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ADDITIVE ACTIONS ON PROJECTIVE HYPERSURFACES

WITH A FINITE NUMBER OF ORBITS

VIKTORIIA BOROVIK, ALEXANDER CHERNOV, AND ANTON SHAFAREVICH

Abstract. An induced additive action on a projective variety X ⊆ Pn is a regular action
of the group Gm

a
on X with an open orbit, which can be extended to a regular action

on the ambient projective space Pn. In this work, we classify all projective hypersurfaces
admitting an induced additive action with a finite number of orbits.

1. Introduction

Let K be an algebraically closed field of zero characteristic. By a variety or an algebraic
group we always mean an algebraic variety or an algebraic group over K. By open and
closed subsets of algebraic varieties we always mean open and closed subsets in Zariski
topology. We denote by Ga the additive group of a field (K,+) and by Gm

a the group

Gm
a = Ga × · · · ×Ga

︸ ︷︷ ︸

m times

.

Definition 1. An additive action on an algebraic variety X is a regular effective action
of Gm

a on X with an open orbit. By an induced additive action on an embedded projective
algebraic variety X ⊆ Pn we mean a regular effective action of Gm

a on Pn such that the
variety X is the closure of the open orbit of Gm

a .

Not every additive action on a projective variety is induced. An example can be found
in [3, Example 1]. However, when the projective variety X ⊆ Pn is normal and linearly
normal, then this holds and every additive action of Gm

a on X is induced and lifts to the
regular effective action of Gm

a on the projective space Pn.
In [16] a remarkable correspondence between additive actions on the projective space Pn

and local algebras of dimension n+ 1 was obtained. By a local algebra we mean a commu-
tative associative algebra over K with a unit and a unique maximal ideal. We will recall
this correspondence in Section 2. A more general correspondence between actions of com-
mutative algebraic groups on Pn with an open orbit and associative commutative algebras
with a unit element of dimension n+ 1 was established in [17].

The systematic study of additive actions on projective and complete varieties was initi-
ated in [3, 5, 20]. There are several results on additive actions on projective hypersurfaces.
For example, it was proven in [20] that there is a unique additive action on a non-degenerate
quadric. This result was generalized in [10], where actions of arbitrary algebraic commu-
tative groups on non-degenerate quadrics with an open orbit were described. In [3] and [5]
induced actions on projective hypersurfaces were studied. It was proven in [6] that a
non-degenerate hypersurface (see Definition 2) admits at most one additive action. And
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when a degenerate hypersurface admits an additive action, then there are at least two non-
isomorphic additive actions on it, see [9]. For additive actions on degenerate hypersurfaces
we refer also to [18].

Flag varieties admitting an additive action were classified in [1] and all additive actions
on flag varieties were classified in [13]. Additive actions on toric varieties were studied in
[2,4,14,15,19,21,22]. There are results on additive actions on Fano varieties in [7,8,11,12,23].
For a detailed review of the results on additive actions we refer to [6].

In this paper we find all projective hypersurfaces admitting an induced additive action
with a finite number of orbits. We use the technique developed in [3, 5, 6, 20], generalizing
the correspondence from [16, 17]. Each hypersurface admitting an induced additive action
corresponds to a pair (A,U), where A is a local algebra with the maximal ideal m and U is
a subspace in m of codimension 1 generating A as an algebra with unit. We classify all such
pairs (A,U) that correspond to hypersurfaces admitting an induced additive action with
a finite number of orbits, see Theorem 3. By a pair (A,U), one can find an equation defining
the hypersurface using [6, Theorem 2.14]. Our final result is formulated in Corollary 4.

2. Additive actions on projective varieties

In this section we recall some of the facts on additive actions on projective varieties. We
say that two induced additive actions on a projective variety X ⊆ Pn are equivalent if one
is obtained from the other via an automorphism of Pn preserving X .

Proposition 1. [16, Proposition 2.15] There is a one-to-one correspondence between

(1) equivalence classes of additive actions on Pn;
(2) isomorphism classes of local algebras of dimension n+ 1.

We now recall how to construct an additive action on Pn by an (n+1)-dimensional local
algebra A. Let m be the maximal ideal in A. Then A = K ⊕ m (a direct sum of vector
spaces) and all elements in the ideal m are nilpotent. This is a well-known fact, for the
proof we refer to [6, Lemma 1.2]. Consider an exponential map on m:

m 7→ exp(m) =
∑

i≥0

mi

i!
, for m ∈ m.

