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On Correcting SHAP Scores

Olivier Létoffé 1 Xuanxiang Huang 2 Joao Marques-Silva 3

Abstract

Recent work uncovered examples of classifiers

for which SHAP scores yield misleading fea-

ture attributions. While such examples might be

perceived as suggesting the inadequacy of Shap-

ley values for explainability, this paper shows

that the source of the identified shortcomings of

SHAP scores resides elsewhere. Concretely, the

paper makes the case that the failings of SHAP

scores result from the characteristic functions

used in earlier works. Furthermore, the paper

identifies a number of properties that characteris-

tic functions ought to respect, and proposes sev-

eral novel characteristic functions, each exhibit-

ing one or more of the desired properties. More

importantly, some of the characteristic functions

proposed in this paper are guaranteed not to ex-

hibit any of the shortcomings uncovered by ear-

lier work. The paper also investigates the impact

of the new characteristic functions on the com-

plexity of computing SHAP scores. Finally, the

paper proposes modifications to the tool SHAP to

use instead one of our novel characteristic func-

tions, thereby eliminating some of the limitations

reported for SHAP scores.

1 Introduction

Shapley values for eXplainable AI (XAI), i.e. SHAP

scores (Lundberg & Lee, 2017), are arguably among the

most widely used explainability methods that target the

attribution of (relative) feature importance, as exemplified

by the success of the tool SHAP1. Despite the massive

popularity of SHAP scores, some works have identified

limitations with their use (Young et al., 2019; Kumar et al.,

2020; Sundararajan & Najmi, 2020; Merrick & Taly,

2020; Fryer et al., 2021; Yan & Procaccia, 2021;

Mothilal et al., 2021; Afchar et al., 2021; Watson et al.,

1IRIT, University of Toulouse, France; 2CNRS@CREATE,
Singapore; 3ICREA, University of Lleida, Spain. Emails:
olivier.letoffe@orange.fr, xuanxiang.huang.cs@gmail.com,
jpms@icrea.cat.

1See https://github.com/shap/shap

2021; Kumar et al., 2021; Campbell et al., 2022). How-

ever, most of these limitations can be attributed to the

results obtained with existing tools, and not necessar-

ily with the theoretical foundations of SHAP scores.

More recent work (Huang & Marques-Silva, 2023;

Huang & Marques-Silva, 2024) uncovered examples of

classifiers where exact SHAP scores assign misleading

importance to features. Namely, features having no

influence in a prediction can be assigned more importance

than features having the most influence in the prediction.

This recent evidence should be perceived as more prob-

lematic, because it reveals limitations with the theoretical

foundations of SHAP scores, and not with concrete

implementations. Accordingly, these results might also

be perceived as demonstrating the inadequacy of Shapley

values for explainability. Nevertheless, Shapley values

are of fundamental importance, not only in game theory,

but also in many other domains, namely because of their

intrinsic properties (Shapley, 1953).

This paper argues that the key issue with SHAP scores

is not the use of Shapley values in explainability per

se, and shows that the identified shortcomings of SHAP

scores can be solely attributed to the characteristic func-

tions used in earlier works (Strumbelj & Kononenko,

2010; 2014; Lundberg & Lee, 2017; Janzing et al.,

2020; Sundararajan & Najmi, 2020; Arenas et al.,

2021; Van den Broeck et al., 2021; 2022; Arenas et al.,

2023). As noted in the recent past (Janzing et al., 2020;

Sundararajan & Najmi, 2020), by changing the charac-

teristic function, one is able to produce different sets of

SHAP scores2. Motivated by these observations, the paper

outlines fundamental properties that characteristic func-

tions ought to exhibit in the context of XAI. Furthermore,

the paper proposes several novel characteristic functions,

which either respect some or all of the identified properties.

In addition, the paper analyzes the impact of the novel

characteristic functions on the computational complexity

of computing SHAP scores, by building on recent work on

the same topic (Van den Broeck et al., 2021; Arenas et al.,

2021; Van den Broeck et al., 2022; Arenas et al., 2023).

An indirect consequence of our work is that corrected

2Unfortunately, this paper argues that past alternative
proposals of characteristic functions (Janzing et al., 2020;
Sundararajan & Najmi, 2020) also exhibit key limitations.
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SHAP scores can be safely used for feature attribution in

XAI, while offering strong guarantees regarding known

shortcomings.

The paper is organized as follows. Section 2 introduces

the notation and definitions used throughout the paper.

Section 3 dissects some of the recently reported shortcom-

ings with SHAP scores (Huang & Marques-Silva, 2023;

Huang & Marques-Silva, 2024). The in-depth analysis of

these shortcomings motivates the proposal of key proper-

ties that characteristic functions ought to exhibit. These

are discussed in Section 4. Section 5 devises several novel

characteristic functions, which are shown to correct some

or all of the shortcomings of the characteristic functions

used in earlier work. Section 6 studies the complexity

of computing SHAP scores given the novel characteris-

tic functions proposed in this paper. Section 7 outlines a

simple modification to the SHAP tool (Lundberg & Lee,

2017), which corrects some of the issues of SHAP scores.

Section 8 concludes the paper.

2 Preliminaries

Classification problems. Let F = {1, . . . ,m} denote a

set of features and K = {c1, c2, . . . , cK} a set of classes.

