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Abstract. Stochastic optimization problems are generally known to be ill-conditioned to the
form of the underlying uncertainty. A framework is introduced for optimal control problems with
partial differential equations as constraints that is robust to inaccuracies in the precise form of the
problem uncertainty. The framework is based on problem relaxation and involves optimizing a bi-
variate, “Rockafellian” objective functional that features both a standard control variable and an
additional perturbation variable that handles the distributional ambiguity. In the presence of dis-
tributional corruption, the Rockafellian objective functionals are shown in the appropriate settings
to Γ-converge to uncorrupted objective functionals in the limit of vanishing corruption. Numeri-
cal examples illustrate the framework’s utility for outlier detection and removal and for variance
reduction.
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1. Introduction. Many stochastic optimization problems constrained by partial
differential equations (PDEs) take the form

(1.1) min
z∈Zad

φ(z), φ(z) = f0(z) + E [g(s(ξ, z))] = f0(z) +

∫
Ξ

g(s(ξ, z)) dP(ξ)

where the deterministic control variable z belongs to some admissible set Zad. Precise
definitions are given below, but generally speaking, the function s maps the control
variable to the solution of the underlying PDE constraint, while g maps the PDE
solution to some quantity of interest (QoI), and f0(z) can be a control penalty or
regularization term. As the precise form of one or more of the PDE input data may
be unknown, the solution map s is parameterized by some random quantity ξ that
belongs to a sample space Ξ and follows a hypothesized distribution P.

Problem uncertainty can arise from imprecise knowledge of the constraining PDE’s
forcing terms, boundary and initial conditions, geometry, and coefficients within the
differential operator, for example. In practice, the form of the uncertainty itself is
often ambiguous; i.e. the sample space Ξ and probability measure P are themselves
uncertain. Typically one makes an ansatz based on empirical knowledge, which may
be unsettled due to measurement error or adversarial corruption, for example.

One standard approach to guard against such “meta-uncertainty” is to consider
distributionally robust optimization (DRO) formulations, in which one minimizes an
expected value over a collection {Pi}i∈I of plausible (called the ambiguity set), among
which it is hoped that the correct, unknown distribution resides. In conservative
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approaches, one considers worst-case scenarios, which leads to the minimax problem

(1.2) min
z∈Zad

(
f0(z) + sup

i∈I

∫
Ξ

g(s(ξ, z)) dPi(ξ)
)
.

Such “higher”, conservative formulations are sensible for applications for which there
exist outlier events that have catastrophic, severe societal impacts and are to be
guarded against at all costs. In practice, the full minimax problem (1.2) may be
intractable, and typically some kind of approximation is needed for computation, for
example based on Taylor expansions of the map g with respect to the random param-
eter ξ. The literature on DRO is vast; in the particular context of PDE constrained
optimization (PDECO), some examples include [23, 20, 18, 26] and the references
therein. We also note that DRO is closely connected to the use of risk measures [35],
for example the conditional value-at-risk [21].

In other applications, outlier events might not be catastrophic, and hence the
worst-case, DRO approach (1.2) may be too conservative. Especially for scenarios
with tight performance requirements, a more optimistic approach is warranted in
which best-case scenarios are considered, which is termed distributionally favorable, or
distributionally optimistic optimization (DOO). Optimistic approaches are generally
based on problem relaxation, rather than restriction; for problems with distributional
ambiguity, they allow one to keep in play decisions that might be optimal under the
true, uncorrupted distribution. In contrast, the DRO approach rules them out.

One strong reason to consider optimistic approaches is that stochastic optimiza-
tion problems are known to be ill-conditioned to perturbations in the probability
measure P and sample space Ξ [32, 8]; the minimizer to a perturbed stochastic pro-
gram can differ substantially from the minimizer to the unperturbed one, which can
cause an upwards shift in the value of the objective function. An example of this
ill-conditioning for a simple one-dimensional problem is described below in section
subsection 2.1, while numerous examples in the context of linear programming can be
found in [5]. See [36] for additional examples in a variety of contexts. Multiple exam-
ples for optimal control problems of the form (1.1) are described in subsection 4.2.

Applied to such ill-conditioned problems, the DRO approach necessarily leads to
higher objective function values because of the supremum in (1.2). In contrast, DOO
approaches seek lower, best-case scenarios, for example by replacing the supremum
in (1.2) with an infimum. In general, this can lead to an intractable problem; for
example, the authors in [16] show that computing the inner infimum is NP-hard for
a recourse function represented as a linear program with objective uncertainty. This
is not always the case, however, and the DOO approach has been successfully used in
the contexts of statistical learning [31, 1, 38, 9, 13], Bayesian optimization [28, 29, 30],
and outlier analysis [3, 41, 27]. Besides connecting DOO to techniques from robust
statistics and outlier analysis, the recent work in [16] also integrates DOO and DRO
together to derive out-of-sample performance guarantees. See also the recent works
[6] and [7] for more details on the connection between DRO and robust statistics and
outlier detection and removal, respectively.

In the current work we present an optimistic formulation for PDECO under distri-
butional uncertainty, which to the best of the authors’ knowledge has not previously
been considered. Rather than simply replacing the supremum in (1.2) with an infi-
mum (or a suitable reformulation thereof), the method seeks best-case scenarios based
on problem perturbation, as recently proposed in [36].

In this approach, the original objective functional in (1.1) is generalized to a
bivariate, “Rockafellian” [33, 34] objective functional that depends on both the orig-
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inal control variable z and additional perturbation parameters. The Rockafellian is
chosen so that it is equivalent to, or “anchored at”, the original objective functional
whenever the perturbation variable equals zero. The original stochastic optimization
problem is thus embedded in a family of perturbed problems; the key point is that
they are better conditioned to data corruptions and meta-uncertainty than both (1.1)
and DRO approaches. For finite dimensional problems, the authors in [36] show that
Rockafellian objective functionals Gamma converge∗ [37, Chapter 4] to the original
one whenever the size of the corruption on P or Ξ vanishes. As is well-known, Gamma
convergence preserves sequences of converging minimizers.

There are two primary objectives for the present work. The first is to extend
the primarily finite-dimensional theoretical results in [36] to the infinite-dimensional
setting of PDECO. Whenever the original objective functional (1.1) is corrupted, we
prove Gamma convergence of suitably defined Rockafellians to (1.1) as the size the
corruption vanishes. We show results both for the case of a corrupted probability
density function, and for the case of a corruption to the support of a probability
distribution. We consider also a special example of the former case, namely when
the probability space is both discrete and finite-dimensional, for example, when using
a sample-average approximation (SAA) for computing expectation values. In this
setting we show Mosco convergence (a stronger notion than Gamma convergence)
whenever the corruption to the discrete probabilities vanish.

A closely related work is from [12], where the authors show Gamma convergence
of expectation functions under both varying measures and varying integrands. In the
context of PDECO (and using notation from the current work), the authors establish
conditions under which functionals of the form

EPϵ

[
gϵ
(
sϵ(ξ, z)

)]
=

∫
Ξ

gϵ
(
sϵ(ξ, z)

)
dPϵ(ξ)

Gamma converge to the expectation function in (1.1). Here the Pϵ are approximate
probability measures that, in some sense, get close to P, while sϵ and gϵ are approxi-
mations to s and g arising, for example, from numerical discretizations. Also related
is the recent work in [10], where optimality gaps for optimal controls in PDECO
are derived under various kinds of general inaccuracies, for example, finite dimen-
sional approximations, sample average approximations, or smooth approximations of
nonsmooth functions.

The results in [12] are, in some sense, more general than those contained here; g
and s are maps between metric spaces, and Gamma convergence is shown whenever
the probability measures Pϵ converge weakly to P as ϵ ↓ 0. However, one also needs to
assume strong convergence and strong (lower semi-) continuity properties of s, g, and
their approximations, which may be difficult to verify in practice. In contrast, g and
s are considered here to be maps between Banach spaces, and our results generally
require them to only exhibit weak convergence and weak (lower semi-) continuity
properties, which makes them relevant to a larger portion of classical PDE theory. As
an example, we verify in section 4 below that our results hold for stochastic optimal
control problems constrained by elliptic PDEs.

The second objective of the present is to showcase with numerical examples the
practical utility of Rockafellian relaxation for PDECO problems; the method enables
recovery of the optimal control to an uncorrupted optimization problem even when
solving with corrupted data. A simple demonstration for a one dimensional stochastic

∗Note that in the literature, Gamma convergence is sometimes termed epi-convergence [12, 22].
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program can be found below in subsection 2.1. The numerical examples in subsec-
tion 4.2 in particular illustrate the method’s potential for both outlier detection (and
subsequent removal) and variance reduction in the presence of corruptions to proba-
bility densities and the support of a probability density, respectively.

