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OBSTRUCTION COMPLEXES IN GRID HOMOLOGY

YAN TAO

Abstract. Recently, Manolescu-Sarkar constructed a stable homotopy type for link Floer homology, which
uses grid homology and accounts for all domains that do not pass through a specific square. In doing so,
they produced an obstruction chain complex of the grid diagram with that square removed. We define the
obstruction chain complex of the full grid, without the square removed, and compute its homology. Though
this homology is too complicated to immediately extend the Manolescu-Sarkar construction, we give results
about the existence of sign assignments in grid homology.

1. Introduction

Link Floer homology, developed by [OS04a], [Ras03], and [OS08], is an invariant of oriented links in three-
manifolds which comes from Heegaard Floer homology, from [OS04c] and [OS04b]. [MOS09], [MOST07],
and [OSS15] gave a combinatorial description of the link Floer chain complex for a link in S3 using grid
diagrams, known as grid homology. A toroidal grid diagram is a n × n grid of squares, with the left and
right edges identified and the top and bottom edges identified, together with markings X and O, such that
each row and column contains exactly one X and one O. Given a grid diagram G, drawing vertical segments
from the X to the O in each column and horizontal segments—going under the vertical segments whenever
they cross—from the O to the X in each row gives the diagram of an oriented link L; we say that G is a
grid diagram for L. Figure 1 shows a 5× 5 grid diagram for the trefoil. The grid chain complex is generated
by unordered n-tuples of intersection points between the horizontal and vertical circles—Figure 1 shows an
example of such a generator.

Grid diagrams have been useful in a variety of applications in Heegaard Floer homology. [MOT09] and
[MO10] obtain the Heegaard Floer invariants of 3- and 4-manifolds using grid diagrams, which gives algo-
rithmically computable descriptions. [Sar11] uses grid homology to give another proof of Milnor’s conjecture
on the slice genus of torus knots. [OST08], [NOT08], [CN13], and [KN10] use a version of grid homology to
prove results about Legendrian knots.

[MS21] constructed a stable homotopy refinement of knot Floer homology from the grid chain complex,
using framed flow categories from [CJS95]. The Manolescu-Sarkar construction uses only those domains

Figure 1. A 5×5 grid diagram for the trefoil, along with the generator [51243] drawn with
•. Note that the generator is independent of the X and O markings.

1

http://arxiv.org/abs/2404.19747v2


that do not pass through a particular square on the grid, and uses obstruction theory. Their obstruction

chain complexes CD∗ and CDP∗, which we will henceforth denote ĈD∗ and ĈDP∗, respectively, have simple
enough homology to construct a stable homotopy type. We will extend them to complexes CD∗ and CDP∗

which contain all domains in the grid. We take the first step towards extending the Manolescu-Sarkar
construction, by computing the homology of CD∗ and partially computing the homology of CDP∗.

To state our main results, we fix the following convention throughout the paper. For a ring R, R2n will

denote the chain complex given by R(nk) in grading k with no differentials, and R[U ] the chain complex given
by R in every nonnegative even grading and 0 in every odd grading (which by definition has no differentials).
We begin by showing that:

Proposition 1.1. H∗(CD∗;Z/2) is isomorphic to Z/2[U ].

In order to frame the moduli spaces in the Manolescu-Sarkar construction, we will need a sign assignment for
the grid diagram. A sign assignment is a particular way of orienting the index 1 domains in Heegaard Floer
homology; equivalently, it is a particular assignment of 0 or 1 to each rectangle in the grid. The existence
and uniqueness (up to gauge equivalence) of sign assignments for toroidal grid diagrams was constructed by
[MOST07]; see also [Gal08] for an explicit construction. In the course of our later computations, we will
provide a different proof of this fact via obstruction theory:

Theorem 1.2. Sign assignments for CD∗ exist and are unique up to gauge equivalence (equivalently, up to
1-coboundaries of CD∗).

Given a sign assignment for CD∗, we obtain a definition of CD∗ in Z coefficients. Perhaps unsurprisingly,
we then obtain the following analogue of Proposition 1.1:

Proposition 1.3. H∗(CD∗;Z) is isomorphic to Z[U ].

In the end, our eventual goal is to extend the Manolescu-Sarkar construction over the full grid. Since the
moduli spaces presented in [MS21] exhibit some bubbling, we will compute the lower homology CDP∗.
Unfortunately, CDP∗ has too much homology to immediately construct a stable homotopy type. So instead,
we will work towards constructing a framed 1-flow category, which is a formulation by [LOS20] that still
contains all the information needed to define invariants such as the second Steenrod square. This requires
only a sign assignment and a frame assignment, whose obstructions lie in the following lower homologies.

Theorem 1.4. We have that

(0) H0(CDP∗;Z/2) is isomorphic to Z/2.

(1) H1(CDP∗;Z/2) is isomorphic to (Z/2)n.

(2) H2(CDP∗;Z/2) is isomorphic to (Z/2)(
n

2)+1.

(3) H3(CDP∗;Z/2) is isomorphic to (Z/2)(
n

3)+n.

In this paper, we will show existence and uniqueness of sign assignments for CDP∗.

Theorem 1.5. A sign assignment s on CDP∗ exists, and is unique up to gauge transformations and the
values of

sj := s(cxId , ~ej, (1)).
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(The elements (cxId , ~ej , (1)) ∈ CDP∗ will be defined later in Section 4.)

Just like for CD∗, we can use Theorem 1.5 to define CDP∗ with Z coefficients. We have the following
analogue of Theorem 1.4.

It remains to find a frame assignment for CDP∗ using the above homology computation, and to complete
the construction of the 1-flow category for the full grid, which we will carry out in a future paper. This
present paper may be treated as a prelude thereof.

Acknowledgements. The author would like to thank Sucharit Sarkar for many helpful conversations. This
work was supported by an NSF grant DMS-2136090.

2. The Obstruction Complex

Definitions related to grid diagrams are summarized below. For details, see [MOS09, MOST07, OSS15].

• An index n grid diagram G is a torus together with n α-circles (drawn horizontally) and n β-circles
(drawn vertically). The complements of the α (respectively, β) circles are called the horizontal
(respectively, vertical) annuli—the complements of the α and β circles are called the square regions.

• Each vertical and horizontal annulus contains exactly one X and O marking, which are labelled
X1, . . . , Xn and O1, . . . , On.

• The horizontal (respectively, vertical) annuli can be labeled by which O-marking they pass through—
write Hi (respectively, Vi) for the horizontal (respectively, vertical) annulus passing through Oi.

• Given a fixed planar drawing of the grid, we can also label the the α circles α1, . . . , αn from bottom
to top, and the β circles β1, . . . , βn from left to right. The annuli can also be labelled by which sets of
α or β circles they lie between—write H(i) (respectively, V(i)) for the horizontal annulus between αi

and αi+1 (respectively, vertical annulus between βi and βi+1). Note that H(n) and V(n) lie between
αn and α1, and βn and β1, respectively.

• A generator is an unordered n-tuples of points such that each α and β circle contains exactly
one. Generators can equivalently be viewed a Z-linear combination of n points, or alternatively as
permutations—for a permutation σ ∈ Sn the generator xσ is the unique generator with a point at
each ασ(i) ∩ βi. In this paper we will use the convention that [a1a2 . . . an] denotes the permutation

σ ∈ Sn where σ(j) = aj for each j. For instance, Figure 1 shows the generator x[51243], which we
will interchangeably denote as [51243].

• A domain is a Z-linear combination of square regions with the property that ∂D ∩ α = y − x for
some generators x, y. We say that D is a domain from x to y, and write D ∈ D(x, y). D is said to
be positive if none of the coefficients are negative, in which case we would write D ∈ D+(x, y).

• Given D ∈ D(x, y), E ∈ D(y, z), we get a domain D ∗ E ∈ D(x, z) by adding D and E as 2-chains.

• The constant domain from a generator x to itself is the domain cx ∈ D(x, x) whose coefficients are
zero in every square region.

• For every domain D, there is an associated integer µ(D) called its Maslov index, which satisfies:

– µ(D ∗ E) = µ(D) + µ(E)

– For a positive domain D, µ(D) ≥ 0, with equality if and only if D is some constant domain.

– For D ∈ D+(x, y), µ(D) = 1 if and only if D is a rectangle: that is, its bottom left and top
right corners are coordinates of x, its bottom right and top left corners are coordinates of y,
and the other n− 2 coordinates of x and y agree and do not lie in D.

