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ABSTRACT
The Fermi/GBM instrument is a vital source of detections of gamma-ray bursts and has an increasingly important role to
play in understanding gravitational-wave transients. In both cases, its impact is increased by accurate positions with reliable
uncertainties. We evaluate the RoboBA and BALROG algorithms for determining the position of gamma-ray bursts detected by
the Fermi/GBM instrument. We construct a sample of 54 bursts with detections both by Swift/BAT and by Fermi/GBM. We then
compare the positions predicted by RoboBA and BALROG with the positions measured by BAT, which we can assume to be the
true position. We find that RoboBA and BALROG are similarly precise for bright bursts whose uncertainties are dominated by
systematic errors, but RoboBA performs better for faint bursts whose uncertainties are dominated by statistical noise. We further
find that the uncertainties in the positions predicted by RoboBA are consistent with the distribution of position errors, whereas
BALROG seems to be underestimating the uncertainties by a factor of about two. Additionally, we consider the implications
of these results for the follow-up of the optical afterglows of Fermi/GBM bursts. In particular, for the DDOTI wide-field imager
we conclude that a single pointing is best. Our sample would allow a similar study to be carried out for other telescopes.
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1 INTRODUCTION

Gamma-ray bursts (GRBs) are transient events with isotropic ener-
gies of 1050–1053 ergs caused by a collimated relativistic jet launched
from the vicinity of a compact central engine (Gehrels & Razzaque
2013). They consist of an initial prompt emission of gamma-ray pho-
tons, largely from internal shocks in the jet, followed by an afterglow
at longer wavelengths resulting from the interaction of the jet with
the circumstellar medium (Sari et al. 1998; Granot & Sari 2002).

GRBs are empirically classified into two populations using the
time interval 𝑇90 between the moments at which 5% and 95% of
the prompt emission are detected (Kouveliotou et al. 1993). GRBs
are classified as short (SGRB) if they have a 𝑇90 < 2 s and long
(LGRB) if they have a 𝑇90 > 2 s. This classification is important as
there is a strong correlation between 𝑇90 and the progenitor system.
LGRBs tend to be the result of the death of massive stars following
core collapse (Woosley 1993; Woosley & Bloom 2006), whereas
SGRB tend to arise from the merger of compact binary systems with
at least one neutron star (Lee & Ramirez-Ruiz 2007; Abbott et al.
2017; Eichler et al. 1989; Narayan et al. 1992; Ruffert & Janka 1998).
These mergers are caused by the orbital decay of the compact binary
system due to the emission of gravitational radiation, and as such
are important for multi-messenger astronomy (Branchesi 2016). The
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two populations do overlap to some degree, and so there is ambiguity
when 𝑇90 is around 2 s (Dimple et al. 2022; Garcia-Cifuentes et al.
2024; Yang et al. 2022; Troja et al. 2022).

For many reasons, the afterglow phase is vitally important for the
identification and subsequent follow-up of GRBs. Gamma-ray de-
tectors tend to have poor angular resolution, so observations of the
afterglow in X-rays or the optical are the best means to obtain a
localization at the level of arcseconds. Such localizations allow us to
tie a GRB to its host galaxy or conversely demonstrate that it occurs
outside of a galaxy. They are also necessary for redshift determina-
tion, which to date have been made either directly from the afterglow
or from the host galaxy associated with the afterglow. Finally, the af-
terglow provides important information on the environment in which
the GRB occurred.

The Swift satellite (Gehrels et al. 2004) has allowed us to exploit
these characteristics of GRBs and their afterglows over the last 19
years. GRBs are detected in gamma rays by the BAT instrument
(Barthelmy et al. 2005), and then the afterglow is localized to arcsec-
precision in X-rays by the XRT (Burrows et al. 2005; Evans et al.
2009) and in the optical by UVOT (Roming et al. 2005, 2017; Page
et al. 2019). The main disadvantages of Swift are the relatively small
field-of-view of BAT of about 1.4 sr (only about 11% of the sky), the
relatively soft response of BAT (up to about 150 keV), and worries
about its longevity given its age and reliance on reaction wheels
(Cenko 2022).
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The Fermi satellite has several advantages compared to Swift. Its
GBM instrument views 70% of the sky and has good sensitivity up
to 10 MeV (Meegan et al. 2009). These properties allow it to detect
about 250 GRBs per year (von Kienlin et al. 2020), compared to
about 100 for BAT (Lien et al. 2016). Furthermore, its response at
higher energies allows it to detect about 40 SGRBs per year (Kocevski
et al. 2018), whereas BAT detects only about 10 (Lien et al. 2014).
On the other hand, the localizations delivered by GBM have typical
uncertainties of 5–15 deg (Connaughton et al. 2015), and Fermi is
not equipped with a means to improve this by observing emission
from the afterglow. Some GBM GRBs are also detected at higher
energies by the LAT instrument and localized to about 10 arcmin,
but only about 20 per year (Ajello et al. 2019).

Instead, precise localizations of GBM GRBs must typically be
provided by the detection of the optical afterglow by wide-field im-
agers such as iPTF (Singer et al. 2015), DDOTI (Watson et al.
2016), GOTO (Mong et al. 2021), and ZTF (Ahumada et al. 2022).
The success of these searches is improved by having not only good
estimates of the positions from GBM but also good estimates of the
uncertainties in these positions.

Moreover, GBM has acquired new importance in the era of
gravitational-wave astronomy, as its wide field gives an excellent
chance of detecting faint gamma-ray emission associated with nearby
gravitational-wave sources such as compact binary mergers. This was
dramatically demonstrated in the case of GRB 170817A, which was
produced by GW170817 (Abbott et al. 2017; Goldstein et al. 2017;
Savchenko et al. 2017). Detections by GBM allow the search area
to be narrowed and provide vital information on the nature of the
progenitors and remnant. One such a system is RAVEN adopted
by the LVK collaboration (Adhikari et al. 2023; Sharma Chaudhary
et al. 2023).

For these reasons, accurate positions and reliable uncertainties for
GBM detections are increasingly important. In this work, we evaluate
two current systems that estimate the position of GBM GRBs: the
RoboBA system (Connaughton et al. 2015; Goldstein et al. 2020) and
the BALROG system (Burgess et al. 2018; Berlato et al. 2019). In
contrast to previous work, we will use published positions produced
by the teams behind both systems. Thus, our evaluation is entirely
empirical and independent.

