, and first suppose that θn consists
only of repeated elements. Since last passage commutes with constant shifts of the
environment, (49) and the definition of W implies that

Bθ
n(x) = B̂θn(x) =W 0[(−∞,n) → (x,1)] −W 0[(−∞,n) → (0k,1)]

=W [(−∞,n)→ (x,1)]. (50)

Now suppose that we can write θn = (λℓ1
1 , . . . , λ

ℓj
j ) for some λ ∈ [0,∞)j<. By (49) we

have that for some a ∈ R,

Bθ
n(x) =W [(−∞,n)→ (x,1)] + a

simultaneously for all x. On the other hand, arguing as in Lemma 4.4, we can find

y = (yℓ11 , . . . , y
ℓj
j ) by sufficiently spacing out the coordinates y1 < ⋅ ⋅ ⋅ < yj for which

Bθ
n(y) = j

∑
i=1

Bλ
ℓi
i (yℓii ), W [(−∞,n)→ (y,1)] = j

∑
i=1

W [(−∞,ni)→ (yℓii ,1)],
where ni are the coordinates of n corresponding to the first ℓi coordinates of θ that
equal λi. The right-hand sides above are equal by the repeated-element equality
(50), yielding the result.

One consequence of Theorem 4.9 is the almost sure continuity of the multi-path
Busemann process at a fixed θ. This allows us to relate the functions B̂θ,Bθ to true
Busemann functions in the original Brownian environment.
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Lemma 4.10. Let θ ∈ [0,∞)k≤, and let Π(θ) = (I1, . . . , Im). For x ∈ Rk
≤ define

B̄θ(x) = lim
t→−∞

B[(t, ⌈θt⌉ + k)→ (x,1)] − m

∑
i=1

B[(t, ⌈θIjt⌉ + k)→ (0∣Ij ∣,1)]. (51)

Then for any fixed θ ∈ [0,∞)k≤, almost surely B̄θ = Bθ for all x ∈ Rk
≤ and

B̄θ(x) = lim
t→−∞

B[(t, π(t)) → (x,1)] − m

∑
i=1

B[(t, πIj(t)) → (0∣Ij ∣,1)]
for any disjoint k-tuple π ending at (x,1) in direction θ.

The process B̄θ is more geometrically motivated than the original process Bθ. We
can think of the latter process as the right-continuous extension of B̄θ, θ ∈ Rk

≤ to all
choices of θ.

Proof. Let a < b < a′ < b′, and consider any disjoint k-tuple π ending at (x,1) in
direction θ. For x ∈ [a, b]k≤,y ∈ [a′, b′]k≤ set

B̄θ+π (x,y) = lim sup
t→−∞

B[(t, π(t)) → (y,1)] −B[(t, π(t)) → (x,1)]
B̄θ−π (x,y) = lim inf

t→−∞
B[(t, π(t)) → (y,1)] −B[(t, π(t)) → (x,1)].

We first show that on [a, b]k≤×[a′, b′]k≤, almost surely we have B̄θ+π (x,y) = B̄θ−π (x,y) =
B̂θ(y)− B̂θ(x). We first deal with the case when θ1 ≠ 0. Let θ−n, θ

+
n ∈ I

k
< be such that

θ−n,i < θi < θ
+

n,i, θ−n → θ, θ+n → θ as n→∞. (52)

Then by the quadrangle inequality, on [a, b]k≤ × [a′, b′]k≤ we have

B̂θ
−
n(y) − B̂θ−n(x) ≤ B̄θ±π (x,y) ≤ B̂θ+n(y) − B̂θ+n(x).

On the other hand, as continuous functions on [a, b]k≤ × [a′, b′]k≤, both the left- and
right-hand sides above converge in distribution to the same object: B̂θ(y) − B̂θ(x).
This follows from the characterization of the distribution of Bθ in Theorem 4.9.
Hence, almost surely we have B̄θ+π (x,y) = B̄θ−π (x,y) = B̂θ(y) − B̂θ(x) on [a, b]k≤ ×[a′, b′]k≤, as desired.
In the case when θ1 = 0 we cannot construct θ−n in [0,∞)k< the same way, so a
minor modification is needed. Instead, let λ be such that θ = (0ℓ, λ) for some
ℓ ≤ k,λ ∈ (0,∞)k−ℓ≤ . Let λ−n ∈ I

k
< be such that λ−n,i < λi for all i and λ−n → λ as n→∞.

Then define

Fn(x) = ℓ

∑
i=1

Bi(x1) + max
z∈[x1,xk]k−ℓ≤

Bλ
−
n(z, ℓ + 1) +B[(xℓ1,z) → (x,1)].
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Then Fn(y)−Fn(x) defines a lower bound on Bθ±π (x,y) by the quadrangle inequality.
Moreover, in law as a function of z we have that

Bλ
−
n(z, ℓ + 1) d=W n[(−∞, (ℓ + 1, . . . , k)) → (z, ℓ + 1)],

where (W n)0 ∼ µ√
2λ−n

. This uses Theorem 4.9. Therefore as a function of x,

Fn(x) d= (B1, . . . ,Bk,W
n)[(−∞, (1, . . . , k)) → (x,1)].

Therefore by Theorem 4.9, as n→∞, the law of Fn(y)−Fn(x) converges to the law
of B̂θ(y) − B̂θ(x), which gives the desired result.

Next, let z ∈ DJ(θ) and let π be a disjoint k-tuple to (z,1) in direction θ. Then
almost surely the following holds for all x ∈ Rk

≤:

B̂θ(x) − B̂θ(z) + ℓ

∑
j=1

B̂θ
Ij (zIj) = lim

t→−∞
B[(t, π(t)) → (x,1)] −B[(t, π(t)) → (z,1)]

+

ℓ

∑
j=1

B[(t, πIj (t))→ (zIj ,1)] + ℓ

∑
j=1

B[(t, πIj (t))→ (0∣Ij ∣,1)].
The two middle terms on the right-hand side above cancel out since z ∈ DJ(θ), and
so the whole expression equals B̄θ(x). On the other hand, it also equals Bθ(x) by
Proposition 4.8.

Remark 4.11. Lemma 4.10 guarantees the existence of the Busemann function B̄θ

in every fixed direction almost surely, which shows that the set of directions where
the Busemann function is not defined has Lebesgue measure 0. In fact, the size of
this set should be at most countable, just as in Theorem 4.1. An analogue of the
coalescence result in Theorem 4.1 should also hold on the set where the Busemann
function exists. We do not pursue these directions here. Finally, when θ1 > 0, for
m ∈ Z we can define the Busemann function in direction θ ending at (x,m) by

B̄θ(x,m) = lim
t→−∞

B[(t, ⌈θt⌉)→ (x,1)] − m

∑
i=1

B[(t, ⌈θIjt⌉)→ (0∣Ij ∣,1)].
Lemma 4.10 implies that for fixed θ, this limit exists almost surely for all x,m,
and we can replace ⌈θ ⋅⌉ with any disjoint k-tuple in direction θ ending at (x,m).
With this definition we have the following metric composition law (the analogue of
Theorem 4.1.2): for fixed θ ∈ (0,∞)k≤, almost surely for all x ∈ Rk

≤,m > n:

B̄θ(x, n) = sup
z≤x
B̄θ(z,m) +B[(z,m + 1)→ (x, n)].

where the supremum is over all z such that the last passage value above is well-
defined.
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4.3 The Busemann shear

In this section, we use Busemann functions and Theorem 4.9 to construct versions
of the RSK correspondence for functions f ∈ CN(R), Theorem 1.4. We first recall a
few definitions and restate that theorem.

For an environment f ∈ CN(R), let Rf(x) = f(−x), and for x ∈ Rk
≤, let −x =(−xk, . . . ,−x1) ∈ Rk

≤. For an environment of Brownian motions B = (Bi, i ∈ Z),
we extend the definition of the Busemann process Bθ(x;B) to θ ∈ (−∞,0]k≤ and
x ∈ Rk

≤ as follows:
Bθ(x;B) = B−θ(−x;RB). (53)

A quick comparison of the definitions guarantees that when θ = (0, . . . ,0), the unique
point in (−∞,0]k≤ ∩ [0,∞)k≤, our two definitions match up. Recall also the notation
Wλ(x) = Wλ(x;B) = Bλ∣λ∣/2(x,B), which indexes Brownian Busemann functions
by their slope (as x → ∞), rather than by the Busemann direction in the original
Brownian environment.

Theorem 4.12. Let B = (Bi, i ∈ N) ∈ CN0 (R) be an environment of independent
two-sided Brownian motions. For a ∈ R, define the environment Ba ∈ CN(R) by the
rule that for ℓ ∈ N we have

ℓ

∑
i=1

Ba
i (x) =Waℓ(xℓ;B).

Then:

1. Almost surely, B0 = B.

2. For any a ∈ R, Ba is a sequence of independent Brownian motions with drift
a.

3. Fix a ∈ R and λ ∈ (−∞,0]k≤∪[0,∞)k≤. Suppose also that λ+a ∶= (λ1+a, . . . , λk+

a) ∈ (−∞,0]k≤ ∪ [0,∞)k≤. Then a.s. for all x ∈ Rk
≤ we have that

Wλ+a(x;B) =Wλ(x;Ba). (54)

4. For any a, b ∈ R, almost surely we have that:

(Ba)−a = B, (Ba)b = Ba+b. (55)

In particular, if for a ∈ R we define a ∶ CN(R) → CN(R) by letting a(f) =
fa(x) − ax, then for any countable subgroup G ⊂ R, this defines a measure-
preserving G-action on a µN-almost sure subset of CN(R).

Remark 4.13. Theorem 4.12 allows us to naturally extend the definitionWλ(x;B)
to arbitrary λ ∈ Rk

≤. Indeed, for λ ∈ R
k
≤, define

Wλ(x;B) ∶=Wλ−λ1(x;Bλ1).
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This definition is consistent with our original definitions when either λ ∈ [0,∞)k≤ or
λ ∈ (−∞,0]k≤ by Theorem 4.12.3. Moreover, since last passage percolation commutes
with a common affine shifts applied to all lines, this extension has the remarkable
invariance property that for any a ∈ R we have

Wλ+a(x) d=Wλ(x) + ax,
where the equality in distribution is joint in all λ,x. This invariance corresponds to
shear invariance in the directed landscape. We call the full process

(λ,x) ↦Wλ(x), (λ,x) ∈ ⋃
k∈N

Rk
≤ ×R

k
≤

the extended stationary horizon.

