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In this short perspective article we present our personal highlights on how the Jaynes-Cummings
model has become a central model to describe spin-boson couplings underpinning much of modern
quantum optics. To the current authors, the key contribution is a demonstration of a measurable
effect that showed the discreteness of the quantized radiation field.

I. EARLY HISTORY

We discuss how the Jaynes-Cummings model [1] has
become the basic building block of resonance physics,
demonstrating the non-perturbative time-dependent os-
cillation of transition probabilities when a single quan-
tized field mode is coupled to a two-level system. It un-
derpins much of quantum optics and quantum informa-
tion processing [2] and 61 years after the original publi-
cation continues to be a highly cited paper.

Atom-field resonant excitation has a long history [3]
(and see [2] and references therein). Rabi developed
the semi-classical resonance model where the field is de-
scribed classically to describe atomic beam resonance ex-
periments. An essential assumption made was the rotat-
ing wave approximation (RWA) [2] [4], justified by the
closeness of a resonance and the lack of other nearby
atomic levels. This work built on earlier time-dependent
work on non-adiabatic Majorana “flops” [5]. Indeed, non-
adiabatic transitions were studied even before Rabi’s res-
onance model. The first suggestion came from C. Dar-
win (the Darwin’s grandson!) in 1927 [6] and studied
experimentally by Phipps and Stern and theoretically by
Guttinger and very thoroughly by Majorana [7] and con-
firmed experimentally by Frisch and Segre (see [5] and
references therein); hence these were referred to by the
atomic beams community as “Majorana flops” as they
created spin flips that “flopped” the focused atomic beam
back to the detector. Rabi, aware of these developments,
then built on them to construct his radio frequency res-
onance approach a few years later.

Jaynes, in a famous Stanford Microwave Lab report [8],
extended the semi-classical approach to describe maser
action and shortly after brought in F.W. Cummings, his
then-graduate student, to analyze a fully quantized ver-
sion of the Rabi model assuming Fock (number) states
of the field, and the resultant paper is the now-famous
Jaynes-Cummings Model (JCM) [1].

We denote the atomic resonance frequency and cavity
frequency as ω0 and ω, respectively, with Pauli raising
and lowering operators to describe absorption and emis-
sion, with an atom-field coupling strength denoted by λ.
In the RWA, the Jaynes-Cummings Hamiltonian is given

by

Ĥ =
1

2
ℏω0σ̂3 + ℏωâ†â+ ℏλ

(
σ̂+ˆ̂a+ σ̂−â

†
)
. (1.1)

The JCM is ubiquitous in quantum optics as the funda-
mental spin-boson model for a single photon interacting
with a single two-level atom (in the RWA) inside a cav-
ity, spawning the field of cavity quantum electrodynamics
(QED, see e.g. Haroche and Raimond [9] and references
therein). It’s investigations and extensions in the field of
quantum optics have been extensively explored. A num-
ber of early papers investigated the interaction of a two
level system with a single quantized field mode including
those by Paul [10] and Frahm[11].
Returning to the JCM Hamiltonian of Eq. (1.1), the

probability that the system remains in the initial state
|i⟩ = |e⟩a ⊗ |n⟩f (atom in excited state |e⟩a and field in

Fock state |n⟩f containing n photons) is

Pi(t) = |Ci(t)|2 = cos2
(
λt
√
n+ 1

)
, (1.2)

while the probability that it makes a transition to the
state |f⟩ is

Pf (t) = 1− Pi(t) = sin2
(
λt
√
n+ 1

)
. (1.3)

Cummings, in a later paper [12], addressed the role of
photon statistics in the JCM and showed how the distri-
bution of photon numbers leads to a spread of oscillatory
Rabi frequencies and an inevitable dephasing of the oth-
erwise regular sinusoidal evolution. For the most classi-
cal of the pure quantized field states, a coherent state of
amplitude α, given by

|α⟩ = e−
1
2 |α|

2
∞∑

n=0

αn

√
n!

|n⟩ , (1.4)

with average photon number n̄ = |α|2, we have

Pn = | ⟨n|α⟩ |2 = e−|α|2 |α|2n

n!
= e−n̄ n̄

n

n!
. (1.5)
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Thus the difference in occupation probabilities between
the initial and final states, known as the atomic inversion
and denoted W (t) is

W (t) = ⟨σ̂3⟩ = e−n̄
∞∑

n=0

n̄n

n!
cos

(
2λt

√
n+ 1

)
. (1.6)

This leads to a dephasing of the Rabi oscillations, now
known as a Cummings collapse, due to the spread of pho-
ton numbers. This is a unique quantum feature that is
important to note as even a “classical” state (coherent
or thermal) has such a spread: the evolution is photon-
number sensitive in a truly non-classical manner.

