
Getting a Handle on Unmanaged Memory

Nick Wanninger
Northwestern University

Evanston, IL, USA
ncw@u.northwestern.edu

Tommy McMichen
Northwestern University

Evanston, IL, USA

Simone Campanoni
Northwestern University

Evanston, IL, USA

Peter Dinda
Northwestern University

Evanston, IL, USA
pdinda@northwestern.edu

Abstract

The inability to relocate objects in unmanaged languages
brings with it a menagerie of problems. Perhaps the most
impactful is memory fragmentation, which has long plagued
applications such as databases and web servers. These is-
sues either fester or require Herculean programmer effort
to address on a per-application basis because, in general,
heap objects cannot be moved in unmanaged languages. In
contrast, managed languages like C# cleanly address frag-
mentation through the use of compacting garbage collection
techniques built upon heap object movement. In this work,
we bridge this gap between unmanaged and managed lan-
guages through the use of handles, a level of indirection
allowing heap object movement. Handles open the door to
seamlessly employing runtime features from managed lan-
guages in existing, unmodified code written in unmanaged
languages. We describe a new compiler and runtime system,
Alaska, that acts as a drop-in replacement for malloc.With-
out any programmer effort, the Alaska compiler transforms
pointer-based code to utilize handles, with optimizations to
minimize performance impact. A codesigned runtime sys-
tem manages this new level of indirection and exploits heap
object movement via an extensible service interface. We in-
vestigate the overheads of Alaska on large benchmarks and
applications spanning multiple domains. To show the power
and extensibility of handles, we useAlaska to eliminate frag-
mentation on the heap through defragmentation, reducing
memory usage by up to 40% in Redis.
ACM Reference Format:

NickWanninger, TommyMcMichen, Simone Campanoni, and Peter
Dinda. 2024. Getting a Handle on UnmanagedMemory. In 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’24), April 27-
May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3620666.3651326

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0386-7/24/04. . . $15.00
https://doi.org/10.1145/3620666.3651326

1 Introduction

A vast amount of code has been written in unmanaged lan-
guages such as C, C++, Fortran, and others. The billions
of lines of code written in these languages are not going
anywhere. C, C++, and Fortran are the 2nd, 3rd, and 14th
hottest languages in the TIOBE 2022 index [11]. A major
draw of these unmanaged languages, particularly C, is the
direct control over memory management granted to devel-
opers. Even in application code, this control is nearly at
the machine level using raw memory addresses. The pro-
grammer can carefully control object placement and lifetime,
even specifying the representation of a pointer. For example,
one can freely encode type information into unused address
bits, store pointers as integers, multiplex pointers in an XOR
linked list, or even send and receive pointers over a network.

This power brings with it the potential for bugs and secu-
rity vulnerabilities, almost as if the programmer were work-
ing at the machine level. In this work, we focus on the limita-
tions of memory management in unmanaged languages com-
pared to managed ones. In particular, managed languages
have their own clear advantage: heap objects can be straight-
forwardly moved by the runtime system.

The intentionally designed Wild West semantics of point-
ers in unmanaged languages makes it virtually impossible
for the language runtime system to move an object. In a
managed language, it is possible to algorithmically identify
all pointers to an object, and thus update them when the
object is moved. To do this in an unmanaged language would
require understanding pointer semantics as they are for that
specific program. For example, a memory manager would
need to be able to update through XOR list encodings, union
types, and address masking. Generally finding direct pointers
is challenging enough. Generally finding bespoke-encoded
pointers is beyond the pale.

The inability of an unmanaged language runtime to easily
move heap objects makes their initial placement on the heap
a matter of great importance. This has led to a wide range of
heuristics and compiler-driven allocation strategies [35]. If
the initial placement is wrong, it can have cascading conse-
quences throughout the lifetime of the badly placed object.
One such consequence is external fragmentation—when free
space is scattered in small unusable chunks—which often re-
sults in using far more physical memory to run the program
over the long term than would have been possible with an
oracle placement.

ar
X

iv
:2

40
5.

00
03

8v
1

 [
cs

.P
L

]
 2

6
M

ar
 2

02
4

https://doi.org/10.1145/3620666.3651326
https://doi.org/10.1145/3620666.3651326

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nick Wanninger, Tommy McMichen, Simone Campanoni, and Peter Dinda

To complicate matters further, heap fragmentation often
occurs in phases, and thus heap object placement decisions
made in one phase of the program could very well induce
fragmentation in another phase, even if a perfect oracle was
available. It has been shown that any allocation strategy that
is not free to relocate objects will suffer from fragmentation
[41]. This reality forces the programmer to act.
The first option is to adopt the ostrich algorithm1 and

allow fragmentation to fester, punting the resulting memory
usage issue down the road. This forces the user to deal with
unexpected results such as application restarts or the kernel’s
out-of-memory killer. Worse even, the user may need to pay
for more memory on a cloud hosting service just to run their
fragmented application.
The second option is for the programmer to attack the

fragmentation problem head-on with an ad-hoc defragmen-
tation strategy. For example, the programmers behind Re-
dis, a popular in-memory key-value database system, have
added activedefrag in version 4.0 [6, 7]. Because unman-
aged pointers are so hairy and have tendrils everywhere,
activedefrag required the addition of thousands of lines of
code to handle all edge cases, mind you, just the ones in Redis.
Through this considerable engineering effort, activedefrag
enables Redis to tackle fragmentation through modifications
to the allocator (jemalloc), polling the fragmentation ratio
(RSS over heap usage) of the program once a second to de-
cide if it should defragment. This approach tends to reduce
fragmentation substantially. Regrettably, the benefits of such
a hand-crafted system cannot be transferred to other appli-
cations without a great deal of reengineering to handle new
data structures and pointer semantics.
In contrast, programmers in higher-level managed lan-

guages such as Java or C# have long enjoyed transparent
object relocation and heap compaction, allowing them to
focus on application features rather than worrying about
where objects are located. This is possible due to the guaran-
tees about how pointers are used and stored—having very
strict pointer semantics throughout the language. This vastly
simplifies the operation of updating references when a heap
object is moved, and the runtimes of these languages often
utilize read/write barriers, safe pointing, and forwarding
pointers to increase efficiency [32, 38, 39, 54].

Recent work addresses the general problem of fragmenta-
tion in unmanaged languages without object mobility. Mesh
[40] leverages virtual memory to map multiple heap extents
in the virtual address space to the same extent in the physical
address space. The allocator is co-designed with this capabil-
ity to locate objects (permanently) in the virtual heap extents
such that there are no collisions in the physical address space
and that theoretical guarantees can be provided about the
packing of the objects into the physical address space. In

1To stick one’s head in the sand and ignore the problem.

Figure 1. Through object mobility, Alaska can save consid-
erable memory—up to 40% in Redis.

effect, the virtual heap is now much larger with considerable
sparsity, but the physical heap is dense.

In this work, we argue that it is possible to add the generic
capability to move heap objects to the Wild West of unman-
aged languages through the use of handles. This generic
object movement capability in turn allows for the design
of effective, application-independent defragmentation, and
opens the door for other services. Adding this generic ability
can be done in amanner transparent to the programmer, even
if they make use of complex, custom pointer semantics—the
hallmark of unmanaged languages.
The concept of handles, elaborated on in §2, dates back

to at least the early days of personal computers, prior to
the inclusion of virtual memory. In handle-based memory
management, the allocator doles out opaque handles instead
of raw pointers to heap allocations. Handles must be pinned
by the application before use and then unpinned afterward.
Pinning provides a (current) raw pointer to the object. If
a handle is unpinned, its corresponding heap object can
be moved. In classic Windows and MacOS, all applications
shared a single heap managed in this manner, which was
regularly compacted. Unfortunately, handles were a directly
visible feature of these systems and could be easily misused
by programmers, bringing down the whole house of cards.
Our work has three key differences. First, we show how

the Herculean effort of using handles correctly and efficiently
is avoided entirely through compiler analysis, transforma-
tion and optimizations. Second, our method makes handles
entirely transparent. Programmers can simply write pointer-
based code with whatever specialized semantics fit their
fancy, with handle-based code running under the hood. Even
better, the programmer cannot possibly get handles wrong—
because they don’t even see them—lifting the Sisyphean
burden of handle-based code maintenance from their shoul-
ders. This transparency also means our work can be directly
applied to existing, unmodified applications. Finally, we show
how a careful compiler/runtime co-design can implement
transparent handles with a geomean overhead of 10%—a
surprising result as handles add a layer of indirection.

Alaska and the test suite to reproduce results are publicly
available. See the Artifact Appendix for more information.

Getting a Handle on Unmanaged Memory ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

This paper makes the following contributions:

• We make the case for revisiting handle-based memory
management as amechanism for bringing general-purpose
heap object mobility to unmanaged languages. (§2)
• We describe the design of a handle-based memory man-
agement system that relies on compiler/runtime co-design
to automate the use of handles, and to make the use of han-
dles transparent to the programmer (§3). We implement
Alaska, an extensible proof-of-concept for C/C++ (§4).
• We evaluate the overhead of Alaska on a number of
well-established C and C++ benchmarks and applications
with zero code modifications. The 10% overhead (geomean)
suggests the practicality of automatic transparent handle-
based memory management (§5).
• We implement Anchorage, a memory allocator that en-
ables dynamic run time heap defragmentation in unmodi-
fied C and C++ applications on top of Alaska (§4.3).
• We show that Anchorage reduces memory usage in Redis
by up to 40% through defragmentation, on par with ac-
tivedefrag: a bespoke tool built specifically for Redis (§5.5,
also Figure 1).

2 Handle-Based Memory Management

We now describe classic handle-based memory management,
whose motivation to move heap objects mirrors our own. Un-
fortunately, in classic systems, this capability came with high
programmer effort and, because it was manual, the possibility
for disastrous programmer error.

