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Abstract— Deep learning has become the de facto
method for medical image segmentation, with 3D segmen-
tation models excelling in capturing complex 3D structures
and 2D models offering high computational efficiency. How-
ever, segmenting 2.5D images, which have high in-plane
but low through-plane resolution, is a relatively unexplored
challenge. While applying 2D models to individual slices
of a 2.5D image is feasible, it fails to capture the spatial
relationships between slices. On the other hand, 3D models
face challenges such as resolution inconsistencies in 2.5D
images, along with computational complexity and suscep-
tibility to overfitting when trained with limited data. In this
context, 2.5D models, which capture inter-slice correlations
using only 2D neural networks, emerge as a promising
solution due to their reduced computational demand and
simplicity in implementation. In this paper, we introduce
CSA-Net, a flexible 2.5D segmentation model capable of
processing 2.5D images with an arbitrary number of slices
through an innovative Cross-Slice Attention (CSA) module.
This module uses the cross-slice attention mechanism to
effectively capture 3D spatial information by learning long-
range dependencies between the center slice (for seg-
mentation) and its neighboring slices. Moreover, CSA-Net
utilizes the self-attention mechanism to understand cor-
relations among pixels within the center slice. We evalu-
ated CSA-Net on three 2.5D segmentation tasks: (1) multi-
class brain MRI segmentation, (2) binary prostate MRI seg-
mentation, and (3) multi-class prostate MRI segmentation.
CSA-Net outperformed leading 2D and 2.5D segmentation
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methods across all three tasks, demonstrating its efficacy
and superiority. Our code is publicly available at https:
//github.com/mirthAI/CSA-Net.

Index Terms— 2.5D image segmentation, cross-slice at-
tention, in-slice attention, deep learning.

I. INTRODUCTION

MEDICAL image segmentation is essential in computer-
assisted diagnosis, treatment planning, surgical navi-

gation, and image-guided interventions [1]. 2D image seg-
mentation involves delineating regions of interest within 2D
image slices, such as blood vessel segmentation in retinal
images [2], cell segmentation in microscopy images [3], and
lung segmentation in chest X-rays [4]. In contrast, 3D image
segmentation involves segmenting regions of interest in 3D
from volumetric images, such as abdominal organ segmen-
tation in CT [5] and brain tumor segmentation in MRI [6].
Since the introduction of the U-Net model [3], numerous deep
learning-based segmentation methods have been developed for
a wide range of 2D and 3D medical image segmentation tasks.

2D 2.5D 3D

Fig. 1. Illustration of the inputs to 2D, 2.5D, and 3D segmentation
models.

An important, yet less explored, segmentation challenge
is the 2.5D image segmentation problem. This task aims to
segment objects within a 2.5D image, which consists of a
sequence of 2D image slices with high in-plane resolution but
low through-plane resolution (see Fig. 1). In other words, for
2.5D images, spatial resolutions across the three dimensions
are not uniform, with the z-axis exhibiting a lower resolution
compared to the x and y axes. The segmentation of 2.5D
images poses challenges due to their inter-slice discontinuities
and partial volume effects which are caused by limited reso-
lution in the z-axis. 2D segmentation models are commonly
used to segment 2.5D images. This is done by segmenting
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each individual 2D slice within the 2.5D image using a 2D
segmentation network. Although, this approach is simple and
computationally efficient, it fails to fully leverage the spatial
context across slices, leading to potential segmentation errors
in regions where objects span multiple slices. On the other
hand, while 3D segmentation models can integrate contextual
information across slices in 3D, they have several limitations
when applied to 2.5D segmentation problems. First, the in-
creased complexity of 3D models requires significantly higher
computational resources compared to 2D models. Second,
given that many medical datasets are relatively small, the
increased number of parameters in 3D models raises the risk
of overfitting, potentially compromising the model’s general-
ization ability. Third, applying 3D methods to 2.5D images is
not straightforward. This is because the number of slices in
a 2.5D image can vary and be fewer than 32, which is the
minimum required by most 3D segmentation methods. These
discrepancies make it challenging to design a 3D segmentation
model that fits 2.5D image volumes.

Recently, 2.5D segmentation methods have emerged as a
promising solution to bridge the gap between 2D and 3D
segmentation techniques [7], [8], [9]. These methods utilize 2D
neural networks to ensure computational efficiency and ease
of adaptation to images with varying through-plane resolution,
while also learning inter-slice relationships for a more holistic
understanding of 3D image features. A common approach,
used in 2.5 segmentation models to capture nearby slice infor-
mation, involves the stacking of multiple 2D slices into a single
2D image with multiple channels [10], [9], [11]. However,
simply concatenating adjacent slices as model input, typically
ranging from 3 to 7 slices [11], limits effective integration of
inter-slice spatial context because it treats neighboring slice
information superficially as depth information. Alternatively,
cross-slice attention mechanisms are used [12], [13] to learn
correlations between all slices in a 2.5D volume. For instance,
CAT-Net [12] processes all slices simultaneously to learn slice-
level attention scores, which require the input 2.5D volume to
have a fixed number of slices. This therefore means that CAT-
Net is not applicable to 2.5D volumes with a varying number
of 2D slices. Additionally, CAT-Net learns correlations only at
the slice level, and therefore is unable to capture correlations
between image regions within individual slices and across
different slices.