– µ(D) = k if and only if D can be decomposed (not necessarily uniquely) into k rectangles
D = R1 ∗ · · · ∗Rk.
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It will be particularly helpful to classify positive index 2 domains, which are exactly those that can be
decomposed as two rectangles. Thus every positive index 2 domain D ∈ D+(x, y) is a horizontal or vertical
annulus

. . . . . . or

...

...

or two rectangles (overlapping or disjoint)

or

or a hexagon of the following shape

or or or .

(Here the generator x is shown by •while y is shown by ◦.) Note that while a horizontal or vertical annulus
admits exactly one decomposition into rectangles, all the other positive index 2 domains admit exactly two.

Given a grid diagram G, we define the complex of positive domains, on which our desired sign assignment
can be constructed as a cochain.

Definition 2.1. The complex of positive domains CD∗ = CD∗(G;Z/2) is freely generated over Z/2 by the
positive domains, with the homological grading being the Maslov index:

CDk = Z/2〈{(x, y,D) |D ∈ D
+(x, y), µ(D) = k}〉.

Sometimes the generators x, y will be omitted. The differential ∂ : CDk → CDk−1 of D ∈ D+(x, y) is given
by

∂(D) =
∑

R∗E=D

E +
∑

E∗R=D

E,

where R is a rectangle, and E is a positive domain.

Note that CD∗ is independent of the placement of the X ’s and O’s.

Lemma 2.2. (CD∗, ∂) is a chain complex, that is, ∂2 = 0.

Proof. Let R and S denote rectangles, then

∂2(D) =
∑

R∗S∗E=D

E +
∑

R∗E∗S=D

E +
∑

S∗E∗R=D

E +
∑

E∗S∗R=D

E
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The second and third terms cancel (modulo 2). If R ∗ S is a hexagon or two rectangles, then it has exactly
one other decomposition R ∗ S = R′ ∗ S′, so R ∗ S ∗ E and R′ ∗ S′ ∗ E cancel in the first term. Similarly,
E ∗R ∗S and E ∗R′ ∗S′ cancel in the last term. Finally, if R ∗S is not a hexagon or two rectangles, it must
be a horizontal or vertical annulus, and then the terms E ∗ R ∗ S and R ∗ S ∗ E in the first and last term
cancel, and so ∂2(D) = 0. �

We now compute the homology CD∗ by constructing filtrations, for which we need the following fact. Given
two generators x and y, we say that x ≤ y if there exists a positive domain from y to x that does not intersect
the topmost row H(n) or rightmost column V(n) of the grid. It is clear that the set of generators with ≤ is
a partially ordered set (which actually coincides with the opposite of the Bruhat ordering on the symmetric
group Sn—see [MS21, Section 3.2]).

Proof of Proposition 1.1. The proof is nearly identical to the proof of [MS21, Proposition 3.4], so we present
the most relevant parts. To D ∈ CD∗ associate A(D) ∈ Nn by its coefficients in the rightmost vertical
annulus. Note that here, unlike in [MS21], A(D) is an n-tuple, since there is no assumption that domains
do not pass through the top right corner. By definition, the differential only preserves or lowers A(D), so it
is a filtration on CD∗. Now let CDa

∗ be the associated graded complex in filtration grading A(D) = a.

Let M(D) = min{coordinates of A(D)}—by definition, a positive domain D contains exactly M(D) copies
of the rightmost vertical annulus V(n), so write D = D′ ∗ M(D)V(n). A(D′) contains a 0, so without loss
of generality (since the differential of CDa

∗ does not change A(D) and thus does not change where the 0 is
located) D′ does not contain the top right corner. Now let B(D) ∈ Nn−1 be the coordinates of D′ in the top
row (except the top right corner). Similarly, B(D) is a filtration on the associated graded complex CDa

∗, so

let CDa,b
∗ be the associated graded complex in grading A(D) = a,B(D) = b.

Now fix (a, b) and consider the differential ∂ on CDa,b
∗ . For any domainD ∈ D+(x, y) with A(D) = a,B(D) =

b, let y be its grading. With respect to the partial ordering of the generators, ∂ preserves or decreases y
since we only consider removing domains that do not pass through the topmost row and rightmost column.
Therefore y is a filtration grading, so let CDa,b,y

∗ be the associated graded complex with respect to this

filtration. Unless a = (l, l, . . . , l), b = 0, and y = xId, the proof of [MS21] shows that CDa,b,y
∗ is acyclic.

When a = (l, l, . . . , l), b = 0, and y = xId, the complex CDa,b,y
∗ has one generator (since xId is maximal),

which is represented by the domain lV(n), lying in grading 2l.

Finally, because the associated graded complex has homology only in even gradings, CD∗ must have the
same homology. �

In order to later remove obstructions in grading 2, we now explicitly find the generator U of H2(CD∗). We
define the following index 2 domains:

• A1, . . . , An−1 where Ai is the vertical annulus in the (n−i)th column from the left from the generator
[n23 . . . (n − i)1(n − i + 1) . . . (n − 1)] to itself, and A0 is the rightmost vertical annulus from the
identity generator xId to itself.

• B1, . . . , Bn−1 where Bi is the horizontal annulus in the (n − i)th row from the bottom from the
generator [(n− i+1)23 . . . (n− i)(n− i+2) . . . n1] to itself, and B0 is the topmost horizontal annulus
from the identity generator xId to itself.

• C1, . . . , Cn−2 where Ci is a hexagon from the generator [n23 . . . (n− i)1(n− i+ 2) . . . (n− 1)] to the
generator [12 . . . (n− i− 1)n(n− i+ 1) . . . (n− 1)].

• D1, . . . , Dn−2 where Di is a hexagon from the generator [(n− i+1)23 . . . (n− i)(n− i+2) . . . n1] to
the generator [12 . . . (n− i− 1)(n− i+ 1) . . . n(n− i)].

• E1, . . . , En−2 where Ei is a hexagon from the generator [12 . . . (n− i−1)n(n− i+1) . . . (n−1)(n− i)]
to the generator [12 . . . (n− i− 2)n(n− i) . . . (n− 1)(n− i− 1)].
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...
...

...
...

...

A0

A1

A2

B0

B1

B2

C1

C2

C3

D1

D2

D3

E1

E2

E3

F1,1

F1,2

F1,3

F2,1

F2,2

F3,1 G1,1

G1,2

G1,3

G2,1

G2,2

G3,1

Figure 2. The domains Ai, Bi, Ci, Di, Ei, Fi,j , and Gi,j in the special case of a 6× 6 grid,
where each domain is drawn from a generator x (drawn by •) to a generator y (drawn by ◦)

.

• Fi,1, . . . , Fi,n−i−2 for each i = 1, . . . n− 3, where Fi,j is a hexagon from the generator [12 . . . (n− i−
j − 2)(n− i− j)(n− i)(n− i− j + 1) . . . (n− i− 1)(n− i + 1) . . . n(n− i − j − 1)] to the generator
[12 . . . (n− i− j − 2)(n− i+ 1)(n− i− j)(n− i− j + 1) . . . (n− i)(n− i+ 2) . . . n(n− i− j − 1)].

• Gi,1, . . . , Gi,n−i−2 for each i = 1, . . . n − 3, where Gi,j is a hexagon from the generator [12 . . . (n −
i− j − 2)n(n− i− j − 1)(n− i− j + 1) . . . (n− i− 1)(n− i− j)(n− i) . . . (n− 1)] to the generator
[12 . . . (n− i− j − 2)n(n− i− j) . . . (n− i)(n− i− j − 1)(n− i+ 1) . . . (n− 1)].

(see Figure 2)

Let

U :=

n−1∑

i=0

(Ai +Bi) +

n−2∑

i=1

(Ci +Di) +

n−2∑

i=1

Ei +

n−3∑

i=i

n−i−2∑

j=1

(Fi,j +Gi,j)

Proposition 2.3. U is the generator of H2(CD∗)

Proposition 2.3 will follow from the following computational lemmas.

Lemma 2.4. U is a cycle in CD2 (that is, ∂U = 0).

Proof. We consider the possible rectangles that appear in ∂U , starting with the following rectangles that
will be useful to name for the purposes of giving signs later.
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...
...

...
...

...
...