2.1 Manual Handles of Yore

Handles were originally a solution to a hardware problem of
their time, namely that early Motorola and Intel CPUs did
not provide hardware MMUs. Without the hardware under-
pinnings of virtual memory, PC operating systems, such as
early versions of classic MacOS and Windows, required an
alternative. Classic MacOS had only one (physical) address
space, with a single global heap shared between applications
[31]. Thus, if one application created fragmentation on the
heap, the entire system felt the consequences—including the
kernel. This was especially problematic given the memory
restrictions of the time: the original Mac had only 128 KiB
of RAM. Handles enabled these systems to more efficiently
use their already limited memory through defragmentation.

Figure 2. MacOS handles pointed to a relocatable block.

In this system, an allocated block in the global heap may
either be relocatable or nonrelocatable. Relocatable blocks
could be moved within the heap to make space through
defragmentation so long as all users followed the contract:
these blocks may be either locked,2 preventing movement, or
unlocked, permitting movement.3 When a relocatable block
was allocated, the memory manager would create and main-
tain a single nonrelocatable master pointer to that block. A
pointer to this master pointer was returned to the program-
mer, being a handle that must be translated before use. This
relationship is shown in Figure 2.

Simply put, handles provided a single level of indirection
between logical references to an application’s heap data and
the actual backing storage. This indirection allowed objects to
be freely moved on the heap by updating only a single reference:
the master pointer.

2.2 Manual Handles Are Cumbersome

While handles gave the system a great deal of control with
regard to object placement, manual handles were considered
a nightmare to program for several reasons.

1 int ** handle = NewHandle (...);

2 HLock(handle); // Lock/pin

3 int *ptr = *handle; // Translate

4 *ptr = 42; // Use memory

5 HUnlock(handle); // Unlock/unpin

Figure 3. Manual handles required significant effort with
uncomposable changes that permeate the application.

Figure 3 shows an example use of MacOS handles (trans-
lated from the original Pascal to C). Manually adding handles
to a program required significant effort—the majority of the
lines shown are concerned with their management. Han-
dles are allocated with the NewHandle function. In order to
safely access the data behind the handle the user must first
call HLock, setting a bit in the handle to indicate it has been
locked/pinned. This allows the programmer to safely access
the backingmemory of the handle without concern for object
movement. When done accessing the object, programmers
must call HUnlock.

With manual handles, programmers were required to con-
sider an additional lifetime—that of their pins—which came
with tradeoffs. Being overly cautious with pins (i.e., surround-
ing individual memory accesses with pin/unpin) is easier
to understand, but produces terrible performance from the
additional memory updates needed to pin, unpin and trans-
late handles. Conversely, pinning across large intervals (e.g.,
2We adopt the classic terminology here, but it is important to keep in
mind that handle locking is unrelated to concurrency control. The modern
terminology is pin.
3Beyond movement, blocks could also be marked “purgeable” or “swap-
pable”, allowing the block to be discarded or moved to disk to make space.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nick Wanninger, Tommy McMichen, Simone Campanoni, and Peter Dinda

an entire loop or function) reduces the performance issue,
but may result in many nonrelocatable blocks, limiting the
effectiveness of defragmentation when needed.
In addition to thinking about when to free memory—

avoiding double frees, use-after-free, and memory leaks—
the programmer must also be concerned with the effects of
unpinning. When an object is unpinned, it can be moved;
unpinning too early could lead to the object being moved
without the application’s knowledge. The programmer also
had to ensure they were not unpinning a handle multiple
times, and that they unpin before the handle goes out of
scope, lest it be pinned forever.

Finally, manual handle-based memory management puts
the onus of correctness entirely on the programmer. Worse,
on a modern system, programmers would need to consider
correctness in the presence of preemptive threads and signals,
neither of which existed in classic systems.

3 Design of the Alaska System

We assert that automatic handle-based memorymanagement
holds the key to achieving object mobility in unmanaged
languages, empowering the runtime to freely relocate heap
objects and more. Guided by this, we present the design of
Alaska—a compiler and runtime system whose goal is to
achieve automatic transparent handles. Handles managed by
Alaska gracefully coexist with pointers. This seamless inte-
gration ensures that programmers can unknowingly wield
handles with confidence just as they would traditional point-
ers. This also means that entirely unmodified applica-

tions can now automatically leverage handles.

3.1 Design Goals

A key objective of Alaska is to enable the movement of
heap objects using handles with zero additional programmer
effort. Such a system would allow the billions of lines of code
written in unmanaged languages to benefit from managed
techniques currently held out of reach.
Handles and pointers coexist. In order to support all

existing applications written in unmanaged languages, raw
pointers and handles must coexist. This is necessary because
a function written to accept a pointer must behave in the
same way regardless of it being passed a pointer or a handle.
Thus, a variable can hold either a raw pointer—as it would
originally—or a handle. As far as the programmer is aware,
then, handles are just pointers with no additional semantics.
Handles have the same semantics as pointers. To

maintain the original application’s functionality, handles
must have the same programmer-visible semantics as the
pointers they replace. This means that handles must sup-
port the majority of pointer encoding and multiplexing tech-
niques outlined in §1 that keen programmers may employ.
So long as the application does not violate the assumptions

outlined in §3.2, no changes must be made in most applica-
tions to use handles. As our implementation is IR-level, this
is probably also true for other languages but is untested.
The compiler does translation for you. The most im-

portant component of Alaska is the compiler, which man-
ages the translation and tracking of handles for the program-
mer. Unlike the handles of old (§2) the programmer should
not need to modify their application in any way to take ad-
vantage of the benefits of handles. This is achieved via the
Alaska compiler, which automatically translates handles
and ensures they are both correct and optimized.
As discussed in §2, small pin intervals (individual load/-

stores) grant the most freedom for memory management,
but can incur a worrying performance overhead. Conversely,
large pin intervals (loops or functions) reduce the perfor-
mance impact of pinning, but reduce the degrees of freedom
available to the memory manager. Through the compiler,
the tradeoff between small and large intervals can be ex-
plored automatically, leaving one less dragon looming over
the development process. We present one such optimization
to hoist pins outside of loops when beneficial (§4.1).

The runtime efficiently tracks pins for you. Alaska’s
runtime automatically manages the tracking of which han-
dles are in use and which are not. However, a runtime system
that naïvely records pins as in Figure 2 would perform poorly
today in multithreaded environments. Concurrent updates
to the shared structures using atomics would lead to con-
tention across the machine, especially when handle pins
occur at a high rate. The runtime system must correctly han-
dle such concurrent access without significantly affecting
other concurrency control logic within the program itself.

3.2 Assumptions

While handles in Alaska do not affect the programmer-
visible semantics of pointers, Alaska imposes a limited set
of restrictions on their usage, to enable a more performant
implementation. We argue that these assumptions are not
fundamental to transparent handles, but are rather design
decisions specific to our implementation.

We assume that a programwill not access memory outside
the bounds of the allocation returned by the allocator. If the
assumption is not true, Alaska can potentially translate the
wrong handle, or generate an out-of-bounds access. This is
the same assumption made by LLVM’s memory model [34]
and can be considered a requirement for any meaningful
memory transformation. Similarly, the optimizations in our
compiler rely on the application not breaking strict aliasing
assumptions (casting a pointer of one type to a pointer of an
incompatible type), which GCC and Perlbench from SPEC
CPU, unfortunately, do [8, 9].

We also assume that programs do not rely on the bit rep-
resentation of a pointer outside of the alignment guarantees
specified by malloc. With this, implementations are permit-
ted to utilize lower address bits for their own purposes. They

Getting a Handle on Unmanaged Memory ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 4. Handles in Alaska are pointers (hardware-level
addresses) with the top bit set. The Handle ID is used to
index into the handle table, and the offset is added to the
resulting address.

are not, however, allowed to assume the top bits of a pointer
are free to use (as they are on x86). This unfortunately rules
out the use of NaN-boxed handles, as such systems often
rely on virtual addresses being only 48 bits.
The final assumption of the system relates to external li-

braries: we assume that either all library code is subject to
our compilation, or that it does not store pointers to the back-
ing memory nor free that memory. More on this assumption
and our approach for handling it are discussed in §4.1.4.

3.3 Efficient Handle Translation

Alaska is built as a pure software solution, meant to run
on commodity hardware. Without hardware acceleration,
as is the case for virtual memory, translation from handles
to pointers must be performed in software using standard
instructions. A poor design could be catastrophic for perfor-
mance. As such, the design of the handle representation leans
upon the understanding of how pins will be lowered into the
ISA, minimizing the number of additional loads.4 We specifi-
cally consider x64, ARMv8.3, and RISC-V 64-bit architectures
in our design—but only evaluate x64 for brevity.

Given these requirements, we chose the bit representation
for handles as shown in Figure 4. With this representation, a
handle in Alaska is differentiated from a pointer by the top
bit—being set to 1 for a handle, or 0 for a pointer.5
If the top bit is set, bits 32 to 62 represent the handle ID,

which acts as an offset into the handle table data structure.
Conceptually, this is the same way a virtual address is broken
into offsets into the various levels of the page table hierarchy,
but with only a single level. Each allocation in the system
has a unique handle ID, and the design effectively limits the
number of active handles in the system to 231. The decision
to restrict the number of bits in the handle ID is influenced by
many architectures’ ability to efficiently truncate values to 32
bits, making it a practical choice. The handle representation’s
lowest 32 bits are used to denote an offset into the object,
capping the maximum object size to 4GiB. We contend that
4This means we can’t use a traditional radix tree as seen in virtual memory,
as it would quadruple memory accesses.
5Note that on all architectures considered, this will result in a handle being
accidentally used as an address to fault.

1 cmp -2,%rdi ; Handle check

2 jg skip ; Not a handle

3 mov %rdi ,%rax

4 shr 0x1d ,%rax ; Extract handle ID

5 mov %edi ,%edi ; Truncate offset

6 add (%rax),%rdi ; HTE Load + offset

7 skip:

8 mov (%rdi),%rdx ; Perform access

Figure 5. x64 instructions to perform a handle translation.

this limitation is not a significant concern, as relocating
objects ≥ 4KiB can be more efficiently handled by paging.
These design decisions allow us to implement Alaska’s

handle translation logic in only 6 instructions on x64 (Fig-
ure 5). We investigate the overhead of these additional in-
structions in §5.