Our paper is organized as follows. In section 2 we briefly describe
the GBM instrument and the means by which it provides information
for localizing GRBs. In section 3 we describe the products of the
RoboBA and BALROG processes. In section 4 we describe the sam-
ples we use to evaluate the performance of RoboBA and BALROG.
In section 5 we consider the accuracy of both the position estimates
and the uncertainty estimates. In section 6 we determine the most
appropriate observation strategy for our wide-field imager DDOTI
based on our results. Finally, in section 7 we summarize and discuss
our results.

2 GBM POSITIONS

Fermi/GBM has twelve sodium iodide (NaI) detectors sensitive over
an energy range from 8 keV to 1 MeV and two bismuth germanate
(BGO) scintillators sensitive from 200 keV to 40 MeV (Meegan
et al. 2009). The NaI detectors are distributed around the spacecraft
and oriented in different directions. The two BGO detectors are on
opposite sides of the spacecraft. The signal measured in each detector
depends on the position and spectrum of the source for two main
reasons: each detector has an energy-dependent angular response
function, and absorption in the spacecraft reduces the count rate in

detectors on the side that faces away from the source. In addition, the
scattering of gamma rays from the Earth’s atmosphere also changes
the relative count rates. By modeling the count rates, taking into
account the spectrum of the source, the position can be determined,
albeit with significant uncertainties.

The Fermi spacecraft provides initial “flight” positions calculated
by an on-board computer. While these are produced in 10––30 s (Con-
naughton et al. 2015), the meager processing power available limits
their accuracy. Better “ground” positions are provided by subsequent
processing of downloaded data using more powerful computers on
the Earth.

In the first years of the Fermi mission, ground positions were
provided by having the Burst Advocates manually run the Daughter of
Location (DoL) algorithm (Connaughton et al. 2015). This algorithm
fits the count rates by varying the position of the source and allowing
it to have one of three different spectra representing soft, medium,
and hard GRBs. In their evaluation of DoL, Connaughton et al.
(2015) found that the statistical uncertainties for bright GRBs could
be as small as 1 deg, but the systematic uncertainties were well
represented by a Gaussian with 1𝜎 radius of 3.7 degrees and a non-
Gaussian tail containing about 10% of the probability and extending
to approximately 14 deg.

The BALROG algorithm was created by Burgess et al. (2018).
The major advance was noting that there were correlations between
the position and spectrum of the GRB, and so in theory a better
determination of the uncertainties could be obtained by fitting simul-
taneously for both. This could also reduce the apparent systematic
error in the determination of the position of bright GRBs. The orig-
inal BALROG algorithm was improved and automated by Berlato
et al. (2019), and produces positions in a matter of minutes, although
the delay before the GBM data is publically released is an important
factor. The BALROG algorithm is specifically tuned for bright GRBs;
for example, it uses only about 10 seconds of data, to avoid smearing
in the response caused by the motion of the spacecraft. Berlato et al.
(2019) also compared the BALROG results to DoL and found that
BALROG gave more precise positions, at least for bright GRBs in
which the DoL uncertainty is dominated by systematic effects.

Subsequently, the RoboBA system was deployed. Goldstein et al.
(2020) describe it as an automated system that uses an improved
version of the earlier Daughter of Location (DoL) and report that
the systematic uncertainty for the updated RoboBA localizations
was 1.8 degrees for 52% of GRBs and 4.1 for the remaining 48%.
RoboBA also runs in a matter of minutes and has the advantage
of early access to proprietary GBM data. Goldstein et al. (2020)
compared the RoboBA results to BALROG, and found that RoboBA
gave more precise positions.

Both systems distribute their results in a form that is convenient for
robotic telescopes. The GBM flight positions and RoboBA positions
are distributed using GCN Notices (Barthelmy et al. 1998). The
BALROG positions are distributed as JSON and FITS files whose
locations can be derived from the GBM trigger number. In this sense,
there is little to choose between the two. (The BALROG team also
send GCN Circulars, but it is more difficult for a robotic system to
automatically extract information from the text in these.)

Our direct interest in GBM positions is to use them to point our
wide-field imager DDOTI (Watson et al. 2016). In the first few min-
utes after a burst we only have GBM flight positions and RoboBA po-
sitions. After this initial period, we have both BALROG and RoboBA
positions, and obviously we wish to use the better one. This requires
understanding the performance of each algorithm. The situation we
faced at the start of this work was that each team had published results
that indicated that their approach gave better positions. Therefore, we
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embarked on this independent empirical study to gain a clearer un-
derstanding of the matter.

3 POSITION ESTIMATIONS AND UNCERTAINTIES

In this section, we briefly describe the products of the RoboBA and
BALROG algorithms and in particular their model uncertainties.
This is useful to establish our notation.

Each algorithm provides estimators 𝛼̂ and 𝛿 of the true right as-
cension 𝛼 and declination 𝛿 of the burst. We will use 𝛾 to be the
total angular distance error (i.e., the angular distance between the
estimated position and the true position) and 𝛾𝛼 and 𝛾𝛿 to be the
corresponding angular distances parallel to the local right ascension
and declination axes.

One potentially confusing aspect is that the error distributions are
traditionally described in terms of the circle or ellipse corresponding
to 1𝜎, 2𝜎, or 3𝜎 (Briggs et al. 1999; Connaughton et al. 2015;
Berlato et al. 2019). This does not mean that the angular radius of the
circle is that number of standard deviations. Rather, it means that the
probability within the circle or ellipse is the same as that within ±1𝜎,
±2𝜎, and ±3𝜎 of a one-dimensional Gaussian distribution, that is,
0.6827, 0.9545, and 0.9973.

For a two-dimensional circular Gaussian distribution with standard
deviation 𝑎 in each coordinate, the probability density is

𝑝(𝛾) = 1
2𝜋𝑎2 𝑒

−𝛾2/2𝑎2
. (1)

We can easily integrate this and find that the 1𝜎, 2𝜎, and 3𝜎 radii
correspond to 𝛾 = 1.515𝑎, 2.486𝑎, and 3.439𝑎.

3.1 RoboBA

RoboBA uses the “DoL” algorithm described in detail by Con-
naughton et al. (2015) and Goldstein et al. (2020).