The rest of the paper is organized as follows. Section 2 motivates the Rockafel-
lian relaxation framework with a simple example and introduces some preliminary
definitions and assumptions; section 3 then develops the general theory for PDECO
problems of the form (1.1). In section 4, the conditions necessary for the general theory
to hold are verified in the case of stochastic elliptic PDE constraints. Subsection 4.2
then describes numerical examples of Rockafellian relaxation for PDECO, followed
by a brief discussion of both the relaxation parameter inherent to the approach and
the computational cost of the method in subsection 4.3 and subsection 4.4, respec-
tively. Section 5 summarizes the results and concludes with some possible directions
for future research.

2. Motivation and preliminaries.

2.1. Motivation. As a simple example of a stochastic optimization problem
that is ill-conditioned to perturbations in the underlying probability distribution, we
borrow from [36, Example 2.1]. Consider the rather simple one-dimensional stochastic
program minx∈[0,1] φ(x), where

(2.1) φ(x) = E [g(x, ξ)] , g(x, ξ) = (1− x)/2 + ξx,

and P[ξ = 0] = 1. The global minimum is then x⋆ = 1.
If instead, however, for some 0 < ϵ ≪ 1 we consider the corrupted random variable

ξϵ whose law is given by pϵ,1 := P[ξϵ = 0] = 1− ϵ and pϵ,2 := P[ξϵ = 1/ϵ] = ϵ, then the
global minimum of

(2.2) φϵ(x) = E [g(x, ξϵ)] =
1

2
(1− x) + 0 · pϵ,1 x+ 1/ϵ · pϵ,2 x =

1

2
(1 + x)

on [0, 1] is x⋆
ϵ = 0.

To recover the uncorrupted minimizer using Rockafellian relaxation introduced
in [36], we introduce a bivariate function Φϵ : [0, 1] × R2 → R := R ∪ {−∞,∞}. Let
pϵ = (pϵ,1, pϵ,2), t = (t1, t2), and let

∆ :=
{
q ∈ R2 : q1 + q2 = 1 and 0 ≤ qi ≤ 1 for i ∈ {1, 2}

}
denote the set of probability vectors on R2. For some θϵ > 0, consider

Φϵ(x, t) =
1

2
(1− x) + 0 · (pϵ,1 + t1)x+ 1/ϵ · (pϵ,2 + t2)x+

θϵ
2
∥t∥22 + ι∆(pϵ + t)

=
1

2
(1− x) + (ϵ+ t2)x/ϵ+

θϵ
2
∥t∥22 + ι∆(pϵ + t),(2.3)

where ∥ · ∥2 is the Euclidean norm and the indicator function

(2.4) ι∆(q) =

{
0, q ∈ ∆

∞, q /∈ ∆.

From elementary calculus, the quadratic program

min
x∈[0,1],t∈R2

Φϵ(x, t)
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has a global minimum at x⋆
ϵ = 1 and t⋆ϵ = (ϵ,−ϵ), so long as θϵ < (ϵ/2)−2.

Thus, by solving the relaxed problem minx,t Φϵ(x, t) with additional perturbation
variable t, the problematic data point ξϵ = 1/ϵ that causes the jump from minx φ(x)
to minx φϵ(x) is identified and removed. We observe a similar utility in analogous
numerical examples in the context of stochastic PDECO, which we describe below in
subsection 4.2 after the theoretical developments in section 3.

2.2. Preliminaries. To develop a general theory of Rockafellian relaxation for
PDECO problems of the form (1.1) in the presence of distributional ambiguity, we
first introduce some preliminary definitions and assumptions that will generally be
used throughout section 3.

Let U and Z be two Banach spaces, and let (Ξ,A,P) be a probability space whose
sample space Ξ is additionally equipped with a norm ∥ · ∥Ξ. For maps f0 : Z → R :=
[−∞,∞], s : Ξ× Z → U and g : U → R we invoke the following assumptions:

Assumption 2.1 (Properties of the solution map s = s(ξ, z)).
1. s(·, z) : Ξ → U is A measurable ∀z ∈ Z.

2. If zϵ ⇀ z in Z as ϵ ↓ 0, then s(ξ, zϵ) ⇀ s(ξ, z) in U a.s. in Ξ.

Assumption 2.2 (Properties of f0 and g).
1. f0 is proper: f0(z) > −∞ ∀z ∈ Z and f0(z) < ∞ for some z ∈ Z.

2. Both f0 and g are sequentially weakly lower semi-continuous (lsc) maps:

zϵ
Z
⇀ z =⇒ lim inf

ϵ↓0
f0(zϵ) ≥ f0(z)

uϵ
U
⇀ u =⇒ lim inf

ϵ↓0
g(zϵ) ≥ g(z).

3. There exists some γ ∈ R such that ∀u ∈ U , g(u) ≥ γ.

We next briefly recall the definitions of Mosco and Gamma convergence, as well
as a standard result that follows from the definitions.

Definition 2.3 (Mosco and Gamma convergence). Let (X, ∥ · ∥X) be a Banach
space, let g : X → R, and let (gϵ)ϵ∈R+

be a sequence of maps from X to R indexed by

ϵ > 0. The sequence (gϵ)ϵ∈R+
Mosco converges to g, gϵ

M−→ g, as ϵ ↓ 0 if

(i) Consistency : ∀x ∈ X,∃ (xϵ)ϵ∈R+
such that xϵ → x and lim sup

ϵ↓0
gϵ(xϵ) ≤ g(x).

(ii) Stability: for all sequences xϵ ⇀ x we have: lim inf
ϵ↓0

gϵ(xϵ) ≥ g(x).

The sequence (gϵ)ϵ∈R+ Gamma converges to g, gϵ
Γ−→ g, as ϵ ↓ 0 if condition (i) holds

and
for all sequences xϵ → x we have: lim inf

ϵ↓0
gϵ(xϵ) ≥ g(x).

Notice that Mosco convergence implies Gamma convergence, but the reverse implica-
tion is not necessarily true.

A straightforward corollary of the definition is that both notions of convergence
preserve convergence of minimizing sequences; more specifically for Mosco conver-
gence:

Proposition 2.4. Suppose x∗
ϵ ⇀ x∗ and that ∀ϵ > 0, x∗

ϵ ∈ argmin
x∈X

gϵ(x). If

gϵ
M−→ g,
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then x∗ ∈ argminx∈X g(x).

An analogous result holds for Gamma convergence. Both modes of convergence pre-
clude situations like that of the simple example from earlier in this subsection, where
the limiting point of a sequence of minimizers to (2.2) is not a minimizer of (2.1),
even when the two underlying probability distributions are arbitrarily close.

Finally, we introduce the notion of a Rockafellian associated to an optimization
problem.

Definition 2.5 (Rockafellian). For Banach spaces X and Y , φ : X → R and
generic optimization problem minx∈X φ(x), a bivariate function Φ : X × Y → R is a
Rockafellian for the problem, anchored at y, when

Φ(x, y) = φ(x) ∀x ∈ X.

Note that Rockafellians are not unique; for a given optimization problem, there are
infinitely many Rockafellians associated to it. This flexibility enables us to design
Rockafellians that are able to more easily absorb approximations than the true prob-
lem.

3. Rockafellian relaxation and its convergence theory. Having introduced
the necessary definitions and assumptions, we describe in this section Rockafellian re-
laxation theory for PDE constrained optimization problems of the form (1.1). In
particular, we consider two distinct scenarios—corruptions to probability densities
and corruptions to the support of a probability distribution—and prove Gamma con-
vergence results. We also consider a special example of the former case, namely when
the probability space is both discrete and finite dimensional, for which we prove a
Mosco convergence result.

3.1. Corruptions to continuous probability distributions. The first type
of corruption that we consider is that of a continuous probability density. We assume
throughout that (i) P in (1.1) is a probability measure on the measurable space (Ξ,A),
(ii) there exists another sigma-finite measure µ on (Ξ,A), and (iii) P is absolutely
continuous with respect to µ. Letting ρ := dP/dµ denote Radon-Nikodyme derivative,
after a change of variables the objective function from (1.1) can then be written as

(3.1) φ(z) = f0(z) +

∫
Ξ

g(s(ξ, z))ρ(ξ) dµ(ξ).

Taking

P :=
{
ρ : Ξ → R+

∣∣ ρ ∈ L∞(Ξ;R) and
∫
Ξ

ρ(ξ) dµ(ξ) = 1
}

to denote the set of probability densities on Ξ, consider for some “corrupted” distri-
bution ρϵ ∈ P indexed by ϵ > 0 a corresponding corrupted objective functional

(3.2) φϵ(z) := f0(z) +

∫
Ξ

g(s(ξ, z))ρϵ(ξ) dµ(ξ).

Additionally, for some q ∈ [1,∞), let

T := Lq(Ξ,A, µ) =
{
f : Ξ → R

∣∣ ∫
Ξ

|f(ξ)|q dµ(ξ) < ∞
}
,

and for q = ∞, let T := L∞(Ξ,A, µ).
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Next, define a Rockafellian Φ : Z × T → R for (3.1) as

(3.3) Φ(z, t) :=

{
f0(z) +

∫
Ξ
g(s(ξ, z))(ρ(ξ) + t(ξ)) dµ(ξ) t(ξ) = 0 a.s.