3.4 Efficiently Tracking Pinned Handles

On top of managing translations, a key functionality of
Alaska is to record which objects are in use and which
are not, a process referred to as “pinning”. This is required
because Alaska’s compiler transformation will leave refer-
ences to the raw backing memory in CPU registers or spilled
on the stack. As such, pinned handles are viewed as a con-
straint in the runtime system, and cannot be moved.

3.5 Extensible Service Interface

Beyond the core functionality of the Alaska runtime, an
extensible interface allows for the addition of services: plug-
gable and configurable libraries that manage the allocation
and movement of objects. The separation of these services
from the core runtime enables exploration into different tech-
niques that can make use of the object mobility provided
by handles (§7). In this paper we developed one such ser-
vice, Anchorage, to perform defragmentation. Anchorage
provides Alaska with an allocator and barrier routine de-
signed to perform heap defragmentation. We describe its
implementation details in §4.3.

4 Implementation of Alaska

The Alaska System comprises three logical components: a
compiler that transparently automates the use of handles in
unmodified pointer-based code, a core runtime that manages
the handle table and tracking, and a generic interface to
allow the construction of services such as Anchorage.

4.1 The Alaska Compiler

Alaska’s compiler transforms programs to use handles by
replacing allocation routines (§4.1.1), optimizing the trans-
lation of handles (§4.1.2), and inserting tracking for pinned
handles (§4.1.3). It also maintains correctness with external

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nick Wanninger, Tommy McMichen, Simone Campanoni, and Peter Dinda

Figure 6. Alaska’s transformation pipeline.

libraries through an escape pass (§4.1.4). We operate on the
LLVM IR [34] and use abstractions from NOELLE [36].

4.1.1 Replacingmallocwithhalloc. Conversion ofmem-
ory allocations to handle allocations is straightforward. Each
call to malloc and free is transformed by the compiler to a
call to halloc and hfree—their Alaska counterparts. This
is also the case for proxy functions such as calloc and
realloc. We perform this replacement in the compiler and
not the linker to avoid introducing handles into code that
is not visible to Alaska. This behavior can be disabled to
allow the programmer to decide which allocations are made
with malloc and which with halloc. In our evaluation, we
force handles on all allocations through malloc.

4.1.2 Automatically Translating Handles. The trans-
lation insertion compiler pass transforms the program so
that each instruction that may access a handle-allocated ob-
ject must perform a translation beforehand. To simplify this
transformation, Alaska’s translation function has different
functionalities depending on the incoming value. If the in-
coming value is a pointer, the translation function simply
does nothing and returns the pointer. If it is a handle, the
function performs the translation as described in Figure 4.
A naïve implementation of translation insertion would

be to translate immediately before each memory access in
the program. However, this would incur a large runtime
overhead: a bit test for every memory access in the best
case and a load from the handle table in the worst case. To
prevent this, we present Algorithm 1, which analyzes and
transforms an LLVM program to minimize the number of
dynamic translations. The shorthand ptr (𝑖𝑛𝑠𝑡) represents
either the address of load/stores, results of a translate, or
the operand of transient values (i.e. 𝜙 and getelementptr).

This transformation ensures that each memory access to
a handle will operate on the translated pointer to its backing
memory as each access is dominated by a pin. For memory
accesses within loops, InsertPin hoists the requisite pins
outside of loops when possible. This pass relies on LLVM’s
canonical loop form (-loop-simplify).

Following the insertion of translations in the program, the
compiler inserts releases which indicate when the handle is
no longer in use. These translations are only inserted to sim-
plify the implementation of the tracking pass later (§4.1.3),
and are removed before the program is run. This is performed
with the results of a liveness analysis [15] on each of the

Algorithm 1 The translation insertion algorithm.
procedure TranslationInsertion(𝐹 : function)
𝑃𝐺 ← pointer flow graph of 𝐹
𝑃𝐺 ′ ← {𝑝 ∈ 𝑃𝐺 | incoming(𝑝) > 0}
𝐷𝑇 ← dominator tree of 𝐹
𝐷𝐹 ← {𝑛 ∈ 𝐷𝑇 | 𝑛 ∈ 𝑃𝐺 ′} ⊲ A dominator forest.
for all 𝑡 ∈ 𝐷𝐹 do ⊲ For all trees in forest.
𝑟 ← root(𝑡)
𝑙 ← Translate(𝑟, 𝐹)
for all 𝑛 ∈ 𝑡 do

ptr (𝑛) ← 𝑙 ⊲ Replace handle with the translation.
procedure Translate(𝑖, 𝐹)
𝐿𝑇 ← loop nesting tree of 𝐹
𝐿 ← {𝐿 ∈ 𝐿𝑇 | 𝐿 is the innermost loop containing 𝑖}
𝐿′ ← FindNestingLoop(𝐿, 𝐿𝑇 , 𝑖)
𝐵𝐵 ← preheader of 𝐿′
𝑡 ← terminator of 𝐵𝐵
Insert translate(ptr(𝑖)) immediately before 𝑡
return The result of translate(ptr(𝑖))

function FindNestingLoop(𝐿, 𝐿𝑇 , 𝑖)
𝐿′ ← parent(𝐿) ∈ 𝐿𝑇
if 𝑖 ∈ 𝐿′ ∧ ptr(𝑖) ∉ 𝐿′ then return 𝐿′

else if 𝑖 ∉ 𝐿′ then return 𝐿

else return FindNestingLoop(𝐿′, 𝐿𝑇 , 𝑖)

translated handles. For each ptr = translate(handle) in-
serted into the program, release(handle) calls are inserted
immediately at the end of ptr’s lifetime.

4.1.3 Tracking Pinned Handles. Once a handle is trans-
lated, it must be pinned to ensure that the backing memory
block represented by the handle cannot be relocated for the
lifetime of the translation. This is required because, during
the translation’s lifetime, raw pointers (i.e., virtual addresses)
to the backing memory exist, for example in CPU registers.
In the common case, most applications do not have a large
number of pinned handles at any point in time, and thus the
runtime is free to move most objects at any time.

An intuitive, but naïve implementation of tracking pinned
handles might atomically increment a pin_count attached
to each handle in the handle table when a translation occurs,
and atomically decrement it when the translation’s lifetime
ends. When pin_count > 0, the handle would be considered
pinned and the backing memory would be immobile. Unfor-
tunately, these pin/unpin steps would naturally incur undue
overhead in applications that exhibit many translations—
especially in a multithreaded application, and as core counts
grow. An alternative mechanism is necessary.
In Alaska, pinned handles are tracked privately, on the

call stack, requiring no atomic instructions. For any function
that translates handles, we generate code that allocates a
single pin set in the current stack frame in the function
prelude. At run time, each invocation of the function thus
has a private pin set. The pin set stores the translated handles
for the invocation. The compilation statically decides the size

Getting a Handle on Unmanaged Memory ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

of each function’s pin set so that is large enough to contain at
least as many pinned handles as may statically overlap at any
point in the function’s control flow. Each static translation
in the program is allocated a single entry in the function’s
pin set using a greedy interference graph-based allocation
strategy similar to a register allocation algorithm. At run
time, before a handle is translated, the handle is stored in
the pin set.
The pin set is stored as an array on the stack, requiring

no additional instructions to construct and imparting no
additional heap memory usage. An experimental feature of
LLVM’s garbage collector infrastructure, StackMaps [10], is
used to record the array’s location relative to the stack or
frame pointers (e.g., %rsp or %rbp) for each return address
in the program. This information can then be used during
run time to walk the current stack with Libunwind [2] to
find the corresponding stack of pin sets embedded in it.

Barriers and Pin Set Unification. Because each thread
tracks its pin sets privately, there must be a mechanism to
pause all threads and unify all their extant pin sets into a
global pin set before using the information in that set to
determine which backing memory blocks are currently im-
mobile. We refer to this mechanism as a barrier to reflect
our current implementation: a stop-the-world pause event,
during which the runtime is free to relocate objects. Because
LLVM StackMaps are only valid at certain points in the pro-
gram, the threads cannot be simply interrupted using POSIX
signals. As such, Alaska uses safe pointing and polling to
ensure that the local pin set is valid at certain points in the
program [13, 14].
The Alaska compiler inserts calls to an LLVM safepoint

intrinsic, provided by the StackMaps infrastructure, marking
points at which the StackMaps informationmust be valid.We
place safepoints throughout the program on the back edges
of loops, the entry point of certain functions, and before calls
to external libraries. The LLVM backend recognizes these
safepoints and emits a patch point at each corresponding ISA-
specific location. On x64 a patch point is a NOP instruction.
In the best case, these safepoints have no overhead and pro-
duce no register or data cache pressure. However, as is to be
discussed in §5, this API is experimental, and unfortunately
does not have zero overhead in all cases.
When the runtime wishes to unify pin sets, a barrier is

started and each patch point’s NOP instruction is replaced
with a UD2 instruction, which, when executed, causes an
illegal instruction exception that the kernel in turn delivers
to the thread’s SIGILL handler, which is part of the Alaska
runtime. In this signal handler, the StackMaps information
is valid, and all pin sets can be parsed safely.
This would be sufficient if all code were transformed by

the Alaska compiler. However, as a practical matter, we of-
ten need to support external library code, and, at minimum,
the system call wrappers need to be considered. Here, the
problem is that there are no safepoints, and, in some cases,

blocking in the kernel, e.g., during an I/O operation, can also
occur. Consequently, we might end up waiting for an arbi-
trary amount of time. To handle this situation, the barrier
mechanism does not simply wait forever for all threads to
join. Instead, if a straggler is detected, that thread is signaled
using a POSIX signal, and the handler for that signal effec-
tively contains the safepoint. This works because there is no
handle translation occurring within the external code, and
thus no pin sets can exist “below” the immediate external
call, no matter how deep the call stack is below that point.
Once all threads are in the runtime, they synchronize

and determine which handles are pinned and which are not.
The runtime is then free to move backing memory blocks
however it sees fit, so long as it obeys the pin status of each
handle. When done, the runtime returns each patch point to
its original NOP state, and all threads are resumed.