Each feature i ∈ F takes values from a domain Di. Do-

mains can be categorical or ordinal. If ordinal, domains

can be discrete or real-valued. Classes can also be cate-

gorical or ordinal. Throughout the paper domains are as-

sumed to be discrete-valued and, unless otherwise stated,

classes are assumed to be ordinal. Feature space is defined

by F = D1×D2×. . .×Dm. The notationx = (x1, . . . , xm)
denotes an arbitrary point in feature space, where each xi

is a variable taking values from Di. Moreover, the nota-

tion v = (v1, . . . , vm) represents a specific point in fea-

ture space, where each vi is a constant representing one

concrete value from Di. An instance denotes a pair (v, c),
where v ∈ F and c ∈ K, and such that c = κ(v). An

ML classifier M is characterized by a non-constant classi-

fication function κ that maps feature space F into the set

of classes K, i.e. κ : F → K. Given the above, we as-

sociate with a classifier M, a tuple (F ,F,K, κ). If both

Di = {0, 1}, i = 1, . . . ,m and K = {0, 1}, then the

classifier is referred to as a boolean, in which case we use

B = {0, 1}. If the set of classes is ordinal but non-boolean,

then the classifier is referred to as multi-valued. Finally,

if both the domains and the set of classes are ordinal (and

discrete), then the classifier is referred to as discrete.

Deterministic decomposable boolean circuits

(DDBCs). For some complexity results, we will an-

alyze DDBCs (Arenas et al., 2021; 2023)3. A boolean

3The definition of DDBC mimics the one in (Arenas et al.,
2023).

circuit C is defined on a set of (input) variables X and

it is represented as a directed acyclic graph, where each

node is referred to as a gate, and where (i) a node with no

input edges is a either a variable gate, and takes a label

from X , or it is a constant gate, and takes a label from

{0, 1}; (ii) a node with incoming edges is a either a AND,

OR or NOT logic gate, where NOT gates have exactly

one input; (iii) exactly one node has no output edges, and

denotes the output gate of C. Given some circuit Cg ,

var(Cg) denotes the set of elements x ∈ X such that

some variable gate node of Cg is labeled with x. A DDBC

is a boolean circuit where OR gates are deterministic

and AND gates are decomposable. A 2-input OR gate,

g = OR(g1, g2) is deterministic if for any assignment to

the inputs of the circuit, the inputs of the gate are not both

assigned value 1. A 2-input AND gate, g = AND(g1, g2),
is decomposable if var(Cg1 ) is disjoint from var(Cg2). It

is well-known that any DDBC can be smoothed, i.e. all

OR and AND gates can be converted to 2-input AND

and OR gates (Arenas et al., 2023), in polynomial time.

DDBCs generalize deterministic decomposable negation

normal form (d-DNNF) circuits (Darwiche & Marquis,

2002). Furthermore, we consider a recent generalization

of DDBCs where inputs are allowed to take multi-valued

discrete values (Arenas et al., 2023).

Selection of sets of points. Throughout the paper, it will

often be necessary to represent sets of points in feature

space that are consistent with some other point in feature

space with respect to the features dictated by some set of

features. Accordingly, we define Υ : 2F → 2F as follows4,

Υ(S;v) := {x ∈ F | ∧i∈S xi = vi} (1)

i.e. for some S ⊆ F , and parameterized by the point

v in feature space, Υ(S;v) denotes all the points x =
(x1, . . . , xm) ∈ F in feature space that have in common

with v = (v1, . . . , vm) ∈ F the values of the features

specified by S. Finally, we write xS = vS to signify that

x ∈ Υ(S;v).

Distributions, expected value. Throughout the paper, it

is assumed a uniform probability distribution on each fea-

ture, and such that all features are independent. Thus, the

probability of an arbitrary point in feature space becomes:

P(x) := 1/Πi∈F |Di| (2)

That is, every point in the feature space has the same prob-

ability. The expected value of a classification function κ
is denoted as E[κ]. Furthermore, let E[κ |xS = vS ] rep-

resent the expected of κ over points in feature space con-

sistent with the coordinates of v dictated by S, which is

4Parameterizations are shown as arguments after the separa-
tor ’;’. However, for simplicity, we will elide parameterizations
whenever these are clear from the context.
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defined as follows:

E[κ(x) |xS = vS ] := 1/|Υ(S;v)|

∑

x∈Υ(S;v)
κ(x) (3)

Similarly, we define,

P(κ(x) = c |xS = vS) := (4)

1/|Υ(S;v)|

∑

x∈Υ(S;v)
ITE(κ(x) = c, 1, 0)

Explanation problems. Given a classification problem

M and a concrete instance (v, c), an explanation problem

E is a tuple (M, (v, c)). When describing concepts in ex-

plainability, it is to be assumed an underlying explanation

problem E , with all definitions parameterized on E .

Shapley values. Shapley values were proposed in the

context of game theory in the early 1950s by L. S. Shap-

ley (Shapley, 1953). Shapley values were defined given

some set S, and a characteristic function, i.e. a real-valued

function defined on the subsets of S, υ : 2S → R, such that

υ(∅) = 0 5. It is well-known that Shapley values represent

the unique function that, given S and υ, respects a num-

ber of important axioms. More detail about Shapley values

is available in standard references (Shapley, 1953; Dubey,

1975; Young, 1985; Roth, 1988).

SHAP scores. In the context of explainabil-

ity, Shapley values are most often referred to as

SHAP scores (Strumbelj & Kononenko, 2010; 2014;

Lundberg & Lee, 2017; Arenas et al., 2021; 2023), and

consider a specific characteristic function υe : 2F → R,

which is defined by,

υe(S; E) := E[κ(x) |xS = vS ] (5)

and where Υ (used in the definition of the expected value)

is defined by (1). Thus, given a set S of features, υe(S; E)
represents the expected value of the classifier over the

points of feature space represented by Υ(S;v). The formu-

lation presented in earlier work (Arenas et al., 2021; 2023)

allows for different input distributions when computing the

average values. For the purposes of this paper, it suffices

to consider solely a uniform input distribution, and so the

dependency on the input distribution is not accounted for.

Independently of the distribution considered, it should be

clear that in most cases υe(∅) 6= 0; this is the case for ex-

ample with boolean classifiers (Arenas et al., 2021; 2023).

To simplify the notation, the following definitions are used,

∆e(i,S) := (υe(S ∪ {i})− υe(S)) (6)

ς(|S|) := |S|!(|F| − |S| − 1)!/|F|! (7)

5The original formulation also required super-additivity of the
characteristic function, but that condition has been relaxed in
more recent works (Dubey, 1975; Young, 1985).

