
ar
X

iv
:2

40
5.

00
02

8v
1

 [
cs

.D
C

]
 2

8
Fe

b
20

24

MaRDIFlow: A CSE workflow framework for

abstracting meta-data from FAIR

computational experiments

Pavan L. Veluvali
∗

Jan Heiland
∗

Peter Benner
∗

∗Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg

Email: {veluvali, heiland, benner}@mpi-magdeburg.mpg.de; ORCID: 0000-0001-8804-0338,

ORCID: 0000-0003-0228-8522, ORCID: 0000-0003-3362-4103

Abstract: Numerical algorithms and computational tools are instrumental in navi-
gating and addressing complex simulation and data processing tasks. The exponential
growth of metadata and parameter-driven simulations has led to an increasing demand
for automated workflows that can replicate computational experiments across plat-
forms. In general, a computational workflow is defined as a sequential description for
accomplishing a scientific objective, often described by tasks and their associated data
dependencies. If characterized through input-output relation, workflow components can
be structured to allow interchangeable utilization of individual tasks and their accom-
panying metadata. In the present work, we develop a novel computational framework,
namely, MaRDIFlow, that focuses on the automation of abstracting meta-data embed-
ded in an ontology of mathematical objects. This framework also effectively addresses
the inherent execution and environmental dependencies by incorporating them into
multi-layered descriptions. Additionally, we demonstrate a working prototype with
example use cases and methodically integrate them into our workflow tool and data
provenance framework. Furthermore, we show how to best apply the FAIR principles
to computational workflows, such that abstracted components are Findable, Accessible,
Interoperable, and Reusable in nature.

Keywords: Computational Workflows, Research Data Management, FAIR Research,
Scientific Computing

Novelty statement: This manuscript presents a novel research data management
tool, MaRDIFlow , that focuses on the automation of abstracting meta-data embedded
in an ontology of mathematical objects. The working prototype of this software tool
is illustrated through FAIR computational experiments.

1 Introduction

The interplay of data-intensive computational studies is a substantial part of scientific endeavors
across all disciplines. Computational workflows have been used as a systematic way of describ-
ing the methods needed, the data involved, as well as computing resources and infrastructures.
With ever more complex simulation models and ever larger primary data volumes, CSE (Com-
putational Sciences and Engineering) workflow descriptions themselves have become an enabler
for research beyond the execution of simulations, for example, to extract latent information from
various data repositories and compare methodologies across diverse data and computational frame-
works [AGMT17].

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

http://arxiv.org/abs/2405.00028v1
mailto:\{veluvali, heiland, benner\}@mpi-magdeburg.mpg.de
https://orcid.org/0000-0001-8804-0338
https://orcid.org/0000-0003-0228-8522
https://orcid.org/0000-0003-3362-4103

PL. Veluvali, J. Heiland, P. Benner 2

The FAIR principles [WDA+16], describe a set of requirements for data management and stew-
ardship to ensure that the research data are Findable, Accessible, Interoperable, and Reusable.
Each guiding principle is proposed to define the degree of ‘FAIRness’ via describing the distinct
considerations for contemporary environments, tools, vocabularies and data infrastructures. While
the elements of FAIR Principles are related and separable, they are equally applied to identify, de-
scribe, discover, and reuse meta-data assets of scholarly outputs. Overall, FAIR principles act as a
guide to assist data stewards in evaluating their implementation choices. More recently, they have
been adopted by funding agencies, such as the German Research Foundation [For22] for developing
assessment metrics of research metadata across various disciplines [DHM+20].
While there is a knowledge base for CSE workflows from a (software) engineering point of view