4.1.4 External Functions. TheAlaska compiler assumes
a whole-program representation but calls to precompiled li-
braries such as libc are commonplace. The most common im-
plementation, glibc [1] cannot be compiled with clang due
to its reliance on GNU extensions. This leaves the compiler
with code that may break the assumptions in §3.2. Rather
than prohibiting users from using glibc, we handle cases of
broken assumptions in turn.

For external functions, the compiler performs escape han-
dling. An escape occurs whenever a handle is passed into
precompiled code as an argument. For each escaped handle,
the compiler inserts a pin before the call and passes the re-
sulting, raw pointer to the function. This ensures that the
precompiled code will operate correctly.
For cases where assumptions are broken, the compiler

must transform the function. An example of this can be
seen in parsing applications, where the size of a token is
computed by subtracting the non-handle result from the
escaped handle argument of strstr. This results in integer
underflow and often leads to a segmentation fault. To remedy
this, theAlaska compiler replaces the external function with
its musl [4] implementation and transforms it with the rest of
the program.With this solution, strstr operates as expected
and the aforementioned issue is avoided.

4.2 The Core Runtime

Alaska’s runtime manages low-level operations, including
handle allocation/deallocation, pin/unpin tracking, and the
delivery of “barrier” operations. Handle allocation is ex-
posed to the programmer through two functions, halloc
and hfree, which mirror the functionality of malloc/free
respectively. These allocation functions are automatically
used in place of the system allocation functions in any code
that is transformed by the compiler, as mentioned above.

4.2.1 TheHandle Table. At the center of the core runtime
is the handle table, a metadata structure that enables efficient
handle translation. The handle table is analogous to the page

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nick Wanninger, Tommy McMichen, Simone Campanoni, and Peter Dinda

table in virtual memory systems, albeit with one handle
table entry (HTE) per-object instead of per-page. Unlike a
hierarchical page table in x86, ARM, or any other modern
system, the handle table in Alaska is a single-level table.
This eliminates the need for page-walk-style translations in
software, which would impart unreasonable performance
overheads. A simple linear array enables translations to occur
with a single load.

The handle table lives in the virtual address space of the
user program, and all translations are performed in software
using unprivileged instructions. The table is placed at a spe-
cific virtual address so that translations need not mask off the
top bit of the handle representation (Figure 4). To ensure the
handle table is placed at the right location and can use all 231
entries it is virtually allocated via mmap in its entirety at the
start of program execution. This ensures that no other mem-
ory mappings will block the expansion of the table. Generic
demand paging is used to do actual memory allocation to
support the table as it grows. This is important as the table
cannot be moved once in use.
For translation, an HTE must contain a pointer to the

backing memory of a given handle. This imparts about eight
bytes of overhead per object. It would be possible to reduce
this overhead by compressing the pointer representation
as done in prior work [18], but we have not investigated
this potential. Because all entries of the handle table are the
same size, allocation of entries is 𝑂 (1). At startup, handle
table entries are allocated according to a bump allocator
strategy starting from index zero. When a given HTE is
deallocated it is added to a free list for quick reuse by future
allocation requests before. The free list is consulted before
bump allocation is used.
While the handle table can always fulfill HTE allocation

requests if it has space, it can suffer internal fragmenta-
tion from the kernel’s perspective. In the worst case, where
the kernel is allocating 2 MiB pages, an adversarial alloca-
tion/free pattern could result in a single active HTE per page.
This is unlikely to occur in practice, and active HTE density
is quite high in our evaluation. defragmenting the handle
table at the page granularity could be addressed with Mesh.

4.2.2 The Service Interface. As described in §3.5,Alaska
does not manage the allocation of backing memory itself. In-
stead, it defers this task to the service. With services, Alaska
enables a testing ground for future research into the benefits
and capabilities of handle-based memory management. The
service interface consists of eight callback functions: two
lifetime management functions (init/deinit), two back-
ing memory management functions (alloc/free), and four
metadata functions (e.g., query the size of an object). When
the application calls halloc, Alaska allocates a handle from
the handle table and then requests backing memory from the
service via the alloc callback. The service can later invoke
Alaska to easily query pin status when moving objects.

4.3 Battling Fragmentation with Anchorage

The Anchorage service uses Alaska to implement a defrag-
menting heap allocator that relies on object movement.
Allocator Anchorage’s allocator is designed with its

freedom to perform defragmentation in mind. As such, An-
chorage’s allocator is much simpler than its modern coun-
terparts, which have no choice but to include complex tech-
niques to avoid fragmentation.

Anchorage uses a naïve bump allocator, and reuses freed
memory through the use of a simple power-of-two free-
list. When an allocation is made, this list is searched for an
appropriate block in 𝑂 (1) time (only the front of the list is
checked). If no block is found, allocation is made by bumping
a pointer at the top of the heap. This simple design does
not feature the thread caches and other initial-placement
optimizations seen in modern allocators. However, this is
merely an engineering limitation.
Anchorage subdivides its heap into multiple sub-heaps.

Allocations are made in one sub-heap by first checking the
free list before falling back to bump allocation. When that
sub-heap cannot fulfill an allocation request or heap frag-
mentation is deemed too high, Anchorage triggers a barrier
and defragments.

When the runtime barrier fires, all local pin sets are unified.
Unpinned objects are moved from the top of one sub-heap
(the source) into another sub-heap (the destination) by sim-
ply copying their contents and updating HTEs. Dictated by a
control algorithm (below), Anchorage can perform partial
defragmentation—only moving part of the source sub-heap—
to amortize the cost of relocating the heap across several
pauses.
After each round of defragmentation (both partial and

complete) the source sub-heap has as much of its memory re-
turned to the kernel as possible using MADV_DONTNEED. This
marks the pages of virtual memory as unneeded, and the ker-
nel is free to reclaim them if memory is needed for another
process. With this, resident set size (total physical memory
used by a process) increases only momentarily during defrag-
mentation and is quickly reduced. Unfortunately, invoking
the kernel with madvise each round of defragmentation can
result in additional TLB shootdowns in multithreaded appli-
cations. A batched technique similar to jemalloc’s memory
reclamation system could be implemented to reduce this at
the cost of additional memory usage [27].
Control system Anchorage can perform a defragmen-

tation pass at any time, but the cost of a pass, and the rate
at which they occur constitutes a performance overhead. In
this section, we describe Anchorage’s control algorithm to
balance the goal of reducing fragmentation with reducing
overhead.
This algorithm measures fragmentation using an 𝑂 (1)

metric: the virtual extent of the heap divided by total size

Getting a Handle on Unmanaged Memory ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

of active objects. The algorithm attempts to keep fragmen-
tation and the fraction of time spent defragmenting within
bounds set by the operator, [𝐹lb, 𝐹ub] and [𝑂lb,𝑂ub], respec-
tively. Both upper and lower bounds are needed to allow for
using hysteresis. The “aggression parameter” 𝛼 controls the
fraction of the heap that may be moved during a single pass.
The control algorithm primarily controls 𝑇 , the time to

the next defrag event, and operates as a simple state machine.
In the waiting state, the algorithm wakes up every 500ms
and checks if the current fragmentation is > 𝐹ub. If it is, the
algorithm switches to the defragmenting state, where it be-
gins running partial defrag passes, each being limited by 𝛼 .
When a partial defragmentation pass completes, the algo-
rithm measures how long it took, 𝑇defrag and controls over-
head according to 𝑂𝑢𝑏 by going to sleep for 𝑇 = 𝑇defrag/𝑂ub.
When the algorithm either reaches a fragmentation < 𝐹lb or
runs out of opportunities, it returns to the waiting state to
efficiently observe the system. A subtle point is that it may
not always be possible to achieve the fragmentation bounds,
and in this circumstance, we will bounce between waiting
and defragmenting quite often, but always stay within 𝑂ub.

5 Evaluation

We now evaluate the efficacy of Alaska on a battery of
49 benchmarks from popular suites spanning multiple do-
mains (Embench [19], GAPBS [17], NAS 3.0 [16], SPEC CPU
2017). We also test two in-memory databases, Redis and
memcached, using the YCSB workload generator [22]. These
benchmarks are entirely unmodified, together constituting
nearly 3 million lines of code. With this evaluation, we seek
to answer the following questions:

Q1 Does the system truly deliver automatic transparent han-
dles? How much programmer effort is involved?

Q2 What effects do Alaska’s translations and tracking have
on code size?

Q3 What is the software engineering effort required to build
the Alaska system?

Q4 What is the performance overhead of software handles?
Q5 How effective is Alaska at enabling Anchorage to re-

duce fragmentation in a real-world application?
Q6 What is the effect of Anchorage’s stop-the-world pause

times in a multithreaded application?

5.1 Experimental Setup

Our evaluation was performed on a Dell R6515 with a single
AMD EPYC 7443P running Ubuntu 22.04.1 LTS. Each pro-
cessor has 24 cores with 2-way SMT, 64 entry store buffer,
768 KiB L1D$, 12MiB L2$, and 128MiB L3$ all with 64B line
size backed by 512 GiB of DDR4 RAM at 3200 MT/s. Our
implementation of Alaska is built atop LLVM 15.0.1. All
performance results are gathered from 10 executions per con-
figuration, and speedup/overhead metrics are relative to the
median of baseline execution. Each compilation is performed

by first applying the -O3 optimization level with OpenMP
disabled. Alaska transformations are then applied to the
LLVM bitcode, followed by inlining and several optimization
passes. Those passes are similarly applied to the baseline
bitcode to ensure a fair playing field.

5.2 Alaska Achieves Programmer Transparency

To evaluateAlaska’s ability to provide fully automatic, trans-
parent handle-basedmemorymanagement, we recorded how
many edge cases we had to handle in developing the sys-
tem. Throughout development, we constantly tested Alaska
against both Redis and all of the aforementioned benchmarks.
Outside of the issues solved by escape handling and musl
substitutions (§4.1.4), no code in any benchmark or appli-
cation was modified to support handles. Making these
benchmarks handle-aware was entirely achieved outside of
the application code, by the Alaska compiler and runtime.