Finally, let Sce : F → R, i.e. the SHAP score for feature i,
be defined by,6.

Sce(i) :=
∑

S⊆(F\{i})
ς(|S|) ×∆e(i,S) (8)

Given an instance (v, c), the SHAP score assigned to each

feature measures the contribution of that feature with re-

spect to the prediction. From earlier work, it is understood

that a positive/negative value indicates that the feature can

contribute to changing the prediction, whereas a value of 0

indicates no contribution (Strumbelj & Kononenko, 2010).

Abductive and contrastive explanations. Given an

explanation problem E , a weak abductive explanation

(WAXp) is a set of features S such that the probability of

κ(x) = c is equal to 1, when the features in S are assigned

the values dictated by v:

P(κ(x) = c |xS = vS) = 1 (9)

which implies the condition E[κ(x) |xS = vS ] = c in the

case of numerical classes. An abductive explanation (AXp)

is a subset-minimal WAXp. Similarly to the case of AXps,

a weak contrastive explanation (WCXp) is a set of features

such that the probability of κ(x) = c is less than 1, when

the features not in S are assigned the values dictated by v:

P(κ(x) = c |xF\S = vF\S) < 1 (10)

which is implied by the condition E[κ(x) |xF\S =
vF\S ] 6= c in the case of numerical classes. A con-

trastive explanation (CXp) is a subset-minimal WCXp.

Even though the paper defines AXps/CXps using proba-

bilities (and expected values), these definitions are equiv-

alent to those used in earlier works (Wäldchen et al., 2021;

Marques-Silva, 2022; Darwiche, 2023). (The rationale for

the alternative definitions (9) and (10) will become appar-

ent in the following sections.)

Feature (ir)relevancy. The set of features that are in-

cluded in at least one (abductive) explanation are defined

as follows:

F(E) := {i ∈ X |X ∈ 2F ∧ AXp(X )} (11)

where predicate AXp(X ) holds true if X is an AXp. (A

well-known result is that F(E) remains unchanged if CXps

are used instead of AXps (Ignatiev et al., 2020), in which

case predicate CXp(X ) holds true if X is a CXp.) Finally, a

feature i ∈ F is irrelevant, i.e. predicate Irrelevant(i) holds

true, if i 6∈ F(E); otherwise feature i is relevant, and pred-

icate Relevant(i) holds true. Clearly, given some explana-

tion problem E , ∀(i ∈ F).Irrelevant(i) ↔ ¬Relevant(i) 7.

6Throughout the paper, the definitions of ∆ and Sc are explic-
itly associated with the characteristic function used in their defini-
tion.

7As noted earlier, the parameterization on E is elided.
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Figure 1: Example decision tree (DT), for classifier κ4,a,

with target instance ((1, 1, 1, 1), 1).

Classifier Sce(1) Sce(2) Sce(3) Sce(4) Rank

κ4,a 0.000 0.111 0.056 -0.500 〈4, 2, 3, 1〉

Table 1: SHAP scores for DT in Figure 1.

3 Issues with SHAP Scores

Recent work (Huang & Marques-Silva, 2023;

Huang & Marques-Silva, 2024) revealed a number of

limitations of SHAP scores. These limitations can

be categorized into two families, those occurring for

boolean classifiers and those occurring for discrete (but

non-boolean) classifiers.

SHAP scores can mislead – existing ex-

ample. The example in Figure 1 is adapted

from (Huang & Marques-Silva, 2024) [Fig. 8a], represent-

ing classifier κ4,a. The target instance is ((1, 1, 1, 1), 1).
It is plain that only feature 1 has influence in predicting

class 1. If feature 1 takes value 1, then the prediction

is guaranteed to be class 1. If we want to change the

prediction, then we must change the value of feature 1.

Furthermore, we need not change the value of any other

feature, as the prediction is guaranteed to change to a value

other than 1, as long as the value of feature 1 is changed.

However, as can be observed in Table 1, if we compute the

SHAP scores (e.g. using (8)), then the information about

relative feature importance is misleading. For example,

feature 4 has the largest absolute SHAP score, whereas

feature 1 has a SHAP score of 0, meaning no importance.

However, as argued above, feature 4 plays no role in

setting the predicted class to 1, or in changing from that

predicted class.

row # x1 x2 κ1(x)

1 0 0 1− 6α

2 0 1 1 + 2α

3 1 0 1

4 1 1 1

(a) Tabular representation (TR)

x1

x2

1 − 6α 1 + 2α

1

∈ {0}

∈ {0} ∈ {1}

∈ {1}
1

2

4 5

3

(b) Decision tree (DT)

Figure 2: Simple classifier. The target instance is

((1, 1), 1).

S rows picked by S υe(S)

∅ 1,2,3,4 1− α

{1} 3,4 1

{2} 2,4 1 + α

{1, 2} 4 1

Table 2: υe(S) for each set S.

SHAP scores can mislead – another example. Simpler

classifiers can be devised, which even allow selecting by

how much SHAP scores mislead. For the decision tree

(DT) classifier in Figure 2, Tables 2 and 3 summarize the

computation of the SHAP scores, given their definition

in Section 2 (using (8)). For the function not to be con-

stant, we impose α 6= 0. The target instance is (v, c) =
((1, 1), 1). As shown below, the value of α defines the

SHAP score of the irrelevant feature 2, whereas the Shapley

value of the relevant feature 1 is always 0. Clearly, the sets

of AXps/CXps are the same, i.e. {{1}}. Given the com-

puted Shapley values, for α = −1/2, we get 1 − 6α = 4
and 1 + 2α = 0, with Sc(1) = 0 and Sc(2) = α = −1/2.
However, by inspection, it is plain that feature 1 is the only

feature that has any influence on the prediction, either in

setting the prediction to class 1 or in changing the predic-

tion to a class other than class 1. In contrast, feature 2 has

no influence on the prediction, either in setting the predic-

tion to class 1 or in changing the prediction to a class other

than class 1. Thus, the computed SHAP scores would mis-

lead a human decision maker into deeming feature 2 more

important than feature 1 for the instance ((1, 1, ), 1).