∞, else,

which is of course anchored at t(ξ) = 0. Note that both here and throughout this
subsection, “a.s.” is with respect to µ. Finally, define the bivariate functional Φϵ :
Z × T → R

(3.4) Φϵ(z, t) := f0(z) +

∫
Ξ

g(s(ξ, z))(ρϵ(ξ) + t(ξ)) dµ(ξ) +
θϵ
q
∥t∥qT + ιP(ρϵ + t)

parameterized by some θϵ > 0. In the special case when q = ∞, we instead replace
∥t∥qT /q in (3.4) with ∥t∥T . Here the indicator function ιP is defined analogously
to (2.4). Notice that this is a Rockafellian functional for the corrupted objective
functional (3.2), also anchored at t(ξ) = 0.

We are now ready to show Gamma convergence of Φϵ to Φ whenever the corrupted
probability density ρϵ converges to the original, “uncorrupted” density ρ.

Theorem 3.1. Fix 1 ≤ q ≤ ∞, and suppose θϵ → ∞ and that ρ ∈ P ∩ T . Let
(ρϵ)ϵ∈R+ ⊆ P ∩ T ; if q ∈ [1,∞), assume

lim
ϵ↓0

θϵ∥ρϵ − ρ∥qT = 0,

and if q = ∞, assume
lim
ϵ↓0

θϵ∥ρϵ − ρ∥T = 0.

Then, under Assumption 2.1 and Assumption 2.2, we have

Φϵ
Γ−→ Φ

as ϵ ↓ 0, where Φ and Φϵ are defined by (3.3) and (3.4), respectively.

Proof. Here we assume that q ∈ [1,∞), as the case of q = ∞ proceeds similarly.
To first establish the limit superior condition, suppose that (z, t) ∈ Z × T . Since

the condition trivially holds whenever t(ξ) ̸= 0 a.s., suppose t(ξ) = 0 a.s. Constructing
the strongly converging sequences as zϵ = z and tϵ = ρ− ρϵ for all ϵ > 0, we have

Φϵ(zϵ, tϵ) = f0(z) +

∫
Ξ

g(s(ξ, z))ρ(ξ) dµ(ξ) +
θϵ
q
∥ρ− ρϵ∥qT + ιP(ρ)︸ ︷︷ ︸

=0

and thus

lim sup
ϵ↓0

Φϵ(zϵ, tϵ) = f0(z) +

∫
Ξ

g(s(ξ, z))ρ(ξ) dµ(ξ) + lim sup
ϵ↓0

θϵ
q
∥ρ− ρϵ∥qT︸ ︷︷ ︸

=0

= Φ(z, 0)

as desired.
Next, consider an arbitrary sequence (zϵ, tϵ)ϵ∈R+ that converges strongly to some

(z, t) ∈ Z × T in the product topology, and first suppose that t(ξ) = 0 a.s. Since
(Φϵ(zϵ, tϵ))ϵ∈R+

is a sequence of real numbers, there necessarily exists some subse-
quence (Φϵ′(zϵ′ , tϵ′))ϵ′∈R+

such that

(3.5) lim
ϵ′↓0

Φϵ′(zϵ′ , tϵ′) = lim inf
ϵ↓0

Φϵ(zϵ, tϵ).
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Since ρϵ′ + tϵ′ → ρ in T by supposition, and because convergence in T implies point-
wise a.s. convergence up to a subsequence [40, Chapter 5], there exists a further
subsequence indexed by ϵ′′ such that ρϵ′′(ξ) + tϵ′′(ξ) → ρ(ξ) a.s. in Ξ.

The convergence zϵ′′ → z in Z in turn implies both lim infϵ′′↓0 f0(zϵ′′) ≥ f0(z)
and

lim inf
ϵ′′↓0

g
(
s(ξ, zϵ′′)

)
≥ g

(
s(ξ, z)

)
for ξ ∈ Ξ a.s.,

by the weak lsc property of g and f0 and Assumption 2.1.2.
Applying Fatou’s lemma (note that g is bounded below), the above implies

lim inf
ϵ′′↓0

Φϵ′′(zϵ′′ , tϵ′′) ≥ f0(z) +

∫
Ξ

g
(
s(ξ, z)

)
ρ(ξ) dµ(ξ) + lim inf

ϵ↓0

θϵ
q
∥tϵ∥qT(3.6)

≥ Φ(z, 0);

note the final inequality comes from the trivial observation that lim infϵ′′↓0 θϵ∥tϵ∥qT /q ≥
0. This gives the desired condition, since

lim inf
ϵ′′↓0

Φϵ′′(zϵ′′ , tϵ′′) = lim
ϵ′′↓0

Φϵ′′(zϵ′′ , tϵ′′) = lim
ϵ′↓0

Φϵ′(zϵ′ , tϵ′) = lim inf
ϵ↓0

Φϵ(zϵ, tϵ)

by elementary properties of sequences of real numbers.
It remains to consider an arbitrary sequence (zϵ, tϵ)ϵ∈R+

that converges strongly
to some (z, t) ∈ Z × T with t(ξ) ̸= 0 a.s. In this case, the Rockafellian Φ(z, t) = ∞.
Since θϵ → ∞ and limϵ↓0 ∥tϵ∥T ̸= 0 implies ∥tϵ∥T is necessarily bounded below for ϵ
sufficiently small, we have

lim inf
ϵ↓0

θϵ
q
∥tϵ∥qT = ∞.

Because both g and ιP are bounded below and f0 is proper, the desired condition
lim infϵ↓0 Φϵ(zϵ, tϵ) ≥ Φ(z, t) indeed holds.

We remark that in the case q = ∞, the proof is simplified slightly; convergence in the
L∞-norm topology is stronger than pointwise a.s. convergence, and hence working
with subsequences to establish the limit inferior condition is not necessary.

3.2. Corruptions to finite, discrete probability distributions. Suppose
now that the underlying sample space Ξ is both discrete and finite, so that P in (1.1)
is a finite superposition of Dirac measures. In this setting, we can upgrade the Gamma
convergence from Theorem 3.1 to the stronger notion of Mosco convergence.

For some N ∈ N, let

(3.7) ∆ :=
{
q ∈ RN :

N∑
i=1

qi = 1 and 0 ≤ qi ≤ 1 for 1 ≤ i ≤ N
}

be the set of probability vectors, and let Ξ = {ξi}Ni=1, where ξi ∈ Rd for each 1 ≤ i ≤ N
and d ∈ N. Let A = 2Ξ, and for some p ∈ ∆, let P[ξ = ξi] = pi for each 1 ≤ i ≤ N .

We consider corruptions to the discrete probabilities {pi}Ni=1. This situation is
relevant, for example, when pursuing a sample-average approximation (SAA) to a QoI
in the presence of corrupted data.

Firstly, the uncorrupted objective functional (1.1) in this setting becomes

(3.8) φ(z) := f0(z) + E
[
g
(
s(ξ, z)

)]
= f0(z) +

N∑
i=1

pig
(
s(ξi, z)

)
.



ROCKAFELLIAN RELAXATION FOR PDECO 9

Considering now a corruption to p in the form of pϵ ∈ ∆ (indexed by ϵ > 0), the
analogue to (3.8) is then

(3.9) φϵ(z) := f0(z) +

N∑
i=1

pϵ,ig
(
s(ξi, z)

)
.

(here pϵ,i denotes the i-th component of pϵ ∈ RN ).
Next, define a Rockafellian Φ : Z × RN → R for (3.8) as

(3.10) Φ(z, t) := f0(z) +

N∑
i=1

(pi + ti)g
(
s(ξi, z)

)
+ ι{0}(t),

and notice that, as before, minimizing the Rockafellian Φ(z, t) is trivially equivalent to
minimizing φ(z), as the only feasible choice for t is the zero vector. Finally, for some
penalty parameter θϵ > 0 and q ∈ [1,∞], define the bivariate Rockafellian functional
Φϵ : Z × RN → R for the corrupted objective (3.9) by

(3.11) Φϵ(z, t) := f0(z) +

N∑
i=1

(pϵ,i + ti)g
(
s(ξi, z)

)
+

θϵ
q
∥t∥qq + ι∆(pϵ + t),

where ∥·∥q denotes the lq norm on RN . As in the previous subsection, in the particular
case when q = ∞, we replace the ∥t∥qq/q term in the above with ∥t∥∞.

Next, we show that the sequence (Φϵ)ϵ∈R+
Mosco converges to the Rockafellian

Φ whenever pϵ → p faster than the growth penalty θϵ → ∞.

Theorem 3.2. Fix 1 ≤ q ≤ ∞, and let (pϵ)ϵ∈R+
⊆ ∆. Suppose that θϵ → ∞; if

q ∈ [1,∞), assume
lim
ϵ↓0

θϵ∥pϵ − p∥qq = 0

and if q = ∞, assume
lim
ϵ↓0

θϵ∥pϵ − p∥∞ = 0.