In this paper, we introduce CSA-Net, a 2.5D segmentation
model that incorporates a novel Cross-Slice Attention (CSA)
module. CSA-Net takes a center slice and its two neighbor-
ing slices as input to predict the segmentation map for the
center slice. Specifically, the CSA module employs the cross-
attention mechanism [14] to capture the correlation between
regions in the center slice and regions in its neighboring slices.
Additionally, CSA-Net utilizes the self-attention mechanism to
learn correlations between different regions within the center
slice. By combining outputs from different attention blocks,
CSA-Net generates a unified feature map encapsulating crucial
information from all three slices. This significantly enhances
the segmentation accuracy on the center slice. We compared
CSA-Net with leading 2D and 2.5D segmentation methods
on three different 2.5D image segmentation tasks: multi-

class brain MRI segmentation in our private dataset, binary
prostate MRI segmentation in a public dataset, and multi-
class prostate MRI segmentation in another public dataset.
CSA-Net consistently outperformed existing methods across
all three datasets, demonstrating its superiority in leveraging
both in-slice and cross-slice spatial relationships to achieve
more accurate and reliable segmentation results. In summary,
this paper makes the following key contributions:

• We introduced CSA-Net, a 2.5D segmentation model
incorporating a cross-slice attention module and an in-
slice attention module, which effectively captures both
in-slice and cross-slice spatial relationships.

• We demonstrated CSA-Net’s superior performance over
existing 2D and 2.5D segmentation methods across three
different segmentation tasks.

• We validated the advantages of 2.5D methods over 2D
methods in segmenting 2.5D images, promoting the ex-
ploration of more advanced 2.5D segmentation methods.

II. RELATED WORK

A. Transformer Based Image Segmentation Models

The success of transformer models in the field of natural
language processing has prompted research into their appli-
cability across various domains, notably in computer vision.
A key development for the research was the introduction
of the Vision Transformer (ViT) [15], which marked the
first transformer-based model to outperform convolutional
networks in image classification. ViT innovatively employs
a patch-based attention mechanism, in which an image is
divided into fixed-size patches that are each treated as an
individual token. This allows the model to dynamically focus
on and relate different parts of an image through self-attention,
significantly enhancing its ability to capture complex visual
relationships in a computationally efficient manner.

Building on the foundational success of ViT in image
classification, researchers have extensively explored the in-
tegration of ViT with the U-Net architecture for image seg-
mentation tasks. This integration capitalizes on ViT’s global
contextual understanding and U-Net’s precise localization ca-
pabilities. TransUnet [16] stands out as the pioneering image
segmentation architecture for leveraging vision transformers.
Subsequent advancements include nnFormer [17], which en-
hances the methodology by interleaving convolution with self-
attention. Recently, the Swin Transformer [18], a hierarchical
vision transformer using shifted windows to efficiently capture
both local and global visual information, has inspired the de-
velopment of image segmentation models like SwinUNet [19]
and Swin UETR [20]. Transformer-based segmentation models
have been successfully applied to various medical imaging
tasks such as brain volume segmentation [21], [22], [23] and
prostate segmentation [12], [24].

B. Cross-Attention Mechanism

The cross-attention mechanism, initially used in the Trans-
former decoder for machine translation [25], enables each
token in one sequence to selectively attend to all tokens in
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another sequence. Mathematically, computation of the atten-
tion scores involves the query coming from one sequence,
and the key-value pairs coming from another sequence. This
mechanism is particularly useful for tasks that involve mul-
tiple input modalities or require alignment between different
sequences. Cross-attention has been successfully applied to
applications such as pairwise image registration [26], where
the inputs were two different images. Additionally, it has been
integrated into fusion networks for segmentation tasks [27],
where information from multiple sources and modalities were
integrated for more accurate segmentation. Recently, the cross-
attention mechanism was integrated within the skip connec-
tions of a 3D segmentation network to enhance the decoder’s
performance [28]. These advancements demonstrate the versa-
tility and effectiveness of the cross-attention mechanism across
various medical imaging applications.

C. 2.5D Segmentation Methods
Several 2.5D image segmentation methods have been devel-

oped to capture inter-slice relationships at a lower computa-
tional cost than 3D methods. A feasible approach, adopted by
several models [29], [30], [31], [32], involves concatenating
multiple (usually 3, 5, or 7) consecutive image slices into a
2D image with multiple channels. This combined image is
then used by a 2D segmentation network to segment regions
of interest in the middle slice. However, directly concatenating
neighboring slices as a multi-channel 2D image complicates
information extraction for individual slices, causing misalign-
ment between consecutive slices. This could possibly intro-
duce inaccuracies into the segmentation model. To mitigate
these issues, Recurrent Neural Networks (RNNs) have been
utilized, which treat 2.5D images as temporal sequences [30],
[33]. Nevertheless, due to their sequential nature, the compu-
tational cost for training remains considerably high.