Proof of Theorem 4.12. Part 1 is immediate from the definition of B̄ in Lemma
4.10, and the fact that almost surely, B̄0

ℓ

=W0ℓ for all ℓ by that lemma. Part 2 is
a special case of Theorem 4.9 when a > 0. When a < 0, it follows from Theorem 4.9
and the formula (53). The first part of part 4 is immediate from Part 3. The ‘In
particular’ claim additionally uses that last passage commutes with a common shift
of all functions (Lemma 2.5). The reason for restricting to a countable subgroup of
R is because the almost sure set where (55) holds depends on the choice of a, b.

We move to part 3. First, for any λ ∈ [0,∞)k≤, a ∈ R by Theorem 4.9.2 as functions
of x we have that

Wλ(x,Ba) d=W [(−∞, (1, . . . , k)) → (x,1)],
where W 0 ∼ µλ+a and W is constructed from W 0 via (47). The right-hand side
above is continuous in x almost surely, and hence so is the left. A similar argument
holds when λ ∈ (−∞,0]k≤ by (53). Therefore it is enough to prove (54) almost surely
for any fixed x. We break into cases.

Case 1: λ ∈ [0,∞)k≤, a > 0. Consider the vector θm ∈ [0,∞)m+k≤ given by
θm = (am, λ + a). Define the environment Wm ∈ Cm+k(R) by letting

ℓ

∑
i=1

Wm
i (x) =Wθ{1,...,ℓ}(xℓ).

for x ∈ R, ℓ ≤m + k. Then Wm
i = B

a
i for i ≤m and by Theorem 4.9 we have:

Wλ+a(x;B) =Wm[(−∞, (m + 1, . . . ,m + k)) → (x,1)]. (56)

Now, let W̃m ∈ Cm+k0 (R) be the environment with Wm
i = Ba

i for i ≤ m and with
Wm

m+i,1 ≤ i ≤ k given by the identity:

j

∑
i=1

Wm
m+i(x) = B̄λ(xj ,m + 1;Ba), 1 ≤ j ≤ k.
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Here we use notation as in Remark 4.11. Then by Theorem 4.9 and the metric
composition law (see Remark 4.11), for any n ∈ {1, . . . , k}ℓ< satisfying (30) for λ and
x ∈ Rℓ

≤ we have that

Wλn(x;Ba) = W̃m[(−∞,n +m)→ (x,1)]. (57)

Now, by Theorem 4.9 we have that (Wm)0 d= (W̃m)0 ∼ µθm . Moreover, Wm
i (0) =

W̃m
i (0) = 0 for i ≤ m and we can extract the values of Wm

i (0), i ≥ m + 1 from(Wm)0 by the formula in Theorem 4.9.3. The same formula extracts the values of
W̃m

i (0), i ≥ m + 1 from (W̃m)0 by virtue of (57) and the fact that Wλn(0∣n∣) = 0

whenever λn = (y, . . . , y) for some y ≥ 0. Putting all this together implies Wm d= W̃m.

Now, using that Wm
i = W̃

m
i = B

a
i for i ≤ m and Wm d= W̃m, letting Fm denote the

σ-algebra generated by the lines Ba
i , i ≤m formulas (56), (57) give:

(Wλ+a(x;B),E(Wλ+a(x;B) ∣ Fm)) d= (Wλ(x;Ba),E(Wλ(x;Ba) ∣ Fm)), (58)

E(Wλ+a(x;B) ∣ Fm) = E(Wλ(x;Ba) ∣ Fm).
Now, the martingale convergence theorem ensures that E(Wλ(x;Ba) ∣ Fm) →
Wλ(x;Ba) almost surely as m → ∞, since Wλ(x;Ba) is σ(⋃∞m=1Fm)-measurable.
We can use this to take the distributional limit of (58) as m→∞ to get that

(Wλ+a(x;B),Wλ(x;Ba)) d= (Wλ(x;Ba),Wλ(x;Ba)),
which implies that Wλ+a(x;B) =Wλ(x;Ba) almost surely, as desired.

Case 2: a + λ ∈ [0,∞)k≤, a > 0, λ ∈ (−∞,0]k≤. In this case, let θm = (λ + a, am) ∈[0,∞)m+k≤ , and form Wm from θm as above. Let PRSK be the Pitman transform
introduced prior to Corollary 3.12 sending Wm to an environment with its slopes
reversed. Set Xm = PRSKW

m. Since λ(Wm) = θm is in Rk
≤, we can apply Proposition

3.10 to recover the lines of Xm from last passage values across Wm. In particular,
for j ≤m we have

j

∑
i=1

Xm
i (x) =Wm[(−∞, (k + 1, . . . , k + j)) → (xj ,1)] = j

∑
i=1

Ba
i (x).

Here the first equality uses Proposition 3.10 and the second equality uses Theorem
4.9. Therefore Xj = Ba

j for j ≤m. We can also recover last passage values in RWm

from those in RXm since λ(RXm) = θm is in Rk
≤:

RXm[(−∞, (m + 1, . . . ,m + k)) → (−x,1)] = RWm[(−∞, (1, . . . , k)) → (−x,1)]
=Wm[(−∞, (1, . . . , k)) → (x,1)]
=Wλ+a(x;B). (59)
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The first equality again uses Proposition 3.10 and the second is easy to see from the
definition. The third equality is Theorem 4.9. Next, let X̃m denote the environment
with Xm

i = X̃
m
i for i ≤m and such that for 1 ≤ j ≤ k we have

j

∑
i=1

Xm
m+i = B̄

λ(x,m + 1;Ba).
Then by the metric composition law (see Remark 4.11) we have that

Wλ(x;Ba) = RX̃m[(−∞, (m + 1, . . . ,m + k))→ (−x,1)]. (60)

At this point we are in a similar situation to Case 1, with equations (59) and (60)
playing the role of equations (56), (57) (equivalently, the environments RXm,RX̃m

take the place of Wm, W̃m from that case). Taking m→∞ in (59) and (60) and ap-
plying the same martingale argument as above gives that Wλ(x;Ba) =Wλ+a(x;B)
almost surely.

Cases 3 and 4: λ ∈ (−∞,0]k≤, a < 0 or a+λ ∈ (−∞,0]k≤, a < 0, λ ∈ [0,∞)k. These
are simply cases 1 and 2 applied to the time-reversed environment RB.

Case 5: a > 0, λ ∈ (−∞,0]k≤, a + λ ∈ (−∞,0]k≤. By Case 2, we have the almost sure
equality (Ba)−a = B. Using this, we can rewrite our desired formula as

Wλ+a(x; (Ba)−a) =Wλ(x;Ba).
This equality holds almost surely by applying Case 3 to the environment Ba with
parameters −a < 0, λ+a ∈ (−∞,0]k≤ instead of a,λ. Case 3 holds for the environment
Ba since we can remove the drift because last commutes with common functional
shifts.

Case 6: a < 0, λ ∈ [0,∞)k≤, a + λ ∈ [0,∞)k≤. This is case 5 applied to RB.

5 RSK for the directed landscape

In this section, we take a final RSK limit to prove Theorem 1.7. As in the previous
section, we will first need to develop a basic theory of multi-path Busemann functions
in this setting.

5.1 The extended stationary horizon and the directed landscape

With the machinery we have built studying Brownian LPP, we can now build a
comprehensive theory of multi-path Busemann functions for the directed landscape.
We start with the analogue of Theorem 4.1 for the directed landscape, which was
proven in [BSS24] and [RV21]. Throughout the remainder of the paper, we say
that a k-tuple of continuous functions π = (π1, . . . , πk) where πi ∶ (−∞, t] → R is a
disjoint k-tuple in direction θ to (x, t) for some θ,x ∈ Rk

≤, if:
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• πi(s) < πi+1(s) for i = 1, . . . , k − 1 and s < t.

• π(s)/∣s∣→ θ as s→ −∞ and π(t) = x.
We say that π is a (semi-infinite) optimizer in L if π∣[s,t] is an optimizer for all
s < t. As per usual, we talk call an optimizer with a single path a geodesic.

Theorem 5.1. The following statements hold on a single event of full probability.

1. (Theorem 3.14, [RV21]) For every point p = (x, s) ∈ R2 and every direction
θ ∈ R, there exist leftmost and rightmost semi-infinite geodesics ending at p in
direction θ. Call these geodesics πθ,p and π

θ,p
R . For fixed p, θ, almost surely

πθ,p = πθ,p
R .

2. (Theorem 6.3(i), [BSS24]) For any t < s, the functions (θ, s)↦ πθ,(x,s)(t) and
(θ, s)↦ π

θ,(x,s)
R

(t) are nondecreasing in θ, s.

3. (Theorem 2.5, [BSS24]) There exists a random, translation invariant, count-
ably infinite, dense subset Ξ ⊂ R such that for θ ∉ Ξ, if π,π′ are two semi-
infinite geodesics in direction θ, then π(s) = π′(s) for all small enough s.

4. (Theorem 5.1, [BSS24]) Consider θ ∉ Ξ, p = (y, t) ∈ R2, and any path π ∶(−∞, t]→ R with π(s)/∣s∣→ θ as s→∞. Then the Busemann function

Bθ(p;L) ∶= lim
s→−∞

L(π̄(s);p) −L(π̄(s); 0,0)
exists and does not depend on the choice of π. Here recall the notation π̄(s) ∶=(π(s), s). Moreover, for fixed π, the convergence above is uniform on compact
subsets of p ∈ R2.

5. (Theorem 4.3, [RV21]) For s < t and y ∈ R, we have the metric composition
law

Bθ(y, t;L) =max
x∈R

Bθ(x, s;L) +L(x, s;y, t).
We can now state analogues of the main results of Section 4.1 for the directed
landscape. The proofs are almost identical to the proofs for Brownian LPP, so we
will go through the steps briefly. For x ∈ Rk

≤ and θ ∈ J k
< define

Bθ(x, t;L) ∶= lim
s→−∞

L(θ∣s∣, s;x, t) − k

∑
j=1

L(θj ∣s∣, s; 0,0) (61)

When t = 0 we omit it from the notation, and when L is unambiguously defined, we
also omit it from notation, so Bθ(x) =Bθ(x,0;L).
Proposition 5.2. Almost surely, the following claims hold for the directed landscape
L.
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1. For every k ∈ N, a > 0, t ∈ R and every compact box K = ∏k
i=1[θ−i , θ+i ] ⊂ Rk

<

there exist vectors y,z ∈ Qk
≤ with y ≤ −ak ≤ ak ≤ z such that for any θ ∈ K

the k-tuples of semi-infinite leftmost geodesics πθ,(y,t)
∶= (πθ,(y1,t), . . . , πθ,(yk ,t))

and πθ,z
∶= (πθ,(z1,t), . . . , πθ,(zk ,t)) are both disjoint k-tuples. In particular, they

are both disjoint optimizers.