[HW09,BCG+19] and while it has been acknowledged that for documentation, model descriptions
and code can complement each other [FHHS16], an inclusive abstract description of CSE workflows
is not yet anchored. As for combining models, code, and data for the description of CSE simulations
in a virtual lab notebook, Jupyter notebooks have gained popularity [KRKP+16a]. Also services
like Code Ocean [CSFG19] target the combination of code and model descriptions. Still, little
effort has been made to use abstraction for CSE workflow components in view of documentation
tools that are generally applicable and that scale well with ever more demanding and sophisticated
simulations. Lately, with the advancement of data intensive research, there has been a rise in
the development of automated and reusable workflows, wherein these workflows aim to seamlessly
integrate computer-based and laboratory computations through artificial intelligence [Nat22].
In this work, we analyze general and particular components and provide an abstract multi-layered

description of CSE workflows: Each component will be characterized through an input/output
description so that model, data, and code can be used interchangeably and, in the best case, re-
dundantly. For that, we describe suitable meta data and a low level language for the descriptions of
general CSE workflows [VHB23]. Additionally, we emphasize that the introduction of redundancy
in the representation of models, code, and data serves as a positive feature for CSE workflows.
This redundancy enhances the robustness of workflows via ensuring compatibility during poten-
tial execution issues. With interchangeable and multi-level components, workflows become more
adaptable and reproducible, contributing to the overall reliability of a scientific task. Generally,
we understand a CSE workflow as a chain of one or more interconnected models used for simula-
tions. From existing literature, a CSE workflow is defined as a precise description of a multi-step
procedure to coordinate multiple tasks and their meta-data dependencies [GCBSR+20]. In work-
flow systems, each task is represented through the execution of a computational process, such as,
executing a code, calling a command line tool, accessing a database, submitting a job to a HPC
cluster, or executing a data processing script.
In their general treatment, the following constraints need to be taken into account

1. In particular in a CSE context, each model might be arbitrarily complex and computationally
demanding.

2. Often, the particular numerical realization represents a compromise between accuracy and
computational costs.

3. Within a workflow, models are likely implemented in different frameworks or languages.

4. In the case of, say, commercial codes that may well be one part of a workflow, some simulation
models might not be fully available but only evaluable through interfaces.

5. Possibly, the actual simulation code is not available at all but only descriptions and, in the
better case, alternative implementations.

Nevertheless, the goal of any CSE workflow framework is to offer a specialized programming
environment that minimizes the efforts required by scientists or researchers to perform a computa-
tional experiment [VHB23]. In general, CSE workflow description can be categorized into distinct
parts or phases, as listed below, governing its functional operation.

• Composition and abstraction

• Execution

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

PL. Veluvali, J. Heiland, P. Benner 3

• Meta-data mapping and provenance

Firstly, during composition and abstraction, a CSE workflow is created either from scratch or
from modifying a previously designed workflow, whereby the user relies on different workflow com-
ponents and data catalogs. Some of the well-known methods for editing and composing workflows
are either textual or graphical or mechanism-based semantic models [DGST09]. The workflow then
abstracts software components written by third parties, and handles heterogeneity via shielding
run time incompatibility and complexities. Secondly, during execution, the workflow components
are executed either by a computational engine or via a subsystem, wherein a static or an adaptive
model is implemented to realize the meta-data. Importantly, repetitive and reproducible pipelines
in order to manage the control and flow of a simulation are an important aspect of the second
phase. Once the workflow is well defined, all, or portions of the workflow are sent for mapping.
Finally, the data and all associated metadata and provenance information are recorded and placed
in user-defined registries which are then accessed to design a new workflow description. Through
the following stages, CSE workflow description act as modular building blocks with standardized
interfaces, and are generally linked and run together by a computational framework.
The present article is organized as follows: in the following section, we discuss the current state

of the art in Jupyter notebooks and computational workflows. Afterwards, we present our research
data management tool, namely, MaRDIFlow, wherein the framework and its usage as a command-
line tool is discussed in detail. Next, we discuss our RDM tool via minimum working examples.
Lastly, we put forward the conclusions and future direction from the present work.