To further reduce the computational cost, a shift towards
the adoption of attention mechanisms in 2.5D segmentation
networks has been made to extract features related to inter-
slice relationships. Such mechanisms allow the models to
selectively focus on relevant regions within neighboring slices,
thereby enhancing the accuracy and robustness of segmenta-
tion for the center slice. For instance, the CAT-Net and CSAM
models [12], [13] employ a slice-level cross-slice attention
module to learn a correlation coefficient between each pair of
2D slices. However, this method focuses solely on inter-slice
correlation at the slice level and fails to capture correlations
between different image regions. Moreover, both the CAT-Net
and CSAM models require a fixed number of slices for input
2.5D images, making them unsuitable for images with vary-
ing through-plane resolutions, which is a common scenario.
Additionally, since all slices are processed simultaneously,
this approach constrains the models’ scalability due to the
substantial memory requirements.

III. METHODS

This paper introduces CSA-Net, a novel medical image
segmentation model designed for 2.5D images. Figure 2
presents an overview of the architecture of CSA-Net. The

model takes three consecutive 2D slices as input: a center slice
and its two neighboring slices (previous and next), producing
the segmentation of the center slice. We designed two key
modules to enhance the segmentation results. First, the cross-
slice attention module (detailed in Section III-A) enables the
center slice to utilize information from its neighboring slices
via pixel-level cross-attention. Second, the in-slice attention
module (detailed in Section III-B) learns correlations between
different regions within the center slice via pixel-level self-
attention. Recognizing the complementary nature of the cross-
slice and in-slice attention mechanisms, we integrated the
aggregated outputs from these attention modules into a vision
transformer encoder, thereby further enhancing representation
learning. Subsequently, the decoder, which is comprised of
a series of transposed convolutional layers, is employed to
produce the final segmentation map.

A. Cross-Slice Attention

We developed a Cross-Slice Attention (CSA) module (see
Fig. 3 to learn the correlation between different image regions
across three consecutive slices: the previous, the center, and the
next slices, each of size H×W . The input to the CSA module
consists of feature maps fc and fn extracted from the center
slice and one of its neighboring slices using convolutional
neural networks, as detailed in Section III-C.1. The size of
the feature map for each slice is h × w × C, where the
downsampling ratio during feature extraction is defined as
H
h = W

w = 2r, with r > 1, and C denotes the number of
channels in each feature map. Two 1×1 convolutional layers,
parameterized by ϕ and ψ (with weight matrices Wϕ and Wψ),
were applied to the feature map of the center slice, resulting
in two image feature maps of size h×w× C

2 , serving as the
key-value pair in the CSA module. A 1×1 convolutional layer
parameterized by θ with weight matrix Wθ was applied to the
feature map of the neighboring slice, resulting in a feature
map of size h× w × C

2 to serve as the query.
We compute an attention score between each pixel in the

output feature map of the center slice and each pixel in the
output feature map of the neighboring slice. The output from
the attention module is of size h × w × C

2 . To ensure the
input and output of the CSA module have the same dimension,
a 1 × 1 convolutional layer with parameter matrix Wg was
applied to double the number of channels. To summarize, the
output from the CSA module is given by

CSA(fc, fn) =
(
softmax(fTnW

T
θ fcWϕ)fcWψ

)
Wg, (1)

where Wθ,Wϕ,Wψ are of dimension C × C
2 and Wg is of

dimension C
2 × C. During the computation, all feature maps

were flattened into a spatial size of hw, and reshaped to a
spatial size h× w after the computation.

To learn different types of relationships between the center
slice and the neighboring slice, we implemented the cross-
slice attention module using multiple attention heads, similar
to the Transformer network [25]. The outputs from all cross
attention heads are concatenated into a single image feature
map of size h× w × C, which is then concatenated with the
feature map of the center slice to yield the final output.
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Fig. 3. Overview of our Cross-Slice attention (left) and In-Slice attention
(right) architecture.

B. In-Slice Attention

In addition to capturing the cross-slice correlation, we
implemented an In-Slice Attention (ISA) module (see Fig. 3)
which employs the self-attention mechanism to learn the
correlation between different regions within the center slice.
The ISA module receives an input from the feature map fc,
extracted from the center slice via the convolutional feature ex-
tractor described in Section III-C.1. Three 1×1 convolutional
layers, denoted as α(·), β(·), and γ(·) with weight matrices
Wα,Wβ , and Wγ respectively, are applied to fc, producing
the query, key, and value matrices essential for computing
the attention scores. This is subsequently used to calculate
the attention output. Mathematically, the output of the in-slice
attention module can be formulated as follows:

ISA(fc) =
(
softmax(fTc W

T
α fcWβ)fcWγ

)
Wϵ (2)

where Wϵ represents the weight matrix of a 1×1 convolutional
layer designed to transform the output dimensionality of the
attention module from h×w× C

2 back to h×w×C, ensuring
consistency in feature map dimensions. Similarly, multiple
attention heads are utilized to capture different types of pixel
correlations.