2. For any a > 0, t ∈ R, θ ∈ J k
< , there exists ǫ > 0, there exists y ≤ −ak < ak ≤ z and

T < t such that whenever ∥θ1 − θ∥∞ < ǫ, ∥θ2 − θ∥∞ < ǫ:
• For any i = 1, . . . , k, any geodesics in direction θ1,i to (yi, t) and direction
θ2,i to (zi, t) are equal at time T .

• Any geodesics from θ1,i to (yi, t), i = 1, . . . , k are mutually disjoint. Simi-
larly, any geodesics from θ2,i to (zi, t) are mutually disjoint.

3. The limit (61) exists for all k ∈ N, θ ∈ J k
< ,x ∈ R

k
≤, t ∈ R, and equals

lim
s→−∞

L(π̄(s);x, t) − k

∑
j=1

L(π̄(s); 0,0)
for any k-tuple of paths π = (π1, . . . , πk) with direction θ.

4. There exist semi-infinite optimizers in every direction θ ∈ Rk
≤ ending at every

point in (x, s) ∈ Rk
≤ ×R.

5. For any θ ≤ θ′,x ≤ x′ and t ∈ R we have

Bθ(x′, t) +Bθ′(x, t) ≤Bθ(x, t) +Bθ′(x′, t).
6. Let θ ∈ J k

< , a ∈ R, ǫ > 0 be as in part 2 above. If ∥θ − θ′∥∞ < ǫ and θ′ ∈ J k
< as

well, then for all x ∈ [−a, a]k≤,

Bθ(x, t) −Bθ(0k,0) =Bθ′(x, t) −Bθ′(0k,0).
7. For x, θ ∈ Rk

≤ and t ∈ R define

B̂θ(x, t) = lim
θ′↓θ,θ′∈Ik<

Bθ′(x, t) −Bθ′(0k) (62)

Bθ(x, t) = lim
θ′↓θ,θ′∈Ik<

Bθ′(x, t) −m(θ)
∑
j=1

Bθ
′Ij(θ)(0∣Ij(θ)∣) (63)

Then the limits above exists for all fixed x ∈ Rk
≤, t ∈ R.
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Proof. Part 1 follows as in the proof of Lemma 4.4, uses that translation invariance
of the directed landscape in place of translation invariance of Brownian last passage
percolation. Now fix θ ∈ J k

< , t > 0, a > 0 and let K = ∏k
i=1[θ−i , θ+i ] ⊂ Rk

< contain θ in
its interior. Let y,z be chosen as in part 1 from a,K. Let θ−n = θ−1/n, θ+n = θ+1/n so
that for large enough n, θ±n ∈K. Let πθ±n,y denote the k-tuple of leftmost geodesics in
direction θ±n ending at (y, t). Then both of the monotone sequences πθ−n,y and πθ+n,z

have pointwise limits π,π′. We have πθ−n,y ≤ π ≤ π′ ≤ πθ+n,z for all n by monotonicity
of geodesics (Theorem 5.1.2), and so π,π′ must be k-tuples of paths in direction θ.

Next, sequences of geodesics that converge pointwise must converge in overlap to
limiting geodesics (Lemma 2.10.2). Therefore both π,π′ must both be k-tuples
of geodesics in direction θ, and hence coalesce together at all small enough times
by Theorem 5.1.4. Moreover, overlap convergence ensures that πθ−n,y∣K = π∣K and
πθ+n,z∣K for all compact sets K ⊂ (−∞, t) and all large enough n, and hence by
coalescence of π,π′ there exists T such that πθ−n,y(T ) = πθ+n,z(T ) = π(T ) = π′(T ) for
some large n, yielding part 2. Therefore by monotonicity of finite optimizers, for s
small enough, for any x ∈ [−a, a]k≤, we have:

L(π̄θ(s);x, t) − k

∑
j=1

L(π̄θ
j (s); 0,0) = L(π̄(T );x, t) − k

∑
j=1

L(π̄j(T ); 0,0),
yielding part 3.

For Part 4, we can establish the existence of optimizers in directions θ ∈ J k
< as in

the proof of Proposition 4.3. Now consider θ ∉ J k
< and let θ±n be sequences with

θ−n,i < θn < θ
+
n,i that converge to θ and are in J k

< . Let (x, s) ∈ Rk
≤ ×R, and let π−n, π

+
n

be sequences of optimizers to (x, s) in directions θ−n, θ
+
n.

Consider the paths τ−n = π
−
n ∧ π

+
n and τ+n = τ

+
n = π

−
n ∨ π

+
n. Both τ−n , τ

+
n always consist

of disjoint paths. Moreover, from the definition of path length, it is easy to check
that ∥τ+n,i∣[0,t]∥L + ∥τ−n,i∣[0,t]∥L = ∥π+n,i∣[0,t]∥L + ∥π−n,i∣[0,t]∥L.
This forces both τ−n and τ+n to be semi-infinite optimizers in directions θ−n, θ

+
n with

τ−n ≤ τ+n . In other words, in the initial choice of π−n, π
+
n we may assume π−n ≤ π+n.

Similarly, we may assume π−1 ≤ π
−
2 ≤ ⋅ ⋅ ⋅ ≤ π

+
2 ≤ π

+
1 . Therefore letting π = limn→∞ π+n,

we have that π is a k-tuple of paths with asymptotic direction θ ending at (x,1).
Moreover, for any r1 < r2 < r3 ∈ (−∞, t] we have that

L(π̄(r1); π̄(r2)) +L(π̄(r2); π̄(r3)) = L(π̄(r1); π̄(r3)), (64)

where π̄(ri) = (π(ri), ri), since this equality holds for all the approximations π+n and
the extended landscape is continuous. Lemma 8.2 in [DZ21] implies that almost
surely, any path π satisfying (64) satisfies π(q) ∈ Rk

< for any rational point q. Now,
for every n ∈ Z∩ (−∞, t), we can find a disjoint optimizer from π̄(n−1) to π̄(n). We
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can also find a disjoint optimizer from π̄(⌈t−1⌉) to π̄(t). Concatenating together all
of these optimizers yields a k-tuple of disjoint paths π′ satisfying (64). Moreover,
the asymptotic direction of π′ is still θ, since Lemma 2.16 controls how far our new
k-tuple π′ can wander from the linear interpolation of π∣(−∞,t]∩Z. Therefore π′ is a
disjoint optimizer in direction θ ending at (x,1).
Part 5,6 follows from the quadrangle inequality for finite values of L (Lemma 2.15)
and in Part 7, the proof in Proposition 4.8 goes through verbatim.

Next, we aim to identify the law of the process (θ,x) ↦Bθ(x). We can guess this
law by using convergence of Brownian LPP from Theorem 2.11. Indeed, let La be as
in that theorem. For x ∈ Rk

≤ and θ ∈ J k
< , we can again attempt to define Bθ(x,0;La)

via (61), with La used in place of L. Given an interval [−b, b], this is almost surely
well-defined for all x ∈ [−b, b]k< when a < 4θ1, and equals a Busemann function in the
original environment Ba:

Bθ(x,0;La) = Ba3/(2a−8θ)(x,0;Ba).
We can identify the joint law in θ,x of right-hand side above by Theorem 4.12:

Ba
3/(2a−8θ)(x,0;Ba) =W√a3/(a−4θ)(x,0;Ba)

d=W
√
a3/(a−4θ)+a(x,0;B0) =W2θ+O(θ2/∣a∣)(x,0;B0). (65)

In other words, we should expect that Bθ(x;L) d= W2θ(x;B) jointly in all θ,x,
where B is an environment of independent drift-free Brownian motions. When x, θ
are both singletons, this was established in [BSS24, Theorem 5.3(iii)]. The next
proposition extends this to the level of the whole extended stationary horizon.

Proposition 5.3. For any finite or countable subset F ⊂ ⋃∞k=1R
k
≤, we have the equal-

ity in law Bλ/2(x;L) d= Wλ(x;B) jointly as continuous functions of λ ∈ F,x ∈ R∣λ∣≤
with respect to the compact topology. Moreover, we have the following convergence
in law as a → −∞:

(Bθ(x,0;L−a),L−a) d
→ (Bθ(x,0;L),L). (66)

Here the first coordinate should be viewed as a function of θ ∈ F,x ∈ R∣θ∣≤ , with the
compact topology, and the second coordinate should be viewed as a function on X↑
with the compact topology.

Note that Proposition 5.3 is technically restricted to only looking at finite dimen-
sional distributions in λ. This is purely to avoid discussing topological issues involv-
ing jumps of the Busemann process. To prove Proposition 5.3, we need a version of
the continuous mapping theorem.
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Lemma 5.4. Suppose that Xn,X are random variables taking values in a metric

space (S, e) and that Xn
d
→ X. Let f ∶ S → T be a Borel-measurable function

taking values in another metric space (T,d), and suppose that there are functions
fm ∶ S → T such that the following conditions hold:

• fm(X) d
→ f(X) as m →∞.

• fm(Xn) d
→ fm(X) as n→∞ for all fixed m.

• limm→∞ lim supn→∞E(d(fm(Xn), f(Xn)) ∧ 1) = 0.
Then f(Xn) d

→ f(X).
Proof. Let g ∶ T → R be any 1-Lipschitz function with ∥g∥∞ ≤ 1. To prove the lemma
it is enough to show that Eg ○ f(Xn)→ Eg ○ f(X) as n→∞. For any m ∈ N we can
write

∣Eg ○ f(Xn) − Eg ○ f(X)∣ ≤ ∣Eg ○ f(Xn) −Eg ○ fm(Xn)∣
+ ∣Eg ○ fm(Xn) −Eg ○ fm(X)∣ + ∣Eg ○ fm(X) −Eg ○ f(X)∣.

As we take n→∞, the middle term on the right-hand side above converges to 0 since

fm(Xn) d
→ fm(X). Moreover, as we take m→∞, the final term above converges to

0 by the dominated convergence theorem since g is continuous and fm(X) d
→ f(X).