Earlier work (Huang & Marques-Silva, 2023;

Huang & Marques-Silva, 2024) discusses several more

parameterized examples of classifiers that illustrate the

limitations of SHAP scores. Unfortunately, as exemplified

in Appendix B, the use of baselines (Janzing et al., 2020;

Sundararajan & Najmi, 2020) also reveals a number of

similar limitations.

4
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i = 1

S υe(S) υe(S ∪ {1}) ∆e(S) ςe(S) ςe(S)×∆e(S)

∅ 1− α 1 α 1/2 α/2

{2} 1 + α 1 −α 1/2 −α/2

Sce(1) = 0

i = 2

S υe(S) υe(S ∪ {2}) ∆e(S) ςe(S) ςe(S)×∆(S)

∅ 1− α 1 + α 2α 1/2 α

{1} 1 1 0 1/2 0

Sce(2) = α

Table 3: Computation of Shapley values

Discussion. The examples above in this section reveal

a number of critical issues with the existing definition of

SHAP scores. Motivated by the issues with SHAP scores,

several recent works (Yu et al., 2023b; Biradar et al., 2023;

Yu et al., 2023a) proposed possible alternatives for feature

attribution. However, the proposed alternatives are not

themselves SHAP scores, and so do to not respect the ax-

ioms that Shapley values do.

In this paper we propose a different approach at correcting

the existing issues with SHAP scores. Since the definition

of SHAP scores is unique given some characteristic

function (Shapley, 1953), we argue that the issues with

SHAP scores are solely attributed to the characteristic

functions used in earlier works (Strumbelj & Kononenko,

2010; 2014; Lundberg & Lee, 2017; Janzing et al., 2020;

Sundararajan & Najmi, 2020; Van den Broeck et al.,

2021; Arenas et al., 2021; Van den Broeck et al., 2022;

Arenas et al., 2023), i.e. υe as defined by (5). The issues

with υe can be categorized as follows:

1. υe is highly dependent of classes’ values. In turn, this

can be used to obfuscate the actual importance of fea-

tures.

2. The definition of the characteristic function ignores

feature (ir)relevancy, or alternatively, it ignores infor-

mation about whether each set is (or is not) a (weak)

AXp/CXp.

3. It is also the case that υe cannot readily be used in

setting where classes are not ordinal.

(As shown in Appendix B, similar issues exist when base-

lines are used (Janzing et al., 2020; Sundararajan & Najmi,

2020).)

In the next section we propose properties that characteristic

functions ought to exhibit, which can eliminate some or all

of the issues that have been identified.

4 Properties of Characteristic Functions

Given the issues reported in Section 3, this section iden-

tifies properties that characteristic functions should respect.

If characteristic functions fail to respect some of these prop-

erties, then the resulting SHAP scores can provide mislead-

ing information about relative feature importance.

Weak class independence. Let M1 = (F ,F,K1, κ1) be

a classifier, with domain Di for each feature i ∈ F . More-

over, let M2 = (F ,F,K2, κ2) be another classifier, with

the same domains, and with |K1| = |K2|. Moreover, let

µ : K1 → K2 be a surjective mapping from K1 to K2, such

that for any x ∈ F, κ2(x) = µ(κ1(x)). Finally, let the

target instances be (v, c), for M1, and (v, µ(c)) for M2,

thus defining the explanation problems E1 = (M1, (v, c))
and E2 = (M2, (v, µ(c))). A characteristic function υt is

weakly class-independent if, given surjective µ,

∀(i ∈ F).[Sct(i; E1) = Sct(i; E2)]

Strong class independence. Let M1 = (F ,F,K1, κ1)
be a classifier, with domain Di for each feature i ∈ F .

Moreover, let M2 = (F ,F,K2, κ2) be another classifier,

with the same domains. Moreover, let µ : K1 → K2 be a

mapping from K1 to K2, such that for c ∈ K1, and such

that,

∀(b ∈ K1).[(b 6= c)→(µ(b) 6= µ(c))]

Finally, let the target instances be (v, c), for M1, and

(v, µ(c)) for M2, thus defining the explanation problems

E1 = (M1, (v, c)) and E2 = (M2, (v, µ(c))). A charac-

teristic function υt is strongly class-independent if, given

µ,

∀(i ∈ F).[Sct(i; E1) = Sct(i; E2)]

Given the above, the following result holds8,

Proposition 4.1. If a characteristic function is strongly

class-independent, then it is weakly class-independent.

Compliance with feature (ir)relevancy. Characteristic

functions should respect feature (ir)relevancy, i.e. a feature

is irrelevant iff its (corrected) SHAP score is 0. Formally,

given a characteristic function υt is compliant with feature

(ir)relevancy if,

∀(i ∈ F).Irrelevant(i) ↔ (Sct(i) = 0) (12)

In previous work (Huang & Marques-Silva, 2023;

Huang & Marques-Silva, 2024), SHAP scores are said to

be misleading when compliance with feature (ir)relevancy

is not respected. In the remainder of the paper, we assign

the same meaning to the term misleading.

8Due to restrictions of space, most of the proofs are included
in Appendix A.
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Numerical neutrality. SHAP scores require ordinal

classes, but classification often contemplates categorical

classes. A characteristic function respects numerical neu-

trality if it can be used with both numerical and non-

numerical classifiers.

Discussion. The properties proposed in this section target

the issues reported in earlier work, where SHAP scores mis-

lead with respect to relative feature importance. Additional

properties may be devised to address any other existing is-

sues.