Unfortunately, some benchmarks—namely perlbench and
gcc from SPEC —violate the strict aliasing assumptions (§3.2)
of Alaska . This is not a fundamental limitation of the han-
dle approach, but rather a limitation of our implementation’s
hoisting technique in the compiler, which relies on the LLVM
memory model. If the -fno-strict-aliasing flag is passed
to the compiler, both of these benchmarks function correctly.
This flag instructs Alaska to disable the hoisting optimiza-
tion, instead translating handles before each load and store.
Given that no benchmark or application was modified

to support Alaska, we argue that the answer to Q1 is yes.
Most applications, including Redis, can be transformed to use
automatic transparent handles with a single command:

make CC=alaska CXX=alaska++
Q2 concerns itself with compilation overhead. Alaska’s

compiler does not significantly increase compilation time.
Redis takes an additional 12 seconds to compile with Alaska
(up 21% from 57 seconds, single-threaded), however, this is
due to a relatively unoptimized compiler implementation.
Most of this extra time comes from the requirement to com-
pile the whole program to correctly handle calling library
code. Optimizing Alaska’s link-time transformations à la
ThinLTO [33] or Propeller [12] could reduce this overhead.

Executable files grew only about 48% (geomean) via the
Alaska transformations and runtime system. The worst
case is a doubling of executable file size which occurs when
the hoisting optimization is not applicable. For example,
xalancbmk doubles in size as it makes use of linked lists,
which have short handle translation lifetimes. Applications
from NAS, which benefit heavily from hoisting, see negligi-
ble increases in code size.

5.3 Building and Extending Alaska is Practical

We inspect the code size and development time to answer
Q3. Alaska is not a particularly large codebase, and was
built over a period of eight months. Its core runtime is only
1316 lines of C++, which manages structures like the handle

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nick Wanninger, Tommy McMichen, Simone Campanoni, and Peter Dinda

table, tracking, and signaling for barriers. The largest effort
was the compiler, which constitutes 2393 lines of C++. The
Anchorage service is a mere 567 lines of C++, half the size of
the bespoke defragmentation system in Redis [6]. Anchorage
is general purpose and does not leak into application code,
unlike activedefrag. We take away that, while Alaska’s core
may have been complex to design and implement, extending
it with additional services is trivial, and we have already
begun experimenting with future research directions.

5.4 Overhead Varies, but is Overall Low

To answer Q4, we evaluated Alaska’s runtime overhead on
benchmarks from several domains. Figure 7 compares the
measured performance overhead (percent increase of wall-
clock time) of the benchmarks running Alaska without a
service (using malloc to allocate backing memory) against a
baseline described in §5.1. The Perlbench and GCC bench-
marks from SPEC CPU 2017 both violate the assumptions
listed in §3.2, and have been compiled with hoisting disabled.
The main takeaway is that Alaska’s performance impact
varies depending on the benchmark, but is overall relatively
low, imparting a geomean of 10% overhead if perlbench and
GCC are included, and an 8% geomean if not.
Despite the outliers, many benchmarks have near zero

overhead. These benchmarks benefit substantially from the
hoisting capability of Alaska’s compiler, with many bench-
marks having translations hoisted to their outermost loops.

For example, 619.lbm_s from SPEC CPU features a large
grid allocation which is accessed inside a series of inner
loops. The translations in this program are all successfully
hoisted to their outermost possible loop level, and as a result,
the cost of Alaska is amortized to a high degree. Similar
amortization can be seen in the NAS benchmarks and xz
from SPEC CPU 2017, which feature similar structures in
performance-sensitive parts of the application.

Unfortunately, not all programs feature this friendly struc-
ture, and some programs do not benefit from any of Alaska’s
optimizations. These benchmarks stress Alaska’s ability to
hoist and efficiently translate pointer-chasing data structures
such as linked lists and trees for which the compiler is un-
able to amortize the cost of translation. Additionally, several
benchmarks in the Embench suite suffer from poor software
design patterns, which block any hoisting from occurring.
One such is in sglib, which passes all parameters to the core
kernel through global variables instead of as arguments. In
LLVM, this results in an additional load from the global vari-
able every time it is used, and hoisting the translation across
these may break correctness in concurrent applications.
Handle translation overhead is also seen in benchmarks

that perform very little work per translation, such as sglib,
mcf and xalancbmk. For example, the mcf benchmark from
SPEC CPU spends roughly 40% of runtime sorting an array
of pointers, which results in 4 translations per comparison.
Similarly, xalancbmk is written using C++ virtual methods,

which block almost all optimizations that would optimize
across call sites, and the this pointer is translated in almost
every function—even when it is not required.
Interestingly, we see a speedup of 11% in NAS ep. In this

benchmark, we see an increase in L1 instruction cache ac-
cesses and misses. The most probable cause of this is the
differences in code layout by the LLVM backend that we
observed. The effect of this is exacerbated by how small the
application is, with the hot loop being only 256 bytes.

To investigate the source of the overheads in these bench-
marks, we ran an ablation study on the SPEC CPU 2017
benchmarks where we removed features of Alaska and
evaluated the resulting overhead. The performance over-
head results of this study are shown in Figure 8. The met-
ric marked “alaska” is the overhead seen in Figure 7 with
both hoisting and tracking enabled. When the compiler’s
hoisting optimization is disabled, as seen in the “nohoisting”
metric, most benchmarks see their overhead nearly double.
Those benchmarks that do not see a large increase—such as
xalancbmk—do not have many opportunities to hoist.

When the tracking system is removed, marked “notrack-
ing”, several benchmarks see a large reduction in overhead.
This is most apparent in nab and xz, and we attribute this
to the experimental nature of the LLVM StackMap system,
which has seen very little use outside of JIT compilers. This
overhead mostly comes from the insertion of poll points
(§4.1.3), which in the common case should incur no additional
overhead—the polls are simple NOP instructions. However,
it is possible that either the addition of these instructions
causes undue stress to the instruction cache or, more likely,
this experimental system leads to unexpected performance
bugs in LLVM’s backend for some application structures.

Alaska’s overheads could be further improved with mem-
ory analysis [29, 37, 44, 47], which can say when a value is
definitely a handle or not. This would allow the compiler
to completely eliminate the conditional check and branch
before translation. Historically, the removal of these checks
from read barriers have reduced overheads significantly [20].

5.5 Anchorage Defragments without Black Magic

To evaluate the capabilities of the Anchorage service built
on Alaska, we tested it using a large, unmodified applica-
tion: Redis [7], an extremely popular key-value in-memory
database. As we described in the introduction, Redis has
long suffered from fragmentation, particularly due to its
tendency to be used as an LRU cache atop other databases
in large deployments, resulting in a heap that has alloca-
tions scattered everywhere as old objects are freed to make
space for new ones. As a result, Redis includes activede-
frag, a bespoke defragmentation system requiring manual
modifications throughout the application’s code, which is also

Getting a Handle on Unmanaged Memory ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

ah
a-m

on
t64crc

32
cub

ic ed
n

hu
ffb

en
ch

matm
ult

-in
t

md5
sum

minv
er
nb

od
y

ne
ttle

-ae
s

ne
ttle

-sh
a2

56

nsi
chn

eu

pic
ojp

eg

pri
meco

un
t

qrd
uin

o
sgl

ib slre st

sta
tem

ate
tar

fin
d ud

wikis
ort bc bfs cc

cc_
sv pr

pr_
spm

v
sss

p tc bt cg ep ft is lu mg sp

pe
rlb

en
ch gcc mcf lbm

xa
lan

cbm
k
x2

64

de
ep

sje
ng

im
ag

icklee
la na

b xz

ge
om

ea
n

0%

25%

50%

75%
ALLEmbench GAP NAS SPEC2017

0 -0 6 0
15 9

-1 -3
11

-1 1 0
7

-0

30
23

43

-2
9 7 1

16
4 5 6

15 10 9 4
16

-0 -3 -11 -1 -0 -4
7

-0

73

51

20

3

47

13 12
24 27

42

7 10

Figure 7. The Alaska prototypes’ overhead (% increase) from translation and pin tracking is about 10% with several outliers

mcf lbm xalancbmk x264 deepsjeng imagick leela nab xz
0%

25%

50%

75%
alaska
notracking

nohoisting

Figure 8. The hoisting optimization drastically reduces the
overhead of Alaska handles, and careful design and en-
gineering effort of the tracking system imposes negligible
overhead over the cost of using handles with the exception
of a few applications (nab, xz)

considered “black magic” 6 and cannot be reused in other
applications.
Response latencyWe begin by considering the impact

on response latency. We drive Redis with the YCSB workload
generator using two workloads [22]. We found that Anchor-
age on top of Alaska imparts an average of 13% overhead
on read latencies (Workload A), and an average 17% over-
head on update/write latencies (Workload F). Aside from the
overhead of Alaska discussed in §5.4, the lower throughput
of the Anchorage allocator imparts an additional overhead
relative to glibc malloc used by the baseline. Of note, the
allocator overhead is not intrinsic and could be ameliorated
through improvements and optimizations in its design.

Defragmentation To answerQ5, we used the same work-
load fromMesh [40] which configures Redis to limit memory
usage to 100 MiB and then inserts more than that into the
database using a workload generator. Redis then evicts keys
from its dataset using an LRU policy until memory usage
falls below the 100 MiB threshold. This creates significant
fragmentation, as there are holes throughout the heap that
are not filled—and the application’s RSS does not decrease in
the baseline allocator. Configuring Redis in this way is very
common when it is used as a cache for other datasets. This
benchmark runs for a total of 10 seconds and includes results

6A term used by the original developer:
https://twitter.com/antirez/status/1052590584102305792

0 2 4 6 8 10
Time (s)

 0
 50
100
150
200
250
300

RS
S

(M
B)

Anchorage Baseline Mesh activedefrag

Figure 9. Anchorage can defragment memory under Redis
at least as well as the bespoke Redis defrag implementation.

0 2 4 6 8 10
Time (s)

 0
 50
100
150
200
250
300

RS
S

(M
B)

Anchorage Configurations
Envelope of Control

Figure 10. Anchorage gives users control over the tradeoff
between overhead and fragmentation.

for the baseline allocator, Anchorage, activedefrag, and
Mesh.