Existing Solutions

Reproducibility poses a multifaceted challenge which often demands a comprehensive examination.
In this work, we focus on the specific aspect of ensuring reproducibility of computational workflows
through integrated software solutions.
Because of the popularity and universality of Jupyter notebooks, we begin with highlighting the

capabilities of the Jupyter environment, which significantly boost productivity in computational
science and mathematics, while also promoting reproducibility [BTK+21]. In general, Jupyter
Notebooks [KRKP+16b] are accessed through a modern web browser and are typically designed to
support interactive exploration and publishing records of a scientific computation. Through text
and code blocks, it performs a specific computation and elucidates it in detail. The code within
a given Jupyter Notebook is organized into cells, which in turn allows individuals to modify and
execute, respectively. Also, the output from each cell appears directly below it and is stored as
part of the document. This approach often facilitates a symbiotic display of code, data, and model
descriptions and naturally ensures replicability of the experiments; [FHHS16]. In this respect, the
side by side appearance of text (for documentation) and code (for the execution) is in line with
the redundant or multi-layered representation of workflows that we want to achieve but adds to
the complexity of such a notebook realization.
What concerns reproducibility, in the strict sense that an experiment could be reproduced solely

by information provided in the notebook, certain design decisions in the Jupyter notebook like
undocumented versions of the imported libraries let alone the underlying libraries in the backend
may stand in the way. From a more practical perspective, by its linear design of consecutive cells,
Jupyter notebooks are not well suited to handle larger projects. And although a call of third party
code is certainly possible through direct Julia/python/R interfaces or through the system’s shell,
the embedding of external tools is not a primary and, thus, not a well-defined feature of Jupyter
notebooks. Finally, the reproducibility of a workflow in a Jupyter notebook hinges on the code
only whereas the description is commonly seen as an add-on. Thus, there is no built-in mechanism
that ensures completeness of the documentation to function as an equivalent or fully valid addition
to the code base. In fact, recent studies have found that a Jupyter notebook per se is not a strong
guarantee for reproducibility; see Refs. [SM24,PMBF21].
Whereas Jupyter notebooks have become a popular tool for implementing, documenting, and

publishing workflows and experiments of moderate complexity, in computational science and en-
gineering, multiple advanced tools have addressed the challenge of managing workflows composed
of various simulation codes. Domain specific workflow managers, such as CWL [CAI+22a] and

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

PL. Veluvali, J. Heiland, P. Benner 4

Galaxy [Com22] are applicable to high-performance computing in general. CWL [CAI+22a] is
widely known for the description of command-line tools and of the workflows made from these
tools. It includes many features, such as, software containers, resource requirements, workflow-level
conditional branching. While most of the CWL development began in the field of bioinformatics,
since 2016, the CWL standards have been used in other fields, including hydrology, radio astron-
omy, geo-spatial analysis, and high-energy physics. On the other hand, Galaxy [Com22] serves as
an accessible browser-based platform for scientific computing. It facilitates data sharing, analysis,
and visualization for scientists with minimal technical barriers. In addition, integration with third-
party tools like noWorkflow [PMBF17] allows for effective tracking of provenance, elucidating the
relationship between inputs, code, and generated files.
A container-based approach to modelling workflow components has been followed in the func-

tional mockup interface (FMI) [BOA+11] development. Here, arbitrary simulation model are
encapsulated in a complete virtual computational environment (a container) and made accessible
through interfaces. This facilitates an easy exchange of simulation tools (even without disclosing
the source) and can be integrated in workflow designs, as it is specified in the FMI using xml

syntax.
Most of the aforementioned systems have improved the reproducibility of computational work-

flows over the last years, and have become the defacto standard for syntactic interoperability
of workflow management systems. However, each of the systems discussed come with their own
limitations. Namely, CWL often syntax fails to address the user-defined construction and inter-
action with other command-line tools once its execution is finished [CAI+22b]. Likewise, one of
the disadvantages of document based workflow definitions is their static nature, as the exact flow
of the workflow must be known before execution. This specific mechanism inherently imposes
constraints on programming structures that can be utilized, generally via confining options to ei-
ther directed acyclic graphs (DAGs) or directed cyclic graphs (DCGs), especially in cases where
loops are accommodated by the markup language [UHY+21]. Nevertheless, all the aforementioned
frameworks store the data produced, but none with a focus on explicitly recording provenance in
detail, and, in particular, the workflow components are not expressed in a multi-level framework or
abstract objects. On the other hand, customizing the system for specific requirements may present
a significant challenge for end users, requiring additional effort and resources.
Container-based implementations like in FMI can mitigate the issues with data provenance or