Finally, since g is 1-Lipschitz and has L∞-norm at most 1, we have:

lim
m→∞

lim sup
n→∞

∣Eg ○ f(Xn)−Eg ○ fm(Xn)∣ ≤ lim
m→∞

lim sup
n→∞

E(d(fm(Xn), f(Xn))∧ 1) = 0,
where the finally bound uses the second bullet point.

Proof of Proposition 5.3. The claimed convergence in law implies the equality in
distribution, so we focus on this point. In order to prove this convergence in dis-
tribution, it suffices to show that if we consider a finite set F ⊂ ⋃∞k=1R

k
≤ and the

compact set

Kb ∶= {(θ,x) ∶ θ ∈ F,x ∈ [−b, b]∣θ∣≤ },
we have convergence in law in (66) when (θ,x) is restricted to Kb and convergence
of the first coordinates is with respect to the L∞-norm on functions from Kb →
R∪ {±∞}. We first deal with the case when F ⊂ ⋃∞k=1R

k
<. We will also assume that

F has the following downward closed property: if θ ∈ F ∩Rk
< and I ⊂ {1, . . . , k}, then

θI ∈ F as well.

We appeal to the framework of Lemma 5.4. Let an → −∞ be an arbitrary sequence.
The random variables Xn,X in that lemma will be given by Lan ,L; the compact
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topology on functions h ∶ X↑ → R is metrizable and the choice of our metric is not
important. The function f will be given by mapping h ∶ X↑ → R to the pair

f(h) ∶= (lim sup
s→−∞

h(θ∣s∣, s;x, t) − k

∑
j=1

h(θj ∣s∣, s; 0,0), h) ∶Kb ×X↑ → R ∪ {±∞}.
When h = La, the first coordinate is Bθ(x,0;L−a) almost surely on all of Kb when a

is small enough by Proposition 4.3, and is Bθ(x,0;L) almost surely on all of Kb by
Proposition 5.2 when h = L. We define fm(h) to have the same second coordinate
as f(h), but with the first coordinate replaced with the following:

h(θtm,−tm;x, t) − k

∑
j=1

h(θjtm,−tm; 0,0)
+ [ inf

z∈[−m,m]k≤

k

∑
j=1

h(θjtm,−tm; zj ,0) − h(θtm,−tm;z,0)].
(67)

Here tm is a sequence that will tend to ∞ very quickly with m; we set this sequence
in the course of the proof. In our setup, Proposition 5.2 ensures that the first
condition of Lemma 5.4 is satisfied; note that the shape theorem for L (Lemma
2.16) guarantees that the bracketed term in (67) is 0 with probability tending to 1

for all large enough m. The second condition follows since La
d
→ L as a → −∞ and

fm is continuous. For the final condition, we show that

lim
m→∞

lim inf
a→−∞

P(fm(La) = f(La)) = 1. (68)

First, using Lemma 4.7, we can find δ > 0 such that the following condition holds
with probability 1 − 1/m for all sufficiently large a:

• For all x ∈ [−m,m]k≤, θ ∈ F, ∥θ′ − θ∥∞ ≤ δ:
Bθ′(x,0;L−a) −Bθ′(0k,0;L−a) =Bθ(x,0;L−a) −Bθ(0k,0;L−a).

Here the fact that we can use the same ǫ uniformly over all large enough a follows
from the computation (65), which implies that all claims for L−a are implied by a
common claim for an undrifted Brownian environment B0. Now, the shape theorems
for Brownian LPP (Propositions 2.6 and 2.7) and the quadrangle inequality imply
that there exists some sm < 0, such that for all large enough a, the following bound
holds with probability 1 − 1/m:

• For all y ≤ x ∈ [−b, b]k≤, θ ∈ F, t < sm, we have:

Bθ−δ(x,0;L−a) −Bθ−δ(y,0;L−a) ≤ L−a(θ∣t∣, t;x,0) −L−a(θ∣t∣, t;y,0)
≤Bθ+δ(x,0;L−a) −Bθ+δ(y,0;L−a)
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Combining this with the previous bullet, as long as we take tm ≤ sm, with probability
tending to 1 we have that with probability at least 1 − 2/m, for all large enough a,
for (θ,x) ∈Kb we have that the first coordinate of f(L−a) at (θ,x) equals

B̂θ(x,0;L−a) + inf
z∈[−m,m]k≤

k

∑
j=1

Bθi(zi,0;L−a) − B̂θ(z,0;L−a).
On the other hand, the infimum on the right-hand side equals 0 with probability
tending to 1 withm, uniformly over all large enough a. The uniformity over a follows
from the representation of the processes B⋅(⋅;L−a) in terms of the Busemann process
across B0, (65). In summary, we have shown (68) as desired.

It remains to check the case when F ⊂ ⋃∞k=1R
k
≤ (i.e. elements of F can have repeated

points). Let

f(h) ∶= (lim sup
s→−∞

h(θ∣s∣, s;x, t) −m(θ)
∑
j=1

h(θIj(θ)∣s∣, s; 0∣Ij(θ)∣,0), h),
and set the approximations fm to be given by replacing θ with θ + (0,1/m, . . . , (k −
1)/m) in the definition of f . Then by the previous case, fm(L−a) d

→ fm(L) as
a→∞ for every fixed m so the second condition of Lemma 5.4 is satisfied. The first
condition is satisfied by Proposition 5.2.7. Finally, if we let f1, fm,1 denote the first
coordinate of these functions, we have

lim
m→∞

lim sup
a→∞

E∥f1(L−a) − fm,1(L−a)∥∞ ∧ 1 = 0.
This follows again since we know the joint law of f1(L−a), fm,1(L−a) for all fixed
a: it is simply given via Theorem 4.9, and this explicit representation in terms of
Brownian motions allows us to easily check the above convergence to 0. This yields
the third condition of Lemma 5.4, so by that lemma the proof is complete.

Given that we have identified the law of the process B, we can now give the analogue
of Lemma 4.10 in the limiting setting of B.

Corollary 5.5. For θ,x ∈ Rk
≤ let Π(θ) = (I1, . . . , Im(θ)) and define

B̄θ(x, t;L) = lim
s→−∞

L(θ∣s∣, s;x,0) −m(θ)
∑
j=1

L(s, θIj ∣s∣;xIj ,0).
Then for any fixed θ ∈ Rk

≤, almost surely B̄θ(x, t;L) = Bθ(x, t;L) for all x ∈ Rk
≤, t ∈ R

and

B̄θ(x, t;L) = lim
s→−∞

L(π(s), s;x,0) −m(θ)
∑
j=1

L(s,πIj(s);xIj ,0)
for any disjoint k-tuple π ending at (x,1) in direction θ.
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The proof of Lemma 4.10 applies verbatim to Corollary 5.5, since that proof only
used monotonicity/the quadrangle inequality and a characterization of the Buse-
mann law, which we have in this context by Proposition 5.3. We leave the details
to the reader. Corollary 5.5 also implies a metric composition law for Busemann
functions in L, which can be used to prove optimizer uniqueness.

Lemma 5.6. Fix θ ∈ Rk
≤. Then the following holds almost surely for all x ∈ Rk

≤ and
s < t:

Bθ(x, t;L) =max
z∈Rk

≤

Bθ(z, s;L) +L(z, s;y, t). (69)

Proof. We work on the almost sure set where Bθ = B̄θ from Corollary 5.5. Let π be
a semi-infinite optimizer to (x, t) in direction θ, and for r < s ≤ t and z ∈ Rk

≤ define

Bθ
r(z, s;L) = L(π(r), r;z, s) −

m(θ)
∑
j=1

L(r, πIj(r);xIj ,0).
Then the identity (69) holds with B̄θ

r in place of B̄θ on both sides by the usual
metric composition law. Since π is an optimizer we also have that

Bθ
r(x, t;L) =Bθ

r(π(s), s;L) +L(π(s), s;y, t).
for all r < s. Combining these facts with the pointwise convergence Bθ

r → B̄θ = Bθ

from Corollary 5.5 yields the result.

Lemma 5.7. Fix θ ∈ Rk
≤,x ∈ R

k
≤, and t ∈ R. Then almost surely, there is a unique

semi-infinite optimizer in direction θ to the point (x, t).
Proof. If π is a semi-infinite optimizer in direction θ to (x, t), then using Lemma
5.6, for every s < t, the point π(s) must be an argmax for the metric composition
law (69). Therefore to prove Lemma 5.6 it is enough to show that the optimizer
in (69) is almost surely uniquely achieved for any fixed s. This will imply that π

is a.s. uniquely specified at all rational s, and hence by continuity is a.s. unique.
The proof that the argmax has a unique maximum can be found in [DZ21, Lemma
7.3]. (Note: that proof gives uniqueness for the same problem when the function
g(z, s) ∶=Bθ(z, s;L) is replaced by h(z, s) ∶= L(y, r;z, s) for general (y, r). However,
the only information about the function h used in that proof is a soft probabilistic
representation which in the context of our function g is given by Theorem 4.9).

5.2 RSK for the directed landscape

Now that we have defined Busemann functions for the directed landscape, we are
ready to define the RSK correspondence in the directed landscape limit and prove
Theorem 1.7. We begin by restating a version of the theorem here.
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Theorem 5.8. Let L be a directed landscape, and for every a ∈ R define a sequence
of lines Ba = (Ba

i , i ∈ N) via the formula

k

∑
i=1

Ba
i (x) =B(a/2)k(xk,0;L).

Then:

1. (Law of the RSK image) The joint law of (Ba, a ∈ R) is same as the joint law
of the processes (Ba, a ∈ R) defined in Theorem 4.12. In particular, each Ba is
a sequence of independent two-sided Brownian motions of drift a and we have
the Busemann isometry

Wθ(x;Ba) =B(θ+a)/2(x;L)
for all x, θ ∈ Rk

≤, k ∈ N.

2. (Abstract Invertibility) Define H2
↑ ∶= {(x, s;y, t) ∈ R4

↑ ∶ t ≤ 0}. There is a

measurable function f ∶ CN(R)→ C(X−↑ ) such that almost surely f(B0) = L∣X−↑ .
3. (Explicit Inversion Formula 1) For every a ∈ R, as in Theorem 2.11, for(x, s;y, t) ∈ X−↑ ∶= {(x, s;y, t) ∈ X↑ ∶ t ≤ 0} define

La(x, s;y, t) = Ba[(x, s)a → (y, t)a] − a2

4
(t − s),

where (x, s)a = (x − as/4, ⌈sa3/8⌉+ 1). Then as a → −∞, La converges to L in
probability, in either of the following equivalent senses:

(a) For every compact set K ⊂ X−↑ we have

sup
u∈K

∣La(u) −L(u)∣→ 0

in probability as a→ −∞.