This map is well-defined on m. The additive group of m is isomorphic to Gn
a and m acts on

the algebra A by the following rule: m ◦ a = exp(m) · a. This is an algebraic action. The
stabilizer of a unit is trivial, so we have the following isomorphisms of algebraic varieties

An ≃ Gn ≃ exp(m) · 1 = 1 +m,

where the last equality is satisfied since the map

1 +m 7→ ln(1 +m) =
∑

i>0

(−1)i−1m
i

i
, for m ∈ m,

is well-defined on 1 + m and exp(ln(1 + m)) = 1 +m. The action of m on the algebra A
defines an algebraic action of Gn

a on the projective space Pn = P(A) by the rule

m ◦ π(a) = π(exp(m) · a),
where the map π : A\{0} → P(A) is the canonical projection. The orbit of π(1) is the open
orbit, so this defines an additive action on Pn. See [6, Example 1.50] for further examples
of this construction.
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Proposition 2. [3, Proposition 3]
Let X be a projective hypersurface in Pn of degree at least 2. Then there is a one-to-one

correspondence between

(1) equivalence classes of induced additive actions on X;
(2) isomorphism classes of pairs (A,U), where A is a local (n+ 1)-dimensional algebra

with the maximal ideal m and U is an (n − 1)-dimensional subspace in m that
generates A as an algebra with a unit.

The pairs (A,U) from Proposition 2 are called H-pairs. We say that two H-pairs (A1, U1)
and (A2, U2) are isomorphic if there is an isomorphism of local algebras ϕ : A1 → A2 such
that ϕ(U1) = U2.

We can construct an additive action on a projective hypersurface X ⊆ Pn similarly to
one from Proposition 1. From now on until the end of the section, we fix an H-pair (A,U).
Let m be the maximal ideal of A. We define the action of m on P(A) in the same way as
in Proposition 1. We then restrict this action on the subgroup U ≃ Gn−1

a and consider the
subvariety

X = π(exp(U) · 1).
Then X is a hypersurface in P(A) = Pn and the group U acts on X with an open orbit.

The following results illustrate how to find the defining equation and degree of X .

Theorem 1. [5, Theorem 5.1] The degree of the hypersurface X is equal to the largest
number d ∈ N such that md * U , where m is the maximal ideal in the corresponding local
algebra A.

Theorem 2. [6, Theorem 2.14] The hypersurface X is given in P(A) by the following
homogeneous equation:

zd0π

(

ln

(

1 +
z

z0

))

= 0,

where z0 ∈ K, z ∈ m and π : m → m/U ≃ K is the canonical projection.

It is also possible to describe elements a ∈ A such that π(a) ∈ X.

Proposition 3. [6, Corollary 2.18] The complement of the open U-orbit in X is the set

{ π(z) | z ∈ m such that zd ∈ U },
where π : A \ {0} → P(A) is the canonical projection and d is the degree of X.

Corollary 1. Suppose that the point x ∈ X belongs to the complement of the open orbit of
the group U . Then the m-orbit of x is contained in X.

Proof. Let us take z ∈ m such that π(z) = x lies in X . Then zd ∈ m
d ∩ U . The m-orbit of

the element z is z+ z ·m. But then (z+ z ·m)d ⊆ zd +m
d+1 ⊆ U . So π(z+ z ·m) ⊆ X . �

We recall that a socle of a local algebra A is the ideal Soc(A) := {z ∈ A | z ·m = 0}.
Corollary 2. The set { π(z) | z ∈ Soc(A) \ {0} } is contained in X.

Proof. For all z ∈ Soc(A) we have zd = 0 is in the group U . �

Corollary 3. When dim(Soc(A)) > 1 then there are infinitely many U-orbits on X.

Proof. If z ∈ Soc(A) then exp(U) · z = {z}. So the set { π(z) | z ∈ Soc(A) \ {0} } ⊆ X
consists of the U -fixed points and has dimension at least 1. �
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It is also possible to describe the relationship between m-orbits on X and U -orbits. For
an element z ∈ A we denote by Ann(z) the ideal {a ∈ A | az = 0}.

Proposition 4. Let z ∈ m \ {0} be an element with π(z) ∈ X.

(1) If Ann(z) + U = m, then the m-orbit of π(z) coincides with the U-orbit.
(2) Otherwise, the m-orbit of π(z) is the union of an infinite number of U-orbits.

Proof. We will show that Ann(z) coincides with the stabilizer Stm(π(z)) with respect to
the m-action. The inclusion Ann(z) ⊆ Stm(π(z)) is clear. Indeed, if a ∈ Ann(z) then we
have az = 0 and exp(a) · z = z. We now show the reverse inclusion. If a ∈ Stm(π(z)) then

exp(a) · π(z) = π(z + az +
a2

2
z +

a3

6
z + . . .) = π(z),

which implies

az +
a2

2
z +

a3

6
z + . . . = 0.