Figure 9 shows the results.Anchorage effectively reduces
memory usage from almost 300MiB to 150MiB (40% less com-
pared to baseline Redis). The main takeaway is that Anchor-
age, which is readily applicable to any codebase without any
code modifications, is able to do as well as activedefrag,
which requires extensive, manual, hand-rolled changes to
the codebase. We include the data verbatim from Mesh.
Control To evaluate the effect of our control system,

we sweep the parameters [𝐹lb, 𝐹ub], [𝑂lb,𝑂ub], and 𝛼 (§4.3).
In Figure 10, each solid curve shows Anchorage’s behav-
ior with a different parameter set, of which there are hun-
dreds. Each parameter set stays within the overhead bounds
([𝑂lb,𝑂ub]). As shown in the figure, the envelope of control
(dashed curves) is quite large, meaning that the parameters
have a significant effect. In a deployment, the user can tune
these parameters (dynamically, even) for their desired trade-
off between overhead and fragmentation.

https://twitter.com/antirez/status/1052590584102305792

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nick Wanninger, Tommy McMichen, Simone Campanoni, and Peter Dinda

0 250 500 750 1000 1250 1500 1750 2000
Time (s)

 0
 25
 50
 75
100
125

RS
S

(G
B)

Anchorage Baseline Mesh activedefrag

Figure 11. Anchorage successfully defragments workloads
with >100GiB RSS.

Stressing Anchorage To evaluate Anchorage in the
face of workloadswith a large amount ofmemorywe adapted
the test from Figure 9 to have a maximum memory policy
of 50 GiB, instead of the original 100 MiB. This workload
inserts 100 GiB of data, 500 bytes at a time, causing over
2.5x fragmentation–Redis’ internal datastructures provide
some overhead–when eviction begins around 250 seconds.
Figure 11 shows the results of this experiment with Anchor-
age handily defragmenting the heap of this large workload,
achieving similar steady-state RSS as activedefrag, albeit
over a longer time frame.

The longer time taken by Anchorage to defragment the
heap is caused by its control algorithm. Around 500 seconds
into the test, the control algorithm begins defragmentation.
Because the control system operates in units of percentage
of the heap, the system immediately enters a 7 second pause
as it drastically mispredicts how long the defragmentation
will take. The system then backs off for over 250 seconds to
maintain the 5% overhead maximum—per its configuration—
and begins slowly defragmenting the heap for the rest of
the application runtime. It is important to note that this
is not a fundamental issue of Anchorage, as the control
system can be tuned—as illustrated in Figure 10. As such,
careful parameterization of the control algorithm could aid in
preventing this behavior. Alternatively, a common approach
to hide GC pause times is via concurrent algorithms, the
potential of which is briefly discussed in §7.
We also evaluated Mesh in this environment and, in its

default configuration, it was either not aggressive enough—
defragmenting only a fewMiB at a time as can be seen around
750 seconds—or does not scale to workloads this large. Note,
we had to modify Mesh’s source code to allow heap sizes
larger than 64GiB.

5.6 Anchorage’s Stop-the-World Pauses

To answer Q6, we evaluated Anchorage’s effect on request
latencies on an alternative in-memory key-value database,
memcached [3], which can be configured to run in parallel
with multiple threads. We devised a synthetic test where
∼1 MiB of memory is relocated at each pause, regardless of
the fragmentation ratio, resulting in average pause times
less than 2ms. memcached is driven by the YCSB test suite—
specifically workload A, which has been scaled up to run for

200 400 600 800 1000

40

50

60

La
te

nc
y

(µ
s)

(A
ll

th
re

ad
 c

ou
nt

s)

alaska baseline

200 400 600 800 1000
Pause interval (milliseconds)

40

50

60

Av
g.

 L
at

en
cy

 (µ
s)

(F
or

 e
ac

h
th

re
ad

 c
ou

nt
)

Thread count
1 2 4 8 16

Figure 12. Latencies in memcached vary based on the pause
time, and there is no trend between latency and number of
threads.

longer—which provides the latencies shown. Because this
workload is driven through the loopback network, it does
see considerable noise. The results of this test are shown in
Figure 12, gathered by varying the number of threads and
the interval at which Anchorage performs a pause.
The upper plot in Figure 12 shows the overall effect on

latency for all thread configurations combined, as well as
the standard deviation, indicating that Alaska incurs an
average of 10% overhead in this application across all config-
urations (including impractical 50ms pause intervals). This
manifests as an average latency increase of 4𝜇𝑠 . With more
practical intervals (above 500ms), the latency increase drops
to less than 7%. The lower plot breaks the latencies down by
thread count. The main takeaway is that, at low intervals,
there is an expected effect on average latency. This overhead
is driven primarily by outliers when requests are blocked
by Alaska runtime pauses. Importantly, Anchorage never
naturally pauses at these low intervals in other applications.
Additionally, we measured no correlation between number
of threads and pause time.

6 Related Work

Defragmenting Unmanaged Languages has seen a resur-
gence in recent years. Mesh [40], the most pertinent exam-
ple, works on existing binaries without recompilation. Mesh
changes malloc so that heap objects are carefully positioned
on virtual pages. A cooperating kernel takes advantage of
this by mapping several virtual pages to the same physical
one without overlapping the heap objects, reducing fragmen-
tation and memory usage at the physical level. In contrast,
Alaska enables heap object mobility in the virtual address
space, a more general capability that is necessary to achieve
fragmentation limits [41], and can enable other mobility-
enabled services beyond defragmentation.

Compiler-managed Address Translation CARAT [45,
46] aims to replace paging via per-object RWX protections
and object-level movement in the physical address space.

Getting a Handle on Unmanaged Memory ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Both functionalities are enabled by compiler/kernel cooper-
ation and are automatic and transparent to the programmer.
Object mobility is based on allocation and pointer escape
tracking, combined with updating of all pointers. In other
words, there is no indirection like with handles in Alaska.
This avoids the handle pin and handle translation costs, but
makes object movement more expensive because the update
is not 𝑂 (1) as in handles, but at least 𝑂 (𝑚), where𝑚 is the
number of pointers to the object. While Alaska does not
currently enable protections, it could do so in the future.

Programming Models Interestingly, the historic manual
indirection strategies described in §2 have returned. AIFM
[42] features a programming model on top of C++ to allow
the developer to take advantage of far-memory data struc-
tures. While the system works well in enabling far memory,
it requires the programmer to do error-prone heavy lifting,
insert scopes, and pinning logic similar to classic handle-
based systems. Recent work to automatically transition an
application to a far-memory application through compiler
techniques such as TrackFM [48] or Mira [30] are promis-
ing. Internally, these automatic systems utilize many of the
techniques used by Alaska, such as the level of indirection
and compiler hoisting. We suspect that Alaska’s service
abstractions may be sufficient to implement these systems.

Oilpan [5], a library that enables precise garbage collection
in C++ programs boasts limited compaction capabilities, but
requires the application be rewritten to use Oilpan abstrac-
tions. Similarly, ActivePointers and others [24, 26, 43] allow
the runtime to relocate objects and invalidate references (a la
paging) via a modification of C++’s “smart pointers”. These
approaches demand rewriting parts of the application or
using libraries that cannot benefit from translation-aware
optimizations in the compiler. Such systems could perhaps
be easily built atop Alaska’s service interface.

7 Discussion

Though we have only discussed handles in the context of
fragmentation, we note that handles provide the more fun-
damental capability of managing object motion at the object
granularity. Handles in the past have also given the ability to
move or swap memory at the object granularity, rather than
pages. Managingmemory at the object granularity has gained
interest in several contexts, such as application-level remote
memory systems [42], replacements for paging [45, 46], and
security via capability-based addressing [51, 52]. It has also
been shown that object mobility can be used to dynamically
enhance cache locality [21, 23, 25, 49, 50]. Similarly, work has
been done to place rarely used objects in cheaper nonvolatile
memory to optimize memory usage [53].

We posit that handles provide a powerful vehicle to imple-
ment such ideas with simple modifications to the compiler
and runtime. The Alaska system has been designed to be
extensible beyond what we describe in this paper with these

capabilities in mind. Alaska can be configured with “handle
faults”, which very closely approximates the capabilities of
a system that uses page faults. While this paper does not
evaluate this feature in detail, initial investigation indicates
that this check has minimal additional overhead (~1-2%), but
enables advanced techniques in the runtime system. With
this check enabled, objects can be swapped out of memory
in the same way a kernel might do so for pages.
Further, this “swapping” mechanism could be utilized to

speculatively move memory without stopping the world for
the duration of movement. The runtime would occasionally
mark entries in the handle table as “invalid” and specula-
tively copy their data to an alternative location. If another
thread accesses that handle, it would trap to the runtime and
atomically mark the object as “valid”. The runtime would
then attempt to CAS (compare-and-swap) the entry in the
handle table, marking it as “valid” with a new address. If
the CAS succeeds, the old memory can be freed, and the
object has been relocated. If it fails, the relocation is aborted,
and the speculative copy is freed, as some other thread has
pinned that handle while the copy was being made. We see
it as an interesting path forward to implement concurrent
memory movement, as this closely resembles the concurrent
compaction system seen in the Shenandoah GC [28]. This
simple mechanism could be utilized to implement swapping
objects to disk, compression, or even far memory.

8 Conclusion

Wehave described the design and implementation of Alaska,
a prototype compiler and runtime system that automates
the use of handle-based memory management while being
entirely transparent to the programmer. Alaska is a plat-
form that enables runtime features and services that rely on
object mobility. Using this platform, we designed and imple-
mentedAnchorage, a defragmenting memory allocator that
reduces memory usage in highly fragmented applications.
In the future, we plan on using Alaska’s extensibility as
a vessel to enable additional transparent runtime services
such as memory disaggregation, locality enhancement, and
capability-based security, as well as a lightweight alternative
to paging.