5 New Characteristic Functions

This section proposes several new characteristic functions9,

which respect some or all of the target properties outlined

in Section 4. Throughout this section, an explanation prob-

lem E = (M, (v, c)) is assumed, and it is used to parame-

terize the proposed characteristic functions.

Similarity function. The new characteristic functions

proposed in this paper build on a similarity function, ζ :
F → {0, 1}, that is defined as follows:

ζ(x; E) =

{

1 if (κ(x) = κ(v))

0 otherwise

i.e. ζ takes value 1 only for the points in feature space for

which the prediction matches the prediction of the target in-

stance. Observe that ∀(A ⊆ F).[E[ζ(x) |x ∈ A] ∈ [0, 1]].
It is also plain to conclude that for A,B ⊆ F, with A ⊆ B,

and given u ∈ {0, 1}, if E[ζ(x |x ∈ B)] = u then

E[ζ(x |x ∈ A)] = u, A few more properties of ζ are ap-

parent. For A ⊆ F, u ∈ {0, 1}, (E[ζ(x) |x ∈ A] = u) ↔
∀(x ∈ A).[ζ(x) = u]. As a result, it is also the case that

(E[ζ(x) |x ∈ A] < 1) ↔ ∃(x ∈ A).[ζ(x) = 0].

Defining the new characteristic functions. Given the

definition of the similarity function, we now introduce the

following main new characteristic functions.

υs(S; E) := E[ζ(x) |x ∈ Υ(S;v)] (13)

υa(S; E) :=

{

1 if υs(S; E) = 1

0 otherwise
(14)

υc(S; E) :=

{

1 if υs(F \ S; E) < 1

0 otherwise
(15)

We will refer to characteristic functions υe (see (5)), υs, υa,

υc, respectively as the expected value, the similarity, the

AXp-based, and the CXp-based characteristic functions.

9In the rest of the paper, the symbol υt will be used to denote
some concrete characteristic function distinguished by the letter t.
The SHAP scores obtained with such characteristic function will
be denoted by Sct. Similarly, we will use ∆t.

Furthermore, we will introduce another characteristic func-

tion, which is shown to be tightly related with υa.

υn(S; E) :=

{

1 if υs(S; E) < 1

0 otherwise
(16)

(Observe that υn can be viewed as the complement of υa.)

Basic attributes of the new characteristic functions.

We start by deriving some basic results regarding the char-

acteristic functions υa, υc and υn. Throughout, it is as-

sumed an explanation problem E .

Proposition 5.1. Given the definition of υa, υc and υn, then

Sca(i) ≥ 0, Scc(i) ≥ 0, and Scn(i) ≤ 0.

Proposition 5.2. The following holds true:

1. ∀(S ⊆ F).[υa(S) = 1 ↔ WAXp(S)].
2. ∀(S ⊆ F).[υn(S) = 1 ↔ WCXp(F \ S)].
3. ∀(S ⊆ F).[υc(S) = 1 ↔ WCXp(S)].

Proof. We consider each case separately:

1. If υa(S) = 1, then, as noted earlier in the paper,

ζ(x) = 1 for all points x ∈ Υ(S), and so the clas-

sifier’s prediction is c for all points in Υ(S). Hence,

by definition, S is a WAXp. Conversely, if S is an

WAXp, then the prediction must be c for all points x

in Υ(S), ∀(x ∈ Υ(S)).[ζ(x) = 1]. Thus, υa(S) = 1.

2. If υn(S) = 1, then ζ(x) 6= 1 for some point(s)

x ∈ Υ(S), and so the classifier’s prediction is not c for

some point(s) in Υ(S). Hence, by definition, F \ S is

a WCXp. Conversely, if F \ S is an WCXp, then the

prediction must not be c for some point(s) x in Υ(S),
i.e. ∃(x ∈ Υ(S)).[ζ(x 6= 1]. Thus, υn(S) = 1.

3. If υc(S) = 1, then ζ(x) 6= 1 for some point(s) x ∈
Υ(F \ S), and so the classifier’s prediction is not c
for some point(s) in Υ(F \ S). Hence, by definition,

S is a WCXp. Conversely, if S is an WCXp, then

the prediction must not be c for some point(s) x in

Υ(F \ S), i.e. ∃(x ∈ Υ(F \ S)).[ζ(x 6= 1]. Thus,

υc(S) = 1.

Proposition 5.3. The following holds true:

1. ∀(i ∈ F).[Sca(i) = −Scn(i)].
2. ∀(i ∈ F).[Sca(i) = Scc(i)].

An immediate consequence of the results

in Propositions 5.2 and 5.3, is that the complexity of

computing SHAP scores Sct is the same for t ∈ {a, c, n}.

Properties of the new characteristic functions. We now

prove which of the properties listed in Section 4 are re-

spected by which characteristic functions among those pro-

posed in this section.

6
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It is plain that characteristic functions based on the simi-

larity function respect numerical neutrality. Furthermore,

another general result is that characteristic functions based

on the similarity function guarantee strong (and so weak)

class independence.

Proposition 5.4. For t ∈ {s, a, c, n} and i ∈ F , it is

the case that the characteristic function υt respects strong

class independence.

Proposition 5.5. For t ∈ {a, c, n}, then it is the case that

∀(i ∈ F).Irrelevant(i) ↔ (Sct(i) = 0). Thus, Sct does

not mislead.

Finally, we observe that υs represents a boolean

classifier, and so it exhibits the issues with SHAP

scores uncovered for boolean classifiers based on

υe in earlier work (Huang & Marques-Silva, 2023;

Huang & Marques-Silva, 2024).

6 Complexity of Computing SHAP Scores

The previous section introduced novel characteristic func-

tions that exhibit a number of desirable properties, which

in turn ensure that SHAP scores will not produce mislead-

ing information. Another related question is how the novel

characteristic functions impact the computional complexity

of computing SHAP scores. This section starts the effort of

mapping such computional complexity.