R1,1

R1,2

R1,3

R2,1

R2,2

R2,3

R3,2

R3,3

R4,2

R4,3

R5,1

R5,2

R5,3

R6,1

R6,2

R6,3

Figure 3. The rectanglesR1,i, R2,i, R3,i, R4,i, R5,i, R6,i, where each rectangle is drawn from
a generator x (drawn by •) to a generator y (drawn by ◦.)

• R1,2, . . . , R1,n−1 where R1,i is the 1 × i rectangle from [n23 . . . (n − i)1(n − i + 1) . . . (n − 1)] to
[n23 . . . (n− i− 1)1(n− i) . . . (n− 1)], and R1,1 is the 1× 1 rectangle from xId to [n23 . . . (n− 1)1].

• R2,2, . . . , R2,n−1 where R2,i is the 1 × i rectangle from [12 . . . (n − i)n(n − i + 1) . . . (n − 1)] to
[12 . . . (n− i− 1)n(n− i) . . . (n− 1)], and R2,1 is the 1× 1 rectangle from xId to [12...(n− 2)n(n− 1)]

• R3,2, . . . , R3,n−1 where R3,i is the i × 1 rectangle from [(n − i + 1)23 . . . (n − i)(n− i + 2) . . . n1] to
[(n− i)23 . . . (n− i− 1)(n− i+ 1) . . . n1], and R3,1 = R1,1.

• R4,2, . . . , R4,n−1 where R4,i is the i × 1 rectangle from [12 . . . (n − i)(n − i + 2) . . . n(n − i + 1)] to
[12 . . . (n− i− 1)(n− i+ 1) . . . n(n− i)], and R4,1 = R2,1.

• R5,1, . . . , R5,n−2, where R5,i is the 1× i rectangle from [12 . . . (n− i− 2)(n− i)n(n− i+ 1) . . . (n−
1)(n− i− 1)] to [12 . . . (n− i− 2)n(n− i) . . . (n− 1)(n− i− 1)]

• R6,1, . . . , R6,n−2, where R6,i is the i×1 rectangle from [12 . . . (n− i−2)n(n− i−1)(n− i+1) . . .(n−
1)(n− i)] to [12 . . . (n− i− 2)n(n− i) . . . (n− 1)(n− i− 1)]

(See Figure 3.) We cancel each of these rectangles in the boundary as follows:

• R1,1 occurs in ∂U twice, from ∂A0 and ∂B0, so it cancels in ∂U . For i = 2, . . . n− 1, R1,i occurs in
∂Ai−1 and ∂Ci−1, so they also cancel in ∂U .

• R2,1 occurs in ∂U twice, from ∂C1 and ∂D1, so it cancels in ∂U , R2,n−1 occurs in ∂An−1 and ∂En−2,
and for i = 2, . . . n− 1, R2,i occurs in ∂Ci−2 and ∂Ei−1, so they also cancel in ∂U .

• For i = 2, . . . n− 1, R3,i occurs in ∂Bi−1 and ∂Di−1.

• R4,1 occurs in Bn−1 and En−2, and for i = 2, . . . n− 2, R4,i occurs in ∂Di−2 and ∂Ei−1.

• R5,1 occurs in ∂E1 and ∂F1,1, and for i = 2, . . . n− 2, R5,i occurs in ∂Ei and ∂F1,i−1.

• R6,1 occurs in ∂E1 and ∂G1,1, and for i = 2, . . . n− 2, R6,i occurs in ∂Ei and ∂G1,i−1.

Next, we consider the following rectangles:

• Pi,1 . . . Pi,n−i−1 for each i = 2 . . . n−2, where Pi,j is the 1×j rectangle from [12 . . . (n− i−j−1)(n−
i− j + 1)(n− i+ 1)(n− i− j + 2) . . . (n− i)(n− i+ 2) . . . n(n− i− j)] to [12 . . . (n− i− j − 1)(n−
i+ 1)(n− i− j + 1) . . . (n− i)(n− i+ 2) . . . n(n− i− j)], and P1,j = R5,j for each j = 1, . . . n− 2.
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P2,1

P2,2

P2,3

P3,1

P3,2

P4,1 Q2,1

Q2,2

Q2,3

Q3,1

Q3,2

Q4,1

Figure 4. The rectangles Pi,j and Qi,j in the special case of a 6×6 grid, where each domain
is drawn from a generator x (drawn by •) to a generator y (drawn by ◦)

.

• Qi,1 . . .Qi,n−i−1 for each i = 2 . . . n − 2, where Qi,j is the j × 1 rectangle from [12 . . . (n − i − j −
1)n(n − i − j)(n − i − j + 2) . . . (n − i)(n − i − j + 1)(n − i + 1) . . . (n − 1)] to [12 . . . (n − i − j −
1)n(n− i− j+1) . . . (n− i)(n− i− j)(n− i+1) . . .(n− 1)], and Q1,j = R6,j for each j = 1, . . . n− 2.

(see Figure 4) We cancel each of these rectangles in the boundary as follows:

• For i = 2, . . . n− 2, Pi,j occurs in Fi,j and Fi−1,j .

• For i = 2, . . . n− 2, Qi,j occurs in Gi,j and Gi−1,j .

Finally, the remaining rectangles have the following form:

• R′
1,1 . . . R

′
1,n−1, where R′

1,i is the (n− i)× 1 rectangle from [n23 . . . (n− i)1(n− i+ 1) . . . (n− 1)] to

[12 . . . (n− i)n(n− i+ 1) . . . (n− 1)].

• R′
2,1 . . . R

′
2,n−1, where R

′
2,i is the 1× (n− i) rectangle from [(n− i+1)23 . . . (n− i)(n− i+2) . . . n1]

to [12 . . . (n− i)(n− i+ 2) . . . n(n− i+ 1)].

• P ′
i,2 . . . P

′
i,n−i−1 for i = 1 . . . n− 2, where P ′

i,j is the j × 1 rectangle from [12 . . . (n − i − j − 1)(n−
i)(n− i− j + 1) . . . (n− i− 1)(n− i+ 1) . . . n(n− i− j)] to [12 . . . (n− i− j − 1)(n− i+ 1)(n− i−
j + 1) . . . (n− i)(n− i+ 2) . . . n(n− i− j)], and P ′

i,1 = Pi,1.

• Q′
i,2 . . .Q

′
i,n−i−1 for i = 1 . . . n− 2, where Q′

i,j is the 1× j rectangle from [12 . . . (n− i− j − 1)n(n−

i− j + 1) . . . (n− i− 1)(n− i− j)(n− i) . . . (n− 1)] to [12 . . . (n− i− j − 1)n(n− i− j + 1) . . . (n−
i)(n− i− j) . . . (n− 1)], and Q′

i,1 = Qi,1.

(See Figure 5.) We cancel each of these rectangles in the boundary as follows:

• R′
1,1 occurs in ∂B0 and ∂C1, R

′
1,n−1 occurs in ∂An−1 and ∂Cn−2, and for i = 2, . . . , n − 2, R′

1,i

occurs in ∂Ci−1 and ∂Ci.

• R′
2,1 occurs in ∂A0 and ∂D1, R

′
2,n−1 occurs in ∂Bn−1 and ∂Dn−2, and for i = 2, . . . , n − 2, R′

2,i

occurs in ∂Di−1 and ∂Di.

• P ′
i,1 occurs in ∂Fi−1,1 and ∂Fi,1, and Pi,n−i−1 occurs in ∂Fi,n−i−2 and ∂Bi. For 2 ≤ j ≤ n− i − 2,

P ′
i,j occurs in ∂Fi,j−1 and ∂Fi,j .

• Q′
i,1 occurs in ∂Gi−1,1 and ∂Gi,1, and Qi,n−i−1 occurs in ∂Gi,n−i−2 and ∂Ai. For 2 ≤ j ≤ n− i− 2,

Q′
i,j occurs in ∂Gi,j−1 and ∂Gi,j .

Since these are the only rectangles produced by ∂Ai, ∂Bi, ∂Ci, ∂Di, ∂Ei, ∂Fi,j , ∂Gi,j , we conclude that indeed
∂U = 0. �
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R′
1,1

R′
1,2

R′
1,3

R′
1,4

R′
1,5

R′
2,1

R′
2,2

R′
2,3

R′
2,4

R′
2,5

P ′
1,2

P ′
1,3

P ′
1,4

P ′
2,2

P ′
2,3

P ′
3,2

Q′
1,2

Q′
1,3

Q′
1,4

Q′
2,2

Q′
2,3

Q′
3,2

Figure 5. The rectangles R′
1,i, R

′
2,i, P

′
i,j , Q

′
i,j in the special case of a 6× 6 grid, where each

domain is drawn from a generator x (drawn by •) to a generator y (drawn by ◦)
.