(b) For every sequence an → −∞ there is a subsequence n1 < n2 < . . . such that
Lank → L almost surely as k →∞, in the compact topology on functions
on X−↑ .

4. (Explicit Inversion Formula 2) For every a ∈ R, extend the Brownian line
environments Ba to environments indexed by i ∈ Z by the rule that:

k

∑
i=1

Ba
1−i(x) = lim

t→∞
L(0k,0;−(a/2)kt, t) −L(xk,0;−(a/2)kt, t),

and use this to extend the definition of La to all of X↑. Then as a → −∞, La

converges to L in probability as functions in the compact topology on X↑.

64



Theorem 1.7 is Theorem 5.8(iv). Note that we have defined (x, s)a using a different
rounding convention than in the introduction. The two choices are clearly equivalent,
but the latter choice associates X−↑ to R ×N.

Theorem 5.8.1 is a consequence of Proposition 5.3 and the Busemann shear charac-
terization, Theorem 4.12. Most of the remainder of Section 5 is devoted to proving
the abstract inversion result in Theorem 5.8.2. Given abstract invertibility, we can
use the following measure-theoretic lemma to move to the explicit inversion formulas
in parts 3,4.

Lemma 5.9. Let {Xn, n ∈ N},X be random variables taking values in a complete
separable metric space (S,d) equipped with its Borel σ-algebra, and let {Yn, n ∈ N}, Y
be random variables taking values in a Banach space (T, ∥ ⋅∥) equipped with its Borel
σ-algebra. Suppose that:

1. As n→∞, (Xn, Yn) d
→ (X,Y ) and Xn

P
→X.

2. There is a measurable function h ∶ S → T such that Y = h(X) a.s.
Then Yn

P
→ Y as n→∞.

Proof. For every ǫ > 0, by Lusin’s theorem we can find a closed set E ⊂ S such that
h∣E is continuous and P(X ∉ E) ≤ ǫ. Next, Dugundji’s extension theorem [Dug51]
states that if S is any metric space, E ⊂ S is closed, and T is a locally convex
topological vector space, then any continuous function from E → T can be extended
to a continuous function from S → T . In our setting, since Banach spaces are locally
convex, this implies that there exists a continuous function hǫ ∶ S → T such that
h∣E = hǫ∣E. Now, for δ > 0 we can write

P(∥Yn − Y ∥ > δ) ≤ P(X ∉ E) + P(∥Yn − Y ∥ > δ,X ∈ E)
≤ ǫ + P(∥Yn − hǫ(X)∥ > δ)
≤ ǫ + P(∥Yn − hǫ(Xn)∥ ≥ δ/2) + P(∥hǫ(Xn) − hǫ(X)∥ > δ/2). (70)

Here the second inequality uses that Y = h(X) = hǫ(X) when X ∈ E. Now, since

Xn
P
→X and hǫ is continuous, hǫ(Xn) P

→ hǫ(X) as well, so the second probability in
(70) converges to 0 as n→∞. Also, since both of the functions ∥⋅∥, hǫ are continuous
and (Xn, Yn) d

→ (X,Y ) we have that ∥Yn − hǫ(Xn)∥ d
→ ∥Y − hǫ(X)∥. The random

variable ∥Y − hǫ(X)∥ equals 0 unless X ∈ E, and so

limsup
n→∞

P(∥Yn − hǫ(Xn)∥ ≥ δ/2) ≤ P(∥Y − hǫ(X)∥ ≥ δ/2) ≤ P(X ∈ E) ≤ ǫ.
Therefore as n →∞, the limsup of (70) is at most 2ǫ. Letting ǫ → 0 completes the
proof.
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Proof of Theorem 5.8.3, 5.8.4 from Theorem 5.8.2. We start with part 3. Our aim
is to appeal to Lemma 5.9. We first observe that the space T of functions f ∶ X−↑ →
R ∪ {±∞} is a Banach space in the following norm:

∥f∥ = ∞∑
i=1

2−i
∥f ∣Ki

∥∞
1 + ∥f ∣Ki

∥∞ ,

where Ki, i ∈ N is any collection of compact subsets of X−↑ whose union is all of X−↑ .
Convergence in probability in (T, ∥ ⋅ ∥) is equivalent to the two types of convergence
described in the statement of the theorem.

Now, fix a sequence an → −∞. Our goal will be to apply Lemma 5.9 with Yn =
Lan , Y = L∣X−↑ . We let Xn,X ∈ CN(R) be the line ensembles given by

k

∑
i=1

(Xn)i(x) =B0k(xk;Lan), k

∑
i=1

Xi(x) =B0k(xk;L).
From our construction, we actually have that Xn =X for all n. Moreover, Theorem
5.8.2 implies that Y = h(X) for some measurable function h. This uses that L∣X−↑
is defined as a function of L∣H2

↑
. Therefore Theorem 5.8.3 follows from Lemma 5.9

and the joint convergence

(La,B0k(⋅;La), k ∈ N) d
→ (L,B0k(⋅;L), k ∈ N) (71)

as a→ −∞, which is proven in Proposition 5.3.

The proof of Theorem 5.8.4 is essentially the same. In this setting, we instead work
with the Banach space of functions from X↑ → R∪{±∞} with the compact topology,
set Yn = Lan , Y = L and let Xn,X ∈ CZ(R) extend the previous definitions of Xn,X

by letting

k

∑
i=1

(Xn)1−i(x) =B0k(−xk; L̂an), k

∑
i=1

X1−i(x) =B0k(−xk; L̂),
where L̂a(x, s;y, t) = La(−y,−t;−x,−s) (and similarly for L). Again, Xn = X

for all n, and by Proposition 5.3 and symmetry, we again have the convergence

(Xn, Yn) d
→ (X,Y ). Finally, we claim that Y ∈ σ(X). From Theorem 5.8.2 and

symmetry, we have that L∣X−↑ , L̂∣X−↑ ∈ σ(X). Moreover L∣X↑ ∈ σ(L∣X−↑ , L̂∣X−↑ ) by the
metric composition law, yielding the result.

As discussed in the introduction, we can prove that the directed landscape on a strip
is a measurable function of the Airy line ensemble with relative ease given Theorem
5.8. We restate the result and prove it here. For this corollary, let

S2↑ = {(x, s;y, t) ∈ (R × [0,1])2 ∶ s < t}.
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Corollary 5.10. Let L be the directed landscape, and define process A as follows:

k

∑
i=1

Ai(x) = L(0k,0;xk,1).
Then A ∈ CN(R) is a parabolic Airy line ensemble and there is a measurable function
f ∶ CN(R)→ C(S2↑) such that almost surely f(A) = L∣S2↑ .
Corollary 5.10 is a restatement of Theorem 1.8.

Proof. First, let L1 be a directed landscape, independent of L and define L2 so that

• L2(x, s;y, t) = L1(x, s;y, t) if t ≤ 0.
• L2(x, s;y, t) = L(x, s;y, t) if s ≥ 0.
• L2(x, s;y, t) =maxz∈RL1(x, s; z,0) +L(z,0;y, t) if s < 0 < t.

The process L2 is another directed landscape by the axioms in Theorem 2.8. There-
fore by Theorem 5.8 and temporal shift invariance, we can reconstruct L2 on the
set (R × (−∞,1])2↑ from its Busemann functions B0

k(xk,1), k ∈ N. By the metric
composition law for Busemann functions (Lemma 5.6), we can build these using L1
and the extended Airy sheet S(x,y) = L(x,0;y,1). By [DZ21, Theorem 1.3], the
entire extended Airy sheet S is almost surely a measurable function of A. Therefore
since L∣S2↑ is contained as a restriction of L2∣(R×(−∞,1])2↑ , we have shown that there

is a measurable function g such that

g(L1,A) = L∣S2↑ .
Since L1 is independent of L, this implies the corollary by the abstract Lemma 5.11
below.

Lemma 5.11. Suppose that X,Y,Z are random variables taking values in three
Polish spaces S1, S2, S3 equipped with their Borel σ-algebras. Assume that X is
independent of the pair (Y,Z) and that there is a measurable function g ∶ S1×S2 → S3

such that almost surely g(X,Y ) = Z. Then there is a measurable function g′ ∶ S2 → S3

such that almost surely g′(Y ) = Z.

Proof. For a Borel set A ⊂ S3, define ZA
Y ∶= P(Z ∈ A ∣ Y ) and similarly define

ZA
X,Y ∶= P(Z ∈ A ∣ X,Y ). It is enough to show that almost surely, ZA

Y ∈ {0,1} for any
Borel set A ⊂ S3. This is true for ZA

X,Y since Z = g(X,Y ) so we just need to show

that ZA
Y = Z

A
X,Y almost surely. Indeed, for any product of Borel sets B1×B2 ∈ S1×S2
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we have

E[ZA
Y 1(X ∈ B1, Y ∈ B2)] = P(X ∈ B1)E[ZA

Y 1(Y ∈ B2)]
= P(X ∈ B1)P(Z ∈ A,Y ∈ B2)
= P(X ∈ B1,Z ∈ A,Y ∈ B2).

Here the first and third equalities use independence of X and (Y,Z) and the second
equality is the definition of conditional expectation. Now, we can extend this by
applying Dynkin’s π − λ theorem to get that for all Borel sets B ⊂ S1 × S2 we have
E[ZA

Y 1((X,Y ) ∈ B)) = P(Z ∈ A, (X,Y ) ∈ B). Since ZA
Y is also σ(X,Y )-measurable

since it is σ(Y )-measurable this implies that ZA
Y is a version of the conditional

probability ZA
X,Y , as desired.

5.3 Single-slit and double-slit Busemann functions

In the remainder of Section 5 we will prove Theorem 5.8.2. The starting point for
the proof lies in the observation that certain semi-infinite optimizers are frozen in
the Brownian environments Ba, and so differences of certain Busemann functions
give Busemann functions for paths in restricted domains. Under the limit where

a → −∞ and La
d
→ L we can show that the same phenomenon holds in L, allowing

us to construct ‘single-slit’ and ‘double-slit’ Busemann functions. Let us explain
more precisely what we mean.