Then, under Assumption 2.1 and Assumption 2.2, we have

Φϵ
M−→ Φ

as ϵ ↓ 0, where Φ and Φϵ are defined by (3.10) and (3.11), respectively.

The proof proceeds quite similarly to that of Theorem 3.1, and hence it can be found
in Appendix A.

We remark that in the case when the sample space Ξ is discrete and countably
infinite (formally, N = ∞), it is difficult to guarantee Mosco convergence of Φϵ to
Φ, as weak convergence in lp(N) is no longer equivalent to strong convergence (in
contrast to the case of lp(RN ) for finite N). However, Gamma convergence follows as
a special case of Theorem 3.1; here µ would be the counting measure on (N, 2N).

3.3. Corruptions to the support of a probability distribution. The final
type of corruption that we consider is to the support Ξ of a probability distribution
P. First, recall from the preliminaries in subsection 2.2 that the sample space Ξ is
equipped with a norm ∥ · ∥Ξ, and define for q ∈ [1,∞) the space

T := Lq(Ξ; Ξ) =
{
ϕ : Ξ → Ξ

∣∣ E [∥ϕ(ξ)∥qΞ] < ∞
}
.
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We also can consider the case q = ∞, for which T := L∞(Ξ; Ξ). For some “corrup-
tion map” ηϵ ∈ T indexed by ϵ > 0, consider a corruption to the original objective
functional φ(z) from (1.1) in the form of

(3.12) φϵ(z) := f0(z) + E [g(s(ηϵ(ξ), z))] .

Next, define a Rockafellian functional for (1.1) by

(3.13) Φ(z, t) :=

{
f0(z) + E

[
g
(
s(ξ + t(ξ), z)

)]
, t(ξ) = 0 a.s.

∞ else.

Once again, note that minimizing the Rockafellian Φ(z, t) is trivially equivalent to
minimizing (1.1), as t(ξ) = 0 a.s. is the only feasible choice. Finally, for some θϵ > 0,
consider for q ∈ [1,∞) a Rockafellian functional Φϵ : Z × T → R for the corrupted
objective (3.12) as

(3.14) Φϵ(z, t) := f0(z) + E
[
g
(
s(ηϵ(ξ) + t(ξ), z)

)]
+

θϵ
q
∥t∥qT .

In the case q = ∞, ∥t∥qT /q in the above is replaced with ∥t∥T .
To achieve Gamma converge of Φϵ to Φ as the size of the corruption vanishes,

i.e. as ηϵ → I in T (where I is the identity map), we require a stronger continuity
assumption on the solution operator s : Ξ× Z → U than in Assumption 2.1.

Assumption 3.3 (Properties of the solution map s = s(ξ, z)).
1. s(·, z) : Ξ → U is A measurable ∀z ∈ Z.

2. If both ξϵ → ξ in Ξ and zϵ ⇀ z in Z as ϵ ↓ 0, then

s(ξϵ, zϵ) ⇀ s(ξ, z) in U.

A final assumption needed is that the identity map I(ξ) = ξ is an element of
T , which amounts to assuming that the random parameter ξ either has finite q-th
moment (for q ∈ [1,∞)) or is uniformly bounded in the Ξ norm (for q = ∞).

Theorem 3.4. Fix 1 ≤ q ≤ ∞, and suppose θϵ → ∞ and that the identity map
I ∈ T . Let (ηϵ)ϵ∈R+

⊆ T ; if q ∈ [1,∞) assume

lim
ϵ↓0

θϵ∥ηϵ − I∥qT = 0,

and if q = ∞, assume

lim
ϵ↓0

θϵ∥ηϵ − I∥T = 0.

Then, under Assumption 2.2 and Assumption 3.3,

Φϵ
Γ−→ Φ,

where Φ and Φϵ are defined by (3.13) and (3.14), respectively.

The proof proceeds quite similarly to that of Theorem 3.1; as with the proof of
Theorem 3.2, it hence can be found in Appendix B.
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4. Stochastic elliptic optimal control problems. We consider in this sec-
tion the optimal control of linear, elliptic partial differential equations (PDEs) with
random coefficients in the presence of distributional ambiguity. The goal here is to
first verify that the assumptions made throughout section 3 indeed hold for problems
of this form. We then illustrate that these problems can be ill-conditioned to outlier
data points (similar to the simple example in subsection 2.1) and showcase the abil-
ity of Rockafellian relaxation to recover the optimal controls for the corresponding
uncorrupted problems. Subsection 4.3 and subsection 4.4 conclude the section with a
brief discussion of some of the practical aspects of the Rockafellian relaxation, namely
the computational cost and the role of the regularization parameter θϵ present in the
objective functions (3.4), (3.11), and (3.14).

4.1. Verification of assumptions. We first introduce the model problem. For
n ∈ N, let Ω ⊂ Rn be a bounded, Lipschitz domain with boundary ∂Ω. Let Z = L2(Ω)
and U = H1

0 (Ω). Given some α > 0 and target function u⋆ ∈ L2(Ω), we consider
stochastic optimal control problems of the form

(4.1) min
z∈L2(Ω)

φ(z), φ(z) =
1

2
E
[
∥s(ξ, z)− u⋆∥2L2(Ω)

]
+

α

2
∥z∥2L2(Ω),

where u(·, ξ) := s(ξ, z) is the solution to the elliptic PDE constraint

−∇ ·
(
a(x, ξ)∇u(x, ξ)

)
= z(x), (x, ξ) ∈ Ω× Ξ

u(x, ξ) = 0, (x, ξ) ∈ ∂Ω× Ξ.

Here the problem coefficient a : Ω× Ξ → R, and we assume there exist real numbers
a∗, a∗ > 0 such that

(4.2) 0 < a∗ ≤ a(x, ξ) ≤ a∗ < ∞

almost everywhere (a.e.) in Ω and a.s. in Ξ.

Definition 4.1 (Solution operator s). Assume (4.2) holds. Define the solution
operator s : Ξ× L2(Ω) → H1

0 (Ω) to be the map that takes some given z ∈ L2(Ω) and
outputs the unique solution u(·, ξ) := s(ξ, z) ∈ H1

0 (Ω) to the variational problem: find
u(·, ξ) such that

(4.3)

∫
Ω

a(x, ξ)∇u(x, ξ) · ∇v(x) dx =

∫
Ω

z(x)v(x) dx, ∀v ∈ H1
0 (Ω).

Note that existence and uniqueness of s(ξ, z) follow from the Lax-Milgram theorem
[4, Corollary 8.11].

We now verify Assumption 2.1 in the present context.

Proposition 4.2. Suppose (zϵ)ϵ∈R+
⊂ L2(Ω) and zϵ ⇀ z in L2(Ω). Then

(4.4) s(ξ, zϵ) ⇀ s(ξ, z) in H1
0 (Ω)

a.s. in Ξ.

The proof follows from standard arguments, but, for completeness, it is included in
Appendix C.

To next verify Assumption 2.1.1, note that the Lax-Milgram theorem also guar-
antees there exists a unique solution u ∈ L2(Ξ;H1

0 (Ω)) such that

(4.5) E
[ ∫

Ω

a(x, ξ)∇u(x, ξ) · ∇v(x, ξ) dx
]
= E

[ ∫
Ω

z(x)v(x, ξ) dx
]
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for all v ∈ L2(Ξ;H1
0 (Ω)), which in particular guarantees that the solution map is

measurable.
Using the notation of (1.1), the control regularizer and QoI map in (4.1) are

f0(z) := ∥z∥2L2(Ω) and g(u) := ∥u− u⋆∥2L2(Ω),

respectively, which clearly fulfill the requirements of Assumption 2.2.1 and Assump-
tion 2.2.3. Hence, Assumption 2.2 holds for the stochastic elliptic optimal control
problem. Ergo, Theorem 3.1 and Theorem 3.2 both follow in the contexts described
in subsection 3.1 and subsection 3.2, respectively.

It remains to verify the additional hypotheses on the solution map s(ξ, z) in
Assumption 3.3 of subsection 3.3; for this an additional continuity property on the
random coefficient a(x, ξ) is needed, which we describe now.

Proposition 4.3. Suppose (zϵ)ϵ∈R+ ⊂ L2(Ω) and zϵ ⇀ z in L2(Ω). Suppose
(ξϵ)ϵ∈R+

⊂ Ξ and ξϵ → ξ in Ξ, and assume (4.2) holds at both ξ and ξϵ for all ϵ ∈ R+.
If a(x, ·) : Ξ → R is sequentially continuous a.e. in Ω, then

(4.6) s(ξϵ, zϵ) ⇀ s(ξ, z) in H1
0 (Ω).

As before, the proof can be found in Appendix C. Notice that continuity of a(x, ξ) is
only needed in ξ; discontinuities in the x variable are permitted, so long as (4.2) holds.
Such continuity holds, for example, when a(x, ξ) is given by a Kosambi-Karhunen-
Loéve (KKL) approximation† [25, Theorem 2.3] of a log-normal random field

a(x, ξ) = eµ(x)+σ(x)
∑d

k=1

√
λkbk(x)ξk .

