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FIBERING POLARIZATIONS AND MABUCHI RAYS ON

SYMMETRIC SPACES OF COMPACT TYPE

T. BAIER, A. C. FERREIRA, J. HILGERT, J.M. MOURÃO, AND J. P. NUNES

Abstract. In this paper, we describe holomorphic quantizations of the
cotangent bundle of a symmetric space of compact type T ∗(U/K) ∼=
UC/KC, along Mabuchi rays of U -invariant Kähler structures. At infi-
nite geodesic time, the Kähler polarizations converge to a mixed polar-
ization P∞. We show how a generalized coherent state transform relates
the quantizations along the Mabuchi geodesics such that holomorphic
sections converge, as geodesic time goes to infinity, to distributional
P∞-polarized sections. Unlike in the case of T ∗U , the gCST mapping
from the Hilbert space of vertically polarized sections are not asymptot-
ically unitary due to the appearance of representation dependent factors
associated to the isotypical decomposition for the U -action. In agree-
ment with the general program outlined in [Bai+23], we also describe
how the quantization in the limit polarization P∞ is given by the direct
sum of the quantizations for all the symplectic reductions relative to the
invariant torus action associated to the Hamiltonian action of U .
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1. Introduction

In this paper, we pursue the program outlined in [Bai+23] for the geo-
metric quantization of Kähler manifolds with an Hamiltonian action of a
compact Lie group U , by considering the case of the cotangent bundle of a
compact symmetric space,

T ∗(U/K) ∼= UC/KC.

The main idea is to use Mabuchi rays of Kähler structures, generated by the
Hamiltonian flows in imaginary time of Hamiltonian functions which are
convex in the moment map, to relate families of holomorphic quantizations
to the quantization in a mixed polarization which is attained at infinite
Mabuchi geodesic time.

The case of the cotangent bundle T ∗U of a Lie group U of compact type
has been studied in [Hal02; KMN13; KMN14; Bai+23]. The related case
of symplectic toric manifolds has been studied in [Bai+11; KMN16] and
for recent developments in Kähler manifolds with T -symmetry see [LW22;
LW23a; LW23b]. Applications to the case of flag manifolds are explored in
[HK14] and for more general algebraic varieties in [HHK21]

In Section 2, we describe Mabuchi rays of U -invariant Kähler structures
on T ∗(U/K), obtained by symplectic reduction from invariant Kähler struc-
tures on T ∗U . These geodesic rays are generated by the Hamiltonian flow
in imaginary time of convex functions on u

∗ which are compatible with the
symmetric space involution. At infinite geodesic time along the Mabuchi
rays, in Section 3, we obtain the mixed polarization P∞ on the open dense
subset of regular values of the moment map for the right K-action on T ∗U ,
T ∗(U/K)reg. In Section 4, we show how a generalized coherent state trans-
form relates the Kähler quantizations of T ∗(U/K) along the Mabuchi rays
such that, in the limit of infinite geodesic time, the elements of natural basis
of holomorphic sections, given by the isotypical decomposition with respect
to the U -action, converge to distributional polarized sections for P∞. In
Section 4.4, we show that independently of the Mabuchi ray which one fol-
lows, connecting the vertical, or Schrödinger, polarization to P∞, there is
a well-defined limit for the inner product structures along the family of
Kähler polarizations. This leads to a natural definition of Hilbert space
structure on the space of P∞-polarized section H∞. As described in Sec-
tions 4.4 and 4.6, in contrast to the case of T ∗U studied in [Bai+23], the
resulting U -equivariant isomorphismHSch → H∞ defined by the gCST is not
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asymptotically unitary (even for Mabuchi rays generated by Hamiltonians
quadratic in the moment map) and unitarity is achieved only by including
representation-dependent correcting factors for each isotypical component.
Finally, in Section 4.7, we give a quantum-geometrical interpretation of P∞,
in the line of the general program described in [Bai+23], where we relate the
Kähler quantization of T ∗(U/K) with a direct sum over the quantizations
of the coisotropic reductions for P∞ or, equivalently, over the quantizations
of the symplectic reductions for the invariant moment map.