Intractable cases. A number of intractability results

have been obtained in recent years (Van den Broeck et al.,

2021; 2022). As noted earlier in the paper, for boolean

functions, the similarity function does not provide any dif-

ference with respect to the original classifier. The following

result is clear.

Proposition 6.1. For a boolean classifier, with κ(v) = 1,

then ∀(x ∈ F).ζ(x; E) = κ(x).

From Proposition 6.1 and Corollary 8

in (Van den Broeck et al., 2022), it is immediate that,

Proposition 6.2. Computing SHAP scores Scs is #P-hard

for boolean classifiers in CNF or DNF.

Clearly, given Proposition 6.2, then the computation of

SHAP scores for more complex boolean classifiers is also

#P-hard.

Moreover, a key recent result regarding the computation

of SHAP scores is that for the characteristic function

υe there are polynomial-time algorithms for computing

Sce (Arenas et al., 2021; 2023). In contrast, for character-

istic functions that build on WAXps/WCXps, the computa-

tion of SHAP scores becomes NP-hard, even for d-DNNF

and DDBC classifiers.

Proposition 6.3. For t ∈ {a, c, n}, the computation of the

SHAP scores Sct is NP-hard for d-DNNF & DDBC classi-

fiers.

Polynomial-time cases. As shown above, the most sig-

nificant tractability result that is known for υe does not hold

for υt, with t ∈ {a, c, n}. Nevertheless, some tractability

results can be proved.

For classifiers represented by tabular representations

(e.g. truth tables), it is simple to devise algorithms

polynomial on the size of the classifier’s representa-

tion (Huang & Marques-Silva, 2023).

Proposition 6.4. There exist polynomial-time algorithms

for computing the SHAP scores Scs, Sca, Scc for classifiers

represented by tabular representations.

Since the recent results on the tractability of com-

puting SHAP scores for deterministic and decompos-

able circuits (d-DNNFs) (Arenas et al., 2021; 2023) con-

sidering boolean classifiers, then from Proposition 6.1

and (Arenas et al., 2023), it is the case that,

Proposition 6.5. The computation of SHAP scores Scs is in

P for classifiers represented by non-boolean DDBCs.

(Observe that non-boolean d-DNNFs (Arenas et al., 2023)

consider non-boolean features, but the set of classes is still

binary, i.e. K = {0, 1}.)

7 Similarity-Based SHAP

This section outlines a first step towards addressing the is-

sues with SHAP scores reported in earlier work, and ob-

served in the tool SHAP (Lundberg & Lee, 2017). Instead

of running SHAP with the original training data and the

original classifier, the similarity-based SHAP (referred to

as sSHAP) replaces the original classifier by the similar-

ity function, and reorganizes training data accordingly. In

terms of running time complexity, the impact of the modifi-

cations to SHAP are negligible. More importantly, sSHAP

will be approximating Scs, since the underlying character-

istic funtion is υs. In practice, sSHAP is built on top of the

SHAP tool (Lundberg & Lee, 2017).

As noted earlier in Section 5, the use of υs does not guar-

antee the non-existence of the issues reported in earlier

work (Huang & Marques-Silva, 2024), since it is known

that even boolean classifiers exhibit a number of issues re-

lated with the relative order of feature importance procud-

ing misleading information. Nevertheless, another question

is whether υs can serve to correct SHAP scores (obtained

with υe) in classifiers for which the reported issues rely on

non-boolean classification.

Difference in SHAP scores for example DT. Figure 3

shows the similarity function ζ4,b for the classifier κ4,a

7
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Figure 3: Characteristic function ζ4,b for DT of Figure 1,

given instance ((1, 1, 1, 1), 1).

Classifier Sc(1) Sc(2) Sc(3) Sc(4) Rank

κ4,a 0.000 0.111 0.056 -0.500 〈4, 2, 3, 1〉
ζ4,b 0.500 0 0 0 〈1, 2 : 3 : 4〉

Table 4: SHAP scores for κ4,a and ζ4,b.

shown in Figure 1. Given the obtained characteristic func-

tion, Table 4 shows the computed SHAP scores, obtained

with both SHAP (Lundberg & Lee, 2017) and sSHAP.

(Given the simple classifiers being considered, both SHAP

and sSHAP obtain the exact SHAP scores.) For this con-

crete example and instance, the results confirm that the new

characteristic function υs enables obtaining SHAP scores

that are not misleading. As we shown next, the same situa-

tion is observed for other classifiers.

Difference in SHAP scores for example classifiers. To

validate the improvements obtained with υs with respect

to υe, we studied the non-boolean classifiers reported

in (Huang & Marques-Silva, 2024)10. For each classi-

fier, each of the possible instances is analyzed, and the

SHAP scores produced by the tools SHAP and sSHAP are

recorded. If an irrelevant feature is assigned an absolute

value larger than some other relevant feature, then a mis-

match is declared. Table 5 summarizes the results obtained

10From (Huang & Marques-Silva, 2024), we consider (i) the
two DTs of case study 2 (Fig. 3 in (Huang & Marques-Silva,
2024)), referred to as cs02a and cs02b; (ii) the two DTs of case
study 3 (Fig. 5 in (Huang & Marques-Silva, 2024)), referred to as
cs03a and cs03b; and (iii) the two DTs of case study 4 (Fig. 8
in (Huang & Marques-Silva, 2024)), referred to as cs04a and
cs04b. Moreover, for cs02a, cs02b, cs03a and cs03b there exist
16 instances, whereas for cs04a and cs04b there exist 24 instances
(because of a discrete but non-boolean domain for one of the fea-
tures.)