Here µ(x) and σ(x) are the mean and standard deviation of the random field, and
for each 1 ≤ k ≤ d, (λk, bk(x)) are the eigenvalue-eigenfunction pairs of the integral
operator defined by the covariance kernel, while each ξk are independent and normally
distributed with zero mean and unit variance.

4.2. Numerical examples. Having verified the assumptions necessary for the
convergence theorems described in section 3 to hold in the case of stochastic optimal
control problems constrained by linear, elliptic PDEs, we now illustrate (i) the sensi-
tivity of this class of problems to perturbations of the underlying probability densities
and sample space and (ii) the ability of Rockafellian relaxation to recover the optimal
control z∗ to an uncorrupted problem in the presence of data corruption. We describe
three examples.

In all cases, we consider the problem of minimizing the objective function (4.1)
constrained by the following one-dimensional elliptic boundary value problem posed
on the domain Ω = (0, 1):

− d

dx

(
a(x, ξ)

d

dx
u(x, ξ)

)
= z(x), (x, ξ) ∈ (0, 1)× Ξ(4.7)

u(0, ξ) = u(1, ξ) = 0.

The specific form of the diffusion coefficient a(x, ξ), the sample space Ξ, and the
probability distribution associated to the the random parameter ξ will vary across
each example, as we detail below. In the first two cases, the control regularization

†The polymath Damodar Dharmananda Kosambi invented the expansion in 1943 [19], preceding
both Karhunen (1946, [17]) and Loéve (1948, [24]).
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parameter α = 10−4, while in the last case it is decreased to α = 10−6. The state
equation (4.7) and its corresponding adjoint are both discretized with a standard
second order finite difference method on a uniform grid, and the solutions to the
resulting tridiagonal linear systems are computed with SciPy’s banded direct solver
[14]. L2 norms ∥ · ∥L2(0,1) are computed with the composite trapezoidal rule.

Example 1: Consider first setting a(x, ξ) = ξ, so that (4.7) becomes a scaled
Poisson problem. In the uncorrupted case, let ξ be the discrete random variable
defined by

(4.8) P[ξ = 2] = 1,

which simply results in a deterministic optimal control problem. In the corrupted
case, define the random variable ξϵ by

(4.9) pϵ,1 := P[ξϵ = 0.2] = ϵ, pϵ,2 := P[ξϵ = 2] = 1− ϵ,

where 0 < ϵ ≪ 1. Let the target function u⋆(x) = sin(πx). The minimization problem
in each case is solved using a standard gradient descent method with backtracking
line search based on the Armijo condition, and the initial guess is set as z(x) = 1.

This problem is analogous to the simple one-dimensional stochastic program de-
scribed in subsection 2.1, in the sense that the minimizer z∗corrupted to the corrupted
problem is quite different from the minimizer z∗true to the uncorrupted one, even when
ϵ is small. Indeed, even for a 0.5% corruption (i.e. for ϵ = 0.005), the pointwise
difference between z∗true and z∗corrupted is O (1) throughout most of the domain.
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Fig. 1. Example 1: (a) Optimal controls for the true, uncorrupted problem, the corrupted prob-
lem at varying corruption levels (dotted lines), and the Rockafellian relaxation at 5% corruption.
(b) The expected value of the corresponding solutions to the state equation (4.7) in each case. Cor-
ruption levels are defined by (4.10).

Figure 1(a) shows z∗true and z∗corrupted for varying corruption levels

(4.10) % corruption := 100 · ϵ,

while Figure 1(b) shows the expected value of the corresponding solutions to the
state equation (4.7). In contrast to the simple example in subsection 2.1, the optimal
control for the corrupted problem appears to converge to that of the uncorrupted one
as ϵ ↓ 0 (as seen in Figure 1); however, the convergence is slow, as there are nontrivial
errors even at 0.1% corruption.
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Consider now the bivariate Rockafellian Φϵ : L
2(Ω)× R2 → R,

Φϵ(z, t) :=
1

2

2∑
i=1

(pϵ,i + ti)∥s(ξϵ,i, z)− u⋆∥2L2(0,1) +
α

2
∥z∥2L2(0,1)(4.11)

+
θ

2
∥t∥22 + ι∆(pϵ + t),

where θ > 0, ξϵ,1 = 0.2, ξϵ,2 = 2, and the indicator function ι∆ constrains pϵ + t to
be a probability vector in R2 (see (3.7)), which is equivalent to the constraint that
t1 + t2 = 0 and −pϵ,i ≤ ti ≤ 1− pϵ,i, i ∈ {1, 2}.

In practice we enforce the equality constraint by eliminating t1 via t1 = −t2. The
Rockafellian Φϵ(z, t2) is then optimized with the projected gradient descent method
with backtracking line search based on the Armijo condition; here the projection
enforces the bound constraints −pϵ,2 ≤ t2 ≤ 1− pϵ,2. The initial guesses are z(x) = 1
(as before) and t2 = 0.

Figure 1(a) shows the resulting optimal control z∗Rock for ϵ = 0.05 (5% corruption)
and θ = 1. By optimizing the relaxed Rockafellian Φϵ, we recover the minimizer z∗true
to the uncorrupted problem, as desired; the absolute error

∥z∗true − z∗Rock∥L2(0,1) ≤ ∥z∗true − z∗Rock∥L∞(0,1) = 5.55 · 10−2.

Similar results are obtained for the other corruption levels (0.1%, 0.5%, or 1%).

Example 2: For d ∈ N and σ ∈ R+, consider next setting the coefficient

a(x, ξ) = eσ
∑d

k=1

√
λk sin(x/

√
λk)ξk , λk =

4

(2k − 1)2π2
,

where each ξk are independent and normally distributed with zero mean and unit
variance; here the argument in the exponential is a truncated KKL expansion for a
rescaled Brownian motion on the interval Ω = (0, 1).

The expectation value in (4.1) is approximated with a sample average approxi-
mation (SAA) using N samples; the objective function then becomes

(4.12) φ(z) =
1

2

N∑
i=1

pi∥s(ξ(i), z)− u⋆∥2L2(0,1) +
α

2
∥z∥2L2(0,1),

where pi = 1/N for all i and the samples ξ(i) ∼ N (0, Id) are all independent (here Id
is the d× d identity matrix). Define the target function as u⋆(x) = 1.

In all cases, we take d = 50 terms in the truncated KKL expansion and N = 1000
SAA samples. In the uncorrupted case, we take σ = 0.4, while in the corrupted cases,
we select the first M ∈ N samples (M < N) and increase their variance through
the map ξ 7→ 10 ξ, which amounts to setting σ = 4 for those samples. Optimization
is done with the SciPy [39] implementation of the BFGS algorithm; the algorithm
terminates whenever the norm of gradient of the objective function is less than 10−5,
which is the default setting. In all cases, the initial guess z(x) = 1.

With the corruption level defined as

(4.13) % corruption := 100 ·M/N,

Figure 2(a) shows that even at just 1% corruption, there are severe differences be-
tween z∗corrupted and z∗true, i.e. the minimizers of (4.12) with and without corruption,
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Fig. 2. Example 2: (a) Optimal controls for the true, uncorrupted problem, as well as for the
corrupted problem (dotted lines) and the corresponding Rockafellian relaxations at varying corruption
levels. (b) The expected value of the corresponding solutions to the state equation (4.7) in each case.
Corruption levels are defined by (4.13).

respectively. These differences grow with increasing corruption levels. Figure 2(b)
shows the corresponding expected values of the corrupted state variables are also
quite different from the uncorrupted one.

To recover z∗true in the presence of corrupted data samples, define the bivariate
Rockafellian Φ : L2(0, 1)× RN → R:

(4.14) Φ(z, t) :=
1

2

N∑
i=1

(pi+ti)∥s(ξ(i), z)−u⋆∥2L2(0,1)+
α

2
∥z∥2L2(0,1)+θ∥t∥1+ι∆(p+t).

As the role of the perturbation variable here is to identify (and remove) outlier sample
points, t is measured in the l1 norm for its well known sparsity-promoting property;
this choice is inspired by the statistical learning experiments described in [36, Section
6], where corrupted labels in the contexts of computer vision and text analytics were
properly removed.

The experiments in [36] also inspired the optimization method for (4.14); an
alternating-direction heuristic is adopted in which we first fix t = 0 and compute
z∗ ∈ argminΦ(z, 0) using the BFGS method. The result is then used to compute the
solution to the linear program t∗ ∈ argminΦ(z∗, t) using SciPy’s implementation of
the simplex method. This process is repeated until the absolute l1 distance between
successive t∗ values is smaller than some τ ; in particular we take τ = 10−5, consistent
with the BFGS stopping criteria quoted in Example 1 above.