setting up the environment as much as mere replication is concerned. However, in view repro-
ducibility in different environments or reusability and adaptation of workflow components, these
containers would need to be equipped with just the same meta-data as any other workflow design
tool would require it.
Based on the aforementioned challenges, it becomes evident that the existing research landscape

for a comprehensive workflow description tailored to effectively handle mathematical data within
a multi-component framework is lacking. On that account, the present study aims to bridge the
existing gap.

2 MaRDIFlow

The design principle of MaRDIFlow is to handle the components as abstract objects described by
their input to output behavior and metadata. By means of the metadata and by matching the I/O
interfaces, the objects can be chained together to form a workflow; see Fig. 1.
Each item then can have different descriptions or realizations that are, in the best case, equivalent

and redundant; see Fig. 2 for an example of such a vertical dimension in the workflow. We note
that the redundancy is meant from a theoretical perspective. Practically, the different realizations
or representations can be used in different scenarios like compiling a mathematical description of
the workflow or using lookup tables as a shortcut during a simulation.
Additionally, this multi-level description enhances or even enables reproducibility in scenarios

where, for example, certain software components of a workflow are not available but will be replaced
by data or a description and vice versa.

• Defined by metadata

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

PL. Veluvali, J. Heiland, P. Benner 5

Level 1: Mathematical Model

Mechanics AcousticsElectromagnetics

Level 2: Simulation Model

FE-Model 2 FE-Model 3FE-Model 1

Level 3: Surrogate Model

Neural Network ROMData Base

Figure 1: Generic chain of models that describe the workflow in the simulation of transformer noise
generation and its realization on different levels of abstraction.

• Realized as Fig. 1 and Fig. 2

The working prototype of MaRDIFlow is designed as a command line tool that enables researchers
and users to execute, document and maintain the provenance for reproduction and replication of
computer-based experiments. As shown in Fig. 3 via a screenshot, MaRDIFlow --help option
provides a help message with an immediate sense of what MaRDIFlow is. Through the following
list we discuss some of the important arguments required to configure and perform the most
common tasks with our RDM tool.

• --workflow-titleprovides the working title for the workflow, as default we have, workflow title

= This is a CSE workflow description under MaRDIFlow.

• --input requires an inputs object file in .json format such that it consists of all the numerical
parameters for the workflow. An example inputs object file is shown in Fig. 4, where the key
value pairs are a valid string representing the parameter name, and the values found to the
right side of the colon are the absolute values for the given input parameter. As shown in
Fig. 4, the JSON object represents the simulation and material parameters which are then
passed on to the required workflow component.

• --output-directory argument allows the user to specify the desired output directory. If
not provided, then the workflow output is collected in the root working directory, namely
Output.

• MaRDIFlow can also be configured using a .ini config parser file, which includes both the
required default and user-defined sections. It also acts as a list of parameters that governs
how the tool is run and configured.

• --config example config file.ini will execute MaRDIFlow through terminal. An example
configparser file is showcased via a screenshot in Fig. 5.

• --component argument is necessary to execute the desired workflow component in the multi-
level framework, as previously discussed. In present version, users can choose between
--math-data or --math-solver components for executing a given I/O data or a numeri-
cal model, respectively.

• --display represents the descriptive part of our RDM tool. Herein, --display html=TRUE

or --display pdf=TRUE will convert the .md into desired format. An empty string will parse

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

PL. Veluvali, J. Heiland, P. Benner 6

Finite Element Model

Reduced Order Model

Mathematical Model

I/O Data

... or ...