The model error distribution is based on the von Mises-Fisher
distribution (Fisher et al. 1987; Briggs et al. 1999; Connaughton
et al. 2015), which is a generalization of the Gaussian distribution to
the surface of a sphere, and is given by

𝑝(𝛾) = 𝜅

2𝜋 (𝑒𝜅 − 𝑒−𝜅 ) 𝑒
𝜅 cos 𝛾 , (2)

in which the concentration parameter 𝜅 is used to characterize the
width of the distribution. The probability within an angular radius 𝛾
is

𝑃(⩽ 𝛾) = 𝜅

2𝜋
(
1 − 𝑒−2𝜅 ) ∫

Ω

𝑒𝜅 (cos 𝛾−1) 𝑑Ω. (3)

Unfortunately, this integral does not, in general, have a closed form.
Therefore, to advance, we rewrite the distribution as

𝑝(𝛾) = 𝜅

2𝜋(1 − 𝑒−2𝜅 )
𝑒𝜅 (cos 𝛾−1) . (4)

This form has two advantages in our current context in which 𝛾

is typically small and 𝜅 is typically large. First, this form avoids
overflow when evaluated numerically. Second, we can approximate
cos 𝛾 as 1 − 𝛾2/2 with an error of less than 1 part in 1000 out to a
radius of 20 deg, and substituting this into equation (4) we rapidly
obtain an approximate Gaussian distribution,

𝑝(𝛾) ≈ 𝜅

2𝜋
𝑒−𝜅𝛾

2/2. (5)

We can then use all of the standard results for a Gaussian. Comparing

equations 1 and 5, we see that 𝜅−1 ≈ 𝑎2 and so in terms of the 1𝜎
angular radius 𝜎 in radians (Briggs et al. 1999),

𝜅−1 ≈ 0.6602𝜎2. (6)

The numerical factor here is simply the inverse of the factor 1.515
in the relation between 𝜎 and 𝑎 derived above. When 𝜎 ⩽ 10 deg
(i.e., 𝜎 ⩽ 0.18 rad), 𝜅 ⩾ 75, which validates our assumption that 𝜅
is typically large.

The DoL algorithm uses two von Mises-Fisher distributions, one
for the core (containing a fraction 𝑓 of the probability), and one for
the tail (Connaughton et al. 2015; Goldstein et al. 2020). That is, the
probability that the error is less than the angular distance 𝛾 is given
by

𝑃(⩽ 𝛾) = 𝑓 𝑃core (⩽ 𝛾) + (1 − 𝑓 )𝑃tail (⩽ 𝛾). (7)

The two distributions 𝑃core and 𝑃tail are von Mises-Fisher distribu-
tions with different values of the concentration parameter 𝜅core and
𝜅tail. Each combines the statistical uncertainty 𝜎stat with different
values of the systematic uncertainty 𝜎sys. For 𝑃core, we have

𝜅−1
core = 0.6602 (𝜎2

stat + 𝜎2
core), (8)

whereas for 𝑃tail, we have

𝜅−1
tail = 0.6602 (𝜎2

stat + 𝜎2
tail). (9)

The statistical uncertainty 𝜎stat is distributed with the predicted
position. To calculate the model error distribution, we also need the
fraction of probability in the core and the systematic uncertainties
for the two components. We adopt the “Updated RoboBA All GRBs”
model of Goldstein et al. (2020), which has 𝑓 = 0.517, 𝜎core =

1.81 deg, and 𝜎tail = 4.07 deg.

3.2 BALROG

The BALROG algorithm produces two-dimensional images of
the probability distribution of the position on the sky (Burgess
et al. 2018). Two images are produced for each localization, one
with just the statistical uncertainty and another convolved with a
two-dimensional Gaussian representing the systematic uncertainty
(Berlato et al. 2019). The BALROG team view these images as their
primary products (Greiner, private communiation).

Subsequently, the BALROG process fits the unconvolved image
with a two-dimensional Gaussian,

𝑝(𝛾𝛼, 𝛾𝛿) =
1

2𝜋𝑎𝛼𝑎𝛿
𝑒−(𝛾2

𝛼/𝑎2
𝛼+𝛾2

𝛿
/𝑎2

𝛿
)/2. (10)

in which 𝛾𝛼 and 𝛾𝛿 are the angular separations in 𝛼 and 𝛿 and 𝑎𝛼 and
𝑎𝛿 are the corresponding standard deviations (Berlato et al. 2019).
The results of the fit are given as 𝜎𝛼 and 𝜎𝛿 , the half-axes of the
ellipse that contains 0.683 of the probability. Note that 𝜎𝛿 is given
in terms of 𝛼, not the separation 𝛾𝛼, and so needs to be multiplied
by cos 𝛿 before being used with angular separations. The systematic
uncertainty 𝜎sys is also given as the radius enclosing 0.683 of the
probability and is typically 1.0 or 2.0 deg. All of these parameters
are distributed as secondary products by the BALROG team.

To obtain an approximation of the parameters 𝜎′
𝛼 and 𝜎′

𝛿
of an

equivalent fit to the image after convolution with the systematic un-
certainty, we add the systematic uncertainty in quadrature as follows,

(𝜎′
𝛼 cos 𝛿)2 = (𝜎𝛼 cos 𝛿)2 + (𝜎sys)2 (11)

and

(𝜎′
𝛿)

2 = (𝜎𝛿)2 + (𝜎sys)2. (12)

MNRAS 000, 1–11 (2024)
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The final Gaussian then has

𝑎𝛼 = 0.660𝜎′
𝛼 cos 𝛿 (13)

and

𝑎𝛿 = 0.660𝜎′
𝛿 . (14)

Using the transformations 𝛾𝛼 = 𝑟 cos 𝜃 and 𝛾𝛿 = (𝑎′
𝛿
/𝑎′𝛼)𝑟 sin 𝜃,

we can show that the probability contained within an equiprobability
ellipse that passes through a point with separations 𝛾𝛼 and 𝛾𝛿 is

𝑃(𝛾𝛼, 𝛾𝛿) = 1 − 𝑒−
[
(𝛾𝛼/𝑎′

𝛼 )2+(𝛾𝛿/𝑎′
𝛿
)2]/2. (15)

In our analysis below, we will use both the two-dimensional im-
ages (including systematic errors) and equation (15). Both give very
similar results, which validates our approach to incorporating the
systematic errors into the BALROG fits.