DT SHAP-FRP mismatch sSHAP-FRP mismatch

cs02a 11 0

cs02b 4 0

cs03a 5 0

cs03b 4 0

cs04a 15 0

cs04b 4 0

Table 5: Comparison of empirical SHAP vs. empirical

sSHAP.

with the two tools, where columns SHAP-FRP mismatch

shown the number of mismatches obtained with SHAP,

and column sSHAP-FRP mismatch shows the number of

mismatches obtained with sSHAP11. As can be concluded,

SHAP produces several mismatches. In contrast, sSHAP

produces no mismatch. It should be noted that both tools

are approximating the SHAP scores given the respective

characteristic functions, i.e. the computed scores are not

necessarily the ones dictated by (8).

As noted earlier, υs consists of replacing the orig-

inal classifier by a new boolean classifier. Hence,

from (Huang & Marques-Silva, 2024), such boolean clas-

sifiers can also produce misleading information. Neverthe-

less, given the results above and other experiments, in the

cases where υs was used, we were unable to observe issue

I8 (as proposed in (Huang & Marques-Silva, 2024)):

∀(j ∈ F). ([Relevant(j) ∧ (Sc(j) = 0)]∨

[Irrelevant(j) ∧ (Sc(j) 6= 0)])

As a result, given the observed experimental results, we

make the following conjecture:

Conjecture 1. For the characteristic function υs, issue I8

is not observed.

In the case that the above conjecture holds, another open

question is whether the use of υs also prevents more flexi-

ble variants of issue I8 from being observed.

8 Conclusions

Recent work demonstrated the existence of classifiers for

which the exact SHAP scores do not respect relative

feature importance. This paper presents additional evi-

dence, and argues that similar problems occur for SHAP

scores defined in terms of baselines (Janzing et al., 2020;

Sundararajan & Najmi, 2020). More importantly, the pa-

per argues that the identified issues with SHAP scores re-

11A more extensive comparison is unrealistic at present; we
would have to be able to compute exact SHAP scores, and this
is only computationally feasible for very simple ML models, e.g.
restricted examples of DTs.
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sult from the characteristic functions used in earlier work.

As a result, the paper devises several properties which

characteristic functions must respect in order to compute

SHAP scores that do not exhibit those issues. Complexity-

wise, the paper argues that the proposed characteristic func-

tions are as hard to compute as the characteristic functions

used in earlier works studying the complexity of SHAP

scores (Van den Broeck et al., 2021; Arenas et al., 2021;

Van den Broeck et al., 2022; Arenas et al., 2023), or harder.

Finally, the paper proposes simple modifications to the tool

SHAP (Lundberg & Lee, 2017), thereby obtaining SHAP

scores that respect some of the proposed properties.

9 Impact Statements

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be

specifically highlighted here.
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A Proofs

Proposition 4.1. If a characteristic function is strongly class-independent, then it is weakly class-independent.

Proof. If a characteristic function is strongly class independent, it suffices to restrict the choices of µ to surjective functions

to make it weakly class independent.

Proposition 5.1. Given the definition of υa, υc and υn, then Sca(i) ≥ 0, Scc(i) ≥ 0, and Scn(i) ≤ 0.

Proof. (Sketch) We only consider υa. (The proof for υc and υn follows from Proposition 5.3.)

It is plain that ∆a(i,S) ∈ {−1, 0, 1}, given the possible values that υa can take. In fact, it is the case that ∆a(i,S) ∈ {0, 1}.

If a set S ⊆ F is a WAXp, then a proper superset is also a WAXp; hence it is never the case that ∆a(i,S) = −1. Since

every ∆a(i,S) ≥ 0, then Sca(i) ≥ 0.

Proposition 5.3. The following holds true:

1. ∀(i ∈ F).[Sca(i) = −Scn(i)].
2. ∀(i ∈ F).[Sca(i) = Scc(i)].

Proof. We consider each case separately:

1. By definition, it is plain that υa(S) + υn(S) = 1, for any S ⊆ F , because it must be the case that either υs(S) = 1 or

υs(S) < 1, but not both. Given the values that υa(S) can take, it is also plain that ∆a(i,S) ∈ {−1, 0, 1}. Moreover, if

∆a(i,S) = −1, then ∆n(i,S) = 1. If ∆a(i,S) = 1, then ∆n(i,S) = −1. Also, if ∆a(i,S) = 0, then ∆n(i,S) = 0.

Thus, for any i ∈ F and S ⊆ F , ∆n(i,S) = −∆a(i,S). Hence, the result follows.

2. Since ∀(S ⊆ F).WCXp(F \ S) ↔ ¬WAXp(S, by definition, then we have ∀(i ∈ F), ∀(S ⊆ (F \ {i})),

∆a(i,S) = 1

⇔¬WAXp(S) ∧WAXp(S ∪ {i})

⇔WCXp(F \ S) ∧ ¬WAXp(F \ (S ∪ {i}))

⇔WCXp(F \ S) ∧ ¬WAXp((F \ {i}) \ S)

⇔∆c(i, (F \ {i}) \ S) = 1

Now, let Φ(i) := {S ⊆ (F \{i}) |∆a(i,S) = 1}. Then, by construction, Sca(i) =
∑

S∈Φ(i) ς(|S|) (because ∆a = 0

otherwise) and, by the equivalence above, Scc(i) =
∑

S∈Φ(i) ς(|F \ {i}) \ S|). However, it is immediate to prove

that ς(|S|) = ς(|F \ {i}) \ S|), and so the two sums are also equal. This proves the result.

Proposition 5.4. For t ∈ {s, a, c, n} and i ∈ F , it is the case that the characteristic function υt respects strong class

independence.

Proof. For a characteristic function to respect strong class independence, the SHAP scores must not change if the classes

are mapped using some function µ. By hypothesis, for any point x ∈ F, the resulting classifier will predict µ(c) iff the

original classifier predicts c. This means the resulting similarity functions are the same for the two classifiers, and so the

SHAP scores Sct, t ∈ {s, a, c, n}, remain unchanged.

Proposition 5.5. For t ∈ {a, c, n}, then it is the case that ∀(i ∈ F).Irrelevant(i) ↔ (Sct(i) = 0). Thus, Sct does not

mislead.