... or ...

... or ...

Figure 2: An exemplified vertical multi-level dimension of a MaRDIflow component: equivalent
and preferably redundant descriptions of a workflow unit.

Figure 3: A screenshot illustrating the help message of our RDM tool, MaRDIFlow.

FALSE bool value. The file path for workflow description in .md file format is passed on to
the workflow tool via --inputmarkdown flag. For this flag, it is important that the absolute
file path for input as well as for output is provided.

• --data configures the second component of the workflow description for a given I/O data.
By utilizing --get-data and --get-url-data flags, users can furnish a workflow description
for a lookup table or a database, thereby presenting an alternative approach to a numerical
model.

Overall, the working prototype of MaRDIFlow ideally provides the user with a specification de-

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

PL. Veluvali, J. Heiland, P. Benner 7

Figure 4: Example inputs object JSON file format with a set of static parameters required for a
specific workflow component.

Figure 5: Screenshot of an example configparser .ini file to initialize and run MaRDIFlow through
command-line.

scription, that elucidates the meta-data for a given use case. In addition, it also consists of a
computational part that acts as a mechanism to call and execute the given meta-data. In order
to further understand our RDM tool, the following minimum working examples implemented in
MaRDIFlow are discussed below.

Minimum working examples

In the present section, we present some use cases as minimum working examples to illustrate in
detail the working prototype of MaRDIFlow.

Methanization Reactor

As a working example within the MaRDIFlow framework, a forward solution that converts CO2 to
CH4 as a result of methanization [BHBS21] is illustrated. In general, reactor models are crucial for
converting renewable electricity into chemical energy carriers, specifically through carbon dioxide
methanation [BHBS21]. In this study, a reactor model was examined through a set of nonlinear
partial differential equations (PDEs) for mass and energy balances. The schematic representation
of the workflow is provided in Fig. 6, and we write the governing PDEs as

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

PL. Veluvali, J. Heiland, P. Benner 8

Figure 6: A screenshot illustrating the workflow description of a methanization reactor model using
the MaRDIFlow tool. As an output, screenshots of the console and trajectory of the
changing reactor load are shown here from the workflow. In addition, as a final output,
the descriptive part of the tool shows the necessary meta-data to reproduce the use case.

ǫρgas
∂wα

∂t
= −ρgasv∇ · wα −∇ · jα + (1− ǫ)ναr̃ (1)

(ρcp)eff
∂T

∂t
= −(ρcp)gasv · ∇T −∇ · q̇+ (1 − ǫ)∆RH̃r̃ (2)

In the above set of equations, wα is the component of mass fraction for α ∈ CO2,H2CH4,H2,O,
v is the superficial gas velocity, ρ is the gas density, jα are dispersive component fluxes, να is
stoichiometric coefficients, r̃ is the reaction rate of methanation, cp is the specific heat, T is the

temperature, q̇ and ∆RH̃ is the heat reaction. Furthermore, this study revolves around to ensure
that the reactor operates at maximum conversion rates, even when subjected to varying loads. To
address this specific objective, an optimal control problem (OCP) is defined as follows:

ζ(u) =
1

te

∫ te

0

XCO2
(t) dt (3)

Here, we express the reactor model as a system of ordinary differential equations (ODEs), ob-
tained through the finite volume method applied to the PDE system. Additionally, on states and
control we incorporate inequality constraints. Further initialization and model specific details can
be found in Ref. [BHBS21]. Workflow description for the methanization reactor model is defined
as given below:

• Initialize the system with the given set of governing equations

• Perform a forward simulation with temperature as the input parameter

• Calculate the conversion rates via calculating the change in CO2 mass fraction with time via
post-processing

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

PL. Veluvali, J. Heiland, P. Benner 9

Spinodal decomposition in a binary A-B alloy

As a second example, let us consider a two-dimensional simulation of the Cahn-Hilliard equation
[CH58] for an A-B alloy. During spinodal decomposition, when a homogeneous binary alloy is
rapidly cooled from a given temperature, the resulting domain consists of a fine-grained structure
of two phases, and over time, the fine-grained structure coarsens at the expense of smaller particles.
The development of a fine-grained structure from a homogeneous state is referred to as spinodal
decomposition, while the coarsening mechanism is often defined as Ostwald ripening.