4 SAMPLES

We evaluate the two algorithms using a full sample of 54 GRBs
detected by both Fermi/GBM and Swift/BAT and with published
positions from BAT, RoboBA, and BALROG and using a bright
subsample of 27 GRBs. In this section, we describe the construction
of the samples.

4.1 Full Sample

We first generated a list of all of the GRBs detected by GBM between
2019 September 14 UTC and 2023 November 07 UTC. The start date
was chosen to be when version 41731 of the RoboBA ground soft-
ware started to be used (for trigger 590141799 corresponding to GRB
190914.345). The end date has no particular external significance but
was when we began the final analysis for publication. This interval
excludes the GRBs used to calibrate the two algorithms. To create
the list, we examined the GCN Notices distributed by the GBM team
and ignored triggers that did not have “GRB” as the MOST_LIKELY
classification value in the latest notice (e.g., GRB 220826497 was
initially classified as most likely to be distant particles, but subse-
quently reclassified as most likely to be a GRB). This gave a list of
984 GRBs.

We then generated a list of all GRBs detected by BAT in the same
interval from the “Swift Trigger and Burst Real-Time Information”
table on the GCN website1. This gave a list of 398 GRBs.

We matched the two lists under the assumption that GRBs that
have trigger times within 100 seconds are the same. This gave a list
of 74 GRBs detected by both GBM and BAT. Since these events were
detected by both satellites, there is a strong likelihood that they are
real astrophysical bursts.

We then matched the GBM bursts with the BALROG positions in
the “GBM-Locations” catalog on the MPE website2. We found posi-
tions for 54 of the 74 GRBs and found one other (GRB 200427768)
for which the BALROG analysis was noted as having failed. We
do not know why there are no BALROG positions for the other 19
GRBs. While some are faint, others are bright enough to have small
RoboBA statistical uncertainty. We do not use these 20 GRBs in our
analysis, but only the 54 for which published positions from both
RoboBA and BALROG are available. These 54 GRBs form our full
sample.

1 https://gcn.gsfc.nasa.gov/swift_grbs.html
2 https://grb.mpe.mpg.de/grb_overview/

Table 1 shows the list of 74 GRBs detected by both GBM and
BAT. The first column shows the GBM GRB name (year, month,
day, and thousandths of a day) and the next two columns show the
BAT and GBM trigger numbers. After that, the table shows the
positions from BAT, RoboBA, and BALROG. The uncertainties on
the BAT positions are typically 3 arcmin in radius (90% probability)
and are negligible compared to the uncertainties of at least 1 deg in
the position estimates from both RoboBA and BALROG. Therefore,
we take the BAT positions to be the true position 𝛼 and 𝛿. For
RoboBA we show the version of the software, the estimated position
𝛼̂ and 𝛿, and the statistical uncertainty 𝜎stat defined in section 3.1.
For BALROG, we show the estimated position 𝛼̂ and 𝛿, the statistical
uncertainties𝜎𝛼 and𝜎𝛽 , and the systematic uncertainty𝜎sys, defined
in section 3.2.

Most of the RoboBA positions are ground positions produced by
version 41731 of the software, but a few are flight positions produced
by version 3 or ground positions produced by versions 415 or 4173.

Table 2 shows derived quantities for the full sample of 54 GRBs
used in the analysis. In particular, it shows the error 𝛾 in deg be-
tween the positions estimated by RoboBA and BALROG and the
true position determined by BAT.

4.2 Bright Subsample

Our full sample includes both bright and faint GRBs and as such is in
some ways unfair to BALROG, which is optimized to give improved
positions of the brightest GRBs. For example, the current implement
of BALROG uses only 10 seconds of data around the peak to avoid
smearing due to the motion of the spacecraft (Berlato et al. 2019),
whereas our understanding is that RoboBA uses a longer interval
and so might be expected to give better results for fainter GRBs
dominated by statistical errors.

The question of whether a GRB is bright in this sense is not com-
pletely clearly defined. One might consider only GRBs with 𝑇90 of
no more than 10 seconds, so that BALROG sees almost all of the
flux, or consider the peak flux. However, we have adopted an empir-
ical approach; essentially, we ask BALROG if it considers a GRB
to be well-localized or not according to the statistical uncertainty,
which is indirectly related to the number of photons analysed by
BALROG. For each GRB, we determine the equivalent BALROG
circular statistical uncertainty 𝜎 using

𝜎2 ≡ (𝜎𝛼 cos 𝛿) (𝜎𝛿). (16)

Table 2 shows 𝜎 in deg for each GRB. We then define a bright
subsample of 27 GRBs that includes only those GRBs with equivalent
circular uncertainties smaller than the median of 5.7 deg.

4.3 BALROG Map Subsample

The BALROG “GBM-Locations” catalog on the MPE website also
contains FITS HEALPIX images containing the probability distri-
bution on the sky. Unfortunately, we were only able to find images
for the 25 GRBs from GRB 210211363 and later. We refer to these
25 as the BALROG map subsample. Furthermore, 12 are also in our
bright subsample and so form the bright BALROG map subsample.

5 ANALYSIS

5.1 Distribution of Errors

We first consider the distribution of the errors in the position. For
each GRB in our sample, we determined the error as the angular
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Figure 1. The cumulative distribution of position errors 𝛾 for the RoboBA
and BALROG algorithms for the GRBs in (a) the full sample (above) and (b)
the bright subsample (below). The median errors, shown with dashed lines,
are 3.7 and 3.2 deg for RoboBA and 9.2 and 2.6 deg for BALROG.

distance 𝛾 between the BAT position, which is assumed to be the true
position, and the positions estimated by the RoboBA and BALROG
algorithms.

Figure 1 a shows the cumulative distribution of errors for both
algorithms and for the full sample of 54 GRBs. We see that the two
algorithms give very similar results for the roughly 25% of GRBs with
errors of up to about 3 degrees, but after that, the RoboBA algorithm
has smaller errors than the BALROG algorithm. The median errors,
shown with dashed lines in Figure 1a, are 3.7 deg for RoboBA and
9.2 deg for BALROG.