Lemma 2.5. U is not homologous to zero in CD∗.

Proof. Let r be the 2-cochain which is 1 on the rightmost vertical annulus from any generator to itself, and
zero on all other domains; we will first show that r is a cocycle, at which point it suffices to show that
r(U) 6= 0. Let E be an index 3 domain. If E does not contain the rightmost vertical annulus, then clearly
δr(E) = 0. If E does contain the rightmost vertical annulus, then E can be written exactly two ways as
the product of the rightmost vertical annulus V(n) with an index 1 domain: E = D ∗ V(n) = V(n) ∗D. So
δr(E) = 0 and therefore r is a cocycle, and r(U) = 1 since U contains exactly one copy of the rightmost
vertical annulus. �

Proof of Proposition 2.3. This immediately follows from Lemmas 2.4 and 2.5 and Proposition 1.1. �

3. Sign Assigments

In order to extend CD∗ over Z coefficients (and to frame some of the 0-dimensional moduli spaces in the
Manolescu-Sarkar construction), we need a sign assignment for CD∗, which is a particular Z/2-valued 1-
cochain on CD∗. The following conditions for a sign assignment ensures that 1-dimensional moduli spaces
are frameable, since their boundaries must have opposite signs—see [MS21] for more details, and note also
that this agrees with the sign assignments defined by [MOST07] and [Gal08], though we are giving a new
proof of their existence.

Definition 3.1. A sign assigment for G is a Z/2-valued 1-cochain s on CD∗ such that

(1) (Square Rule) If D1, D2, D3, D4 are distinct rectangles such that D1 ∗D2 = D3 ∗ D4 = E which is
not an annulus, then s(D1) + s(D2) = s(D3) + s(D4) + 1.
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◦
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◦

◦ •

• • •

• • •

•

x

z1 z2 z3

w1 w2 w3

y

Figure 6. An example of a positive index 3 domain from a generator x (drawn by •) to a
generator y (drawn by ◦), along with the graph defined in the proof of Proposition 1.3. The
generators zi are given by ◦ on the ith rectangle from the left and • on the other two, while
the generators wi are given by • on the ith rectangle from the left and ◦ on the other two.

.

(2) (Annuli) If D1, D2 are rectangles such that D1 ∗ D2 is a vertical annulus, s(D1) = s(D2) + 1. If
D1, D2 are rectangles such that D1 ∗D2 is a horizontal annulus, s(D1) = s(D2)

In order to prove that such a sign assignment exists, we will show that the 2-cocycle that we hypothesize to
be δs is indeed a 2-coboundary.

Lemma 3.2. Let T be the 2-cochain with values

(1) (Square Rule) For any index 2 domain D that is not an annulus, T (D) = 1.

(2) (Annuli) T (V ) = 1 for all vertical annuli V , and T (H) = 0 for all horizontal annuli H.

Then T is a 2-coboundary.

Proof. First, we show that T is a cocycle. Let E be any index 3 domain—we must show that 〈T, ∂E〉 = 0.
For every decomposition E = D ∗ A, where A is a vertical or horizontal annulus, there is a corresponding
decomposition E = A ∗D, so that A occurs an even number of times in ∂E. It now suffices to show that ∂E
contains an even number of every other type of index 2 domain.

To every index 3 domain E from a generator x to a generator y, consider a graph with vertices x at level 3,
y at level 0, and edges down 1 level corresponding to each way to break off an index 1 domain (see Figure
3 for an example of such a graph). Then each level 2 vertex has an index 2 domain to y, which decomposes
into rectangles exactly two ways, so each level 2 vertex has downward degree 2, and each level 1 vertex has
an index 2 domain from x, which decomposes into rectangles exactly two ways, so each level 1 vertex has
upward degree 2. Therefore there are the same number of level 2 and level 1 vertices, so since each index
2 domain that shows up in ∂E corresponds to a level 2 or 1 vertex, there are an even number of index 2
domains. Since an even number of these are annuli, we must therefore have an even number of hexagons.
This shows that 〈T, ∂E〉 = 0, as desired.

By Propositions 1.1 and 2.3 it now suffices to show that T (U) = 0 where U is the generator of H2(CD∗).
By definition, U consists of n annuli Ai, n annuli Bi, n− 2 hexagons Ci, n− 2 hexagons Di, n− 2 hexagons
Ei,

(
n−2
2

)
hexagons Fi,j , and

(
n−2
2

)
hexagons Gi,j , so for any T satisfying the conditions of Lemma 3.2,

T (U) ≡ n+ 3(n− 2) + 2

(
n− 2

2

)
≡ 0 (mod 2)

so that T is indeed a coboundary. �

Lemma 3.3. Let T be the 2-coboundary from Lemma 3.2. Then T = δs if and only if s is a sign assignment.

Proof. This is clear from the definitions. �
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Proof of Theorem 1.2. Existence immediately follows from Lemmas 3.2 and 3.3. For uniqueness, suppose
T = δs = δs′. Then δ(s− s′) = 0, so s− s′ is a 1-cocycle, which is cohomologous to zero by Proposition 1.1,
so there is a 0-cochain g such that s = s′ + δg. �

Given a sign assignment s, we can use it to redefine CD∗ in Z coefficients as follows

Definition 3.4. CD∗(G;Z) is freely generated over G by the positive domains, with the homological grading
being the Maslov index. The differential ∂ : CDk → CDk−1 of D ∈ D+(x, y) is given by

∂(D) =
∑

R∗E=D

(−1)s(R)E + (−1)k
∑

E∗R=D

(−1)s(R)E

where R is a domain of index 1 from x to some generator z and E is a positive domain from z to y.

We now have analogues of Lemma 2.2 and Proposition 1.1 in Z coefficients, in the following Lemma and
Proposition 1.3, respectively.

Lemma 3.5. (CD∗, ∂) is a chain complex.

Proof. The proof is similar to the proof of 2.2, except we must keep track of signs. �

Proof of Proposition 1.3. The proof is similar to the proof of Proposition 1.1. Specifically, our proof of
Proposition 1.1 over Z/2 adapts the proof of [MS21, Proposition 3.4]. This proof is over Z, and a similar
adaptation will prove Proposition 1.3. �

4. The Obstruction Complex with Partitions

The moduli spaces in the construction of the 1-flow category require more than just positive domains. Since
periodic domains (annuli) can bubble, [MS21] introduces a new complex to keep track of the bubbles—since
there are n different types of bubbles (corresponding to bubbling of the jth horizontal or vertical annulus)
which can be at the same or different heights, these correspond to n-tuples of ordered partitions.

It is convenient to use both of the following equivalent definitions of an ordered partition of a positive integer
N (and when N = 0, a partition of N is the empty set).

• An ordered partition λ is a tuple of nonnegative integers λ = (λ1, . . . , λm) such that N =
∑

λi. (m
is called the length of the partition, and is denoted l(λ).)

• An ordered partition λ is a tuple ǫ(λ) = (ǫ1(λ), . . . , ǫN−1(λ)) ∈ {0, 1}N−1, where an ǫi equalling 1
indicates a split at that point. (For instance, the ordered partitions (1, 1, 1), (1, 2), (2, 1), and (3) of
3 are written (1, 1), (1, 0), (0, 1), and (0, 0), respectively.)

Besides annuli bubbling off (the second type of terms that will be in the differential—the first being terms
in the differential of CD∗), there are two other boundary degenerations that occur with existing bubbles.
Bubbles of the same type may come to the same height (the third type of term), and bubbles may go to
height ±∞ (the fourth and final type of term). The corresponding changes to the partitions can be described
as follows:

Definition 4.1. The following changes to an ordered partition will describe the differential terms—see
[MS21, Definitions 4.1, 4.2, 4.3] for more details.

• A unit enlargement (at position k) increases N by 1 and adds a 1 to the tuple λ (at position k). The
set of unit enlargements of λ is denoted UE(λ).

• An elementary coarsening (at position k) replaces both terms λk and λk+1 with one term λk +λk+1.
The set of elementary coarsenings of λ is denoted EC(λ).
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• An initial reduction removes λ1 (and decreases N by λ1), and a final reduction removes λm (and
decreases N by λm). The set of initial reductions (respectively, final reductions) of λ is denoted
IR(λ) (respectively, FR(λ)), where we consider both sets empty if N = 0.