Figure 7: A screenshot illustrating the workflow description of a Cahn-Hilliard Model using the
MaRDIFlow tool. Screenshots of the console and simulation images as the outputs from
the workflow are shown here. In addition, as a final output, the descriptive part of the
tool shows the necessary meta-data to reproduce the use case.

The schematic representation of the workflow is provided in Fig. 7, and the set of governing
equations required to simulate the phase-separation behavior between A-B alloy is given below.
At first, we define an order parameter c as the concentration of B atom, and the bulk free energy
of the system is defined by

G =

∫

v

(gchem(c) + ggrad(∇c))dV (4)

where gchem and ggrad are the chemical free energy and the gradient energy densities, respectively.
In this study, the chemical free energy density is formulated as:

gchem = RT [c ln c+ 1− c ln(1− c)] + Lc(1− c) (5)

where L is the atomic interaction parameter, and the gradient energy density is given as:

ggrad =
ac

2
|∇c|2 (6)

where ac is the gradient energy coefficient. Considering the total free energy of the system decreases
with time, the temporal evolution of the order parameter c is given by:

∂c

∂t
= ∇ · (Mc∇

δG

δc
) = ∇ · (Mc∇µ) (7)

where µ is the diffusion potential of B atom. According to classical thermodynamics, µ is generally
expressed as:

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

PL. Veluvali, J. Heiland, P. Benner 10

µ =
δG

δc
= RT [ln c− ln(1 − c)] + L(1− 2c)− ac∇

2c (8)

From 7, Mc is the diffusion mobility of B atom, given by:

Mc =

[
DA

RT
c+

DB

RT
(1− c)

]
c(1− c) =

DA

RT

[
c+

DB

DA

(1 − c)

]
c(1 − c) (9)

In the above equation, the parameters DA and DB are the the diffusion coefficients of the
respective A and B atoms in the system. Lastly, herein, the Cahn-Hilliard equation is discretized
by simple finite difference method, 1st-order Euler method is used for time-integration, and for
spatial derivatives the 2nd-order central finite difference method is implemented. The workflow for
the present use-case is carried out as given below:

• Initialize the bulk free energy and initial local concentration through an inputs object JSON
file.

• The initial configuration of the simulation domain as shown in Fig. 7.

• Pass the required simulation parameters to the workflow component.

• Time evolution of local concentration as well as the phase-separation process is captured as
an output through simulation images.

• Alongside, concentration for various timesteps is collected as an output as well.

The above workflow can be performed by using MaRDIFlow --config config CH 2D.ini in
the root directory terminal, and the resulting output shall be displayed on the screen, similar to
Fig. 7. At the end of the workflow, the phase-separated simulation screenshots along with the
corresponding equilibrium concentration are collected in the user-defined output directory.

Summary and Outlook

The practice to perform data and software intensive tasks has been taken hold by computational
workflows. Subsequently, the rapid growth in their uptake and application on computer-based
experiments presents a crucial opportunity to advance the development of reproducible scientific
softwares. As a part of the MaRDI consortium [MaR21] on research data management in math-
ematical sciences, in this work, we presented a novel computational workflow framework, namely,
MaRDIFlow, a prototype that focuses on the automation of abstracting meta-data embedded in
an ontology of mathematical objects while negating the underlying execution and environment
dependencies into multi-layered vertical descriptions. Additionally, the different components are
characterized by their input and output relation such that they can be used interchangeably and
in most cases redundantly.
The design specification as well as the working prototype of our RDM tool was presented through