Proof. First, we consider υa.

Let i ∈ F be an irrelevant feature.

It is plain that ∆a(i,S) ∈ {−1, 0, 1}, given the possible values that υa can take. However, as argued above, ∆a(i,S) ∈
{0, 1}, since if a set S ⊆ F is a WAXp, then a proper superset is also a WAXp; hence it is never the case that∆a(i,S) = −1.

We are interested in the sets S ⊆ (F \{i}) for which ∆a(i,S) = 1, since these are the only ones that contribute to making

Sca(i) 6= 0. For ∆a(i,S) = 1, it must be the case that υa(S) = 0 and υa(S ∪ {i}) = 1. However, this would imply that

i would be included in some AXp (Huang et al., 2023). But i is irrelevant, and so it is not included in any AXp. Hence,

there exists no set S ⊆ (F \ {i}) such that ∆a(i,S) = 1, and so Sca(i) = 0.

11
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Let Sca(i) = 0.

An analysis similar to the above one allows concluding that there exist no sets S such that ∆a(i,S) = 1. Hence, it is never

the case that υa(S) = 0 and υa(S ∪ {i}) = 1. Thus, i is not included in any AXp, and so it is irrelevant.

For υc and υn, it suffices to invoke Proposition 5.3; hence, the features for which Sca(i) = 0 are exactly the ones for which

Scc(i) = 0 and Scn(i) = 0.

This concludes the proof that Sct, with t ∈ {a, c, n}, does not mislead.

Proposition 6.2. Computing SHAP scores Scs is #P-hard for boolean classifiers in CNF or DNF.

Proof. From (Van den Broeck et al., 2021; 2022), it is known that computing SHAP scores is polynomially equivalent to

computing the expected value. In the boolean case, and so in the case of υs, this is polynomially equivalent to model

counting. Furthermore, model counting for DNF and CNF formulas is #P-complete (Valiant, 1979). Thus, computing the

SHAP scores using υs is #P-hard.

Proposition 6.3. For t ∈ {a, c, n}, the computation of the SHAP scores Sct is NP-hard for d-DNNF & DDBC classifiers.

Proof. We reduce the problem of feature relevancy to the problem of computing the SHAP scores Sct, with t ∈ {a, c, n}.

Since feature relevancy is NP-complete for d-DNNF circuits (Huang et al., 2023), this proves that computing the SHAP

scores Sct, with t ∈ {a, c, n} is NP-hard.

Given an explanation problem we can decide feature membership as follows. We compute the SHAP score for each feature

i ∈ F . Moreover, since υt, t ∈ {a, c, n} are comopliant with feature (ir)relevancy, then Sct(i) = 0 iff feature i is irrelevant.

Hence, if we could compute the SHAP scores in polynomial-time, then we could decide feature relevancy in polynomial-

time, and so computing the SHAP-scores for d-DNNFs is NP-hard.

Now, since DDBCs generalize d-DNNFs (Arenas et al., 2023), then computing the SHAP-scores for DDBCs is also NP-

hard.

B Limitations of SHAP Scores Based on Baselines

We focus on BShap (Sundararajan & Najmi, 2020); similar analyzes could be made for other baselines (Janzing et al.,

2020; Sundararajan & Najmi, 2020).

Throughout this section, the baseline is a point w ∈ F. Furthermore, for each S ⊆ F , let xS
b be such that xS

b,i = ITE(i ∈
S, vi, wi).

Given w ∈ F, the BShap characteristic function υb is defined by υb(S) = κ(xS
b ), for S ⊆ F .

Remarks about baselines. Analysis of the definition of BShap (Sundararajan & Najmi, 2020) allows proving the follow-

ing results.

Proposition B.1. The following holds:

1. BShap is only well-defined if all the domains are boolean, i.e. F = {0, 1}m.

2. BShap is only well-defined when w = ¬v.

Proof. By contradiction, let us consider i ∈ F , such that either |Di| > 2 or wi = vi. Then there exists a point z ∈ F such

that zi 6∈ {vi, wi}. By construction, for each S ⊆ F , xS
b is different from z. Thus, υb and so Scb do not depend on κ(z).

Therefore, we can use the value of κ(z) to change the AXps (and CXps) without modifying the BShap scores. As there are

at least 2(|F|−1) such points z, it is plain that constructing counterexample is simple.

BShap also misleads. The following notation is used S ⊆ F , let vS be defined by ITE(i ∈ S, vi,¬vi), with i ∈ F .

For S ⊆ F , then υb(S) = κ(vS).

Proposition B.2. υb misleads.

Proof. Let κ(x1, x2) = ITE(x1 = 1, 1, 2x2), and instance (v, c) = ((1, 1), 1).
It is plain that feature 1 influences both selecting the prediction 1 and changing the prediction to some other value. In

contrast, feature 2 has not influence in either setting or changing the prediction of class 1.
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It is also plain that the set of AXps is {{1}}, and also that κ(x1, x2) = 1 iff x1 = 1.

However, if we compute Scb, we get Scb(1) = 0 and Scb(2) = 1, which is of course misleading.

To confirm the SHAP scores, we proceed as follows. υb(∅) = κ(0, 0) = 0, υb({1}) = κ(1, 0) = 1, υb({2}) = κ(0, 1) = 2,

and υb({1, 2}) = κ(1, 1) = 1.

Thus, ∆b(1, ∅) = υb({1}) − υb(∅) = 1, ∆b(1, {2}) = υb({1, 2}) − υb({2}) = −1, ∆b(2, ∅) = υb({2}) − υb(∅) = 2,

∆b(2, {1}) = υb({1, 2})− υb({2}) = 0.

And finally, Scb(1) = (∆b(1, {2}) + ∆b(1, ∅))/2 = 0, Scb(2) = (∆b(2, {1}) + ∆b(2, ∅))/2 = 1.
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