We are now ready to define the complex of domains with partitions, CDP∗.

Definition 4.2. The complex of positive domains with partitions CDP∗ = CDP∗(G;Z/2) is freely generated

by triples of the form D, ~N,~λ, where

• D ∈ D+(x, y) is a positive domain.

• ~N ∈ Nn is an n-tuple of nonnegative integers, ~N = (N1, . . . , Nn).

• ~λ = (λ1, . . . , λn) is an n-tuple of ordered partitions, where λj = (λj,1, . . . , λj,mj
) is an ordered

partition of Nj.

We denote | ~N | :=
∑n

j=1 Nj, and define the total length of ~λ to be |l(~λ)| :=
∑n

j=1 l(λj). The grading of

(D, ~N,~λ) is given by the Maslov index of D plus |l(~λ)|. The differential is given by the sum of the following
four terms.

• Type I terms, given by taking out a rectangle from D, just like in the differential of CD∗.

• Type II terms, given by taking out a vertical or horizontal annulus passing through Oj from D and
performing a unit enlargement to λj .

• Type III terms, given by an elementary coarsening of one of the partitions λj .

• Type IV terms, given by taking the initial or final reduction of one of the partitions λj .

Precisely, we can write ∂ = ∂1 + ∂2 + ∂3 + ∂4 where

∂1(D, ~N,~λ) =
∑

R∗E=D

(E, ~N,~λ) +
∑

E∗R=D

(E, ~N,~λ)

∂2(D, ~N,~λ) =

n∑

j=1

∑

D=E∗Hj or E∗Vj

∑

λ′

j
∈UE(λj)

(E, ~N + ~ej , ~λ
′)

∂3(D, ~N,~λ) =
n∑

j=1

∑

λ′

j
∈EC(λj)

(D, ~N,~λ′)

∂4(D, ~N,~λ) =

n∑

j=1

∑

λ′

j
∈IR(λj)

(D, ~N − λj,1~ej , ~λ
′) +

n∑

j=1

∑

λ′

j
∈FR(λj)

(D, ~N − λj,mj
~ej , ~λ

′)

As in Definition 2.1, R is a rectangle, and the annuli Hj, Vj are the ones passing through the jth O marking.

We also use ~λ′ := (λ1, ..., λj−1, λ
′
j , λj+1, ..., λn), and ~ej := (0, ..., 0, 1, 0, ..., 0) with the 1 in the jth position.

(See [MS21, Section 4.2] for more details.)

It will help us to classify the lower grading generators—that is, generators of CDP0,CDP1,CDP2,CDP3.

(0) CDP0 is generated by the constant domains with no partitions (cx, 0, 0) for some generator x.

(1) CDP1 is generated by rectangles with no partitions (R, 0, 0) as well as triples of the form (cx, N~ej, (N))
for a constaint domain cx.

(2) CDP2 is generated by Maslov index 2 domains with no partition (D, 0, 0) (for a classification of the
kinds of domains D, see above or [OSS15]), triples of the form (R,N~ej, (N)) for a rectangle R, or
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a constant domain with partitions of total length 2. Specifically, we can have triples of the form
(cx, N~ej +M~ek, ((N), (M))) (where j 6= k), or (cx, (N +M)~ej , (N,M)).

(3) Finally, CDP3 is generated by Maslov index 3 domains with no partition, Maslov index 2 domains
with a partition of the form (D,N~ej , (N)), rectangles with a partition of total length 2, and constant
domains with partitions of total length 3, which has the following cases:

• (cx, Nj~ej +Nk~ek +Nl~el, ((Nj), (Nk), (Nl)) for j, k, l distinct.

• (cx, (Nj +Mj)~ej +Nk~ek, ((Nj ,Mj), (Nk)) for j, k distinct.

• (cx, (Nj +Mj + Pj)~ej , (Nj,Mj , Pj)).

Lemma 4.3. (CDP∗, ∂) is a chain complex.

Proof. The proof follows a similar case analysis to [MS21, Lemma 4.4]. Write ∂ = ∂1+∂2+∂3+∂4, where ∂k
is the type k term in the differential. Since ∂1 is just the differential from CD∗, we have by Lemma 2.2 that
∂2
1 = 0. Now for ∂2

2 , the terms will correspond to removing two annuli (and doing two unit enlargements). If
the annuli pass through two different Oi and Oj , then the corresponding term shows up twice, once in each
order. If the annuli pass through the same Oj , then the corresponding term also shows up twice—once for
each order in doing the unit enlargements. Therefore, ∂2

2 = 0. We can similarly show that

∂2
3 = 0 and

∂1∂2 + ∂2∂1 = 0 and

∂1∂3 + ∂3∂1 = 0 and

∂2∂3 + ∂3∂2 = 0 and

∂1∂4 + ∂4∂1 = 0

by doing the respective operations in two different orders.

Now consider ∂2∂4 + ∂4∂2, the terms of which correspond to a unit enlargement and an initial or final
reduction, in either order. If one is done to λi and another to λj where i 6= j, then the two commute and
cancel just like before. If both are done to λi, then all terms follow one of these cases:

• A unit enlargement not at the beginning, followed by an initial reduction. This cancels with the
initial reduction followed by doing the enlargement one place earlier.

• A unit enlargement not at the end, followed by a final reduction. This cancels with the final reduction
followed by the same enlargement.

• A unit enlargement at the beginning, followed by an initial reduction; or a unit enlargement at the
end, followed by a final reduction. These cancel with each other.

Finally, consider the last terms of ∂2, ∂2
4 + ∂3∂4 + ∂4∂3. Again there are some special types of terms:

• The elementary coarsening of λi by combining the first two parts, followed by a initial reduction of
λi, cancels with two initial reductions of λi.

• The elementary coarsening of λi by combining the last two parts, followed by a final reduction of λi,
cancels with two final reductions of λi.

where all the other terms cancel by doing the operations in the two different orders. �

We would like to compute the homology of CDP∗ using successive filtrations, as in the proof of Proposition
1.1.

Proposition 4.4. There is a filtration on CDP∗ such that the associated graded has homology (Z/2)2
n

⊗
(Z/2)[U ].
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Proof. We again follow the proof of [MS21, Proposition 4.6]. We can filter the complex CDP ′
∗ in several

steps. First we filter CDP∗ by the quantity A(D) ∈ Nn which are the coefficients of D in the rightmost
column. As in the proof of Proposition 1.1, we can assume without loss of generality that the minimum of
A(D) occurs in the top right corner, and then filter the associated graded CDPa

∗ by B(D) ∈ Nn−1 which

are the coefficients of D in the topmost row. In the associated graded CDPa,b
∗ , there are no type II terms in

the differential, since such terms must decrease either A or B. Since | ~N | is kept constant by type I and III

terms and decreased by type IV terms, it is a filtration on CDPa,b
∗ , so filtering by | ~N | and (as in the proof

of Proposition 1.1) the end generator y gives a direct sum of complexes CDPa,b,y, ~N
∗ .

When a 6= (l, l, . . . , l) or b 6= 0 or y 6= xId, filtering by the total length of ~λ removes all type III terms and

keeps all type I terms, so CDPa,b,y, ~N
∗ is a direct sum of complexes CDa,b,y

∗ which were all shown to be acyclic
in the proof of [MS21, Proposition 3.4]. Additionally, when a = (l, l, . . . , l), b = 0, y = xId, and at least one

Nj > 1, every generator of CDPa,b,y, ~N
∗ is represented by some (D, ~N,~λ) where D = kVn, so we only have

type III terms. The partitions of Nj are given by (ǫ1, . . . , ǫNj−1), where the elementary coarsenings just
change a 1 to a 0. This gives a hypercube complex, which is acyclic. Therefore, we are only left with the

associated graded complexes CDPa,b,y, ~N where a = (l, l, . . . , l), b = 0, y = xId, and every Nj is 0 or 1. �

Corollary 1. Hk(CDP∗;Z/2) has rank at most

⌊k/2⌋∑

l=0

(
n

k − 2l

)

In the proof of Proposition 2.3, we found a cocycle that detects the generator of H2(CD∗). We will use a
similar procedure to compute H0(CDP∗) through H3(CDP∗).

Proof of Theorem 1.4. (0) This case is clear.