The collapse time found by Cummings is governed by
the inverse of the one-photon coupling strength tc =
(2λ)−1. But this collapse is non-dissipative− what hap-
pens if one pursues the evolution for longer times? In
hindsight, it is clear that we should expect some kind of
return of coherent oscillations given the discreteness of
photon occupation number. The literature does contain
precursors of what turned out to be revivals (Meystre et
al. [13], Stenholm [14], etc.) in numerical studies of the
JCM albeit with truncated numerics at this early stage
in computational analysis in the early 1970s.

II. COLLAPSE AND REVIVALS

The systematic study of the effects of photon statistics
on the long-term time evolution of the JCM was pio-
neered by J. H. Eberly and his group, combining sophis-
ticated analytic and computational approaches [15, 16].
They were able to describe in detail the emergence of
revivals as well as collapses. The numerics in their com-
putational approach were this time converged. The new
feature they showed, that being the revivals of the atomic
inversion, are important as they showed how sensitive the
atom-field coupling is to the discreteness of photon num-
bers. They showed the revival time is given by

tR = (2π/λ)n̄1/2k, n̄≫ 1, k = 1, 2, 3, . . . . (2.1)

In Fig. (1) we plot the atomic inversion for an initial
coherent state with average photon number n̄ = 15 as a
function of scaled time T = λt.
The relationship between the semi-classical Rabi for-

mula for resonant excitation and the Jaynes-Cummings
model is worth mention. One might naively expect that
as the photon number increases, some kind of semi-
classical limit may be approached, yet this does not hap-
pen. Knight and Radmore [17] addressed this; for a cav-
ity field prepared in a coherent state, one can transform
the Hamiltonian by an inverse Glauber transformation
[18] without approximation to one where the cavity is oc-
cupied by a classical field of appropriate amplitude but
where the atom is also coupled to a vacuum field. As
the classical field drives the atom to an excited state, the

FIG. 1: Atomic inversion evolution with the field
prepared in an initial coherent state with α =

√
15 and

the atom initially prepared in the excited state, such
that |ψ(0)⟩f,a = |α, e⟩f,a. Here, we plot the atomic

inversion against scaled time λt.

atom, through quantum coupling to the field creation
operator, can generate a cascade of quantum generated
photon numbers: the first step in this cascade is the one-
photon creation step and for that reason the collapse
is governed by the inverse of the one-photon Rabi fre-
quency. Fleischhauer and Schleich [19] have shown how
the Poisson summation formula provides insight into the
nature of the revivals.

III. SQUEEZED STATES

Shortly after the appearance of the paper by Naroznhy
et al. [15] announcing the collapse and revival phe-
nomena in the Jaynes-Cummings model, Meystre and
Zubairy [20] studied the possible occurance of quadra-
ture squeezing in the evolution of the model with the
field and the atom being at exact resonance assuming
the the initial state of the field to be a coherent state
of average photon number n̄(0) < 10 (this was in the
days before squeezing was observed in the laboratory.)
These authors found that, indeed, quadrature squeezing
could occur during the evolution, but that the amount of
squeezing obtained was rather modest; being about 20%
of the amount allowable below the level of the vacuum
noise. However, Kukliński and Madajczyk [21] found
that with a much greater average photon number, such
as n̄(0) ∼ 100, strong squeezing can be obtained even
though they included field dampening in their calcula-
tions. These results are demonstrated in Fig. (2), where
the usual quadrature operators are given by

X̂1 =
1

2

(
â+ â†

)
, X̂2 =

i

2

(
â− â†

)
, (3.1)
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FIG. 2: Quadrature squeezing with an initial coherent
state with n̄ = 10, 40, 100. We plot only the variance for
the the X̂1 quadrature noting that no squeezing occurs
in X̂2 at any time. A high degree of squeezing can be
seen at later times for succesively higher n̄. We include
the minimum squeezing values for each case; these are:
−0.11,−0.185, and − 0.213, for increasing average

photon numbers.

and we plot s1 = ∆2X̂1− 1
4 , where ∆

2X̂1 = ⟨X̂2
1 ⟩−⟨X̂1⟩

2

is the quadrature variance and squeezing is observed for

values s1 < 0 with the lower bound of s
(min.)
1 = −1/4.

Interestingly, they found that squeezing can be even
stronger for the out-of-resonance case. Hillery [22] sub-
sequently showed for small initial photon number, the
squeezing obtained in this model will always be weak.
He also pointed out that for some quantum effects to be
substantial, large photon numbers are required.

For the same cases considered in Fig. (2), we display
the corresponding Mandel Q parameter defined as

Q =
∆2n̂

⟨n̂⟩
− 1, (3.2)

where ∆2n̂ represents the photon number fluctuations.
For states displaying Poissonian statistics, the photon
number fluctuations are equal to the average photon
number and we have Q = 0. For Q > 0 and Q < 0, the
state is said to have super−, and sub-Poissonian statis-
tics, respectively (the former having large photon num-
ber variances, an example of which being thermal states,
while the latter has comparably small variances like num-
ber states, and is a strictly non-classical characteristic).
We plot the Mandel Q parameter in Fig. (3) demonstrat-
ing variation in the field photon statistics throughout the
state evolution.