Figure 1b shows the cumulative distribution of errors for both
algorithms and for the bright subsample. The results are now quite
different. The two algorithms give very similar results for the better-
localized half of the subsample. The median errors, shown with
dashed lines in Figure 1b, are 3.2 deg for RoboBA and 2.6 deg for
BALROG.

The distributions suggest that BALROG is performing similarly or
perhaps slightly better than RoboBA for the roughly 25% of brightest
and best-localized GRBs. For the fainter and more poorly localized
GRBs, RoboBA gives positions with smaller errors. This change in
behavior is consistent with the stated optimization of BALROG for
brighter GRBs (Berlato et al. 2019). We considered carrying out sta-
tistical tests on these samples to quantify these statements further.
However, with so few GRBs in our samples, we are susceptible to
large statistical fluctuations and also to somewhat arbitrary decisions
(e.g., our choice of the median uncertainty to define the bright sub-
sample, rather than a smaller or larger percentile , such as the bright
subsample being those with uncertainties in the lowest 25%).

One feature that jumps out at us is that even in the bright subsample
there are two BALROG positions (GRBs 220118764 and 220714582)
and one RoboBA position (GRB 191011192) with errors of more
than 60 deg. This gives some idea of the difficulties both groups have
faced in finding a robust algorithm.

5.2 Distribution of Enclosed Probabilities

In addition to positions, both RoboBA and BALROG distribute esti-
mates of the uncertainties in the position. It is important to understand
how well these estimates reflect reality. In an ideal case, the cumu-
lative distribution of probability enclosed within the observed offset
𝛾 should be a straight line from 0 to 1. In the case of RoboBA, the
enclosed probability is given by equation (7). In the case of BAL-
ROG, we determined it in two ways. For the full sample, we used
equation (15) to determine the probability within the equiprobability
ellipse passing through the true position. For the map subsample,
we directly summed the probability in the maps (the ones that ex-
plicitly include the systematic error) within a circle centered on the
estimated position and whose radius was the angular distance to the
true position. Table 2 gives these three probabilities.

The cumulative distributions of enclosed probability are shown
in Figure 2a for the whole sample and Figure 2b for the bright
subsample. For BALROG, we show two determinations: the solid
lines are determined from the Gaussian fits and the dashed lines are
determined directly from the probability maps.

We see that the line for RoboBA is quite close to the ideal case,
both for the full sample and the bright subsample. This suggests
that the uncertainties are accurately given by RoboBA. On the other
hand, the lines for BALROG are dramatically below the ideal for
both samples and for both probabilities determined from the fits and
from the maps. This strongly suggests the true uncertainties in the
position are underestimated by BALROG.

In the full sample, the fraction of GRB errors within the esti-
mated 1𝜎 (𝑃 = 0.6827) uncertainty region is 61% for RoboBA,
31% for BALROG with probabilities determined from the fits, and
48% for BALROG with probabilities determined from the maps. For
the bright subsample, the corresponding percentages are 70% for
RoboBA and 37% and 42% for BALROG.

Again, we need to remind ourselves that BALROG was optimized
for bright GRBs (Berlato et al. 2019). Therefore, we should not be too
demanding of its performance with the full sample, which includes
both bright and faint GRBs. However, it is somewhat surprising that

MNRAS 000, 1–11 (2024)



6 K. O. C. López et al.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

F
(P

(≤
γ)

)
≤

p

(a) Full Sample

Ideal
RoboBA
BALROG Fits
BALROG Maps

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

F
(P

(≤
γ)

)
≤

p

(b) Bright Sample

Ideal
RoboBA
BALROG Fits
BALROG Maps

Figure 2. The cumulative distribution of enclosed probabilities for the
RoboBA and BALROG algorithms for the GRBs in (a) the full sample (above)
and (b) the bright subsample (below). For BALROG, the solid lines are de-
termined from the Gaussian fits and the dashed lines are determined directly
from the probability maps.

the cumulative distribution for the bright subsample differs so much
from the ideal case.

To quantify the magnitude of the effect, we found that if we artifi-
cially increased the BALROG uncertainties from the fits by a factor
of two, the percentage within the estimated 1𝜎 (𝑃 = 0.6827) un-
certainty region rose from 37% to 63%. Thus, it appears that the
uncertainties generated by BALROG are underestimated by roughly
a factor of two.

6 APPLICATION TO DDOTI

DDOTI3 is a wide-field imager installed at the Observatorio As-
tronómico Nacional on the Sierra de San Pedro Mártir in Baja Cal-
ifornia, Mexico (Watson et al. 2016). It consists of six 28 cm tele-
scopes with prime-focus CCDs mounted on a common equatorial
mount and offers an instantaneous field of view of approximately
70 deg2 (7 deg E-W and 10 deg N-S) with a 10𝜎 limited magnitude
in 60 seconds of approximately 𝑟 ≈ 18.7 in dark time and 𝑟 ≈ 18.0 in
bright time. Its main science goals are the localization and follow-up
of optical transients associated with GRBs detected by Fermi/GBM
and gravitational-wave events (Watson et al. 2020; Thakur et al. 2020;
Becerra et al. 2021; Dichiara et al. 2021).

In its follow-up of GRBs detected by Fermi/GBM, DDOTI is
a consumer of the estimated positions and uncertainties produced
by the RoboBA and BALROG algorithms. At a practical level, we
need to understand whether we should point the telescope using the
RoboBA or BALROG positions and whether we should observe a
single field or a larger mosaic. The second issue involves a trade-
off between coverage and depth. DDOTI is typically background-
limited and the optical transients fade rapidly, so if we observe at
𝑁 pointings we increase our effective field to about 70𝑁deg2 but
reduce our sensitivity by about 1.25 log 𝑁 magnitudes. For mosaics
with 1 × 1, 2 × 1, 2 × 2, or 3 × 2 pointings, we have fields of 7 × 10,
14 × 10, 14 × 20 deg, and 21 × 20 deg and corresponding losses of
sensitivity of about 0.0, 0.4, 0.8, and 1.0 magnitudes.