C. Architecture of CSA-Net
1) Feature Extractor: The three input image slices (the

previous slice, the center slice, and the next slice), each of
dimension H ×W , for CSA-Net, are initially passed through
a CNN encoder (i.e., the ResNet-50 model) for feature extrac-
tion. This process yields image feature maps of dimensions
h × w × C, and we set H

h = W
w = 16 and C = 1024 in

this paper. Subsequently, the feature maps of the three slices
are input into the cross-slice and in-slice attention modules
(Sections III-A and III-B).

2) Attention Aggregation for 2.5D Image Understanding:
We employed two CSA modules to capture 2.5D spatial
information: one to capture the correlation between the center
slice and the previous slice, and the other to capture the
correlation between the center slice and the next slice. Ad-
ditionally, we used an ISA module to capture the long-range
dependencies within the center slice. The outputs from these
three attention modules are concatenated along the channel
dimension to generate the final attention feature output. This
combined feature attention map is then passed through a 1×1
convolutional layer to reduce the number of channels to C,
which is the same as the number of channels in the feature
map fc.

3) Vision Transformer Encoder: We utilized a pre-trained
12-layer Vision Transformer (ViT) to augment the extraction
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of global information from the preceding cross-slice and in-
slice attention modules. In contrast to the original ViT, which
processes 16 × 16 image patches, we chose a patch size of
1×1, given that our input to ViT is already a low-dimensional
feature map. Subsequently, the ViT’s output is reshaped to
match its input dimensions, namely, h × w × C. Following
this, the encoded feature map is then fed into the decoder to
generate the segmentation map.

4) Decoder: The decoder entirely relies on convolutional
neural networks, comprising four decoder blocks. Each block
employs both transposed convolution and regular convolu-
tional layers, in addition to residual connections. This setup
upsamples the feature map by a factor of 2 at each level,
progressively refining the spatial resolution. The concluding
convolutional layer, equipped with a filter size of 1 × 1,
generates the final segmentation map with dimensions H×W .

5) Loss Function: We used a combination of the cross-
entropy and the Dice loss for the training:

L = 0.5× LCE + 0.5× LDSC , (3)

where LCE denotes the cross entropy loss and LDSC denotes
the dice loss.

IV. EXPERIMENTAL DESIGN

A. Dataset
1) Brain Dataset: This study, which has been approved

by the University of Florida’s Institutional Review Board,
conducted a retrospective chart review of 57 T2-weighted
brain MRI image volumes of infants born with gestational
ages ranging from 22 to 29 weeks. Brain MRIs were acquired
using a 1.5 Tesla Magnetom MRI (Avanto and Aera, Siemens
Medical Solutions USA, Inc, Malvern, PA, USA) or a 3.0
Tesla MAGNETOM MRI (Vario, Prisma, and Skyra, Siemens).
Each MRI contained 25-30 2D axial slices of dimensions
(320 × 320) with an isotropic in-plane resolution of 0.50
mm and a through-plane resolution of 10 mm. We manually
segmented the brain and the ventricles from each MRI in the
ITK-Snap software. We randomly selected 42 MR images for
training and 15 MR images for testing.

2) Promise12 Dataset: Our study included 80 T2-
weighted MR images from the publicly accessible Promise12
Dataset [34], each accompanied by manual binary segmenta-
tion of the prostate capsule. These MRI images were obtained
using either a 1.5 Tesla Magnetom MRI scanner (Siemens)
or a 3.0 Tesla Magnetom MRI scanner (General Electric and
Siemens). Each 2D MRI slice is of size 320 × 320, with in-
plane resolutions ranging from 0.25 mm to 0.625 mm. The
through-plane resolution of the MR images ranged between
2.2 mm and 4 mm. For this dataset, we randomly selected 50
samples for the training set and 30 for the testing set.

3) ProstateX Dataset: We included 98 T2-weighted MRI
images from the publicly available ProstateX Dataset [35] in
this study. The MRI images were obtained using Siemens
MAGNETOM Trio and Skyra 3T MR scanners with an
isotropic in-plane resolution of 0.50 mm and a through-
plane resolution of 3.0-4.0 mm. Each MRI image consists
of 18 to 22 2D axial slices, with a standardized image size

of 384 × 384. Each MRI image had an expert-annotated
segmentation map for four different classes: transition zone,
peripheral zone, urethra, and anterior fibromuscular stroma.
We randomly selected 68 MRI images for training and 30
MRI images for testing.

B. Methods for Comparison

We compared CSA-Net with several leading segmentation
methods: UNet [36], Dilated Residual UNet (DRUNet) [37],
SegResNet [38], and TransUNet [16]. UNet is known for its
effectiveness in biomedical image segmentation tasks, which
served as a baseline for comparison due to its widespread
use and simplicity. The Dilated Residual UNet architecture
integrates dilated convolutions and residual connections to
efficiently capture multi-scale contextual information. Seg-
ResNet combines Unet-based architecture and ResNet-like
blocks in each encoder layer, utilizing both residual and skip
connections to capture fine details and a holistic understanding
of image context by integrating local and global information.
TransUNet leverages the power of vision transformer networks
to capture long-range dependencies in images. These methods
were originally proposed for 2D segmentation tasks. We also
implemented a 2.5D version for each of them by using three
consecutive slices as input to the model for segmentation of
the center slice. We termed these 2.5D methods as: 2.5D UNet,
2.5D DRUNet, 2.5D SegResNet, and 2.5D TransUNet.