Alsing, Guo and Carmichael [23] calculated the
quasienergies and steady states of a coupled two-level
atom and quantized electromagnetic cavity mode with
the cavity mode driven by a periodic classical field that

FIG. 3: Mandel Q parameter for different intensities of
the initial field n̄ = 10, 40, 100. Note that for all initial
coherent (Poissonian) field intensities the state displays
both super-, and sub-Poissonian statistics at some point

in the evolution. Note, the initial collapse time is
insensitive to the photon number n̄, while the

subsequent revival times are. The revival of the varying
statistics occurs at shorter times for smaller average

photon numbers.

are all on resonance. The quasienergies resulted in shifted
Jaynes-Cummings level splittings which were reduced by
the interaction with the driving field and vanished at
a threshold value of the driving field strength. Above
this threshold, the discrete quasienergies and normaliz-
able steady states do not exist. For weak driving fields
below the threshold, the steady states were squeezed and
displaced Jaynes-Cummings eigenstates which gave rise
to squeezing-induced linewidth narrowing in the vacuum
Rabi splitting for the ground state of the driven Jaynes-
Cummings system.

In the cases mentioned in the previous paragraph, only
continuous evolution was involved, with atomic and field
states generally entangled. However, as shown by Gerry
and Ghosh [24], it is possible to obtain a greater degree
of squeezing, even in the case of low photon number, pro-
vided selective measurements are performed on the atom.
The idea is that an atom passes through the cavity and
interacts with cavity field, then leaves the cavity where
it can be subjected to classical radiation fields which im-
plement what amounts to Ramsey pulses, after which the
state of the atom is detected by selective ionization. This
process projects the cavity field into a pure state, and it
was found in [24] that squeezing up to 75% could be at-
tained in this matter. This procedure for projecting a
cavity field into a pure state with non-classical features,
such as cat states of the form |ψ±⟩ ∝ |α⟩ ± |−α⟩ has
long been discussed and perfected in the laboratory by
Haroche and collaborators in the context of the disper-
sive model of atom-field interactions (see [9]), but applied
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FIG. 4: Evolution of the Wigner function for an initial coherent state with |α|2 = 9. The distribution bifurcates and
counter propagates in phase space before recombining. When the two localized distributions are opposite each other,
the field is at its most cat-like. Note the negativity in the Wigner function for scaled times λt > 0 throughout the

evolution suggesting non-classicality of the field.

here to the resonant case. The possible use of these tech-
niques in the resonant model was first proposed by Za-
gury and de Toledo Piza [25] who showed that large-scale
correlation effects could be obtained by the pre-selection
and post-selection of atomic states. Ghost and Gerry [26]
later investigated the occurence of sub-Poissonian statis-
tics in the field by a sequence of properly prepared and
detected atoms. We note there has been recent activity
in this area [27, 28].

The full range of the occurence of non-classical field
effects in the Jaynes-Cummings model can be found in
the recent book by Larson and Mavrogordaros [29].

IV. ATOM-FIELD SCHRÖDINGER CATS

Further understanding can be obtained by studying
the evolution of the field state in phase space using quasi-
probabilities. A single field mode in the JCM interacting
with a single two-level atom exhibits a two-component
behaviour easily described by the Schmidt basis [30–32].
A field initially in a coherent state has a Gaussian Wigner
function which evolves by bifurcating into two counter-
rotating components; the point in time at which the two
components are maximally separated coincides with the
collapse time. Then, when they come to a point 180
degrees from the starting point, we see a revival. This
is demonstrated in Fig. (4) for an initial coherent state
with α = 3. The JCM bifurcation was noted in early
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FIG. 5: Expectation value of the field parity operator
(purple, dashed) plotted against scaled time λt for the

initial conditions α =
√
15 and the atom initially

prepared in the excited state, such that
|ψ(0)⟩f,a = |α, e⟩f,a. We include a plot of the atomic

inversion (red,solid) for reference

papers by Eiselt and Risken [33, 34] who showed that
the bifurcation could be seen in the evolution of both the
Q-function and Wigner function of the field.