To address these questions, we have simulated observations of our
GRB samples with DDOTI. We assume that we center our single-
field or mosaic either to the RoboBA or BALROG position, and then
ask whether the BAT position would fall within a mosaic with a given
size. Table 3 and Figure 3 shows the results. We see that centering
the mosaic on the RoboBA position gives a higher fraction of GRBs
within the field than centering the mosaic on the BALROG position.
For example, if we choose to observe only one field, then pointing
to the RoboBA position would give coverage at the true position of
57% of the full sample, whereas the same for the BALROG position
would give only 35%. The corresponding percentages for the bright
subsample are 81% for RoboBA and 67% for BALROG.

Considering the high fraction of GRBs within one field and the
significant sensitivity loss for observing more than one pointing, our
strategy for localizing GBM GRBs with DDOTI is to observe only a
single pointing centered on the RoboBA position.

7 CONCLUSIONS

We have evaluated the precision of the estimates of GRB positions
and the precision of the associated uncertainties for a sample of 54
GRBs detected by both Swift/BAT and Fermi/GBM and for which
positions are available with recent versions of the RoboBA and
BALROG algorithms.

We find that RoboBA and BALROG offer very similar results for
approximately 25% of GRBs of bright GRBs with errors up to about
3 deg, RoboBA gives smaller errors beyond this range. This result
was not entirely surprising, since BALROG was optimized for bright
GRBs in which the systematic error can dominate (Berlato et al.
2019), and some of the improvements in RoboBA seem to have been
stimulated by the earlier advances in BALROG. The approach taken
by RoboBA minimizes the statistical error, which dominates for faint
GRBs.

3 http://ddoti.astroscu.unam.mx/
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Figure 3. The errors in the positions shown relative to the DDOTI fields. The solid black rectangle represents one DDOTI field (7 × 10 deg). The dashed black
rectangle represents a mosaic of 3 × 2 DDOTI fields (21 × 20 deg). The crosses show the errors in the RoboBA and BALROG positions. The upper panels are
for the full sample and the lower panels are for the bright subsample. The left panels zoom in on the DDOTI field. The right panels show the tail of outliers.

On the other hand, we find that while the uncertainties estimated
by RoboBA correspond closely to the observed uncertainties, those
produced by BALROG seem to underestimate the true uncertainties
significantly, perhaps by a factor of two. This was an unexpected
result. The uncertainties in the position of the GRB are important
for defining the limits of the search area, both when determining the
observing strategy and during subsequent analysis.

One of the advantages of BALROG, demonstrated by Burgess
et al. (2018), is that it makes explicit the dependency between the
source position and spectrum by solving for these simultaneously.
Our results do not contradict this finding, as we focus only on the
position. This suggests that it would be worthwhile to understand why
the estimates of the positional uncertainties produced by BALROG
seem to be underestimated, both to have confidence in its fits to

spectra and to continue to be able to work with the correlations in
the fits.

RoboBA emerges as a better choice for determining the observing
strategy of our wide-field imager DDOTI. The combination of the
wide field of DDOTI (70 deg2) and the improvements in GBM
positions over the last few years suggest that in a single pointing,
DDOTI can image 57% of GBM GRBs and 81% of the brighter
half. This argues against mosaicing multiple fields. Obviously, the
determination of how many fields should be observed will be different
for other instruments with smaller fields.

It is clear that there is still work to be done in this field. RoboBA
is producing excellent positions, both for bright and faint GRBs,
but there are nagging worries about its treatment of the dependence
of the position on the spectrum (Burgess et al. 2018; Berlato et al.
2019). The current implementation of BALROG is producing excel-
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lent positions for bright GRBs, but seems to be underestimating the
uncertainties. As consumers of the results of these algorithms, we
look forward to future improvements in both.
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Table 1. The Sample of GRBs. Positions and uncertainties are in deg.