C. Evaluation Metrics

For the evaluation of segmentation performance, we em-
ployed two key metrics: Dice Coefficient and HD95 (95th
percentile of Hausdorff Distance). The Dice Coefficient quan-
tifies the relative overlap between the ground truth (G) and
the predicted segmentation (P ):

DSC(G,P ) =
2× |G ∩ P |
|G|+ |P |

(4)

where |G| and |P | denote the number of positive pixels in the
segmentation images of the ground truth and the prediction,
respectively. |G ∩ P | represents the number of pixels that are
correctly classified as positive by the prediction. The Dice
coefficient ranges from 0 to 1, where a value of 0 indicates
no overlap between the ground truth and the prediction, while
a value of 1 indicates a perfect overlap.

Hausdorff distance (HD) measures the maximum distance
between two sets of points. Specifically, HD95 represents the
95th percentile of the Hausdorff Distance, offering a robust
evaluation metric. The Hausdorff distance can be defined as:

HD(G,P ) = max

{
max
g∈G

min
p∈P

d(g, p),max
p∈P

min
g∈G

d(p, g)

}
(5)

where d(g, p) represents the Euclidean distance between point
g in the ground truth set G and point p in the predicted
segmentation set P .
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D. Implementation Details

As a preprocessing step, all image slices were resized to a
dimension of 256 × 256 pixels and normalized to the range
of [0,1] using min-max normalization, with the 1st and the
99th percentiles of the pixel intensity distribution serving as
the minimum and maximum values, respectively. Data aug-
mentation techniques, including random flipping, translation,
and brightness shifts, were applied across all datasets. For the
Prostatex Dataset, characterized by low image contrast, we
utilized the Contrast Limited Adaptive Histogram Equalization
(CLAHE) method to significantly enhance image contrast.

All models were run on a high-performance computer node
equipped with an NVIDIA A100 GPU, 40 GB of RAM, and 8
CPU cores. For training, the Adam optimizer was employed,
set with a learning rate of 10−3 and a weight decay of 10−5.
We adopted a batch size of 8 for both the Brain and Promise12
datasets, while for the ProstateX dataset, the batch size was
set to 16. The models were trained for 50 epochs.

V. RESULTS

A. Quantitative Evaluation

1) Brain Dataset: Table I presents the Dice Coefficients
and Hausdorff distances for various segmentation methods,
averaged over 15 test cases. Our CSA-Net model surpassed
all others in both Dice coefficient and Hausdorff distance,
showcasing its superior segmentation accuracy and boundary
precision. Notably, 2.5D models consistently outperformed
their 2D counterparts, highlighting the benefits of leveraging
inter-slice correlations in 2.5D segmentation tasks. Compared
to the second-best model, 2.5D TransUNet, CSA-Net sig-
nificantly enhanced the Dice Coefficient for the brain from
0.957 to 0.967 and markedly reduced the Hausdorff Distance
from 0.92 mm to 0.68 mm by integrating cross-slice and in-
slice attention modules. For the ventricles, CSA-Net improved
the Dice Coefficient from 0.809 to 0.826 and lowered the
Hausdorff Distance from 2.38 mm to 2.12 mm, indicating
substantial improvements in segmentation accuracy. These
advancements in the segmentation of the brain and ventricles
facilitate more accurate tracking of their volumes over time,
offering significant implications for the analysis of brain
development.

TABLE I
DICE COEFFICIENTS AND HAUSDORFF DISTANCES (MM) IN THE

SEGMENTATION OF THE BRAIN AND VENTRICLES.

Method DSC
Brain ↑

DSC
Ventricles ↑

HD95
Brain ↓

HD95
Ventricles ↓

2D Unet 0.937 0.782 1.142 2.75
2.5D Unet 0.939 0.785 1.138 2.73
2D DRUnet 0.941 0.791 1.082 2.66
2.5D DRUnet 0.946 0.794 1.041 2.62
2D SegResNet 0.947 0.794 1.036 2.59
2.5D SegResNet 0.951 0.798 0.977 2.48
2D TransUnet 0.951 0.800 0.946 2.43
2.5D TransUnet 0.957 0.809 0.921 2.38

CSA-Net 0.967 0.826 0.682 2.12

In addition, we also trained the 3D Swin UNetR [20] model
for brain segmentation. Since our brain MRI contains fewer
than 32 slices, we upsampled each MRI in the z direction
to double the number of slices. The resulting Dice and HD95
scores for the brain were 0.941 and 1.16 mm, respectively. For
the ventricles, the Dice and HD95 scores were 0.751 and 2.93
mm, respectively. The suboptimal performance of the Swin
UNetR model suggests that 3D segmentation models may not
be well-suited for 2.5D segmentation tasks, possibly due to the
partial volume effect introduced by upsampling. Therefore, in
this study, we mainly focus on comparison with existing 2D
and 2.5D methods as detailed below.