Acknowledgments

We thank the anonymous reviewers as well as our shep-
herd Steve Blackburn for their time and feedback. We also
thank members of the Prescience and ARCANA Labs for
their support and feedback on this work. This effort is based
upon work supported by the U.S. National Science Founda-
tion (NSF) under awards CCF-2119068, CNS-2211315, CNS-
1763743, CCF-2028851, CCF-2107042, and CCF-1908488. This
project was also supported by the United States Department
of Energy via the grant DESC0022268.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nick Wanninger, Tommy McMichen, Simone Campanoni, and Peter Dinda

A Artifact Appendix

A.1 Abstract

Our artifact includes the source code for the Alaska pro-
totype, as well as tooling to automatically test it against a
bevy of benchmarks and applications. The output of this
artifact is the data required to generate the paper’s figures,
as well as the figures themselves. This artifact can be option-
ally used to evaluate Alaska’s overheads in the SPEC CPU
2017 benchmark suite, as outlined in §A.3.3. The artifact also
features an in-depth README file, which includes example
results from the paper, as well as directions on how to use
Alaska in other C/C++ aplications.

A.2 Artifact check-list (meta-information)

• Program: The Alaska compiler and runtime.

• Compilation: Clang+LLVM is leveraged as the basis

for the Alaska compiler transformations. These are

downloaded automatically.

• Transformations: TheAlaska compiler, includinghoist-

ing and tracking optimizations.

• Run-time environment: The Anchorage defragment-

ing allocator.

• Output: Figures 7, 8, 9, 10, 11, and 12.

• Experiments: Overhead on Embench, GAPBS, NAS and

SPEC CPU. Memory defragmentation for Redis, and

throughput measurements of Memcached.

• How much disk space required: 32GB

• How much time is needed to complete experiments

(approximately)? On our hardware, 24-48 hours are

needed if SPEC CPU is evaluated, ~7 hours if not.

• Publicly available? Yes.

• Code licenses (if publicly available)? MIT License.

• Workflow framework used? Docker.

• Archived (provide DOI)? Will be created for the final

appendix

A.3 Description

A.3.1 How to access. The artifact can be accessed from
Github at https://github.com/PrescienceLab/alaska-asplos24-
artifact. The DOI for the artifact is 10.5281/zenodo.6350453
on zenodo. The repo also features an informative README for
using the artifact.

A.3.2 Hardware dependencies. An x86_64 system with
eight or more cores, 32GB+ of memory, and more than 32GB
of free disk space is required. If you wish to generate Figure
11, a machine with at least 200GB of memory is required.
Our testbed features an AMD EPYC 7443P with 512GB of
memory.

A.3.3 Software dependencies. The artifact has been ex-
tensively tested on, and is designed for, an Ubuntu 22.04
system. The README lists dependencies as they can be in-
stalled from apt, and all other software such as LLVM are
downloaded automatically by the artifact’s test harness. We

recommend running in a Docker container, which is pro-
vided.

The artifact evaluates four standard benchmark suites.
The three open source suites (NAS, Embench, and GAPBS)
are downloaded automatically. SPEC2017 can be optionally
evaluated if it is available to the user of the artifact (i.e., if the
user has a license). The artifact functions correctly without
SPEC CPU. If SPEC CPU is unavailable it will simply not
include SPEC CPU benchmarks in Figure 7, and will skip
producing Figure 8 alltogether. Directions regarding SPEC
CPU can be found in either the README or below.

A.4 Installation

Once the artifact repo is downloaded the first (optional) step
is to place the SPEC2017 source tarball in the root of the
repository. It must be named SPEC2017.tar.gz. If found,
the test harness will extract and compile it. If not, the test
harness will simply not evaluate SPEC CPU.

Because runs can take a long time, we recommend starting
a tmux session to avoid having disconnections disrupt runs.

The docker container can be started with make in-docker
(or make in-podman, if that is preferred). This will start a
bash shell in an ephemeral docker container, in which the
directory /artifact is bindmounted to the host filesystem.
Any changes in this container will be reflected in the host
filesystem automatically.

A.5 Experiment workflow

This artifact features a fully automatic workflow to generate
all the experimental results included in the paper. It compiles
Alaska, compiles and runs benchmarks, produces data, and
plots the results automatically.
The results of compilation can be found at the top level

of the repo in ./opt/, which contains several enable scripts
which can be utilized to use Alaska (more on this in the
README).

A.6 Evaluation and expected results

After downloading the repo and following the installation
instructions, simply run ./run_all.sh in the top level of
the repo. You will be prompted with several yes/no questions.
An important one is whether you wish to generate Figure
11, which requires > 250GB of memory. If your test machine
does not feature that much memory, answer no, and that test
will be skipped.

Additionally, run_all.sh will search for the SPEC 2017
tarball that was optionally included in the installation phase.
If it was not found, the script will notify you of this, and you
can chose to continue without SPEC CPU, or exit.
Once the run is finished, which can take many hours,

the results/ directory will be populated with data in the
form of csv files, as well as a series of figure PDFs, which
correspond to the identically numbered figures in the paper:

https://github.com/PrescienceLab/alaska-asplos24-artifact
https://github.com/PrescienceLab/alaska-asplos24-artifact

Getting a Handle on Unmanaged Memory ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

results/figure7.pdf: Evaluates the overhead of Alaska’s
handles on a series of benchmarks. If SPEC CPU was not
included, it will not be included.

results/figure8.pdf: Evaluates the effectiveness of Alaska’s
compiler optimizations. If SPEC CPU was not included, this
figure will not be generated.
results/figure9.pdf: Evaluates the effectiveness of An-

chorage’s defragmentation capabilities. This test includes
results of Anchorage, activedefrag, and Mesh.

results/figure10.pdf: Evaluates that Anchorage can be
configured in many ways, resulting in many different rates
of defragmentation. The this test uses randomized configu-
rations, so the figure may not match exactly.
results/figure11.pdf: This figure tests how alaska man-

ages to defragment largememory workloads. This test is
very similar to Figure 9, except it allocates significantly more
memory.

results/figure12.pdf: This figure shows an evaluation of
Alaska’s effect on multithreaded applications, using mem-
cached with varying thread counts.

More details on these figures can be found in the arifact’s
README.md file.
If there are any problems with the artifact, first try make

distclean to reset the repo.

A.7 Notes

We assume an internet connection through the duration of
the benchmarking phase, and that the machine running the
artifact is not running an existing copy of either Redis or
Memcached, as we configure these to run on their default
ports.

References

[1] The GNU C library https://www.gnu.org/software/libc/libc.html.
[2] The libunwind project https://www.nongnu.org/libunwind/.
[3] memcached https://memcached.org/.
[4] MUSL libc https://musl.libc.org.
[5] Oilpan: C++ garbage collection https://chromium.googlesource.com/

v8/v8/+/main/include/cppgc/README.md.
[6] Redis active memory defragmentation https://github.com/redis/redis/

pull/3720.
[7] Redis https://redis.io/.
[8] Spec cpu 2017 - gcc_s description https://www.spec.org/cpu2017/Docs/

benchmarks/602.gcc.html.
[9] Spec cpu 2017 - perlbench_s description https://www.spec.org/

cpu2017/Docs/benchmarks/600.perlbench_s.html.
[10] Stack maps and patch points in LLVM — LLVM documentation https:

//llvm.org/docs/StackMaps.html.
[11] Tiobe index https://www.tiobe.com/tiobe-index/, Jun 2022.
[12] Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale

Applications, ASPLOS 2023, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3575693.3575727.

[13] Ole Agesen. Gc points in a threaded environment. Technical report,
USA, 1998. URL: https://dl.acm.org/doi/10.5555/974974.

[14] Ole Agesen, David Detlefs, and J. Eliot Moss. Garbage collection and
local variable type-precision and liveness in java virtual machines.
page 269–279, 1998. doi:10.1145/277650.277738.

[15] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley
Longman Publishing Co., Inc., USA, 2006.

[16] David Bailey, TimHarris, William Saphir, Rob Van DerWijngaart, Alex
Woo, and Maurice Yarrow. The nas parallel benchmarks 2.0. Technical
report, Technical Report NAS-95-020, NASA Ames Research Center,
1995.

[17] Scott Beamer, Krste Asanović, and David Patterson. The gap bench-
mark suite. arXiv preprint arXiv:1508.03619, 2015.

[18] Michael A Bender, Alex Conway, Martín Farach-Colton, William Kusz-
maul, and Guido Tagliavini. Tiny pointers. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
477–508. SIAM, 2023.

[19] J Bennett, P Dabbelt, C Garlati, GS Madhusudan, T Mudge, and D Pat-
terson. Embench: An evolving benchmark suite for embedded iot
computers from an academic-industrial cooperative, 2022.

[20] Stephen M. Blackburn and Antony L. Hosking. Barriers: friend or foe?
In Proceedings of the 4th International Symposium on Memory Manage-
ment, ISMM ’04, page 143–151, New York, NY, USA, 2004. Association
for Computing Machinery. doi:10.1145/1029873.1029891.

[21] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious
structure layout. SIGPLAN Not., 34(5):1–12, may 1999. doi:10.1145/
301631.301633.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,
page 143–154, New York, NY, USA, 2010. Association for Computing
Machinery. doi:10.1145/1807128.1807152.

[23] Robert Courts. Improving locality of reference in a garbage-collecting
memory management system. Commun. ACM, 31(9):1128–1138, sep
1988. doi:10.1145/48529.48536.

[24] David Detlefs. Garbage collection and run-time typing as a c++ li-
brary. In C++ Conference, 1992. URL: https://api.semanticscholar.org/
CorpusID:18789768.

[25] Chen Ding and Ken Kennedy. Improving cache performance in dy-
namic applications through data and computation reorganization at
run time. In Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementation, PLDI ’99, page
229–241, New York, NY, USA, 1999. Association for Computing Ma-
chinery. doi:10.1145/301618.301670.

[26] Daniel R. Edelson. Precompiling c++ for garbage collection. In Proceed-
ings of the International Workshop on Memory Management, IWMM
’92, page 299–314, Berlin, Heidelberg, 1992. Springer-Verlag.

[27] Jason Evans. Tick tock, malloc needs a clock. In Applicative 2015,
Applicative 2015, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2742580.2742807.