GRB BAT GBM BAT RoboBA BALROG
Trigger Trigger

𝛼 𝛿 Version 𝛼 𝛿 𝜎stat 𝛼 𝛿 𝜎𝛼 𝜎𝛿 𝜎sys

191011192 928924 592461363 44.72 −27.84 41731 207.94 +57.77 4.04 46.4 −32.5 4.6 5.6 2.0
191031025 932435 594175000 233.47 +6.14 41731 247.34 +22.13 12.95 223.6 +2.6 6.1 7.4 1.0
191031780 932595 594240201 115.86 −62.34 41731 120.85 −59.58 1.63 110.0 −58.9 2.3 1.0 2.0
191031891 932608 594249816 283.27 +47.64 41731 282.80 +54.96 2.35 97.4 −33.1 78.4 40.8 2.0
191227069 946344 599103569 319.17 −16.70 41731 319.70 −13.17 1.00 318.3 −15.6 1.0 0.6 1.0
200107810 948219 600117987 107.07 −83.72 41731 356.88 −80.13 8.29 93.0 −74.3 14.7 9.5 2.0
200109074 948361 600227156 307.17 +53.00 41731 284.70 +68.86 10.41 293.2 +56.2 14.0 9.4 1.0
200215611 956639 603470376 34.12 +12.78 41731 30.53 +10.02 4.55 32.7 +11.2 4.5 5.9 2.0
200216564 956824 603552759 160.46 +19.45 41731 159.17 +20.98 6.54 154.7 +24.2 3.6 3.1 1.0
200219317 957271 603790614 342.64 −59.11 41731 344.08 −60.00 13.92 325.4 −54.8 7.9 6.1 1.0
200227306 958592 604480813 56.44 +9.49 41731 56.89 +6.26 1.00 56.5 +11.9 1.5 1.9 2.0
200228469 958733 604581288 252.03 +16.96 41731 258.44 +9.58 16.72 228.9 +25.8 16.6 9.8 2.0
200303107 959431 604895668 212.70 +51.36 41731 207.44 +50.75 3.80 216.7 +50.6 2.4 1.3 2.0
200411187 965784 608272147 47.66 −52.31 41731 69.58 −60.32 24.08 68.6 −49.0 20.1 20.9 1.0
200427768 968211 609704785 293.74 +21.89 4173 293.40 +17.94 7.47 — — — —
200528436 974827 612354449 176.64 +58.15 41731 169.22 +60.19 1.00 169.9 +57.9 1.2 0.6 1.0
200529039 974942 612406604 238.75 −11.06 41731 239.23 −18.07 8.53 244.2 +4.1 9.6 11.2 1.0
200630076 980210 615174580 91.38 −60.79 41731 86.56 −62.95 7.50 96.1 −47.9 8.9 8.1 2.0
200711461 981957 616158277 285.98 −0.14 41731 287.11 +1.30 1.59 286.3 −0.7 1.0 1.2 1.0
200716957 982707 616633066 196.01 +29.63 41731 192.09 +35.26 2.33 194.5 +28.3 1.6 1.3 2.0
200801842 985320 618005512 281.63 −2.99 3 267.02 +7.27 30.82 292.6 +9.3 45.6 30.3 1.0
200903031 994389 620786664 164.31 +50.50 41731 159.04 +54.91 3.56 161.7 +50.7 3.1 2.3 1.0
200906550 994856 621090718 272.29 +67.85 41731 270.00 +68.56 4.08 268.7 +60.5 17.8 4.8 2.0
201001416 998344 623239145 110.07 −2.21 41731 111.35 +6.45 3.93 — — — — —
201006054 998907 623639877 61.88 +65.15 415 37.27 +44.74 17.55 88.5 +67.4 21.3 7.2 2.0
201017407 1000613 624620797 36.63 +66.67 41731 21.74 +63.51 7.27 — — — — —
201021852 1001130 625004846 12.55 −55.84 3 47.05 −23.60 29.35 — — — — —
201029847 1003002 625695596 229.60 +44.46 41731 217.92 +45.90 6.33 240.4 +35.2 45.0 33.0 2.0
201105099 1004219 626235728 277.68 −6.75 4173 277.05 −1.72 12.09 256.8 +18.7 15.1 14.0 1.0
201216963 1013243 629852850 16.36 +16.54 41731 17.88 +16.80 1.00 16.2 +17.7 0.5 0.9 2.0
210102861 1015728 631312759 235.74 −37.22 41731 239.15 −34.58 3.44 231.0 −40.2 2.2 2.6 1.0
210104477 1015873 631452424 103.70 +64.66 41731 107.94 +67.09 2.88 103.4 +69.6 5.8 1.5 1.0
210119121 1017711 632717654 282.80 −61.80 41731 285.78 −63.12 7.81 246.9 −21.3 110.4 41.6 2.0
210211363 1032024 634725803 269.43 −46.30 41731 283.75 −55.13 11.78 271.5 −42.7 37.8 20.9 1.0
210306162 1035994 636695642 129.97 +60.20 41731 139.18 +64.23 1.00 — — — — —
210306397 1036024 636715939 331.85 +10.18 4173 337.91 +14.72 6.46 — — — — —
210308276 1036227 636878281 67.09 +37.41 41731 63.45 +42.77 1.18 — — — — —
210610628 1054627 645030227 204.28 +14.48 415 212.24 +11.76 4.94 189.4 +17.0 14.4 9.8 2.0
210610827 1054681 645047470 243.94 +14.39 41731 241.54 +12.40 2.79 244.2 +16.5 0.6 1.1 1.0
210618072 1056426 645673421 235.82 +46.04 41731 227.77 +42.47 7.60 221.6 +44.6 12.4 5.8 2.0
210712405 1059881 647775795 97.34 −35.39 41731 112.13 −32.42 6.44 — — — — —
210722871 1061223 648680085 27.02 −6.35 415 24.69 −6.97 3.10 — — — — —
210723615 1061284 648744372 121.73 −32.89 415 118.89 −30.04 2.96 120.9 −31.9 4.2 2.7 2.0
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Table 1 – continued

GRB BAT GBM BAT RoboBA BALROG
Trigger Trigger

𝛼 𝛿 Version 𝛼 𝛿 𝜎stat 𝛼 𝛿 𝜎𝛼 𝜎𝛿 𝜎sys

210725158 1061511 648877628 215.36 −1.18 415 217.90 +3.36 3.46 1.2 +27.3 155.5 42.6 2.0
210731931 1062336 649462872 300.31 −28.04 41731 302.02 −27.32 2.50 291.0 −39.4 18.6 17.4 1.0
210824174 1070157 651471008 232.13 +11.13 41731 235.13 +10.43 5.34 8.3 −15.9 122.7 41.1 1.0
211129410 1085430 659872271 274.56 +31.78 41731 271.36 +22.60 7.28 269.4 +26.7 7.9 8.5 1.0
211211549 1088940 660921004 212.27 +27.88 41731 211.31 +27.15 1.00 215.2 +26.9 0.1 0.1 2.0
220118764 1093742 664222840 192.27 +22.91 41731 191.37 +23.58 5.03 299.0 −26.2 1.6 4.0 1.0
220403863 1101053 670711364 191.03 +89.17 4173 154.09 +80.35 5.88 — — — — —
220408240 1101675 671089569 202.40 +47.06 41731 192.94 +49.67 6.53 — — — — —
220501828 1104842 673127515 85.58 +14.03 41731 71.81 +11.50 6.26 — — — — —
220521972 1107466 674868026 275.20 +10.38 41731 292.57 +3.85 13.57 — — — — —
220620016 1111002 677377371 299.39 +35.00 415 142.63 +58.69 9.23 — — — — —
220711761 1115766 679256193 261.99 +24.67 41731 267.83 +31.47 4.61 264.0 +35.3 11.0 9.7 2.0
220714582 1116221 679499891 47.07 −19.33 41731 45.89 −22.60 2.83 104.4 +19.2 3.3 3.6 1.0
220715934 1116441 679616687 254.89 −33.60 41731 221.71 −36.44 16.52 — — — — —
220826497 1121751 683207727 206.43 −44.04 41731 204.77 −41.37 6.56 1.6 +7.2 131.8 46.0 1.0
220907587 1123129 684252331 268.87 −20.32 41731 269.62 −18.70 6.86 242.1 −69.4 182.9 49.0 2.0
221016986 1129775 687656367 38.95 −34.62 41731 37.60 −32.06 2.22 — — — — —
221201517 1142847 691590290 266.93 −68.26 41731 263.44 −70.43 1.46 267.5 −66.4 1.7 0.9 1.0
221216473 1144698 692882483 326.02 −34.41 41731 276.31 −58.09 5.69 298.9 −9.9 12.5 13.5 1.0
221226945 1145959 693787285 22.92 −41.55 41731 16.28 −52.97 9.78 — — — — —
230217912 1154967 698363595 280.77 −28.86 41731 278.80 −27.39 1.00 — — — — —
230328621 1162001 701708092 290.99 +80.02 41731 301.82 +75.59 3.21 — — — — —
230405832 1163119 702417488 271.47 −47.07 41731 276.86 −50.27 1.58 270.2 −49.4 3.7 1.6 1.0
230506715 1167288 705085761 134.37 +45.13 41731 133.37 +42.86 1.59 — — — — —
230723488 1180410 711805358 250.38 −5.33 41731 249.34 −8.34 3.59 250.5 −11.7 1.9 2.1 2.0
230805475 1183217 712927418 207.75 +31.18 41731 208.49 +32.50 9.10 193.8 +40.2 13.8 7.2 1.0
230818977 1186032 714094060 285.88 +40.88 41731 289.18 +41.01 2.69 286.5 +31.7 3.5 2.5 1.0
230826814 1187463 714771169 83.01 +66.12 41731 82.83 +67.10 2.02 77.6 +65.8 3.8 3.9 2.0
230903724 1189514 715454583 9.93 −40.92 41731 13.44 −13.46 16.63 185.0 +0.5 118.2 49.5 1.0
231028173 1193078 720158951 214.03 +20.89 41731 214.30 +21.82 1.00 214.8 +20.9 0.7 0.8 1.0
231104075 1194500 720755253 23.79 +83.79 41731 8.04 +82.08 1.00 327.3 +79.0 1.1 0.1 2.0
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Table 2. Derived Quantities. 𝛾 and 𝜎 are in deg.