2) Promise12 Dataset: Results presented in Table II demon-
strate that our CSA-Net model surpassed all competing models
in binary prostate segmentation on the Promise12 dataset,
achieving superior performance in terms of Dice coefficients
and Hausdorff distances. Specifically, CSA-Net enhanced the
Dice coefficient to 0.921 from 0.910 and reduced the Haus-
dorff distance to 1.06 mm from 1.14 mm, compared to
the second-best performing method, 2.5D TransUNet. This
underscores the effectiveness of our model. Notably, 2.5D
methods consistently outperformed their 2D counterparts, and
the transformer-based methods (including CSA-Net and Tran-
sUNet), which provide a more comprehensive view of the
image, surpassed methods relying solely on convolutional
networks (UNet, DRUNet, and SegResNet). The improved
prostate segmentation is beneficial for enhancing MRI-targeted
prostate biopsy and early prostate cancer detection on MRI.

TABLE II
DICE COEFFICIENTS AND HAUSDORFF DISTANCES (MM) IN THE

SEGMENTATION OF THE PROSTATE CAPSULE.

Method DSC ↑ HD95 ↓

2D UNet 0.872 1.57
2.5D UNet 0.881 1.46
2D DRUnet 0.884 1.30
2.5D DRUNet 0.892 1.25
2D SegResNet 0.899 1.22
2.5D SegResNet 0.903 1.20
2D TransUNet 0.908 1.19
2.5D TransUNet 0.910 1.14

CSA-Net 0.921 1.06

3) ProstateX Dataset: Results in Table III show that our
CSA-Net outperformed all other methods in terms of the Dice
coefficient and Hausdorff distance metrics, averaged across
the four classes: transition zone, peripheral zone, urethra, and
anterior fibromuscular stroma. In comparison to the second-
best performing method, 2.5D TransUNet, CSA-Net improved
the average Dice coefficient from 0.647 to 0.659 and reduced
the average Hausdorff distance from 2.97 mm to 2.71 mm.
CSA-Net demonstrated superior segmentation performance in
the peripheral zone, urethra, and anterior fibromuscular stroma,
and achieved second-best performance in segmenting the
transition zone. The most significant improvement by CSA-
Net was observed in the urethra, where it improved the Dice
coefficient from 0.615 to 0.653 and reduced the Hausdorff
distance from 2.08 mm to 1.43 mm, highlighting the model’s
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TABLE III
DICE COEFFICIENTS AND HAUSDORFF DISTANCES (MM) IN THE SEGMENTATION OF THE TRANSITION ZONE, PERIPHERAL ZONE, URETHRA, AND

ANTERIOR FIBROMUSCULAR STROMA OF THE PROSTATE.

Method Average
DSC ↑

DSC
Transition

Zone ↑

DSC
Peripheral

Zone ↑
DSC

Urethra ↑
DSC

Anterior ↑
Average
HD95 ↓

HD95
Transition

Zone ↓

HD95
Peripheral

Zone ↓
HD95

Urethra ↓
HD95

Anterior ↓

2D UNet 0.579 0.809 0.651 0.555 0.300 4.04 3.14 4.76 2.73 5.51
2.5D Unet 0.601 0.823 0.676 0.587 0.316 3.80 2.93 4.23 2.69 5.38
2D DRUNet 0.587 0.821 0.654 0.548 0.323 3.85 2.76 4.75 2.79 5.10
2.5D DRUNet 0.594 0.829 0.663 0.558 0.326 3.70 2.67 4.37 2.71 5.08
2D SegResNet 0.623 0.845 0.696 0.589 0.363 3.36 2.39 3.87 2.41 4.77
2.5D SegResNet 0.637 0.851 0.709 0.604 0.384 3.13 2.26 3.64 2.21 4.41
2D TransUNet 0.631 0.848 0.704 0.593 0.377 3.21 2.29 3.69 2.25 4.63
2.5D TransUNet 0.647 0.855 0.713 0.615 0.406 2.97 2.21 3.57 2.08 4.02

CSA-Net 0.659 0.851 0.720 0.653 0.413 2.70 2.26 3.43 1.43 3.71

proficiency in segmenting complex structures. Additionally, a
more noticeable difference was observed between the perfor-
mances of 2D and 2.5D methods in this challenging multi-
class segmentation task (involving four different classes, with
two being very small regions in the image). This highlights the
benefits of 2.5D methods for challenging segmentation tasks.
Improved multi-class segmentation of the prostate facilitates
the development of methods for more precise staging and
localization of prostate cancer on MRI.

B. Qualitative Evaluation

Figure 4 illustrates the segmentation results of 2.5D models
on three representative subjects, with each row representing a
subject from one of the three datasets. For the Brain dataset,
although all segmentation methods effectively segmented the
brain volume, all methods except CSA-Net under-segmented
the ventricles. For the Promise12 dataset, all segmentation
methods successfully and accurately segmented the prostate
capsule, except for the 2.5D UNet, which under-segmented
the prostate. The results of CSA-Net are visually closest to the
ground truth. For the ProstateX dataset, both 2.5D SegResNet
and 2.5D UNet failed to segment the anterior fibromuscular
stroma, while 2.5D TransUNet and 2.5D DRUNet significantly
under-segmented this region. Additionally, all CNN-based
methods under-segmented the urethra. The results highlight
CSA-Net’s capacility in addressing both binary and multi-class
segmentation challenges, from uniformly shaped organs like
the prostate to more complex anatomical structures such as
the ventricles and the anterior fibromuscular stroma.