Assume az 6= 0. Then there is a number k ∈ N such that az ∈ m
k \ mk+1. However, then

the element a2

2
z + a3

6
z + . . . lies in the ideal mk+1. So az = 0 and a ∈ Ann(z).

Thus, the m-orbit of π(z) is isomorphic to m/Ann(z) and U -orbit of π(z) is isomorphic to

U/(Ann(z) ∩ U) ≃ (U +Ann(z))/Ann(z).

Hence, if U + Ann(z) = m then the m-orbit of π(z) coincides with the U -orbit, and if
U +Ann(z) 6= m then the action of U on m/Ann(z) has infinitely many orbits.

�

3. Main result

In this section we state our main result. Recall that for a local algebra A with the
maximal ideal m the following sequence of numbers

(dimKA/m, dimK m/m2, dimK m
2/m3, . . . )

is called a Hilbert-Samuel sequence.

Proposition 5. Let (A,U) be an H-pair and X be the corresponding hypersurface in P(A).
Suppose that there are finitely many U-orbits in X. Then the Hilbert-Samuel sequence of A
is either (1, 1, 1, . . . , 1) or (1, 2, 1, . . .1).

Proof. Since K is algebraically closed and A/m is a finite dimensional field over K we have

dimKA/m = 1.

Suppose there is a number k ≥ 2 with dimK m
k/mk+1 > 1. For all z ∈ m

k \ {0} we have

zd ∈ m
kd ⊆ m

d+1 ⊆ U,

where d is the degree ofX . Then π(z) lies inX for all z ∈ m
k\{0}, where π : A\{0} → P(A)

is the canonical projection. The m-orbit of π(z) is π(z + z · m) ⊆ π(z + m
k+1). Thus, if

the images of elements z1 and z2 from m
k in m

k/mk+1 are not proportional, then the m-
orbits of π(z1) and π(z2) do not coincide, so their U -orbits are also different. Therefore, if
dimKm

k/mk+1 > 1, there are infinitely many U -orbits onX ,this contradicts our assumption.



ADDITIVE ACTIONS ON PROJECTIVE HYPERSURFACES WITH A FINITE NUMBER OF ORBITS 5

It implies that the Hilbert-Samuel sequence has the following form: (1, r, 1, . . . , 1). Now
suppose that r ≥ 3 and consider a map:

ϕ : m/m2 → m
d/md+1,

z +m
2 7→ zd +m

d+1.

The map ϕ is a morphism between algebraic varieties m/m2 ≃ Ar and m
d/md+1 ≃ A1. The

set Z := ϕ−1(0 +m
d+1) is non-empty, so dim(Z) ≥ r − 1 ≥ 2. For all elements z ∈ m \ {0}

with z + m
2 ∈ Z we have π(z) is lying in X . As previously, when elements z1 + m

2 ∈ Z
and z2 +m

2 ∈ Z are not proportional then the U -orbits of π(z1) and π(z2) are different.
Since dim(Z) ≥ 2 there are infinitely many U -orbits on X . This contradicts our assump-

tion, thus r ≤ 2 and the Hilbert-Samuel sequence of A equals (1, . . . , 1) or (1, 2, 1, . . . 1). �

Proposition 6. Let (A,U) be an H-pair and X be the corresponding hypersurface in P(A).
Suppose that there are finitely many U-orbits in X. Then for n ≥ 1 we have

A ≃ K[x]/(xn+1) or A ≃ K[x, y]/(xy, x3, y2 − x2).

Proof. First suppose the Hilbert-Samuel sequence of A equals to (1, 1, . . . , 1). Then A is
generated by one nilpotent element, so A is isomorphic to K[x]/(xn+1).

Now consider the case when the Hilbert-Samuel sequence of A is (1, 2, . . . , 1). Denote
by r the maximal number such that mr 6= 0, where m is the maximal ideal in A. If r = 1
then A ≃ K[x, y]/(x2, xy, y2). In this case Soc(A) = 〈x, y〉, this contradicts Corollary 3.