The linear program solve in the alternating-direction approach naturally allows
the p+ t ∈ ∆ constraint to be satisfied exactly; in particular this constraint imposes
the pointwise bounds −pi ≤ ti ≤ 1−pi for each 1 ≤ i ≤ N . In practice, to prevent the
linear program solver from “greedily” identifying a handful of samples ξ(i) at which

∥s(ξ(i), z)− u⋆∥2L2(0,1)

is the smallest and subsequently deleting all of the other samples (even those that
are “clean”, i.e. uncorrupted), we additionally impose the more stringent pointwise
bounds −pi ≤ ti ≤ pi for each i.
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Corruption level Erel(z
∗
Rock) Eratio Corrupted deleted Clean deleted

1% 6.84 · 10−3 37.4 7/10=70% 26/990=2.62%
5% 7.72 · 10−3 97.8 40/50=80% 23/950=2.42%
20% 8.96 · 10−3 115.4 171/200=85.5% 16/800=2.00%
40% 2.20 · 10−2 47.3 336/400=84% 11/600=1.83%

Table 1
Example 2 with θ = 5 · 10−2: relative L2 errors Erel between the Rockafellian and true optimal

controls, as well as the ratio of L2 errors Eratio for the corrupted and Rockafellian optimal controls;
see (4.15). Also included are the fraction of corrupted and clean sample points correctly and incor-
rectly removed by the perturbation variable t, respectively. Corruption levels defined by (4.13).

Figure 2(a) shows the optimal controls z∗Rock for (4.14) with θ = 5 · 10−2 at 1%,
2%, and 10% corruption levels; the true optimal control z∗true in each case is indeed
recovered, as desired. Figure 2(b) shows that the corresponding expected values of the
Rockafellian state variables are much more accurate than the corrupted counterparts.
Table 1 shows the relative L2 errors in the optimal controls, as well as the ratio of
errors for the corrupted and Rockafellian cases, as defined by

(4.15) Erel(z) :=
∥z − z∗true∥L2(0,1)

∥z∗true∥L2(0,1)
, Eratio :=

Erel(z
∗
corrupted)

Erel(z∗Rock)
.

The errors for z∗Rock are all one to two orders of magnitude smaller than the cor-
responding ones in the corrupted cases, i.e. Eratio is large. Although not shown in
Figure 2, the table also shows that Rockafellian relaxation can even recover the op-
timal controls at a 40% corruption level.‡ In all cases, the Rockafellian perturbation
variable t identifies and removes at least 70% of the corrupted data points, while less
than 3% of the clean, uncorrupted points are incorrectly removed. In general these
percentages will change as a function of θ, which we discuss below in subsection 4.3.

Example 3: For the final example, we consider corruptions to the support Ξ to a
probability distribution P, as in subsection 3.3. Take

(4.16) a(x, ξ) =
1

ξ + 3 sin(10πx)
,

and in the uncorrupted case, let ξ = 3.5 almost surely; for the corrupted case, let ξ
be uniformly distributed on the interval [3.5 − δ, 3.5 + δ], where δ ∈ (0, 0.5). Notice
that that contrast ratio

(4.17) sup
x∈[0,1]

a(x, ξ)/ inf
x∈[0,1]

a(x, ξ)

of the oscillations is large when ξ takes on values close to 3.
Since the Dirac measure is not suitable for the theory developed in subsection 3.3,

for conceptual purposes one could instead take the uncorrupted random variable ξ to
be uniformly distributed on the interval [3.5− ν, 3.5+ ν] ⊂ Ξ := R, where 0 < ν ≪ 1.
The corruption map η : Ξ → Ξ would then be η(ξ) = (δ/ν)ξ + 3.5(1− δ/ν), which of
course tends to the identity as δ ↘ ν.

The expectation value in (4.1) is discretized with standard Gaussian quadrature
with N = 8 points, and optimization in both the uncorrupted and corrupted cases

‡We note that this, and even 20% and 10% corruption levels, may be unrealistically large in
many engineering contexts.
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is done with SciPy’s BFGS method with the default settings, as in Example 2. The
target function u⋆ is the piecewise constant function

u⋆(x) =

{
1, x ∈ [0, 0.5)

5, x ∈ [0.5, 1],

the initial guess z(x) = x− x2, and α = 10−6.
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Fig. 3. Example 3: (a) Optimal controls for the true, uncorrupted problem, as well as for
the corrupted problems (dashed lines) and the corresponding Rockafellian relaxations at varying
corruption levels. (b) The expected value of the corresponding solutions to the state equation (4.7)
in each case. Corruption levels are defined by (4.18).

With the corruption level defined as

(4.18) % corruption := 100 ·
(
3.5− δ

3.5

)
,

Figure 3(a) shows that while a ∼3% corruption (corresponding to δ = 0.1) has lit-
tle effect on the optimal control (on the scale of the plot), this is no longer true for
∼9% and ∼11% corruptions (corresponding to δ = 0.3 and δ = 0.4, respectively).
The principal differences between the corrupted optimal controls z∗corrupted and true,
uncorrupted one z∗true are (i) the incorrect value of the functions’ peak near the right
endpoint of the domain (at x ≈ 0.98) and (ii) the presence of large-amplitude oscil-
lations in the regions 0.05 ≲ x ≲ 0.4 and 0.6 ≲ x ≲ 0.85. These oscillations can
also be observed in the plots of the expected value of the state variables, shown in
Figure 3(b).

To recover z∗true in the presence of increased uncertainty in ξ, we optimize the
following bivariate Rockafellian Φ : L2(0, 1)× L2(Ξ; Ξ) → R:

Φ(z, t) :=
1

2

∫
Ξδ

∥s(ξ̃ + t(ξ̃), z)− u⋆∥2L2(0,1)ρ(ξ̃) dξ̃ +
α

2
∥z∥2L2(0,1)(4.19)

+
θ

2

∫
Ξδ

|t(ξ̃)|2ρ(ξ̃) dξ̃,

where θ > 0, Ξδ = [3.5 − δ, 3.5 + δ], ρ(ξ̃) = 1Ξδ
(ξ̃)/(2δ), and 1S denotes the charac-

teristic function on the set S; here we use ξ̃ to denote the corrupted random variable.
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Corruption level Erel(z
∗
Rock) Eratio Vratio

3% 6.25 · 10−3 5.70 1.361 · 103
9% 1.20 · 10−2 22.2 9.626 · 102
11% 1.94 · 10−2 21.6 7.612 · 102

Table 2
Example 3 with θ = 10−1: relative L2 errors Erel between the Rockafellian and true optimal

controls, as well as the ratio of L2 errors Eratio for the corrupted and Rockafellian optimal controls;
see (4.15). Also included is the ratio of variances in the L2 norm of the state variables for the
corrupted and Rockafellian controls, as defined by (4.21). Corruption levels defined by (4.18).

We additionally enforce the bound constraints on the Rockafellian variable t(ξ̃):

3.5− δ ≤ ξ̃ + t(ξ̃) ≤ 3.5 + δ,

so that the superposition ξ̃ + t(ξ̃) does not take values outside of the support of ρ(ξ̃).
As in Example 2, the Rockafellian (4.19) is optimized with an alternating direction

heuristic. With the initial guess of t(ξ̃) = 0, we first compute z∗ ∈ argminΦ(z, 0)
using the BFGS method and subsequently compute t∗ argminΦ(z∗, t) using projected
gradient descent with backtracking line search based on the Armijo criteria. This
process is repeated until the absolute distance in L2(Ξ; Ξ) between successive t∗ values
is smaller than τ = 10−5. Note that the Fréchet derivative of the objective Φ with
respect to t is given by

(4.20)
δΦ

δt
(ξ̃) = θ t(ξ̃)−

∫ 1

0

∂

∂t
a
(
x, ξ̃ + t(ξ̃)

)
∇u(x, ξ̃) · ∇p(x, ξ̃) dξ̃,

where p(x, ξ̃) is the solution to the adjoint equation

− d

dx

(
a
(
x, ξ̃ + t(ξ̃)

) d

dx
p(x, ξ̃)

)
= u(x, ξ̃)− u⋆(x), (x, ξ̃) ∈ (0, 1)× Ξδ

p(0, ξ̃) = p(1, ξ̃) = 0.

This calculation assumes, of course, differentiability of the coefficient a(x, ξ̃) with
respect to ξ̃, which is true for (4.16) on the domain Ξδ.

Figure 3(a) shows that the optimal control z∗Rock for (4.19) at θ = 10−1 properly
matches z∗true even at ∼11% corruption, and Figure 3(b) shows the expected value of
corresponding state variables match as well; the same results hold at lower corruption
levels (not shown). Table 2 lists the relative L2 errors (defined by (4.15)) in the Rock-
afellian optimal controls, which are a factor of more than five (respectively, twenty)
times smaller than the relative errors for the corrupted controls at ∼3% (resp., ∼9%
and ∼11%) corruption.