VI. ABLATION STUDY

A. Importance of Key Model Components

We investigated the importance of the following three key
components in CSA-Net: the cross-slice attention module, the
in-slice attention module, and the multi-head attention design.
We reran CSA-Net using one of the following setups: (1)
removing the cross-slice attention module; (2) removing the in-
slice attention module; (3) replacing the multi-head attention
design with a single-head attention design in both the cross-
slice and in-slice attention modules.

TABLE IV
IMPACT OF KEY COMPONENTS IN CSA-NET.

Method Brain
DSC ↑

ProstateX
DSC ↑

Promise12
DSC ↑

w/o cross-slice attention 0.886 0.651 0.911
w/o in-slice attention 0.892 0.655 0.919
single-head attention 0.887 0.651 0.912
CSA-Net 0.896 0.659 0.921

Results in Table IV show that removing any key component
from CSA-Net decreases segmentation accuracy, evidenced by
reduced Dice coefficients across all three datasets. The most
notable decline is observed with the removal of the cross-
slice attention module, whereas excluding the in-slice attention
module marginally impacts performance. Substituting multi-
head with single-head attention leads to a significant drop in
model performance, emphasizing the critical role of multi-head
attention in analyzing information from multiple perspectives.
Overall, this experiment underscores the important role of
each CSA-Net component in achieving superior segmenta-
tion accuracy, where cross-slice attention improves contextual
comprehension across slices, in-slice attention enables a more
holistic understanding within a slice, and multi-head attention
facilitates the capture of diverse features and relationships.

B. Choice of the Number of Attention Heads
The number of attention heads directly affects the CSA-

Net model’s ability to identify correlations between features in
input image slices. More attention heads enable the detection
of a broader range of data dependencies. However, additional
attention heads increase the number of parameters, computa-
tional demands, and the risk of overfitting, particularly with
inadequate regularization or limited data. We evaluated the
performance of CSA-Net with various numbers of attention
heads: 1, 4, 8, 16, and 32.

Results in Table V show that increasing the number of at-
tention heads in CSA-Net enhances segmentation performance
across different datasets up to a certain point, with 16 heads
emerging as the optimal configuration for balancing model
complexity and accuracy. Beyond 16 heads, the marginal
performance gains observed suggest a ceiling effect, indicating
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Fig. 4. Segmentation results of 2.5D models on a representative subject from each of the three datasets. First row: green is the brain volume and
yellow is the ventricles. Second row: green is the prostate capsule. Third row: yellow is the transition zone, green is the peripheral zone, orange is
the urethra, and blue is the anterior fibromuscular stroma. Note, for the ProstateX dataset, the prostate is relatively small in the MRI; thus, we only
showed a central region for better visualization of the results.

TABLE V
IMPACT OF THE NUMBER OF ATTENTION HEADS.

Number of Heads Brain
DSC ↑

ProstateX
DSC ↑

Promise12
DSC ↑

1 0.887 0.651 0.912
4 0.888 0.652 0.913
8 0.892 0.654 0.915

16 0.896 0.659 0.921
32 0.896 0.659 0.922

diminishing returns on further increases in attention head
count. This finding underscores the importance of selecting
an appropriate number of attention heads to maximize com-
putational efficiency and minimize the risk of overfitting.
Therefore, we chose 16 heads in this study as an optimal trade-
off between performance and model simplicity.

C. Center Slice as Query or Key-Value

In the cross-slice attention module, choosing the center slice
as either the query or the key-value pair affects information
flow and segmentation results. When the center slice is used
as the key-value pair, the attention mechanism prioritizes
integrating contextual information from the neighboring slices
into the representation of the center slice. This approach aims
to enrich the center slice’s features with additional context
before segmentation. However, if the neighboring slices in-
troduce noise or irrelevant details, it might adversely affect
performance. Conversely, using the center slice as the query
puts the emphasis on finding and emphasizing features in the

neighboring slices that are most relevant to the center slice.
This method can lead to more precise segmentation when the
relevance of information varies significantly across slices.

TABLE VI
IMPACT OF USING THE CENTER SLICE AS A QUERY OR KEY-VALUE

PAIR.

Method Brain
DSC ↑

ProstateX
DSC ↑

Promise12
DSC ↑

center slice as key-value 0.896 0.659 0.921
center slice as query 0.892 0.636 0.914

Results in Table VI indicate that using the center slice as
the key-value pair in the cross-slice attention module slightly
outperforms its use as the query in all three segmentation tasks.
This suggests that integrating contextual information from
adjacent slices into the center slice’s representation enhances
segmentation accuracy. Benefiting from the spatial coherence
in volumetric data, this configuration effectively enriches the
center slice with valuable contextual insights.