Now consider the case r > 1. Then there is an element x ∈ m such that 〈xr〉 = m
r,

see [6, Lemma 2.13]. Hence, m = 〈x, x2, . . . , xr, y〉 where y ∈ m \m2 and images of x and y
are linearly independent in m/m2. Thus, xy lies in m

2, so xy = f(x), where f(x) is a

polynomial divisible by x2. We replace y with y − f(x)
x

to obtain xy = 0.
The element y2 belongs to m

2. Thus, y2 = g(x), where g(x) is a polynomial divisible by
x2. Assume that y2 = 0, then Soc(A) = 〈xr, y〉 which contradicts Corollary 3. On the other
hand, xy2 = (xy)y = 0 = xg(x). It implies that g(x) = λxr, where λ ∈ K\{0}. We replace y

with
√
λy to get y2 = xr. Then A is isomorphic to the algebra K[x, y]/(xy, xr+1, y2 − xr).

To complete the proof we should show that r ≤ 2. Assume the opposite, i.e., r > 2. If
we denote by d ≥ 2 the degree of the hypersurface X , then m

d+1 ⊆ U . We have

(y + αx2)d = yd + αdx2d ∈ m
d+1 for all α ∈ K.

Here we use that y2 = xr and y3 = 0. Therefore, π(y + αx2) ∈ X for all α ∈ K, where, as
before, π : A → P(A) is the canonical projection. The m-orbit of (y + αx2) is the set

y + αx2 + (y + αx2)m ⊆ y + αx2 +m
3.

That is, the m-orbits of the points π(y + αx2) do not coincide. Hence, if r > 2 there are
infinitely many U -orbits on X , which leads to a contradiction. �

Remark 1. Note that the algebra K[x, y]/(xy, x3, y2 − x2) is isomorphic to K[x, y]/(x2, y2).
To see this, one should take x̃ = y − ix and ỹ = y + ix, then we get

K[x, y]/(xy, x3, y2 − x2) = K[x̃, ỹ]/(x̃2, ỹ2).

We are ready to state our first main result.

Theorem 3. Let (A,U) be an H-pair and X be the corresponding hypersurface in P(A).
Then there are finitely many U-orbits on X if and only if the pair (A,U) is isomorphic to
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one of the following pairs:

(K[x]/(xn+1), Ui), where Ui := 〈x1, . . . , xi−1, xi+1, . . . , xn〉 with i ≥ n− 1, or

(K[x, y]/(x2, y2), W ), where W = 〈x, y〉.
To prove Theorem 3, we need the following lemma.

Lemma 1. Let (A,U) be one of the following H-pairs:

(K[x]/(xn+1), Ui), where Ui := 〈x1, . . . , xi−1, xi+1, . . . , xn〉 with i > 1, or

(K[x, y]/(x2, y2), W ), where W = 〈x, y〉.
And consider the corresponding hypersurface X. Then, in both cases, there are finitely
many U-orbits on X if and only if i ≥ n− 1.

Proof. First consider the case when an H-pair (A,U) equals to (K[x]/(xn+1), Ui). By
Theorem 1, the degree of X is equal to i. By Proposition 3, the complement to the open
U -orbit in X is the set

{ π(z) | z ∈ m such that zi ∈ U } = π(m2).

By Corollary 1, for each point π(z) from this set the m-orbit of π(z) is contained in X . The
total number of m-orbits on P(A) is finite, see [16, Proposition 3.7]. Each m-orbit either
coincides with an U -orbit or is the union of infinite number of U -orbits. Therefore, the
total number of U -orbits in X is finite if and only if for all z ∈ m

2 \ {0} the m-orbit of π(z)
is equal to U -orbit of π(z). By Proposition 4 this is equivalent to

Ann(z) + U = m, ∀z ∈ m
2.

For z ∈ m
2\m3 we have Ann(z) = m

n−1 = 〈xn−1〉 and Ann(z) ⊇ 〈xn−1〉 for all other z ∈ m
2.

Therefore, the total number of U -orbits in X is finite if and only if

〈xn−1〉+ Ui = m.

It implies that i = n or n− 1.
In the case (A,U) = (K[x, y]/(x2, y2), 〈x, y〉), the degree of X is 2. Three m-orbits are

contained in the complement to the open U -orbit in X . They are π(x+Kxy), π(y +Kxy)
and π(xy). It is easy to see that all these m-orbits coincide with U -orbits. �

Proof. (of Theorem 3) Let (A,U) be anH-pair and suppose that corresponding hypersurface
X ⊆ Pn contains only a finite number of U -orbits. By Proposition 6 and Remark 1 the
algebra A is isomorphic to K[x]/(xn+1) or K[x, y]/(x2, y2).