Owing to larger contrast ratios of a(x, ξ̃) at lower values of ξ̃ (see (4.17)), the
variance in the L2 norm of the corrupted state variables increases with increasing δ. In
contrast, the corresponding variance for the Rockafellian state variable is considerably
smaller. This is quantified in Table 2, which shows the variance ratio

(4.21) Vratio :=
Var(ucorrupted)

Var(uRock)

where Var(u) := E[(∥u(·, ξ)∥L2 − E[∥u(·, ξ)∥L2 ])2]. This reduction in the variance is
explained by the extremely low spread in the values of ξ̃ + t∗Rock(ξ̃). Indeed, the ex-
pected values of this random variable range between approximately 3.511 and 3.545
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θ Erel(z
∗
Rock) Eratio Corrupted deleted Clean deleted

5 · 10−3 4.92 · 10−2 5.62 19/20=95% 416/980=42.4%
5 · 10−2 7.23 · 10−3 38.3 14/20=70% 25/980=2.55%
5 · 10−1 1.43 · 10−2 19.4 3/20=15% 0/980=0.00%

Table 3
Results from Example 2 at various θ values and 2% corruption (as defined by (4.13)). Erel

and Eratio are defined by (4.15).

for the three corruption levels tested, while the largest standard deviation is smaller
than 7 ·10−3; essentially, the objective function (4.19) in this case is minimized when-
ever the Rockafellian variable t(ξ̃) alters the stochastic optimal control problem to be
an (approximately) deterministic one.

4.3. Impact of θ parameter. As remarked in the preceding subsection, min-
imizers z∗ and t∗ of Rockafellian objective functionals will depend on the value of
the regularization parameter θϵ.

§ Theorem 3.1 stipulates that a Rockafellian will
Gamma converge to the corresponding, uncorrupted one when both θϵ → ∞ and
θϵ∥ρϵ − ρ∥qT → 0 (where T is an Lq norm) as ϵ ↓ 0; in other words, θϵ should grow
as the size of the corruption vanishes, but not too quickly. Analogous conditions are
needed in Theorem 3.2 and Theorem 3.4.

These conditions are consistent with intuition; θ values that are too large will
prevent the perturbation variable t from meaningfully altering any corrupted problem
data. If θ is sufficiently small, however, there is the possibility that t “greedily” alters
the problem data too much in an effort to reduce the objective functional. In the
context of corrupted empirical samples, for example (as considered in subsection 3.2),
this corresponds to improperly removing “clean”, uncorrupted samples.

This intuition is backed up by numerical experiments at varying θ values. As an
illustration, consider again Example 2 in subsection 4.2 at 2% corruption. Table 3
shows that while the relative L2 error is O

(
10−2

)
or smaller for θ at three different

orders of magnitude, the error is smallest when most (70%) of the corrupted samples
are deleted and few (less than 3%) of the clean sampled are removed.

For Rockafellian relaxations on the support of a probability distribution (as con-
sidered in subsection 3.3), the value of θ affects the variance reduction property ob-
served in Example 3 of subsection 4.2. Recall that the variance in ξ̃+ t∗Rock(ξ̃) (denot-
ing the superposition of the corrupted random variable and the optimal perturbation
variable t) was quite small at θ = 10−1; for θ = 10−2, the variance is even smaller,
while for θ = 1 it is larger. At smaller θ values, then, variance in the state variable
uRock(x, ξ) is lower; the opposite is true at larger θ values. This is quantified by the
ratio Vratio (defined in (4.21)) in Table 4 for the case of ∼11% corruption. For all
values of θ, the relative L2 error between the Rockafellian optimal control and the
true, uncorrupted one is O

(
10−2

)
.

4.4. Computational cost. In general, the computational cost of optimizing
a bivariate Rockafellian is larger than optimizing its (potentially corrupted) single-
variable counterpart; the enhanced resiliency to data corruption afforded by Rockafel-
lian relaxation does not come for free.

For example, the total number of gradient descent iterations in Example 1 taken
to minimize the Rockafellian (4.11) was 3187, compared to only 446 iterations for the

§In this subsection we abuse notation and use θ and θϵ interchangeably.
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θ Erel(z
∗
Rock) Eratio Vratio

10−2 1.95 · 10−2 21.4 7.054 · 104
10−1 1.94 · 10−2 21.6 7.612 · 102
1 5.99 · 10−2 6.99 1.223 · 101

Table 4
Results from Example 3 at various θ values and 11% corruption (as defined by (4.18)). Erel

and Eratio are defined by (4.15), and Vratio is defined by (4.21).

θ Niters, 2% Niters, 20% Nevals, 2% Nevals, 20%
5 · 10−3 537 1640 2024 6251
5 · 10−2 514 1852 1953 7065
5 · 10−1 351 2697 1333 10303

Table 5
Example 2: total number of BFGS iterations, denoted Niter, as well as the total number of

evalations of the objective functional (4.14) and its gradient with respect to the control z, denoted
Nevals, at various θ values and two corruption levels (as defined by (4.13)).

corrupted problem. Note, however, that computing the gradient of (4.11) with re-
spect to t is essentially free, since the relatively expensive terms ∥s(ξϵ,i, z)−u⋆∥2L2(0,1)

which appear in this gradient are already needed for an objective function evaluation.
Hence, the additional computational cost comes essentially from the need for addi-
tional evaluations of the objective functional (4.11) and its gradient with respect to
the control z. This is true for the alternating direction (ADI) heuristics employed in
Examples 2 and 3 as well.

Indeed, the heuristic for Example 2 entails alternating between a BFGS solve for
the control z and a linear program solve for the perturbation variable t with O (1000)
unknowns. The cost of the latter will of course increase with the number of discrete
samples, but for large-scale PDECO problems this will likely remain (significantly)
smaller than the cost of the former.

The ADI heuristic for Example 3 involves a standard projected gradient descent
(with line search) for t, and in practice we observe this to converge quite rapidly—
always in fewer than ten iterations. Note that constructing the gradient with respect
to t only requires calculating an integral over the spatial domain Ω for each stochastic
collocation point used in the discretization of the probability sample space; see (4.20).

Since the additional cost for Rockafellian relaxation comes primarily from the ad-
ditional work to optimize over the control variable z, we quantify how much is needed
for representative cases of Examples 2 and 3 in Table 5 and Table 6, respectively.

For Example 2, optimizing the corrupted objective functional (4.12) at 2% corrup-
tion without Rockafellian relaxation using the BFGS method took 189 total iterations,
which includes 719 evaluations of both the objective functional and its gradient with
respect to the control z. Table 5 shows that optimizing the Rockafellian (4.14) at this
level of corruption was about two to three times more expensive, depending on θ. At
20% corruption, 412 BFGS iterations and 1576 objective functional and gradient eval-
uations were required to optimize (4.12), while the cost to optimize the Rockafellian
ranged between approximately four to six and a half times more expensive.

For Example 3, the total number of BFGS iterations (as well as objective func-
tional and gradient evaluations) needed to optimize the Rockafellian (4.19) in z was
slightly less than twice the amount needed to optimize the corrupted objective func-
tional (4.1). This was true both for 9% and 11% corruption levels, and there was



ROCKAFELLIAN RELAXATION FOR PDECO 21

θ Niters, 9% Niters, 11% Nevals, 9% Nevals, 11%
10−2 1140 1142 4961 4989
10−1 1140 1150 4961 4982
1 1138 1147 4953 4967

Table 6
Example 3: total number of BFGS iterations, denoted Niter, as well as the total number of

evalations of the objective functional (4.19) and its gradient with respect to the control z, denoted
Nevals, at various θ values and two corruption levels (as defined by (4.18)).

little to no variation as a function of θ; see Table 6 for the precise numbers for the
Rockafellian case.

5. Conclusions. We introduce a framework based on Rockafellian relaxation for
general stochastic PDE constrained optimization problems that is robust to pertur-
bations in the the precise form of the problem uncertainty. Theoretical Γ-convergence
results are shown, and numerical examples of elliptic, stochastic optimal control prob-
lems illustrate the framework’s utility for outlier detection and removal and for vari-
ance reduction.

There are numerous potential avenues for future research. Firstly, the framework
can be employed in a much broader range of contexts than considered here. Two
possible examples are data assimilation problems and full waveform inversion prob-
lems, because of the potential for corrupted empirical measurements exists in those
contexts.

It may also be reasonable to consider different forms of the bivariate, Rockafel-
lian functional. The work here considered Lp norms for the perturbation variable
t, but other choices, for example the Kullback-Leibler divergence or the Wasserstein
distance, are possible and may have their own advantages.

Finally, there is room to develop theory for how to best optimize Rockafellian
objectives. Based on the numerical experiments described in subsection 4.2, an inexact
trust region framework seems promising for optimally balancing computational cost
and efficiency [11, 15, 2].

Acknowledgments. The authors thank Rohit Khandelwal for insightful discus-
sions, as well as Mike Novack for helpful discussions on Gamma convergence.

Appendix A. Proof of Theorem 3.2.

Proof. The proof for the cases q = ∞ and q ∈ [1,∞) proceed identically; here we
assume the latter. Let T denote lq(RN ).