(1) The n generators of H1(AssGr(CDP∗)) are the triples

gj := (cxId , ~ej , (1))

which are still cycles in CDP1 (because their initial and final reductions cancel). It will suffice to show that
there exist n 1-cocycles rj such that rj(gk) = 1 if and only if j = k. Let fj be the 1-cochain in CD∗ such that
δfj(D) = 1 if and only if D is the vertical annulus Vj or the horizontal annulus Hj—fj exists by Proposition
2.3 because the 2-cocycle which is 1 on Vj and Hj and zero on every other index 2 domain is a coboundary,
since it is zero on the generator U of H2(CD∗). We can extend fj to CDP∗ by setting it equal to zero on

all triples (cx, N~ej, (N)). Let Nj be the 1-cocycle that is the value of Nj in the triple (D, ~N,~λ), and

rj := Nj + fj .

To show that rj is a cocycle, we consider all possible triples (D, ~N,~λ) in grading 2. If Nj = 0 and D is

not the annulus Vj or Hj , then by definition δrj(D, ~N,~λ) = 0. If Nj = 0 and D = Vj or Hj , then ~N = 0
and δrj(D, 0, 0) = Nj(cx, ~ej, (1)) + (fj(R1) + fj(R2)) = 1 + 1 = 0 (mod 2), where D = R1 ∗ R2 is the
decomposition into rectangles. Finally, if Nj = M > 0, there are three cases:

• D is a rectangle. In this case ~N = M~ej and λi = (M), so the initial and final reduction of λi

cancel, and the only other differential terms are removing D. If D is a rectangle from x to y, then
δri(D,M~ej, (M)) = Nj(cx,M~ej, (M)) +Nj(cy,M~ej, (M)) = M +M = 0 (mod 2).

• Some Nk > 0, where k 6= j. Then D must be a constant domain, and both λj and λk are length 1
partitions, so their initial and final reductions all cancel.
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• D is a constant domain and λj = (M1,M2) is a length 2 partition. In this case we have all of the
type III and IV differentials, which gives

δrj(cx, (M +N)~ej , (M,N))

= Nj(cx,M~ej, (M)) +Nj(cx, N~ej, (N)) +Nj(cx, (M +N)~ej , (M +N))

= M +N + (M +N) = 0 (mod 2)

Therefore rj is a cocycle for each j, and by definition rj(gj) = 1 if and only if j = k, so the gj are in fact
the generators of H1(CDP∗).

(2) We similarly consider 2-cocycles. (Z/2)2
n

of the generators of H2(AssGr(CDP∗)) are the triples

gj,k := (cxId, ~ej + ~ek, ((1), (1)))

which are similarly still cycles in CDP2. The final generator will be given by a slight modification U ′ of
(U, 0, 0), where U is the generator of H2(CD∗). The boundary of U in CDP∗ contains only pairs of triples
of the form

(cxj , ~ej, (1)) and (cyj , ~ej, (1))

corresponding to type II differentials on the annuli Aj and Bj (see Figure 2). For each j, the generators xj

and yj each have a planar domain (that is, a domain that does not intersect the topmost row or rightmost
column of the grid), Dj,1 and Dj,2 respectively, from the identity generator xId. From Figure 2, we see that
Dj,2 is the reflection of Dj,1 about the diagonal from the bottom left to the top right of the grid, so that
(−Dj,1) ∗Dj,2 is an even index planar domain from xj to yj. This domain decomposes into an even number
of planar rectangles ±Rjk (where each Rjk is positive), so that adding each (Rjk, ~ej, (1)) to (U, 0, 0) will
cancel the rest of its boundary, making a cycle U ′.

In the proof of Proposition 2.3, we used the 2-cocycle r which is 1 on the rightmost vertical annulus and

zero on every other 2-chain. Extending r to CDP∗ by setting it equal to zero on every 2-chain with | ~N | > 0
still gives a cocycle, since CDP∗ has no new ways to create an annulus in the boundary, and we still have
that r(U ′) = 1, while all of the r(gj,k) = 0. Now it suffices to find rj,k such that rj,k(U

′) = 0 for all j, k, and
rj,k(gl,m) = 1 if and only if {l,m} = {j, k}. Let fj be the 1-cocycles defined in the proof of (1), and let

fk
j (R, ~N,~λ) = Nkfj(R)

where R is a rectangle and ~λ has total length 1 (and fk
j = 0 on all other 2-chains). Now let NjNk be the

2-cocycle that is the product of the values of Nj and Nk for a triple (D, ~N,~λ), and let

rj,k := NjNk + fk
j + f j

k .

To show that rj,k is a cocycle, we consider all possible triples (D, ~N,~λ) in grading 3. If Nj = 0 (respec-
tively, Nk = 0) and D does not contain the annulus Vj or Hj (respectively, Vk or Hk), then by definition

δrj,k(D, ~N,~λ) = 0. If Nj = 0, Nk > 0 (or vice versa), and D contains Vj or Hj , then D = Vj or Hj and

all Nl = 0 for l 6= k, so that δrj,k(D, ~N,~λ) = 0 similarly to the proof of (1). Finally, if Nj = Mj > 0 and
Nk = Mk > 0, there are three cases:

• D is a rectangle. In this case ~N = Mj~ej + Mk~ek, λj = (Mj), and λk = (Mk), so the initial and
final reductions of λj and λk cancel, and the only other differential terms are removing D. If D is a

rectangle from x to y, then δrj,k(D, ~N,~λ) = NjNk(cx,Mj~ej+Mk~ek, ((Mj), (Mk)))+NiNj(cy,Mj~ej+
Mk~ek, ((Mj), (Mk))) = MiMj +MiMj = 0 (mod 2).

• Some Nl > 0, where l 6= j, k. Then D must be a constant domain, and all of λj , λk, and λl are
length 1 partitions, so their initial and final reductions all cancel.

• D is a constant domain and λj = (Mj,1,Mj,2) is a length 2 partition (or symmetrically, λk =
(Mk,1,Mk,2)). In this case the initial and final reductions of λk cancel, but we have all of the type
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III and IV differentials of λj , which give

δrj,k(cx, (Mj,1 +Mj,2)~ej +Mk~ek, ((Mj,1,Mj,2), (Mk)))

= NjNk(cx,Mj,1~ej +Mk~ek, ((Mj,1), (Mk)))

+NjNk(cx,Mj,2~ej +Mk~ek, (Mj,2), (Mk)))

+NjNk(cx, (Mj,1 +Mj,2)~ej +Mk~ek, ((Mj,1 +Mj,2), (Mk)))

= Mk(Mj,1 +Mj,2 + (Mj,1 +Mj,2)) = 0 (mod 2)

Therefore rj,k is a cocycle for all j, k, and by definition rj,k(U) = 0. U ′ only adds an even number of planar

rectangles with partitions that can contribute to fk
j or f j

k , no two of which can ever form an annulus, so
rj,k(U

′) = 0. Finally, by definition rj,k(gl,m) = 1 if and only if {l,m} = {j, k}, so these (along with U ′) are
in fact the generators of H2(CDP∗).

(3)
(
n
3

)
of the generators of H3(AssGr(CDP∗)) are the triples

gj,k,l := (cxId , ~ej + ~ek + ~el, ((1), (1), (1)))

which are similarly still cycles in CDP3. The other n generators are the triples U ′
j obtained from U ′ by

performing unit enlargements on Nj and adding the triples (Rjk, 2~ej, (2)) defined previously (for this fixed
j). Let V(n) be the rightmost vertical annulus and define the cochain

rrj(D, ~N,~λ) :=

{
0 D does not contain V(n)

rj(D ∗ −V(n), ~N,~λ) D contains V(n)

where rj is the 1-cocycle from the proof of (1). To show that rrj are cocycles, we consider all δrrj(D, ~N,~λ)

for triples (D, ~N,~λ) ∈ CDP4. If D does not contain V(n), then this quantity is zero by definition. If D
contains V(n), then its Maslov index is at least 2, so that we have the following cases:

• D is an index 4 domain. In this case, ~N = 0, so let E = D ∗ (−V(n)). If E is also an annulus Vk,
then

δrrj(D, ~N,~λ) = rrj(A1 ∗ V(n), 0, 0) + rrj(A2 ∗ V(n), 0, 0) + rrj(E ∗B1, 0, 0) + rrj(E ∗B2, 0, 0)

+ rrj(V(n), ~ek, (1)) + rrj(E,~en, (1)) where A1 ∗A2 = E,B1 ∗B2 = V(n)

= rj(A1, 0, 0) + rj(A2, 0, 0) + rj(cx, ~ek, (1))