In the Brownian environments Ba, the leftmost optimizer π = (π1, . . . , πk+1) in
direction (0k, θ) ending at ((xk, y),1) has the following specific form:

i. πi(z) = i for all z ≤ x, i ≤ k.
ii. πk+1 is a semi-infinite geodesic restricted to avoid the set Dx,k ∶= (−∞, x) ×{1, . . . , k}. That is, for any t < z, the path π∣[t,z] has maximal length among all

path τ from (t, π(t)) to (z,1) with gτ ∩Dx,k = ∅, where gτ = {(r, τ(r)) ∶ r ∈[t, z]}.
Indeed, for fixed x, then for large enough y, the leftmost semi-infinite geodesic τ

to (y,1) in direction θ will be disjoint from the paths π1, . . . , πk above. Hence(π1, . . . , πk, τ) will be an optimizer since both (π1, . . . , πk) and τ are separately
optimizers. Monotonicity of optimizers then implies that even if y is not large
enough so that the semi-infinite geodesic to (y,1) is disjoint from πk, the leftmost
optimizer π in direction (0k, θ) ending at ((xk, y),1) must take the above form.
Since the paths (π1, . . . , πk) also form the optimizer from from (0k,∞) to (xk,1) we
can actually recover the relative length of πk+1 from multi-path Busemann function
values across the Brownian environment. This is immediate once we set up the
definitions correctly.

Setting some notation, for f ∈ CN(R), points (x,n), (y,m) with x ≤ y and n ≥ m,
and a set U ⊂ R×Z such that there is at least one path π from (x,n) → (y,m) with
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gπ ⊂ U define
f[(x,n)→ (y,m) ∣ U] = sup

π∶gπ⊂U

∥π∥f ,
where the supremum is over all paths π from (x,n) → (y,m) with gπ ⊂ U . For θ ≥ 0
and x ∈ R, we also define the restricted Busemann function

Bθ(x;f ∣ U) = lim
t→∞

f[(t, ⌊θt⌋ + 1)→ (x,1) ∣ U] − f[(t, ⌊θt⌋ + 1)→ (0,1)]. (72)

In (72), the term we subtract off does not depend on the set U that we are restricting
to. The implies that restricted Busemann functions Bθ(x;f ∣ U) are monotone in U

with respect to set inclusion.

Lemma 5.12. Fix k ∈ N, x ≤ y and θ > 0, and let B ∈ CN(R) be an environment of
independent Brownian motions of drift 0. Then almost surely,

B(0
k,θ)((xk, y);B) −B0k(xk;B) = Bθ(y;B ∣Dc

x,k).
Proof. Setting some notation, let Bθt (x;f ∣ U) denote the right-hand side of (72)
before taking a limit in t. Similarly, let Bθt (x;f) denote the right-hand side of (51)
before taking a limit in t. Then for t ≤ x we have

B
(0k,θ)
t ((xk, y);B) −B0kt (xk;B) = Bθt (y;B ∣Dc

x,k).
Taking a limit in t then gives the result.

Lemma 5.12 shows that certain restricted Busemann functions for the Brownian
environments Ba (and hence also La) can be constructed from the multi-path Buse-
mann process for L. We will examine what this reveals about the environments La

as a→ −∞. Consider a point (x, t) ∈ R × (−∞,0), and look at the set

{(x′, t′) ∈ R × (−∞,0] ∶ (x′, t′)a ∈D(x,t)a}.
As a → −∞, this set converges to the ray (−∞, x] × {t}. This suggests that there
should be a way to take a limit of Lemma 5.12 to recover a Busemann function in
the directed landscape for paths restricted to the slit

S−x,t ∶= R × (−∞,0] ∖ (−∞, x) × {t}.
In fact, by a symmetry argument we will be able to prove something stronger: not
only can we approximate single-slit Busemann functions for L, but we can also
approximate double-slit Busemann functions. These are Busemann functions
of the form

Bθ(y;L ∣ Su) ∶= lim
s→−∞

L(θ∣s∣, s;y,0 ∣ Su) −L(θ∣s∣, s; 0,0),
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where u = (x, s;y, t) and U(u) = S−x,t ∩ S+x,t, where S+y,t = R
2
∖ ((y,∞) × {t}). Here

θ, y ∈ R, and just as in finite LPP, for a set S and (p; q) = (x, s;y, t) ∈ R4
↑ , we write

L(p; q ∣ S) = sup
π∶p→q,gπ⊂S

∥π∥L,
where the supremum is over all paths π from p to q with gπ ∶= {(r, π(r)) ∶ r ∈ [s, t]} ⊂
S}. We have omitted the time coordinate from the Bθ notation since it will always
be 0. We also omit the landscape L when it is clear from context.

The next proposition states our precise result.

Proposition 5.13. Fix u = (x, s;y, t) ∈ R4
↑ with t < 0, and let z,µ ∈ R. For n ∈ N,

define

xn = −∣s∣2/3n1/3/2+x, sn = −∣s∣−1/3n1/3, yn = ∣t∣2/3n1/3/2+y, tn = ∣t∣−1/3n1/3,

and as usual let xnn, s
n
n, y

n
n , t

n
n denote vectors of repeated elements in Rn. Then the

following convergence holds in probability:

lim
n→∞

B(s
n
n,µ,t

n
n)(xnn, z, ynn ;L) −B(snn,tnn)(xnn, ynn ;L) =Bθ(z;L ∣ Su). (73)

We will prove Proposition 5.13 in Section 5.4 and 5.5. In the remainder of this
section, we use Proposition 5.13 to prove Theorem 5.8.2. This requires a straight-
forward metric composition law for double-slit Busemann functions. We state this
law together with a metric composition law for single-slit Busemann functions, which
we will need later on.

Lemma 5.14. Almost surely, for all θ ∈ J , u = (x, s;y, t) ∈ R4
↑ with t < 0 and w ∈ R,

the double-slit and single-slit Busemann functions Bθ(w ∣ Su),Bθ(w ∣ S−x,s) exist
and we have the following metric composition laws:

Bθ(w ∣ Su) = max
z1≥x,z2≤y

Bθ(z1, s) +L(z1, s; z2, t) +L(z2, t;w,0). (74)

Bθ(w ∣ S−x,s) =max
z2≤y

Bθ(z2, t) +L(z2, t;w,0). (75)

Proof. We only prove (74) as the proof of (75) is similar but simpler. Pick θ′ ∈
Z ∩ (θ,∞). For every n ∈ Z, let πn denote the leftmost semi-infinite geodesic to(n,0) in direction θ′. By translation invariance of the directed landscape, there
exists some random N ∈ Z such that if n ≥ N then πn(s) > x. Therefore for n > N
we have:

Bθ(w ∣ Su) = lim
r→−∞

max
z1≥x,z2≤y

B(θ∣r∣, r; z1, s) −B(θ∣r∣, r; 0,0) +L(z1, s; z2, t) +L(z2, t;w,0)
= lim

r→−∞
max

z1∈[x,πn(s)],z2≤y
B(θ∣r∣, r; z1, s) −B(θ∣r∣, r; 0,0) +L(z1, s; z2, t) +L(z2, t;w,0)

= max
z1∈[x,πn(s)],z2≤y

Bθ(z1, s) +L(z1, s; z2, t) +L(z2, t;w,0)
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Here the first equality is simply the metric composition law for L. The second
equality uses that for small enough r we have πn(r) > θ∣r∣, and so also using that
πn(s) > x, the geodesic from (θ∣r∣, r) to (w,0) that stays in Su will be to the left
of πn, and so in the metric composition law we can maximize over z1 ≤ πn(s).
The third equality uses the compact convergence of Busemann functions (Theorem
5.1.4). Taking n →∞, we have πn(s) →∞ by translation invariance of L, yielding
(74).

Proof of Theorem 5.8.2 given Proposition 5.13. Proposition 5.3 and Theorem 4.12
imply that we can almost surely reconstruct the whole multi-path Busemann process(θ,x)↦Bθ(x,0;L) fromB0. Moreover, Proposition 5.13 implies that for all rational
choices of w,θ, and u = (x, s;y, t) with t < 0, we can almost surely reconstruct the
double-slit Busemann functions Bθ(w ∣ Su) from (θ,x) ↦Bθ(x,0;L).
Now, fix rational points s < t < 0 and introduce the shorthand {x, y} = (x, s;y, t).
We can define the shock measure µs,t for the time interval (s, t) by the following
formula:

µs,t([x1, x2] × [y1, y2]) = L{x2, y2} +L{x1, y1} −L{x1, y2} −L{x2, y1}. (76)

This defines a positive measure by the quadrangle inequality for L. Moreover, given
the measure µs,t, we can reconstruct the Airy sheet L{⋅, ⋅} via ergodicity of the Airy
process L(0,0;x,1) + x2 (see [PS02, Section 5]). Indeed, for any fixed x1 < x2 and
y1, the following holds almost surely:

lim
n→∞

1

n

n

∑
j=1

[µs,t([x1, x2] × [y1, y1 + j]) − Eµs,t([x1, x2] × [y1, y1 + j])]
= L{x1, y1} −L{x2, y1} − E(L{x1, y1} −L{x2, y1})
+ lim

n→∞

1

n

n

∑
j=1

(L{x2, y1 + j} −L{x1, y1 + j}) −E((L{x2, y1 + j} −L{x1, y1 + j}))
= L{x1, y1} −L{x2, y1} − E(L{x1, y1} −L{x2, y1}).

Here the final equality uses ergodicity of the two shifted and rescaled Airy processes
L{x1, ⋅} − EL{x1, ⋅} and L{x2, ⋅} − EL{x2, ⋅}. This equality holds almost surely,
simultaneously for all rational x1, x2, y1. Next, using ergodicity of the shifted and
rescaled Airy process L{⋅, y1} −EL{⋅, y1} we have that almost surely

lim
n→∞

1

n

n

∑
i=1

L{x1, y1}−L{x1+i, y1}−E(L{x1, y1}−L{x1+i, y1}) = L{x1, y1}−EL{x1, y1}.
Therefore almost surely, for all rational x1, y1 the value L{x1, y1} can be recon-
structed from µs,t and hence by continuity, so can the whole Airy sheet L{⋅, ⋅}.
Therefore if we can reconstruct µs,t([x1, x2]×[y1, y2]) almost surely for any rational
s, t, x1, x2, y1, y2 from the collection of double-slit Busemann functions with rational
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parameters, then we can reconstruct all increments L(x, s;y, t) for x, y ∈ R and
s < t ∈ Q ∩ (−∞,0) and hence the full directed landscape on H2

↑ by continuity.