We first establish the limit superior condition in Definition 2.3. Suppose that
(z, t) ∈ Z × T ; since Φ(z, t) = ∞ for t ̸= 0 (in which case the condition holds
trivially), suppose t = 0. Constructing the strongly converging sequences as zϵ = z
and tϵ = p− pϵ for all ϵ > 0, we have

Φϵ(zϵ, tϵ) = f0(z) +

N∑
i=1

pig
(
s(ξi, z)

)
+

θϵ
q
∥p− pϵ∥qq + ι∆(p)︸ ︷︷ ︸

=0

,

which implies

lim sup
ϵ↓0

Φϵ(zϵ, tϵ) = f0(z) +

N∑
i=1

pig
(
s(ξi, z)

)
+ lim sup

ϵ↓0

θϵ
q
∥p− pϵ∥qq︸ ︷︷ ︸

=0

= Φ(z, 0)
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by assumption, as desired.
Next, we consider an arbitrary sequence (zϵ, tϵ)ϵ converging weakly to some (z, t)

in the product topology on Z × T . Since T is a finite-dimensional normed space,
note that weak and strong convergence are equivalent. Since f0 is proper lsc and the
indicator ι∆ is also lsc (as ∆ is a closed, convex set in RN ), we have

lim inf
ϵ↓0

Φϵ(zϵ, tϵ) ≥ f0(z) + lim inf
ϵ↓0

N∑
i=1

(pϵ,i + tϵ,i)g
(
s(ξi, zϵ)

)
+ lim inf

ϵ↓0

θϵ
q
∥tϵ∥qq + ι∆(p+ t).

Since g too is sequentially weakly lsc and bounded below, and since and pϵ+tϵ → p+t,

lim inf
ϵ↓0

N∑
i=1

(pϵ,i + tϵ,i)g
(
s(ξi, zϵ)

)
≥

N∑
i=1

(pi + ti)g
(
s(ξi, z)

)
which then gives

lim inf
ϵ↓0

Φϵ(zϵ, tϵ) ≥ f0(z) +

N∑
i=1

(pi + ti)g
(
s(ξi, z)

)
+ lim inf

ϵ↓0

θϵ
q
∥tϵ∥qq + ι∆(p+ t).

If t = 0, then the right-hand side of this inequality is trivially greater than or equal
to Φ(z, 0). If t ̸= 0, then the Rockafellian Φ(z, t) = ∞, while the sequence ∥tϵ∥q is
necessarily bounded below by some positive constant for ϵ sufficiently small. Since
θϵ → ∞, this gives lim infϵ↓0 Φϵ(zϵ, tϵ) = Φ(z, t) = ∞, as desired.

Appendix B. Proof of Theorem 3.4.

Proof. We assume that q ∈ [1,∞), as the case of q = ∞ is nearly the same.
Establishing first the limit superior condition, suppose that (z, t) ∈ Z × T . Since

the condition trivially holds for t(ξ) ̸= 0 a.s., suppose otherwise. Constructing the
sequences as zϵ = z and tϵ = ηϵ − I for all ϵ > 0, we have

Φϵ(zϵ, tϵ) = f0(z) + E
[
g
(
s(ξ, z)

)]
+

θϵ
q
∥ηϵ − I∥qT .

Taking the limit superior of both sides gives lim supϵ↓0 Φϵ(zϵ, tϵ) = Φ(z, 0), as desired.
Next, consider an arbitrary sequence (zϵ, tϵ)ϵ∈R+

that converges strongly to some
(z, t) ∈ Z×T in the product topology, and first suppose that t(ξ) = 0 a.s. As detailed
in the proof of Theorem 3.1, it suffices to establish the limit inferior condition along
a subsequence for which

(B.1) ηϵ′(ξ) + tϵ′(ξ) → ξ a.s. in Ξ.

For ease of exposition, we abuse notation by reverting the subsequence index back to
ϵ and proceed to work with the subsequence.¶

The weak convergence zϵ ⇀ z and (B.1) imply by Assumption 3.3 that s(ηϵ(ξ) +
tϵ(ξ), zϵ) ⇀ s(ξ, z) in U , while the lsc property of g implies lim infϵ↓0 g

(
s(ηϵ(ξ) +

¶In the case q = ∞, the subsequence argument is not necessary, as convergence in the L∞ norm
implies pointwise convergence a.s.
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tϵ(ξ), zϵ)
)
≥ g

(
s(ξ, z)

)
. Since g is coercive and f0 is lsc, the result lim infϵ↓0 Φϵ(zϵ, tϵ) ≥

Φ(z, 0) follows from Fatou’s lemma.
Finally, consider an arbitrary sequence (zϵ, tϵ)ϵ∈R+

that converges to some (z, t),
with t(ξ) ̸= 0 a.s. Because Φ(z, t) = ∞, g and f0 are bounded below and proper,
respectively, the result lim infϵ↓0 Φϵ(zϵ, tϵ) = Φ(z, t) follows from the fact that

lim inf
ϵ↓0

θϵ
q
∥tϵ∥qT = ∞,

as ∥tϵ∥T is necessarily bounded below and θϵ → ∞.

Appendix C. Proofs of propositions from subsection 4.1.

Proof of Proposition 4.2. Let ξ ∈ Ξ such that (4.2) holds, the Lax-Milgram the-
orem and weak convergence of zϵ imply the uniform bound

∥sϵ(ξ, zϵ)∥H1
0 (Ω) ≤

Cp

a∗
∥zϵ∥L2(Ω) ≤

Cp

a∗
sup
ϵ

∥zϵ∥L2(Ω) < ∞

(where Cp is the Poincaré constant in Ω). The Banach-Alaoglu theorem then guar-
antees there exists some u(·, ξ) ∈ H1

0 (Ω) such that

(C.1) s(ξ, zϵ) ⇀ u(·, ξ) in H1
0 (Ω)

up to a subsequence (here we abuse notation and keep the original index ϵ). We now
show that u(·, ξ) = s(ξ, z), i.e., it solves the variational problem (4.3).

Let v ∈ H1
0 (Ω) be arbitrary. Due to uniform boundedness of a in (4.2) and weak

convergence of s(ξ, zϵ) from (C.1), we obtain that

lim
ϵ↓0

∫
Ω

a(x, ξ)∇s(ξ, zϵ)(x) · ∇v(x) dx =

∫
Ω

a(x, ξ)∇u(x, ξ) · ∇v(x) dx.

Since ⟨zϵ, v⟩L2(Ω) → ⟨z, v⟩L2(Ω) by supposition, Definition 4.1 implies

⟨z, v⟩L2(Ω) = lim
ϵ↓0

∫
Ω

a(x, ξ)∇s(ξ, zϵ)(x) · ∇v(x) dx =

∫
Ω

a(x, ξ)∇u(x, ξ) · ∇v(x) dx,

so that indeed, u(·, ξ) = s(ξ, z), as desired. Weak convergence of the full sequence
follows by uniqueness of limits of sequences of real numbers.

Proof of Proposition 4.3. The proof proceeds similarly to that of Proposition 4.2.
The Lax-Milgram theorem and weak convergence of zϵ imply the uniform bound

(C.2) ∥s(ξϵ, zϵ)∥H1
0 (Ω) ≤

Cp

a∗
∥zϵ∥L2(Ω) ≤

Cp

a∗
sup
ϵ

∥zϵ∥L2(Ω) < ∞

(where, again, Cp is the Poincaré constant in Ω). The Banach-Alaoglu theorem guar-
antees there exists some u ∈ H1

0 (Ω) such that

(C.3) s(ξϵ, zϵ) ⇀ u in H1
0 (Ω)

up to a subsequence (here we abuse notation and keep the original index ϵ). We now
show that u = s(ξ, z), i.e., it solves the variational problem (4.3).

Let v ∈ H1
0 (Ω) be arbitrary. Due to uniform boundedness of a in (4.2) and the

weak convergence (C.3), we have

(C.4) lim
ϵ↓0

∫
Ω

a(x, ξ)∇s(ξϵ, zϵ)(x) · ∇v(x) dx =

∫
Ω

a(x, ξ)∇u(x) · ∇v(x) dx.
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By supposition, ⟨zϵ, v⟩L2(Ω) → ⟨z, v⟩L2(Ω), so that by Definition 4.1 and (C.4),

⟨z, v⟩L2(Ω) = lim
ϵ↓0

∫
Ω

[
a(x, ξϵ)− a(x, ξ)

]
∇s(ξϵ, zϵ)(x) · ∇v(x) dx(C.5)

+

∫
Ω

a(x, ξ)∇u(x) · ∇v(x) dx.

The desired result follows if the first term on the right-hand side of (C.5) equals zero.
By the Cauchy-Schwartz inequality,∣∣∣ ∫

Ω

[
a(x, ξϵ)− a(x, ξ)

]
∇s(ξϵ, zϵ)(x) · ∇v(x) dx

∣∣∣
≤ ess sup

x∈Ω
|a(x, ξ)− a(x, ξϵ)| ∥uϵ(·, ξϵ)∥H1

0 (Ω)∥v∥H1
0 (Ω),

so that both sides vanish as ϵ ↓ 0 by the uniform bound (C.2) and the presumed
continuity of a.

Weak convergence of the full sequence follows by uniqueness of limits of sequences
of real numbers.
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