+ (rj(B1, 0, 0) + rj(B2, 0, 0) + rj(cx, ~en, (1))) (added iff k = n) = 0

by definition of rj (since this is just δrj(Vk) with possibly δrj(V(n)) added if k = n). If E is not an
annulus, we similarly have

δrrj(D, ~N,~λ) = rrj(A1 ∗ V(n), 0, 0) + rrj(A2 ∗ V(n), 0, 0) + rrj(E ∗B1, 0, 0) + rrj(E ∗B2, 0, 0)

+ rrj(E,~en, (1)) where A1 ∗A2 = E,B1 ∗B2 = V(n)

= rj(A1, 0, 0) + rj(A2, 0, 0) + rj(cx, ~ek, (1)) = 0

• D = R ∗ V(n) is an index 3 domain, where R is a rectangle from a generator x to a generator y. In

this case, ~N = N~ek and ~λ = λk = (N). Suppose that in the domain D, V(n) = A ∗ B, and R = B
(or symmetrically, R = A). In this case,

δrrj(D, ~N,~λ) = rrj(R ∗A,N~ek, (N)) + rrj(A ∗R,N~ek, (N)) + rrj(R,N~ek + en, ((N), (1)))

= rj(cx, N~ek, (N)) + rj(cy, N~ek, (N)) = 0 by definition of rj

and if R is not A or B, we similarly have

δrrj(D, ~N,~λ) = rrj(R ∗A,N~ek, (N)) + rrj(R ∗B,N~ek, (N)) + rrj(V(n), N~ek, (N)) (at the generator x)

+ rrj(V(n), N~ek, (N)) (at y) + rrj(R,N~ek + ~en, ((N), (1)))

= rj(cx, N~ek, (N)) + rj(cy, N~ek, (N)) = 0
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• D is an index 2 domain. In this case, D = V(n), |~λ| = 2, and δrrj(D, ~N,~λ) = δrj(cx, ~N,~λ) since the
type I and II terms cannot possibly have an annulus—note that we previously showed this expression
to be zero in showing that rj is a cocycle.

Therefore rrj is a cocycle, and by construction rrj(U
′
k) = 1 if and only if k = j, and all of the rrj(gk,l,m) = 0.

It remains to find cocycles rj,k,l such that rj,k,l(U
′
m) = 0 for all j, k, l,m, and rj,k,l(gm,p,q) = 1 if and only if

{m, p, q} = {j, k, l}. Let fj be the 1-cocycles defined in the proof of (1), and let

fk,l
j (R, ~N,~λ) = NkNlfj(R)

where R is a rectangle and λk, λl are both length 1 partitions (and fk,l
j = 0 on all other 3-chains). Now let

NjNkNl be the 3-cocycle that is the product of the values of Nj , Nk, and Nl for a triple (D, ~N,~λ), and let

rj,k,l = NjNkNl + fk,l
j + f j,l

k + f j,k
l .

To show that rj,k,l is a cocycle, we consider all possible triples (D, ~N,~λ) in grading 4. If Nj = 0 (respectively,
Nk = 0 or Nl = 0) and D does not contain the annulus Vj or Hj (respectively, Vk or Hk, or Vl or Hl), then

by definition δrj,k,l(D, ~N,~λ) = 0. If Nj = 0, Nk > 0, and Nl > 0 (or symmetrically, any other case where
exactly one is zero), and D contains Vj or Hj , then D = Vj or Hj and all Nm = 0 for m 6= k, l, so that

δrj,k,l(D, ~N,~λ) = 0 similarly to the proof of (1). Finally, if Nj = Mj > 0, Nk = Mk > 0, and Nl = Ml > 0,
there are three cases:

• D is a rectangle. In this case ~N = Mj~ej + Mk~ek + Ml~el, λj = (Mj), λk = (Mk) and λl = (Ml),
so the initial and final reductions of λj , λk and λl cancel, and the only other differential terms are
removing D. If D is a rectangle from x to y, then

δrj,k,l(D, ~N,~λ) = NjNkNl(cx,Mj~ej +Mk~ek +Ml~el, ((Mj), (Mk), (Ml)))

+NjNkNl(cy,Mj~ej +Mk~ek +Ml~el, ((Mj), (Mk), (Ml)))

= MjMkMl +MjMkMl = 0 (mod 2).

• Some Nm > 0, where m 6= j, k, l. Then D must be a constant domain, and all of λj , λk, λl, and λm

are length 1 partitions, so their initial and final reductions all cancel.

• D is a constant domain and λj = (Mj,1,Mj,2) is a length 2 partition (or symmetrically, λk =
(Mk,1,Mk,2) or λl = (Ml,1,Ml,2)). In this case the initial and final reductions of λk and λl cancel,
but we have all of the type III and IV differentials of λj , which give

δrj,k,l(cx, (Mj,1 +Mj,2)~ej +Mk~ek +Ml~el, ((Mj,1,Mj,2), (Mk), (Ml)))

= NjNkNl(cx,Mj,1~ej +Mk~ek +Ml~el, ((Mj,1), (Mk), (Ml)))

+NjNkNl(cx,Mj,2~ej +Mk~ek +Ml~el, (Mj,2), (Mk), (Ml)))

+NjNkNl(cx, (Mj,1 +Mj,2)~ej +Mk~ek +Ml~el, ((Mj,1 +Mj,2), (Mk), (Ml)))

= MkMl(Mj,1 +Mj,2 + (Mj,1 +Mj,2)) = 0 (mod 2)

Therefore rj,k,l are cocycles, satisfying rj,k,l(F
′′
m) = 0 for all j, k, l,m, and

rj,k,l(cxId , ~em + ~ep + ~eq, ((1), (1))) = 1 if and only if {m, p, q} = {j, k, l}. �

5. Sign Assignments for Domains with Partitions

Similarly to Section 3, we find the criteria that the coboundary of a sign assignment for CDP∗ must satisfy.

Definition 5.1. A sign assigment for CDP∗ is a 1-cochain s on CDP∗ such that

(1) δs(D, 0, 0) = 1 for any index 2 domain D that is not an annulus.

(2) δs(V, 0, 0) = 1 for any vertical annulus V , and δs(H, 0, 0) = 0 for any horizontal annulus H.

(3) δs(R, (0, N~ej, (N)) = 0 for any rectangle R, any N > 0, and any j.
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(4) δs(cx, N~ej +M~ek, ((N), (M))) = 0 for any constant domain cx, any N,M > 0, and any j, k.

(5) δs(cx, (N +M)~ej , ((N,M))) = 0 for any constant domain cx, any N,M > 0, and any j.

Proof of Theorem 1.5. Let T be the 2-cochain with values given by (1)–(5) of Definition 5.1. To see that T

is a cocycle, we evaluate δT on all triples (D, ~N,~λ) in grading 3. These are given by

• (D, 0, 0) where D is an index 3 domain. The proof of Lemma 3.3 shows that the contributions to δT
by Type I differential terms all cancel. If D does not contain an annulus, these are all the differential
terms. If D does contain an annulus A = Hj or Vj , we can write D = R ∗ A for a rectangle R, so
that the type II differential term gives (R, (0, ~ej, (1)), which does not contribute to δT by (3).

• (D,N~ej, (N)) where D is an index 2 domain. Here the initial and final reduction of the partition
both give (D, 0, 0) so their contributions to δT cancel. The decompositions of D into rectangles
do not contribute to δT by condition (3), and again if D is not an annulus, then these are the
only other boundary terms. If D is an annulus, then either D = Hj , D = Vj , or D is some other
annulus Hk or Vk. In the latter case, the type II differential term gives (cx, N~ej + ~ek, ((N), (1)))
which does not contribute to δT by (4). In the former case, the type II differential gives two terms,
(cx, (N + 1)~ej), (1, N)) and (cx, (N + 1)~ej , (N, 1)), which do not contribute to δT by (5).

• (R, ~N,~λ) where R ∈ D+(x, y) is a rectangle and ~λ has total length 2. Here the type I differential
removesR two ways, which leaves either (cx,M~ej+N~ek, ((M), (N))) (and the corresponding term for
cy, which do not contribute to δT by (4)), or (cx, (M +N)~ej), (M,N)) (and the corresponding term
for cy, which do not contribute by (5)). All type III and IV terms do not contribute by condition

(3). Since R cannot possibly contain an annulus, there are no further terms so δT (R, ~N,~λ) = 0.