2. Preliminaries

2.1. Basic definitions. Let U be a compact simply connected Lie group
and

σ : U → U

an involutive automorphism such that U/K is a symmetric space of compact
type, where K is a closed subgroup of U and a relatively open subgroup of
the set Uσ of fixed points1. One has for the Lie algebra u of U , and for its
dual u∗, orthogonal decompositions with respect to a fixed AdU -invariant
inner product, 〈·, ·〉u, on u,

u = k⊕ s, u
∗ = k

∗ ⊕ s
∗,

where, for the derived automorphism of u, also denoted by σ,

σ|k = Idk, σ|s = −Ids,

with [k, s] ⊂ s and [s, s] ⊂ k.
The cotangent bundle T ∗(U/K) has the structure of a homogeneous vec-

tor bundle associated to the principal K-bundle U → U/K,

T ∗(U/K) = U ×K s
∗.

2.2. Invariant Kähler structures on T ∗(U/K). Here, we will recall stan-
dard facts about the symplectic geometry of the cotangent bundles T ∗(U)
and T ∗(U/K), realized as the symplectic quotient

T ∗ (U/K) = (T ∗U) //K .

Recall that there is a Hamiltonian right action of U on T ∗U with mo-
ment map µ(R). The moment map of the corresponding right action of the
subgroup K ⊂ U is

(1) µK = πk∗ ◦ µ(R), πk∗ : u∗ → k
∗.

Using the trivialization T ∗(U) ∼= U × u
∗ one finds that

(2)(
µK
)−1

(0) = U×s
∗ and (T ∗U) //K =

(
µK
)−1

(0)/K = U×Ks
∗ = T ∗(U/K).

1Since we are taking U to be simply connected, from [Tak94, Lemma II.6.2] we also
have that Uσ and hence K is connected.
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The moment map of the left U -action on T ∗ (U/K), which we will denote
µ, descends from T ∗U through this quotient,

(3) U T ∗ (U/K) u
∗�

µ
, µ([x, ξ]) = Ad∗x ξ,

where [x, ξ] denotes the K-orbit through the point (x, ξ) in U × s
∗.

If we equip T ∗U with a U ×U -invariant Kähler structure, then this sym-
plectic quotient becomes a Kähler quotient so that T ∗(U/K) inherits an U -
invariant Kähler structure with respect to the reduced symplectic structure.
We will now describe an infinite-dimensional space of U -invariant Kähler
structures on T ∗(U/K) obtained by Kähler reduction from the (U × U)-
invariant Kähler structures on T ∗(U), which are described in Section 2.3
of [Bai+23] and in [Nee00b; Nee00a; KMN13]. Given a uniformly convex
invariant function on u

∗,

g ∈ Conv∞unif(u
∗)AdU ,

one has the Legendre transform Lg : T
∗U ∼= U × u

∗ → UC given by

Lg(x, ξ) = xeidξg.

The pull-back of the canonical complex structure on UC by Lg and the canon-
ical symplectic structure on T ∗U define a U ×U -invariant Kähler structure
on T ∗U , Ig, with global Kähler potential

κg(x, ξ) = 〈ξ, dξg〉 − g(ξ).

Lemma 1. For any uniformly convex g ∈ Conv∞unif(u
∗)AdU , the correspond-

ing Kähler potential κg : UC → R is exhausting.

Proof. We need to show that the component in u
∗ of the preimage of an

interval ] −∞, λ[ under κg ◦ Lg is bounded, which follows if we show that
κg ◦ Lg is not bounded above on unbounded subsets of u

∗. As g is uni-
formly convex on u

∗, its Legendre transform maps unbounded subsets to
unbounded subsets in u, but on these κg is unbounded as it is supercoercive
by a proposition of Moreau and Rockafellar [BV10, Prop. 3.5.4]. �

Remark 1. As we will see in Theorem 1, the exhaustion property of the
global Kähler potential κg is needed to show that all points in UC are stable
with respect to the KC-action in the sense that all KC-orbits intersect the
zero level set of the K-moment map.

Remark 2. Let σ also denote the involution on u
∗ induced from σ : u → u,

so that

σ|k∗ = Idk∗ , σ|s∗ = −Ids∗ .