At the point of maximal separation, which occurs at
the midpoint between the collapse and first revival of
the Rabi oscillations, the atom-field system becomes sep-
arable as was shown by Knight and Phoenix [30] and
by Gea Banacloche [31]. The field state at this time is
approximately described by (unnormalized) Schrödinger
cat states of the form [35]

|ψ±⟩∼ |β⟩ ± |−β⟩ , (4.1)

where |±β⟩ are coherent states. Note that |ψ+⟩ con-
tains only even photon numbers while |ψ−⟩ contains only
odd. We mention this because even though the atom
and field states are approximately separable at the afore-
mentioned midpoint, the field is not static. That this
is so becomes apparent if one calculates the expectation
value of the field photon number parity operator, given

by Π̂ = (−1)â
†â, for the resonant JCM as was done by

Birrittella et al. [36]. The result is displayed in Fig. (5),
where it is evident that at the midpoint of the period
where the Rabi oscillations of the atomic inversion are
quiescent, the photon number parity is rapidly oscillat-
ing. This indicates that the field state at these times is
rapidly switching between states of even and odd parity,
i.e. switching between even and odd cat-like states. Ulti-
mately, this can be attributed to quantum interference
efffects between the widely separated counter-rotating
components of the field. These oscillations in the photon
number parity have been seen in a recent experiment by
the Haroche group [37].

But what happens when instead of an entirely closed
loss-free system, we allow dissipation? Barnett and
Knight [38] were first to show revivals were very sensi-
tive to dissipation; collapses less so.

V. EXPERIMENTAL OBSERVATIONS

The experimental investigations of the JCM came out
of work on the radiative properties of highly excited Ry-
dberg atoms in cavity QED. Atoms prepared in a very
highly excited states have huge dipole moments, and
combined with cavities with very high quality factors
allow the study of atom-field couplings at low photon
number (Rempe et al. [39], Haroche and Raimond [9]),
resulting in clear observations of both collapses and re-
vivals of the Rabi oscillations. But this is not the only
way to realize a spin-boson JCM Hamiltonian: another
way uses laser-cooled trapped ions. A laser cooled ion in
an electromagnetic trap, such as an RF Paul trap [40] re-
alizes the Jaynes-Cummings interaction between internal
states of the ion and the quantized harmonic vibrational
motion of the center-of-mass (CM) of the ion which is
constrained by the trap. The Jaynes-Cummings inter-
action is engineered by the use of a tunable laser field
directed along the axis of the trap. If ν is the angular
frequency of the vibrational motion of the CM of the
ion, which is determined by the trap parameters, and if
ω0 is the angular frequency associated with two relevant
internal states of the ion, then with the laser frequency
tuned such that ωL = ω0 + ν, one ends up with an inter-
action that contains, after discarding rapidly oscillation
terms, the Jaynes-Cummings interaction −iâ†σ̂− + h.c.
wherein the Bose operators â, â† are understood to rep-
resent the quantized vibrational motion of the CM of the
ion. This replaces the quantized single-mode field: i.e.
we have phonons instead of photons. Indeed, with the
choice ωL = ω0 − ν, the otherwise unrealizeable “anti-
Jaynes-Cummings” interaction −iâ†σ̂− + h.c. can be en-
gineered.

As far as we are aware, the first laboratory realization
of the JCM in the context of trapped ions was reported
by Meekhof et al. [41]. With the vibrational motion
of the ion prepared in coherent state by implementing a
displacement of the ion trap itself with the ion initially
in its vibrational ground state, Meekhoff et al. realized
the coherent state JCM. Clear evidence of the predicated
collapse and revival of the Rabi oscillations is presented
in [41].

A significant physical implementation and translation
of the JCM beyond the field of quantum optics has been
to circuit QED systems consisting of a single supercon-
ducting qubit coupled to the electromagnetic field of a
single mode inside a microwave resonator (see the review
article by Schmidt and Koch [42] and references therein,
with comparison/contrast to cavity QED systems).
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VI. CLOSING REMARKS

The Jaynes-Cummings model continues to be one of
the key conceptual models of current quantum optics: it
continues to be very widely cited with no diminution of
its perceived importance.

In closing, it may seem ironic that E. T. Jaynes, pas-
sionate about looking for ways to avoid field quantization
[43], was the creator of the most fundamental model of
atom-photon interaction; one widely adopted and con-
firmed by experiment. Extensive reviews of the JCM
exist, for example Shore and Knight [44], and more re-
cently and exhaustively by Larson and Mavrogordatos
[29], indicating its lasting importance.

In the 60+ years since the publication of the Jaynes-
Cummings model, the paper remains a seminal contribu-
tion to quantum optics, cited many times each year. To

the current authors, the key contribution is a demon-
stration of a measurable effect that showed the dis-
creteness of the quantized radiation field. The Cum-
mings collapse reflects the contribution of incommensu-
rate coupling strengths; of course any distribution of field
strengths will lead to dephasing analogous to a collapse,
but the revival is truly dependent on the photon num-
ber being discrete. This will happen even with fields
showing little sign otherwise of “non-classicality” includ-
ing coherent and thermal fields. To us, this is really the
‘take-home’ message of the Jaynes-Cummings model.
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