• (cx, ~N,~λ) where cx is a constant domain and ~λ has total length 3. None of these terms contribute
to δT by (4) and (5).

Hence T is a cocycle, so it remains to show T is zero on every generator of H2(CDP∗) listed in the proof
of Theorem 1.4. By definition, every T (cx, ~ej + ~ek, ((1), (1))) = 0. Also, T (U, 0, 0) = 0 by Lemma 3.2, so
T (U ′) = 0 by condition (3), since these are the only types of triples added to (U, 0, 0). Therefore T must be
the zero cocycle by Theorem 1.4, so T = δs for some s. The values sj uniquely determine the H1(CDP∗)
class of s by Theorem 1.4, so at that point s is unique up to gauge equivalence (like sign assignments for
CD∗). �

There are two types of triples in grading 1—rectangles with no partitions and constant domains with a length
1 partition. By uniqueness, the sign of a rectangle with no partition in CDP∗ agrees with the sign of that
rectangle in CD∗, so it remains to compute the signs of constant domains with a length 1 partition.

Proposition 5.2. For any constant domain cx and any N > 0,

s(cx, N~ej , (N)) = Nsj (mod 2)

Proof. We first show that the sign is independent of the generator x. Let R ∈ D+(x, y) be a rectangle. By
(3) of Definition 5.1,

0 = δs(R,N~ej , (N)) = s(cx, N~ej, (N)) + s(R, 0, 0) + s(R, 0, 0) + s(cy, N~ej, (N))

so that s(cx, N~ej, (N)) = s(cy, N~ej, (N)), and given any domain from x to y, we find a decomposition into
rectangles and repeatedly apply this equation. Therefore we can now assume without loss of generality that
x = xId. We will use the uniqueness of s up to the values sj to proceed by induction on N . The base case
is clear, and by (5) of Definition 5.1 we must have that

0 = δs(cx, N~ej, (1, N − 1)) = s(cx, ~ej , (1)) + s(cx, (N − 1)~ej), (N − 1)) + s(cx, N~ej, (N))

= sj + (N − 1)sj (mod 2)
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by the inductive hypothesis, so that s(cx, N~ej, (N)) = Nsj (mod 2), which completes the induction. �

Remark 5.3. It would suffice by uniqueness to define a sign assignment on CDP∗ by defining a sign
assignment on CD∗ and extending it by Proposition 5.2. Doing so would give another proof of Proposition
1.5.

Again, now that we have a sign assignment s, we can extend CDP∗ to Z coefficients. As in CD∗, the sign
associated to breaking off a rectangle is the sign of the rectangle s(R) given by the sign assignment. We now
describe the sign of the other differential terms.

Definition 5.4. Let s be a sign assignment for CDP∗.

• Given an ordered partition λ and the unit enlargement λ′ = (λ1, ..., λk−1, 1, λk, ..., λm), the sign of
the unit enlargement is

s(λ, λ′) = k + 1 (mod 2).

• Given an ordered partition λ and the elementary coarsening
λ′ = (λ1, ..., λk−1, λk + λk+1, λk+2, ..., λm), the sign of the elementary coarsening is

s(λ, λ′) = k (mod 2).

• Given an ordered partition λ = (λ1, ..., λm) and its initial reduction λ′, the sign of the reduction is
given by

s(λ, λ′) = λ1sj (mod 2)

and the sign of its final reduction is given by the same expression, with λm replacing λ1.

Definition 5.5. The complex of positive domains with partitions CDP∗ = CDP∗(G;Z) is freely generated

by triples of the form D, ~N,~λ, where

• D ∈ D+(x, y) is a positive domain.

• ~N ∈ Nn is an n-tuple of nonnegative integers, ~N = (N1, . . . , Nn).

• ~λ = (λ1, . . . , λn) is an n-tuple of ordered partitions, where λj = (λj,1, . . . , λj,mj
) is an ordered

partition of Nj.

The grading of (D, ~N,~λ) is given by the Maslov index of D plus the sum of the lengths of the λj (which is

referred to as the total length of ~λ). The differential is given by four terms, ∂ = ∂1 + ∂2 + ∂3 + ∂4, where
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∂1(D, ~N,~λ) =
∑

R∗E=D

(−1)s(R)(E, ~N,~λ) + (−1)µ(D)
∑

E∗R=D

(−1)s(R)(E, ~N,~λ)

∂2(D, ~N,~λ) = (−1)µ(D)
n∑

j=1

(−1)l(λ1)+···+l(λj−1)
∑

D=E∗Hj (horizontal)

(−1)1+s(λj ,λ
′

j)
∑

λ′

j
∈UE(λj)

(E, ~N + ~ej , ~λ
′)

+ (−1)µ(D)
n∑

j=1

(−1)l(λ1)+···+l(λj−1)
∑

D=E∗Vj (vertical)

(−1)s(λj ,λ
′

j)
∑

λ′

j
∈UE(λj)

(E, ~N + ~ej , ~λ
′)

∂3(D, ~N,~λ) = (−1)µ(D)
n∑

j=1

(−1)l(λ1)+···+l(λj−1)
∑

λ′

j
∈EC(λj)

(−1)s(λj ,λ
′

j)(D, ~N,~λ′)

∂4(D, ~N,~λ) = (−1)µ(D)
n∑

j=1

(−1)l(λ1)+···+l(λj−1)
∑

λ′

j
∈IR(λj)

(−1)s(λj ,λ
′

j)(D, ~N − λj,1~ej , ~λ
′)

+ (−1)µ(D)
n∑

j=1

(−1)l(λ1)+···+l(λj)
∑

λ′

j
∈FR(λj)

(−1)s(λj ,λ
′

j)(D, ~N − λj,mj
~ej, ~λ

′)

Remark 5.6. In the case that all sj = 0, these signs agree with the signs of [MS21, Definitions 4.1-4.3],
with the exception of the type II differential.

Lemma 5.7. (CDP∗, ∂) is a chain complex.

Proof. The proof is similar to that of [MS21, Lemma 4.4], which is the same case analysis of Lemma 4.3,
except where we keep track of signs. In the case of

(∂4)
2 + ∂3∂4 + ∂4∂3 = 0

we still have all but two cases cancelling in pairs by reversing the order of the two operations. These two
cases are

• Two initial reductions and an elementary coarsening at the beginning, followed by an initial reduc-
tion. The former has sign

λ1sj + λ2sj (mod 2)

and the latter has sign

1 + (λ1 + λ2)sj (mod 2)

which is the opposite sign.

• Two final reductions and an elementary coarsening at the end, followed by a final reduction. Note
that final reductions have an extra sign of l(λj) compared to initial reductions, so that including this
extra sign, the former has sign

l(λj) + (l(λj)− 1) + λmsj + λm−1sj (mod 2)

and the latter has sign

(l(λj)− 1) + (l(λj)− 1) + (λm−1 + λm)sj (mod 2)

which is the opposite sign.

Finally, although we still have ∂2∂4 + ∂4∂2 = 0, the change to the sign of the type II differential gives a new
set of cancellations

∂2
1 + ∂2∂4 + ∂4∂2 = 0

For this case, suppose D = A ∗ E = E ∗A is the domain where A = R ∗ S is an annulus.
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• If A is a vertical annulus Vj , then s(R) + s(S) = 1, so that removing R then S from the front has
sign 1, while the type II differential that produces a unit enlargement at the front of λj followed
by the initial reduction of λj has sign 0. Also, removing S then R from the back has sign 0 (since
the Maslov index of the domain decreases once), while the type II differential that produces a unit
enlargement at the end of λj followed by the final reduction of λj has sign l(λj) + 1 + l(λj) = 1
(mod 2).

• If A is a horizontal annulus Hj , then s(R) + s(S) = 0, so that removing R then S from the front
has sign 0, while the type II differential that produces a unit enlargement at the front of λj followed
by the initial reduction of λj has sign 1. Also, removing S then R from the back has sign 1 (since
the Maslov index of the domain decreases once), while the type II differential that produces a unit
enlargement at the end of λj followed by the final reduction of λj has sign l(λj)+ l(λj) = 0 (mod 2).

�

The analogue of Proposition 4.4 also holds over Z.

Proposition 5.8. There is a filtration on CDP∗ such that the associated graded has homology Z2n ⊗ Z[U ].
In particular, Hk(CDP∗) has rank at most

⌊k/2⌋∑

l=0

(
n

k − 2l

)

Proof. The proof is identical to the proof of Proposition 4.4. �
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