Fix s, t, x1, x2, y1, y2, and define

Xa =B−a(a ∣ S{x2,y2}) +B−a(a ∣ S{x1,y1}) −B−a(a ∣ S{x1,y2}) −B−a(a ∣ S{x2,y1}).
We claim that in probability we have the convergence

lim
a→∞

Xa = µs,t([x1, x2] × [y1, y2]), (77)

from which it follows that µs,t([x1, x2] × [y1, y2]) is a measurable function of the
double slit Busemann environment. Note that with a bit more work, it can be
shown that (77) in fact holds almost surely.

Fix x ∈ {x1, x2}, y ∈ {y1, y2}. By Lemma 5.14 we have that

B−a(a ∣ S{x,y}) = max
z1≥0,z2≤0

B−a(z1 + x, s) +L{z1 + x, z2 + y} +L(z2 + y, t;a,0). (78)

We aim to show that

B−a(a ∣ S{x,y}) =B−a(x, s) +L{x, y} +L(y, t;a,0) + Y a(x, y), (79)

where the error Y a(x, y) converges to 0 in distribution as a →∞ for any fixed x, y.
Indeed, we have the following symmetries of L, see Lemma 2.9.

L(z + y, t;a,0) −L(y, t;a,0) d= t1/3A(t−2/3z) + 2z(a − y) − z2
t

,

B−a(z + x, s) −B−a(x, s) d= B(z) − 2az.
Here A is a (stationary) Airy2 process, and B is a Brownian motion without drift,
and both equalities are jointly as continuous functions of z. These identities, to-
gether with the shape bound on L{x, y} (Lemma 2.16) imply that Y a

x,y → 0 in
probability as a → ∞, as desired. The claim (77) then follows immediately from
(79) and (76).

5.4 From multi-path to restricted Busemann functions

In the remainder of Section 5 we prove Proposition 5.13. We start with two geometric
results that will allow us to connect multi-path Busemann functions to restricted
Busemann functions in L.

Lemma 5.15. Let (x, s;y, t) ∈ X↑, and let π = (π1, . . . , πk) be the a.s. unique op-
timizer from (x, s) to (y, t). Fix m ∈ {0, . . . , k}, and consider xm ≤ a ≤ xm+1 and
ym ≤ b ≤ ym+1, where we use the convention that x0 = y0 = −∞ and xk+1 = yk+1 =∞.
Let

R = {(z, r) ∈ R × [s, t] ∶ πm(r) < z < πm+1(r)},
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and let R̄ be the closure of R. Here again we use the convention that π0 = −∞, πk+1 =
∞. Let xa = (x1, . . . , xm, a, xm+1, . . . , xk) ∈ Rk+1 and similarly define yb. Then a.s.

L(x, s;y, t) +L(a, s; b, t ∣ R) ≤ L(xa, s;yb, t) ≤ L(x, s;y, t) +L(a, s; b, t ∣ R̄). (80)

Proof. First, observe that if τ is any path from (a, s) to (b, t) that stays in R, then(π1, . . . , πm, τ, πm+1, . . . , πk) is a disjoint optimizer from (xa, s) to (yb, t), and so

∥τ∥L + k

∑
i=1

∥πi∥L ≤ L(xa, s;yb, t),
and the first inequality in (80) follows. Next, let π̃ = (π̃1, . . . , π̃m, τ, π̃m+1, . . . , π̃k) be a
disjoint k-tuple from (xa, s) to (yb, t). By monotonicity of optimizers (Lemma 2.13),
have that πm ≤ τ ≤ πm+1, so ∥τ∥L ≤ L(a, s; b, t ∣ R̄). Also, ∑k

i=1 ∥π̃i∥L ≤ L(x, s;y, t),
and the second inequality follows.

Lemma 5.15 has the following consequence for Busemann functions in L. For this
proposition, we say that a sequence of functions πn ∶ [0,∞) → [−∞,∞] converges to
a lower semicontinuous limit π ∶ [0,∞) → [−∞,∞] in the epigraph topology and
write πn →e π if:

inf
I
πn → inf

I
π (81)

as n → ∞ for all open closed intervals I = [a, b] with 0 ≤ a < b < ∞. The name
comes of the fact that this convergence is equivalent to Hausdorff convergence of
the epigraphs of πn to the epigraph of π. We require that π be lower semicontinuous
so that the limit is unique. We say that πn converges to an upper semicontinuous
function π in the hypograph topology and write πn →h π if (81) holds with sup
in place of inf. These topologies make the space of lower/upper semicontinuous
functions from [0,∞) → [−∞,∞] compact.

Proposition 5.16. Consider deterministic sequences xn, λn ∈ Rn
≤ and yn, κn ∈ Rn

≤.
Let πn be the a.s. unique semi-infinite optimizer in direction λn to (xn,0) and let
τn be the a.s. unique semi-infinite optimizer in direction κn to (yn,0). Next, for
x ∈ R, t < 0, let R±x,t ∶ [0,∞) → [−∞,∞] be the function with R±x,t(t) = x and
R±x,t(r) = ±∞ for r ≠ t, and suppose that the following conditions hold almost surely:

• For some u = (x, s;y, t) ∈ R4
↑ with t < 0, we have πn

n →h R
−
x,s and τn1 →e R

+
y,t as

n→∞.

• For any α ∈ R, there exists n0 ∈ N such that πn
n(r) < αr < τn1 (r) for all r ≤ s−1

and n ≥ n0.

Then for any µ, z ∈ R, the following two convergences hold a.s.

lim
n→∞

B(λ
n,µ,κn)(xn, z,yn) −B(λn,κn)(xn,yn) =Bµ(z ∣ Su) (82)

lim
n→∞

B(µ,κ
n)(z,yn) −Bκn(yn) =Bµ(z ∣ S+y,t). (83)
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To prove Proposition 5.16, we need two easy preliminary results.

Lemma 5.17. Let u = (x, s;y, t) ∈ R4
↑, and let R ⊂ [s, t] ×R. Let [s′, t′] ⊂ [s, t], and

let τ ∶ [s′, t′] → R be any geodesic with gτ ⊂ R. Then we can write L(x, s;y, t ∣ R) =
supπ ∥π∥L, where the supremum is over all paths π for which the set

{r ∈ [s, t] ∶ π(r) = τ(r)}
is a (possibly empty) closed interval.

Proof. Suppose that π is any path from (x, s) to (y, t) with gπ ⊂ R and non-empty
intersection with τ . Let r1 < r2 ∈ [s, t] be the first and last times when π and τ

agree. Since τ is a geodesic, we have that

∥π∥L ≤ ∥π∣[s,r1] ⊕ τ ∣[r1,r2] ⊕ π∣[r2,t]∥L,
and since τ stays in R, so does the path π∣[s,r1] ⊕ τ ∣[r1,r2] ⊕ π∣[r2,t]. Here ⊕ denotes
paths concatenation. Since this path overlaps with τ on a closed interval, the lemma
follows.

Lemma 5.18. Fix u = (x, s;y, t) with t < 0 and a point (z, r) with r < s and let w ∈ R.
Then almost surely, the restricted landscape values L(z, r;w,0 ∣ Su),L(z, r;w,0 ∣
S+y,t) are achieved by paths that stay in the interior of the sets Su, S

+
y,t respectively.

Proof. We only treat the Su case, as the S+y,t case is similar but simpler. By metric
composition,

L(z, r;w,0 ∣ Su) = max
z1≥x,z2≤y

L(z, r; z1, s) +L(z1, s; z2, t) +L(z2, t;w,0). (84)

This maximum must be achieved by the landscape shape theorem (Lemma 2.16).
To complete the proof, it suffices to show that this maximum is achieved at a point(Z1,Z2) with Z1 > x,Z2 < y almost surely. We show this for Z1 as the proof for Z2

is similar. First, for all n ∈ N, the maximization problem

max
z1≥x
L(z, r; z1, s) +L(z1, s;−n, t)

is almost surely achieved uniquely at a point Yn > x. This follows since both the
functions z1 ↦ L(z, r; ⋅, s), z1 ↦ L(z1, s;−n, t) are locally absolutely continuous with
respect to Brownian motion (see [CH14]) and independent. Now, monotonicity of
geodesics implies that if (Z1,Z2) is any pair achieving the maximum in (84), then
Z1 ≥ Yn whenever −n < Z2. Hence Z1 < x almost surely, as desired.

Proof of Proposition 5.16. We only treat the double-slit convergence (82), as the
single-slit convergence (83) is similar but simpler. We first use Lemma 5.15 to
bound the difference B(λ

n,µ,κn)(xn, z,yn) −B(λn,κn)(xn,yn) above and below.
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First, observe that the two bullet points in the lemma guarantee that xnn, λ
n
n → −∞

as n → ∞ and yn1 , κ
n
1 → ∞ as n → ∞. Moreover, these bullets implies that πn, τn

are disjoint for large enough n, and so (πn, τn) is a semi-infinite disjoint optimizer
in direction (λn, κn) to ((xn,yn); 0). Now let

π̃n
µ(r) = (πn(r), µ∣r∣, κn(r)), zn ∶= (xn, z,yn).