Consider the case A ≃ K[x]/(xn+1). Let U be an (n − 1)-dimensional subspace in m,
which generates A. Suppose that 〈xn〉 * U . Then

U = 〈x+ α1x
n, x2 + α2x

n, . . . , xn−1 + αn−1x
n〉

for some α1, . . . , αn−1 ∈ K. For all β2, . . . , βn ∈ K we consider an automorphism ϕ of A,
ϕ : x 7→ x+ β2x

2 + . . .+ βnx
n. Then

ϕ(xk + αkx
n) = (kβn−k+1 + hk(β2, . . . , βn−k) + αk)x

n +O(xn−1).

We take βn−k+1 = − 1
k
(αk + hk(β2, . . . , βn−k)) for all k = 1, . . . , n− 1. Then

ϕ(xk + αkx
n) ∈ 〈x, . . . , xn−1〉 ∀k = 1, . . . , n− 1.

Therefore, ϕ(U) = 〈x, . . . , xn−1〉.



ADDITIVE ACTIONS ON PROJECTIVE HYPERSURFACES WITH A FINITE NUMBER OF ORBITS 7

If 〈xn〉 ⊆ U we can consider the canonical homomorphism π : A → A/〈xn〉 ≃ K[x]/(xn).
Then π(U) is an (n − 2)-dimensional subspace that generates A/〈xn〉. Proceeding by in-
duction we obtain that up to automorphism of A/〈xn〉

π(U) = 〈x+ 〈xn〉, x2 + 〈xn〉, . . . , xi−1 + 〈xn〉, xi+1 + 〈xn〉, . . .〉.
But then U = Ui.

Now we consider the case A ≃ K[x, y]/(x2, y2). If a 2-dimensional subspaceW in 〈x, y, xy〉
generates A then W = 〈x+ αxy, y + βxy〉. Applying the automorphism of A

x 7→ x− αxy, y 7→ y − βxy,

we obtain that W = 〈x, y〉. The statement of Lemma 1 completes the proof. �

By anH-pair we can find the equation of the corresponding hypersurface X . For example,
we consider the H-pair (A,U) = (K[x]/(x3), 〈x〉). Then we apply Theorem 2. If we choose
a basis 1, x, x2 in A then the map π : A → A/U can be given as follows:

z0 + z1x+ z2x
2 7→ z2.

In this case, the degree of X is 2. If we denote z = z1x+ z2x
2 we obtain

ln(1 +
z

z0
) =

z

z0
− z2

2z20
=

z1
z0
x+

2z2z0 − z21
2z20

x2.

The hypersurface X is then given by the following equation:

z20 · π(ln(1 +
z

z0
)) = 2z1z0 + z2z0 − 2z21 = 0.

This is a non-degenerate quadric of rank 3. Below we recall the definition of a non-
degenerate hypersurface.

Definition 2. [6, Definition 2.22] Suppose a projective hypersurface X ⊆ Pn of degree d
is given by an equation f(z0, z1, . . . , zn) = 0. Then X is called non-degenerate if one of the
following equivalent conditions holds:

(a) ∂f

∂z0
, . . . , ∂f

∂zn
are linearly independent (d− 1)-linear forms;

(b) there is no linear transformation of variables z0, . . . , zn that reduces the number of
variables in f .

An H-pair (A,U) defines a non-degenerate hypersurface if and only if dim(Soc(A)) = 1
and m = U ⊕ Soc(A), see [6, Theorem 2.30]. As a corollary we have the following result.

Corollary 4. Let X ⊆ Pn be a projective hypersurface admitting an induced additive action
with a finite number of orbits.

(1) When n = 2, X is a non-degenerate quadric of rank 3.
(2) When n = 3, X is one of the following projective surfaces:

(a) P1×P1 embedded to P3 as a non-degenerate quadric of rank 4 via Segre embed-
ding;

(b) A non-degenerate cubic z20z3 − z0z1z2 +
z3
1

3
= 0.

(c) A degenerate quadric of rank 3.
(3) When n > 3, X is either a non-degenerate hypersurface of degree n or a degenerate

hypersurface of degree n− 1.

In Table 1 one can find the equations of the resulting non-degenerate hypersurfaces of
dimensions 2–5.
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dim(X) The equation of a hypersurface

2 2z1z0 + z2z0 − 2z21 = 0

3 z0z3 − z1z2 = 0

3 z20z3 − z0z1z2 +
z3
1

3
= 0

4 z30z4 − z20z1z3 +
z2
0
z2
2

2
+ z0z

2
1z2 −

z4
1

4
= 0

5 z40z5 − z30z4z5 + z20z
2
1z3 + z20z1z

2
2 − z0z

3
1z2 + z51 = 0

Table 1.
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