[28] Christine H. Flood, Roman Kennke, Andrew Dinn, Andrew Haley,
and Roland Westrelin. Shenandoah: An open-source concurrent com-
pacting garbage collector for openjdk. 2016. doi:10.1145/2972206.
2972210.

[29] Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ot-
toni, Easwaran Raman, and David I. August. Practical and accurate
low-level pointer analysis. In Proceedings of the International Sympo-
sium on Code Generation and Optimization, CGO ’05, USA, 2005. IEEE
Computer Society. doi:10.1109/CGO.2005.27.

[30] Zhiyuan Guo, Zijian He, and Yiying Zhang. Mira: A program-behavior-
guided far memory system. In Proceedings of the 29th Symposium on
Operating Systems Principles, SOSP ’23, page 692–708, New York, NY,
USA, 2023. Association for Computing Machinery. doi:10.1145/
3600006.3613157.

[31] Apple Computer Inc, editor. InsideMacintosh. Vol. 2, volume 2. Addison-
Wesley, 14. printing edition.

[32] Douglas Johnson. The case for a read barrier. In Proceedings of the
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS IV, page 279–287,

https://www.gnu.org/software/libc/libc.html
https://www.nongnu.org/libunwind/
https://memcached.org/
https://musl.libc.org
https://chromium.googlesource.com/v8/v8/+/main/include/cppgc/README.md
https://chromium.googlesource.com/v8/v8/+/main/include/cppgc/README.md
https://github.com/redis/redis/pull/3720
https://github.com/redis/redis/pull/3720
https://redis.io/
https://www.spec.org/cpu2017/Docs/benchmarks/602.gcc.html
https://www.spec.org/cpu2017/Docs/benchmarks/602.gcc.html
https://www.spec.org/cpu2017/Docs/benchmarks/600.perlbench_s.html
https://www.spec.org/cpu2017/Docs/benchmarks/600.perlbench_s.html
https://llvm.org/docs/StackMaps.html
https://llvm.org/docs/StackMaps.html
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/3575693.3575727
https://dl.acm.org/doi/10.5555/974974
https://doi.org/10.1145/277650.277738
https://doi.org/10.1145/1029873.1029891
https://doi.org/10.1145/301631.301633
https://doi.org/10.1145/301631.301633
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/48529.48536
https://api.semanticscholar.org/CorpusID:18789768
https://api.semanticscholar.org/CorpusID:18789768
https://doi.org/10.1145/301618.301670
https://doi.org/10.1145/2742580.2742807
https://doi.org/10.1145/2972206.2972210
https://doi.org/10.1145/2972206.2972210
https://doi.org/10.1109/CGO.2005.27
https://doi.org/10.1145/3600006.3613157
https://doi.org/10.1145/3600006.3613157

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nick Wanninger, Tommy McMichen, Simone Campanoni, and Peter Dinda

New York, NY, USA, 1991. Association for Computing Machinery.
doi:10.1145/106972.107000.

[33] Teresa Johnson, Mehdi Amini, and Xinliang David Li, editors. ThinLTO:
Scalable and incremental LTO, 2017. URL: https://research.google/pubs/
thinlto-scalable-and-incremental-lto/.

[34] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In International Sym-
posium on Code Generation and Optimization, 2004. CGO 2004., pages
75–86. IEEE, 2004.

[35] Chris Lattner and Vikram Adve. Automatic pool allocation: Improving
performance by controlling data structure layout in the heap. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, page 129–142, New
York, NY, USA, 2005. Association for Computing Machinery. doi:
10.1145/1065010.1065027.

[36] Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip
Ghosh, Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi,
David I. August, and Simone Campanoni. NOELLE Offers Empowering
LLvm Extensions. In International Symposium on Code Generation and
Optimization, 2022. CGO 2022., 2022.

[37] Tommy McMichen, Nathan Greiner, Peter Zhong, Federico Sossai,
Atmn Patel, and Simone Campanoni. Representing data collections
in an ssa form. In 2024 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2024. URL: https://doi.org/10.
1109/CGO57630.2024.10444817.

[38] Pekka P. Pirinen. Barrier techniques for incremental tracing. SIGPLAN
Not., 34(3):20–25, oct 1998. doi:10.1145/301589.286863.

[39] Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan Blanton,
and Jan Vitek. Schism: Fragmentation-tolerant real-time garbage
collection. SIGPLAN Not., 45(6):146–159, jun 2010. doi:10.1145/
1809028.1806615.

[40] Bobby Powers, David Tench, Emery D. Berger, and Andrew McGregor.
Mesh: Compacting memory management for c/c++ applications. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 333–346, New
York, NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3314221.3314582.

[41] J. M. Robson. Worst case fragmentation of first fit and best fit storage
allocation strategies. The Computer Journal, 20(3):242–244, 01 1977.
doi:10.1093/comjnl/20.3.242.

[42] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. AIFM: High-performance, application-integrated far memory.
In Proceedings of the 14𝑡ℎ USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’20, pages 315–332, Berkeley, CA,
USA, November 2020. USENIX Association. URL: https://www.usenix.
org/conference/osdi20/presentation/ruan.

[43] Sagi Shahar, Shai Bergman, and Mark Silberstein. Activepointers: A
case for software address translation on gpus. SIGARCH Comput. Ar-
chit. News, 44(3):596–608, jun 2016. doi:10.1145/3007787.3001200.

[44] Bjarne Steensgaard. Points-to analysis in almost linear time. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 32–41, 1996.

[45] Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda.
Carat: A case for virtual memory through compiler- and runtime-based
address translation. In Proceedings of the 41st ACM SIGPLANConference
on Programming Language Design and Implementation, PLDI 2020,
page 329–345, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3385412.3385987.

[46] Brian Suchy, Souradip Ghosh, DrewKersnar, Siyuan Chai, ZhenHuang,
Aaron Nelson, Michael Cuevas, Alex Bernat, Gaurav Chaudhary, Nikos
Hardavellas, Simone Campanoni, and Peter Dinda. Carat cake: Replac-
ing paging via compiler/kernel cooperation. In Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’22, page 98–114,
New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3503222.3507771.

[47] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th international conference on
compiler construction, 2016.

[48] Brian Tauro, Brian Suchy, Simone Campanoni, Peter Dinda, and
Kyle Hale. TrackFM: Far-out compiler support for a far memory
world. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’24. Association for Computing Machinery, 2024.
doi:10.1145/3617232.3624856.

[49] Harmen L. A. van der Spek, C. W. Mattias Holm, and Harry A. G. Wi-
jshoff. Automatic Restructuring of Linked Data Structures, volume 5898
of Lecture Notes in Computer Science, page 263–277. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. URL: http://link.springer.com/10.
1007/978-3-642-13374-9_18, doi:10.1007/978-3-642-13374-9_18.

[50] Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew, Jianjun Li, and
Di Xu. On-the-fly structure splitting for heap objects. ACM Trans-
actions on Architecture and Code Optimization, 8(4):1–20, Jan 2012.
doi:10.1145/2086696.2086705.

[51] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, SimonW.
Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis,
Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael
Roe, Stacey Son, and Munraj Vadera. Cheri: A hybrid capability-
system architecture for scalable software compartmentalization. In
2015 IEEE Symposium on Security and Privacy, pages 20–37, 2015. doi:
10.1109/SP.2015.9.

[52] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. The cheri capability model:
Revisiting risc in an age of risk. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture, ISCA ’14, page
457–468. IEEE Press, 2014.

[53] Zhen Xie, Jie Liu, Jiajia Li, and Dong Li. Merchandiser: Data placement
on heterogeneous memory for task-parallel hpc applications with
load-balance awareness. page 204–217, 2023. doi:10.1145/3572848.
3577497.

[54] Benjamin Zorn. Barrier methods for garbage collection. 11 1990.
URL: https://spl.cde.state.co.us/artemis/ucbserials/ucb51110internet/
1990/ucb51110494internet.pdf.

https://doi.org/10.1145/106972.107000
https://research.google/pubs/thinlto-scalable-and-incremental-lto/
https://research.google/pubs/thinlto-scalable-and-incremental-lto/
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1109/CGO57630.2024.10444817
https://doi.org/10.1109/CGO57630.2024.10444817
https://doi.org/10.1145/301589.286863
https://doi.org/10.1145/1809028.1806615
https://doi.org/10.1145/1809028.1806615
https://doi.org/10.1145/3314221.3314582
https://doi.org/10.1145/3314221.3314582
https://doi.org/10.1093/comjnl/20.3.242
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://doi.org/10.1145/3007787.3001200
https://doi.org/10.1145/3385412.3385987
https://doi.org/10.1145/3503222.3507771
https://doi.org/10.1145/3617232.3624856
http://link.springer.com/10.1007/978-3-642-13374-9_18
http://link.springer.com/10.1007/978-3-642-13374-9_18
https://doi.org/10.1007/978-3-642-13374-9_18
https://doi.org/10.1145/2086696.2086705
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1145/3572848.3577497
https://doi.org/10.1145/3572848.3577497
https://spl.cde.state.co.us/artemis/ucbserials/ucb51110internet/1990/ucb51110494internet.pdf
https://spl.cde.state.co.us/artemis/ucbserials/ucb51110internet/1990/ucb51110494internet.pdf

	Abstract
	1 Introduction
	2 Handle-Based Memory Management
	2.1 Manual Handles of Yore
	2.2 Manual Handles Are Cumbersome

	3 Design of the Alaska System
	3.1 Design Goals
	3.2 Assumptions
	3.3 Efficient Handle Translation
	3.4 Efficiently Tracking Pinned Handles
	3.5 Extensible Service Interface

	4 Implementation of Alaska
	4.1 The Alaska Compiler
	4.2 The Core Runtime
	4.3 Battling Fragmentation with Anchorage

	5 Evaluation
	5.1 Experimental Setup
	5.2 Alaska Achieves Programmer Transparency
	5.3 Building and Extending Alaska is Practical
	5.4 Overhead Varies, but is Overall Low
	5.5 Anchorage Defragments without Black Magic
	5.6 Anchorage's Stop-the-World Pauses

	6 Related Work
	7 Discussion
	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Notes

	References