GRB RoboBA BALROG

𝛾 𝑃 𝛾 𝜎 Bright? 𝑃 from fit 𝑃 from map

191011192 147.8 1.000 4.9 4.7 Y 0.566 —
191031025 20.9 0.938 10.5 6.7 N 0.957 —
191031780 3.7 0.745 4.5 1.1 Y 0.986 —
191031891 7.3 0.970 164.8 51.8 N 0.998 —
191227069 3.6 0.773 1.4 0.8 Y 0.764 —
200107810 13.4 0.926 9.7 6.1 N 0.704 —
200109074 19.0 0.969 8.7 8.6 N 0.764 —
200215611 4.5 0.541 2.1 5.1 Y 0.155 —
200216564 1.9 0.081 7.1 3.2 Y 0.995 —
200219317 1.2 0.007 10.3 5.3 Y 0.991 —
200227306 3.3 0.729 2.4 1.7 Y 0.584 —
200228469 9.7 0.309 23.2 12.1 N 0.965 —
200303107 3.4 0.433 2.6 1.4 Y 0.714 —
200411187 14.4 0.333 13.6 16.6 N 0.666 —
200528436 4.3 0.853 3.6 0.6 Y 1.000 —
200529039 7.0 0.498 16.1 10.4 N 0.913 —
200630076 3.1 0.158 13.2 7.0 N 0.945 —
200711461 1.8 0.338 0.6 1.1 Y 0.189 —
200716957 6.5 0.946 1.9 1.4 Y 0.498 —
200801842 17.8 0.314 16.4 36.9 N 0.226 —
200903031 5.4 0.787 1.7 2.1 Y 0.483 —
200906550 1.1 0.055 7.5 6.5 N 0.902 —
201006054 24.5 0.881 10.9 7.7 N 0.877 —
201029847 8.3 0.800 12.4 34.8 N 0.131 —
201105099 5.1 0.173 32.7 14.2 N 0.998 —
201216963 1.5 0.295 1.2 0.7 Y 0.280 —
210102861 3.8 0.562 4.7 2.1 Y 0.996 —
210104477 3.0 0.465 4.9 1.7 Y 1.000 —
210119121 1.9 0.058 47.4 65.4 N 0.672 —
210211363 12.6 0.706 3.9 24.1 N 0.036 0.002
210610628 8.2 0.895 14.5 11.6 N 0.728 0.609
210610827 3.1 0.495 2.1 0.8 Y 0.906 0.777
210618072 6.8 0.544 10.1 7.2 N 0.759 0.618
210723615 3.7 0.607 1.2 3.1 Y 0.124 0.098
210725158 5.2 0.769 138.1 76.7 N 0.833 0.905
210731931 1.7 0.212 13.7 15.8 N 0.577 0.482
210824174 3.0 0.246 137.2 69.6 N 0.852 0.874
211129410 9.6 0.815 6.8 7.7 N 0.567 0.360
211211549 1.1 0.187 2.8 0.1 Y 0.889 0.659
220118764 1.1 0.038 114.2 2.4 Y 1.000 1.000
220711761 8.5 0.929 10.8 9.3 N 0.745 0.591
220714582 3.4 0.568 68.2 3.3 Y 1.000 1.000
220826497 2.9 0.174 137.3 77.6 N 0.859 0.901
220907587 1.8 0.062 51.7 56.2 N 0.734 0.379
221201517 2.5 0.532 1.9 0.8 Y 0.892 0.800
221216473 40.4 1.000 34.9 12.9 N 0.999 0.907
230405832 4.8 0.873 2.5 2.0 Y 0.847 0.587
230723488 3.2 0.423 6.4 2.0 Y 0.996 0.947
230805475 1.5 0.026 14.4 8.7 N 0.960 0.725
230818977 2.5 0.380 9.2 2.7 Y 1.000 0.995
230826814 1.0 0.097 2.2 2.5 Y 0.578 0.352
230903724 27.6 0.950 139.3 76.5 N 0.797 0.879
231028173 1.0 0.141 0.7 0.7 Y 0.341 0.174
231104075 2.6 0.598 9.2 0.1 Y 1.000 1.000
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Table 3. Percentage of GRBs in DDOTI Mosaics

Pointings Size (deg) Full Sample Bright Sample
RoboBA BALROG RoboBA BALROG

1 × 1 7 × 10 57% 35% 81% 67%
2 × 1 14 × 10 65% 43% 93% 81%
2 × 2 14 × 20 78% 52% 96% 89%
3 × 2 21 × 20 85% 61% 96% 93%

MNRAS 000, 1–11 (2024)


	Introduction
	GBM Positions
	Position Estimations and Uncertainties
	RoboBA
	BALROG

	Samples
	Full Sample
	Bright  Subsample
	BALROG Map  Subsample

	Analysis
	Distribution of Errors
	Distribution of Enclosed Probabilities

	Application to DDOTI
	 Conclusions