different use cases. In the present version, MaRDIFlow acts a command-line tool such that it en-
ables users to handle the workflow components as abstract objects described by input to output
behavior. At its core, MaRDIFlow ensures that the output generated is detailed, and a comprehen-
sive description facilitates the reproduction of computational experiments. At first we illustrated
the conversion rates of CO2 using a methanization reactor model, and later, we demonstrated the
two-dimensional spinodal decomposition of a virtual A-B alloy using the Cahn-Hilliard model. Our
RDM tool adheres to FAIR principles, such that the abstracted workflow components are Findable,
Accessible, Interoprable and Reusable. Overall, the ongoing development of MaRDIFlow aims at
covering heterogeneous use cases and act as a scientific tool in the field of mathematical sciences.
Apart from this, we are also working towards developing an Electronic Lab Notebook (ELN) in

order to visualize as well as execute the MaRDIFlow tool. The ELN will provide researchers with
a user-friendly interface to interact with the tool efficiently and seamlessly. Lastly, although the
present manuscript introduces our RDM tool as a working proof of concept, we plan to publish a
detailed manuscript with technical details and use cases in the near future.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

PL. Veluvali, J. Heiland, P. Benner 11

Acknowledgments

The authors are supported by NFDI4Cat and MaRDI, funded by the Deutsche Forschungsgemein-
schaft (DFG), project 441926934 “NFDI4Cat – NFDI für Wissenschaften mit Bezug zur Katalyse”
and project 460135501 “MaRDI – Mathematische Forschungsdateninitiative”.

Data Availability

Results presented in this work are apart of an ongoing investigation, however a working prototype
with the second use-case is available and documented at https://doi.org/10.5281/zenodo.10608764

References

[AGMT17] M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor. Scientific workflows: Past,
present and future, 2017.

[BCG+19] A. Brinckman, K. Chard, N. Gaffney, M. Hategan, M. B. Jones, K. Kowalik, S. Ku-
lasekaran, B. Ludäscher, B. D. Mecum, J. Nabrzyski, V. Stodden, I. J. Taylor, M. J.
Turk, and K. Turner. Computing environments for reproducibility: Capturing the
“whole tale”. Future Generation Computer Systems, 94:854–867, 2019.

[BHBS21] J. Bremer, J. Heiland, P. Benner, and K. Sundmacher. Non-intrusive time-pod for
optimal control of a fixed-bed reactor for co2 methanation. IFAC-PapersOnLine,
54(3):122–127, 2021.

[BOA+11] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A. Junghanns,
J. Mauss, M. Monteiro, T. Neidhold, et al. The functional mockup interface for tool
independent exchange of simulation models. In Proceedings of the 8th international

Modelica conference, pages 105–114. Linköping University Press, 2011.

[BTK+21] M. Beg, J. Taka, T. Kluyver, A. Konovalov, M. Ragan-Kelley, NM. Thiéry, and
H. Fangohr. Using jupyter for reproducible scientific workflows. Computing in Sci-

ence & Engineering, 23(2):36–46, 2021.

[CAI+22a] M. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić, H. Ménager,
S. Soiland-Reyes, B. Gavrilović, C. Goble, et al. Methods included: Standardizing
computational reuse and portability with the common workflow language. Commu-

nications of the ACM, 65(6):54–63, 2022.

[CAI+22b] MR. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić, H. Ménager,
S. Soiland-Reyes, B. Gavrilović, C. Goble, et al. Methods included: Standardizing
computational reuse and portability with the common workflow language. Commu-

nications of the ACM, 65(6):54–63, 2022.

[CH58] JW. Cahn and JE. Hilliard. Free energy of a nonuniform system. i. interfacial free
energy. The Journal of chemical physics, 28(2):258–267, 1958.

[Com22] The Galaxy Community. The Galaxy platform for accessible, reproducible
and collaborative biomedical analyses: 2022 update. Nucleic Acids Research,
50(W1):W345–W351, 04 2022.

[CSFG19] A. Clyburne-Sherin, X. Fei, and SA. Green. Computational reproducibility via
containers in social psychology. Meta-Psychology, 3, 2019.