VII. DISCUSSION

A. 2D vs 2.5D vs 3D Image Segmentation

The selection of 2D, 2.5D, or 3D segmentation techniques
depends on the specific segmentation task at hand. 2D image
segmentation, characterized by its simplicity and low compu-
tational cost, operates on individual image slices. This method
is particularly effective for tasks where inter-slice variability is
minimal or when rapid processing is necessary. However, its
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major limitation is the lack of a comprehensive understanding
of the spatial context, which may hinder its ability to precisely
delineate the 3D characteristics of anatomical structures. In
contrast, 3D image segmentation exploits the spatial context
within medical images by analyzing volumetric data. This
method has the capability to capture the complex 3D archi-
tecture of tissues and organs, thereby enhancing segmentation
accuracy, particularly for complex and closely interconnected
anatomical structures. Nevertheless, the drawbacks of 3D
segmentation include its higher computational requirements,
limited availability of annotated data, and the complexity
of data preprocessing procedures. 2.5D image segmentation
provides a balance between 2D and 3D methods, especially
beneficial for segmenting 2.5D images that exhibit low reso-
lution in the through-plane direction. This method surpasses
2D techniques by integrating inter-slice spatial information,
thereby enhancing the model’s comprehension of 3D structures
without incurring the full computational expense associated
with 3D segmentation techniques. Our experiments and results
highlight the advantages of 2.5D methods for addressing
segmentation challenges in 2.5D images.

B. Clinical Implications

1) Segmentation of the Brain: Accurate segmentation of
the brain on MRIs leads to accurate estimations of brain
volume. Volumetric data from term-equivalent MRIs allow
bedside clinicians in the Neonatal Intensive Care Unit to
study the impact of various treatments, such as nutrition,
on brain development [39]. This information helps clinicians
understand which treatment variables impact brain volumes,
serving as a surrogate for neurodevelopmental outcomes [40].
There is a critical need to develop reliable, accurate, and
rapid methods for obtaining whole-brain MRI volumes in
this patient group, as manual segmentation is laborious and
potentially less accurate [39]. CSA-Net offers clinicians a
valuable tool for quickly analyzing entire brain volumes from
MRIs in term-corrected premature neonates.

2) Segmentation of the Prostate Capsule: Accurate segmen-
tation of the prostate capsule on MRI by CSA-Net significantly
improves the precision and effectiveness of MRI-TRUS (tran-
srectal ultrasound) guided biopsy procedures. The integration
of MRI and TRUS imaging techniques heavily relies on
accurate prostate segmentations within both modalities, and
this improved boundary delineation ensures precise targeting
of suspicious lesions identified on MRI, thus improving the
diagnosis of clinically significant prostate cancer via biopsy.
Furthermore, accurate prostate segmentation on MRI is essen-
tial for the development of machine learning models aimed
at early detection of prostate cancer. This precise delineation
allows machine learning models to concentrate on relevant
information within the prostate during training, enabling them
to identify subtle cancer imaging biomarkers that differentiate
between benign and aggressive cancer tissues [41], [42].

3) Segmentation of Different Prostate Zones: Accurate seg-
mentation of the prostate into different zones allows radiolo-
gists and medical professionals to identify and localize lesions
or abnormalities more accurately. Most prostate cancers begin

in the peripheral zone. Segmenting the peripheral zone en-
hances tumor detection and localization due to the tumors’
distinct appearance against the normal tissue in the peripheral
zone on MRI. The transition zone often contains benign
prostatic hyperplasia, which can resemble cancer. Therefore,
segmenting the transition zone is crucial for differentiating
between benign prostatic hyperplasia and cancer. Accurate
segmentation of the urethra allows us to know its position
relative to prostate lesions during procedures like radical
prostatectomy, reducing the risk of urinary incontinence and
complications. Although cancers in the anterior fibromuscular
stroma are less common, they can be aggressive when present.
Segmenting this area ensures a comprehensive prostate evalu-
ation, preventing the oversight of potential lesions.

C. Limitations and Future Directions
Despite the promising results achieved by CSA-Net in

addressing the unique challenges of 2.5D image segmentation,
this study is not without its limitations. One of the primary
constraints is the model’s dependence on the quality of the
neighboring slices, which can vary significantly in clinical
datasets. This variability might affect the model’s ability
to consistently leverage inter-slice correlations, especially in
datasets with resolution inconsistencies or artifacts. Further-
more, while CSA-Net exhibits lower computational demand
compared to full 3D models, its balance of performance
and efficiency has yet to be tested across a broader range
of hardware configurations and in real-time clinical settings.
Future directions for this work, including integrating CSA-Net
with transfer learning or self-supervised learning approaches,
could address the commonly faced challenge of training with
limited labeled data. Investigating the application of CSA-Net
to other medical imaging modalities, such as CT scans or
2.5D images in non-MRI contexts, could further validate its
versatility and effectiveness.

VIII. CONCLUSION

In this paper, we introduced CSA-Net, a novel method for
addressing 2.5D image segmentation challenges. CSA-Net in-
corporates a cross-slice attention module to capture 3D image
features by learning correlations between image slices, and an
in-slice attention module to capture global 2D image features
by understanding the correlations between different regions
within the center slice. Through extensive evaluations on three
2.5D segmentation datasets, we demonstrated that CSA-Net
consistently outperforms leading 2D and 2.5D models.
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