By Corollary 5.5, we have that almost surely:

B(λ
n,µ,κn)(xn, z,yn) −B(λn,κn)(xn,yn)

= lim
r→−∞

L(π̃n
µ(r), r;zn,0) −L((πn, κn)(r), r; (xn,yn),0) −L(µ∣r∣, r; z,0). (85)

Next, define
Rn ∶= {(z, r) ∈ R × (−∞,0] ∶ πn

n(r) < z < τn1 (r)}.
By Lemma 5.15, (85) is bounded above by

X+n ∶= lim sup
r→−∞

L(µ∣r∣, r; z,0 ∣ R̄n) −L(µ∣r∣, r; z,0), (86)

and bounded below by

X−n ∶= lim inf
r→−∞

L(µ∣r∣, r; z,0 ∣ Rn) −L(µ∣r∣, r; z,0). (87)

To complete the proof, we just need to show that for all large enough n:

X−n =X
+

n =B
µ(z ∣ Su). (88)

Now, we can find points z− < z < z+ ∈ R such that there are leftmost semi-infinite
geodesics π± in direction µ ± 1 to (z±,0) such that

π−(s) < x < π+(s), π−(t) < y < π+(t). (89)

Now, let M > 0 be large enough so that π−(r) ≤ µ∣r∣ ≤ π+(r) for all r ≤ −M . By
the second bullet point, there exists M ′ > M such that π±∣(−∞,−M ′] ⊂ Rn for all
large enough n. Therefore by Lemma 5.17, for large enough n, in the definition of
L(µ∣r∣, r; z,0 ∣ A) where A = Rn, R̄n, Su, it suffices to consider paths that stay in the
set

G ∶= {(w,r′) ∈ R × (−∞,−M ′] ∶ π−(r′) ≤ w ≤ π+(r′)} ∪ (R × [−M ′,0]).
Next, by Lemma 5.18, for each m ∈ N almost surely we can find paths τ−, τ+
that achieve the restricted landscape values L(⌊π−(−⌈M ′⌉)⌋,−⌈M ′⌉; z−,0 ∣ Su) and
L(⌈π+(−⌈M ′⌉)⌉,−⌈M ′⌉; z+,0 ∣ Su) and stay in the interior of the set Su. The first
bullet point then implies that gτ± ⊂ Rn for all large enough n. Therefore for large
enough n and r ≥M ′, it suffices to further restrict our paths to the region

G′ ∶= G ∩ ({(w,r′) ∈ R × (−M ′,0] ∶ τ−(r′) ≤ w ≤ τ+(r′)} ∪R × (−∞,−M ′])
in the definitions of L(µ∣r∣, r; z,0 ∣ A) where A = Rn, R̄n, Su. Noting that G′ ⊂
Su ∩Rn ∩ R̄n for all large enough n, we get that

L(µ∣r∣,−r; z,0 ∣ Rn) = L(µ∣r∣,−r; z,0 ∣ R̄n) = L(µ∣r∣,−r; z,0 ∣ Su)
for r ≥M ′ and all large enough n. This yields (88), completing the proof.
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5.5 Optimizers converging to rays

To prove Proposition 5.13, by the subsequential characterization of convergence in
probability it is enough to show that for any subsequence Y ⊂ N that there is a
further subsequence Y ′ ⊂ Y such that (73) holds almost surely along Y ′. By Propo-
sition 5.16, we can show this by studying the shape of the optimizer πn in direction
snn to (xnn,0) and the optimizer τn in direction tnn to (ynn,0). These optimizers are
a.s. unique by Lemma 5.7. More precisely, it is enough to show that for any sub-
sequence Y ⊂ N, there is a further subsequence Y ′ ⊂ Y along which the two bullets
in Proposition 5.16 hold a.s. Using the subsequential characterization of conver-
gence in probability and a Cantor diagonalization argument, this follows from the
following proposition.

Proposition 5.19. The following three claims hold:

• For any a ∈ (s,0) and b ∈ (t,0), as n→∞ we have

sup
r∈[a,0]

πn
n(r) P

→ −∞, inf
r∈[b,0]

τn1 (r) P
→∞.

• For any α ∈ R, ǫ > 0,

lim
n→∞

P( sup
r≤s−ǫ

πn
n(r) −αr > 0) = 0, lim

n→∞
P( inf

r≤s−ǫ
τn1 (r) −αr < 0) = 0.

• supr≤0 π
n
n(r) P

→ x and infr≤0 τ
n
n (r) P

→ y.

The proof of the claims in Proposition 5.19 for πn and τn are symmetric, so we only
prove the claims for πn. Moreover, by spatial stationarity and KPZ scale invariance
of L it suffices to prove the proposition in the special case when x = 0, s = −1. In
this case xn = −n1/3/2, sn = −n1/3.

To prove Proposition 5.19, define Fn
∶ R2 → R by

Fn(λ,w) =B((−n1/3)n,λ)((−n1/3/2)n,w) −B(−n1/3)n((−n1/3/2)n).
Then letting πλ,w denote the a.s. unique semi-infinite geodesic in L in direction λ

to (w,0), we have the following simple observation.

Lemma 5.20. For any n ∈ N and λ,w ∈ R with λ > −n1/3 and w > −n1/3/2 the
following two events differ on a null set:

1. the geodesic πλ,w is disjoint from the path πn
n.

2. Fn(λ,w) =Bλ(w).
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Proof. This follows since

B((λ,(n
1/3)n))(w, (n1/3/2)n) =B(n1/3)n((n1/3/2)n) +Bλ(w)

if and only if there is an optimizer in direction (n1/3)n to ((n1/3/2)n,0) which is
disjoint from a geodesic to (w,0) in direction λ.

We can study the joint law of Fn(λ,w),Bλ(w) by using Theorem 4.12 and the
isometry in Theorem 5.8.1. This yields the following result.

Lemma 5.21. Consider the function Gn
∶ R2 → R × {0,1} given by

Gn(λ,w) = (Fn(λ,w),1(Fn(λ,w) =Bλ(w)).
Then as n→∞, the finite dimensional distributions of Gn converge to those of

G(λ,1) ∶= (Bλ(w ∣ S−0,−1),1(Bλ(w;L ∣ S−0,−1)) =Bλ(w)).
Proof. By Theorem 4.12 and the isometry in Theorem 5.8.1, we can rewrite Fn in

terms of the Brownian environment B−2n
1/3

. Indeed, by Lemma 5.12 we have

B((−n
1/3)n,λ)((−n1/3/2)n,w) −B(−n1/3)n((−n1/3/2)n)

=W2(λ+n1/3)(w;B−2n1/3 ∣ Dc
(−n1/3/2,n))

= max
−n1/3/2≤z≤w

W2(λ+n1/3)(z,n + 1;B−2n1/3) +B−2n1/3[(z,n) → (w,1)].
We also have the identity

Bλ(w) =W2(λ+n1/3)(w,1;B−2n1/3)
=max

z≤w
W2(λ+n1/3)(z,n + 1;B−2n1/3) +B−2n1/3[(z,n) → (w,1)].

From these two formulas, the lemma then follows from the fact that

z ↦W2(λ+n1/3)(z − n1/3/2, n + 1;B−2n1/3) −W2(λ+n1/3)(−n1/3/2, n + 1;B−2n1/3)
is a Brownian motion of drift 2λ (e.g. Theorem 4.9), the convergence

B−2n
1/3[(z − n1/3/2, n)→ (w,1)] − n2/3 d

→ L(z,−1;w,0)
in the compact topology on Z2 (Theorem 2.11), and the Brownian LPP shape the-
orems (Propositions 2.6, 2.7) to control the argmax locations above. Here we have
used that we can identify the law of G from a Brownian motion and L(z,−1;w,0)
using (75).
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Proof of Proposition 5.19. Fix r0 > −1 and m ∈ R. Then by Lemma 5.20, for λ >
−n1/3,w > −n1/3/2 we have

P( sup
r∈[r0,0]

πn
n(r) >m) ≤ P( sup

r∈[r0,0]
πλ,w(r) >m) + P(Fn(λ,w) ≠Bλ(w))

Taking n→∞ and using Lemma 5.21 shows that the right-hand side above converges
to

P( sup
r∈[r0,0]

πλ,w(r) >m) + P(Bλ(w;L ∣ S−0,−1) ≠Bλ(w)). (90)

Taking λ = k,w = −k + log k in (90), shear and spatial stationarity of L (Lemma
2.9.2,4) implies that (90) converges to 0 as k →∞. This yields the first bullet. The
second bullet is similar. Indeed, by Lemma 5.20 and Lemma 5.21 for any fixed λ,w

we have that

lim sup
n→∞

P( sup
r≤−1−ǫ

πn
n(r) −αr > 0)

≤ P( sup
r≤−1−ǫ

πλ,w(r) − αr > 0) + P(Bλ(w;L ∣ S−0,−1) ≠Bλ(w)).
Taking λ = −k,w = k + log k, the right-hand side above converges to 0 as k → ∞.
The final bullet requires a slightly different idea. For each n, let

Rn = {(y, t) ∈ R × (−∞,0] ∶ y > πn
n(t)}.

By the first two bullet points in Proposition 5.19, the law of the set Rc
n is tight

with respect to the local Hausdorff topology on closed subsets of [−∞,∞]×(−∞,0].
Moreover, any subsequential limit of this law is the law of a random ray [−∞,X] ×{−1}, where X is a [−∞,∞]-valued random variable. Note that the proof of the
first bullet actually shows that X <∞ almost surely, since in that proof we showed
that

lim
k→∞

lim
n→∞

P(π−k,k+logk, πn
n are disjoint) = 1.

To prove the final bullet, we must show that X = 0 almost surely. By Lemma 5.15
we have:

B0(b;L ∣ Rn)−B0(2b;L ∣ R̄n) ≤ Fn(0, b)−Fn(0,2b) ≤B0(b;L ∣ R̄n)−B0(2b;L ∣ Rn).
(91)

Now, Lemma 5.21 implies that for every fixed w ∈ R we have that

Fn(0,w) −Fn(0,2w) d
→ [sup

x≥0
B(x) +L(x,−1;w,0)] − [sup

x≥0
B(x) +L(x,−1; 2w,0)],

where B is an independent Brownian motion. The symmetries of L imply that the
right-hand side above equals Z(w) + 3w2, where Z(w),w ≤ 0 is a tight collection of
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random variables. On the other hand, consider a subsequence along which all the
random variables

Rc
n,L,B

0(w;L ∣ Rn) −B0(2w;L ∣ R̄n),B0(w;L ∣ R̄n) −B0(2w;L ∣ Rn),w ∈ Z
jointly converge in distribution to limits [−∞,X] × {−1}, L̃, Y −w , Y +w ,w ∈ Z.

Here we allow Y −w , Y +w to possibly take on the values ±∞ so that we do not need to
address tightness of the prelimiting sequence. As before, we allow X to take on the
value −∞. For every w ∈ Z we have that

[sup
x>X

B̃(x) + L̃(x,−1;w,0)] − [sup
x≥X

B̃(x) + L̃(x,−1; 2w,0)] ≤ Y −w ≤ Y +w
≤ [sup

x≥X

B̃(x) + L̃(x,−1;w,0)] − [sup
x>X

B̃(x) + L̃(x,−1; 2w,0)],
where B̃(x) = B0(x,−1;L) is another Brownian motion of variance 2. Now, if
X = −∞ with positive probability, then on this event the metric composition law for
Busemann functions implies that Y +w = Y

−
w = B(w)−B(2w), where B is a Brownian

motion. This contradicts the asymptotic growth of the random variables Z(w)+3w2.
On the other hand, if X > −∞, then the shape theorem for L (Lemma 2.16) then
implies that as w → −∞ we have that Y −w , Y +w are equal to 3w2

−3wX plus lower order
terms. This contradicts the asymptotic growth of the random variables Z(w)+ 3w2

unless X = 0 almost surely.
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