[DGST09] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-science: An
overview of workflow system features and capabilities. Future Generation Computer

Systems, 25(5):528–540, 2009.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

https://doi.org/10.5281/zenodo.10608764

PL. Veluvali, J. Heiland, P. Benner 12

[DHM+20] A. Devaraju, R. Huber, M. Mokrane, P. Herterich, L. Cepinskas, J. de Vries,
H. L’Hours, J. Davidson, and Angus W. Fairsfair data object assessment metrics,
October 2020.

[FHHS16] J. Fehr, H. Heiland, C. Himpe, and J. Saak. Best practices for replicability, re-
producibility and reusability of computer-based experiments exemplified by model
reduction software. AIMS Mathematics, 1(3):261–281, 2016.

[For22] Deutsche Forschungsgemeinschaft. Guidelines for Safeguarding Good Research Prac-
tice. Code of Conduct, April 2022. Available in German and in English.

[GCBSR+20] C. Goble, S. Cohen-Boulakia, S. Soiland-Reyes, D. Garijo, Y. Gil, MR. Crusoe,
K. Peters, and D. Schober. Fair computational workflows. Data Intelligence, 2(1-
2):108–121, 2020.

[HW09] M. A. Heroux and J. M. Willenbring. Barely sufficient software engineering: 10
practices to improve your cse software. In Proceedings of the 2009 ICSE Workshop

on Software Engineering for Computational Science and Engineering, pages 15–21,
2009.

[KRKP+16a] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and
C. Willing. Jupyter notebooks - a publishing format for reproducible computational
workflows. In F. Loizides and B. Schmidt, editors, Positioning and Power in Aca-

demic Publishing: Players, Agents and Agendas, pages 87–90, 2016.

[KRKP+16b] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Jonathan Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Damián Avila, S. Abdalla, and C. Willing. Jupyter notebooks – a publishing
format for reproducible computational workflows. In F. Loizides and B. Schmidt,
editors, Positioning and Power in Academic Publishing: Players, Agents and Agen-

das, pages 87 – 90. IOS Press, 2016.

[MaR21] MaRDI. Mathematic research data initiative, 2021. URL:
https://www.mardi4nfdi.de.

[Nat22] National Academies of Sciences, Engineering, and Medicine. Automated Research

Workflows for Accelerated Discovery: Closing the Knowledge Discovery Loop. The
National Academies Press, Washington, DC, 2022.

[PMBF17] JF. Pimentel, L. Murta, V. Braganholo, and J. Freire. noworkflow: a tool for
collecting, analyzing, and managing provenance from python scripts. Proceedings

of the VLDB Endowment, 10(12), 2017.

[PMBF21] JF. Pimentel, L. Murta, V. Braganholo, and J. Freire. Understanding and improving
the quality and reproducibility of Jupyter notebooks. Empirical Software Engineer-

ing, 26(4):65, 2021.

[SM24] S. Samuel and D. Mietchen. Computational reproducibility of Jupyter notebooks
from biomedical publications. GigaScience, 13:giad113, 01 2024.

[UHY+21] M. Uhrin, SP. Huber, J. Yu, N. Marzari, and G. Pizzi. Workflows in aiida: Engineer-
ing a high-throughput, event-based engine for robust and modular computational
workflows. Computational Materials Science, 187:110086, 2021.

[VHB23] PL. Veluvali, J. Heiland, and P. Benner. Mardiflow: A workflow framework for
documentation and integration of fair computational experiments. In Proceedings of

the Conference on Research Data Infrastructure, volume 1, 2023.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

https://www.mardi4nfdi.de

PL. Veluvali, J. Heiland, P. Benner 13

[WDA+16] MD. Wilkinson, M. Dumontier, IJ. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, JW. Boiten, LB. da Silva Santos, PE. Bourne, et al. The FAIR guiding
principles for scientific data management and stewardship. Scientific data, 3(1):1–9,
2016.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-02

	Introduction
	MaRDIFlow
	Acknowledgments
	References