In this paper, we will always assume that the symplectic potential g (and
also h and gt = g + th, t > 0, to appear below), are compatible with the
involution σ, that is we assume that

g ◦ σ = g.
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This is not a major restriction since symplectic potentials built from the
even degree Casimirs of u will satisfy this property, to begin with the fun-
damental example given by g = 1

2 ||ξ||2. In addition to the properties listed
in Proposition 2.7 of [Bai+23], we will therefore also have that:

dξg = dσ(ξ)g ◦ σ = σ(dσ(ξ)g),

so that, in particular, for ξ ∈ s
∗ we get

(dξg)|s∗ = −(d−ξg)|s∗ ,

and

(dξg)|k∗ = (d−ξg)|k∗ .

For the Hessian of g we also obtain (see (c) in Proposition 2.7 of [Bai+23]),
for ξ ∈ s

∗,

Hessg(ξ)|s∗ = Hessg(−ξ)|s∗

These identities will be used below.

Remark 3. Note that, from Lemma 3.1 in [KMN13], one has that the map
u
∗ ∋ ξ 7→ dξg ∈ u is a diffeomorphism. The compatibility condition between

g and σ, imposed in Remark 2, then gives that for ξ ∈ k
∗,

dξg = σdξg,

which implies that dξg ∈ k for ξ ∈ k
∗. The fact that g is compatible with σ

also implies that the Kähler potential κg is compatible with σ so that the
inverse Legendre transform, which is the Legendre transform with respect
to κg, maps k bijectively onto k

∗. It follows that, since u = k⊕ s,

ξ ∈ s
∗ ⇔ dξg ∈ s.

Theorem 1. Symplectic reduction provides us with a map

(4) Conv∞unif(u
∗)Ad∗U

Î−→ J (T ∗(U/K), ωstd)
U , g 7→ Îg,

where J (T ∗(U/K), ωstd)
U is the space of U -invariant complex structures on

T ∗(U/K) compatible with the standard symplectic form ωstd. Dually, these
Kähler structures are described by a map

(5) Conv∞unif(u
∗)Ad∗U

ω̂−→ K(UC/KC)
U , g 7→ ω̂g,

to the space of U -invariant Kähler forms on UC/KC.
Explicitly, these maps are defined by pulling back the relevant structures

along the map descending from the Legendre transform Lg, which we still
denote by Lg, through the symplectic quotient,

(6)

U × s
∗ U × u UC

U ×K s
∗ UC/KC

[x, ξ] xeidξgKC

Lg|U×s∗

Lg .
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In particular, a Kähler potential κ̂g for ω̂g is given by the restriction of κg

to the Kempf–Ness set
(
µK
)−1

(0) = U × s
∗ (see (1)),

(7) κ̂g ◦ Lg([x, ξ]) = 〈ξ, dξg〉 − g(ξ).

Proof. Since, by Lemma 1, κg is a global (U×U)-invariant strictly plurisub-
harmonic exhaustion function on UC, it follows from [HH99, Lemma 2.4.2]
that all points in UC are µK ◦ (Lg)

−1-stable. Considering the restriction of

Lg to (µK)−1(0) = U × s
∗ as in (6), we know that both these maps are

diffeomorphisms onto their images. From the equivariance of the Legendre
transform (see Proposition 2.7 in [Bai+23]), we know that the map Lg|U×s∗

descends to the K-quotients. The map Lg in the lower arrow of (6) then
corresponds to the map ix in [HH99, Lemma 2.4.3] and hence defines a dif-
feomorphism between the symplectic and the Hilbert quotients. Thus, it
defines the Kähler quotient structure on these quotients.

The form of the Kähler potential in (7) follows from the fact that the
Kähler potential of a Kähler reduction is obtained by restricting the Kähler
potential to the Kempf–Ness set, cf. [HH99, Proposition 2.4.6] or [BG97,
Theorem 7]. �

Remark 4. We note that the fact that the map (6) is a diffeomorphism is
not at all easy to see from Lie theoretic arguments, not even in the case of
g(ξ) = |ξ|2/2, for which dξg = ξ.

We denote by K̃(U/K) the space of Kähler structures on T ∗(U/K) cor-

responding to the image of the map Î in (4)

K̃(U/K) :=
{
(ωstd, Îg) | g ∈ Conv∞unif(u

∗)Ad∗
U

}
.

2.3. Restricted roots, Satake diagrams. Let U/K be an irreducible
symmetric space of compact type and recall that T ∗(U/K) ∼= U ×K s

∗, with
U -moment map given by (3). We will assume that the Cartan subalgebra t

of u is chosen σ-invariant such that

ia := t ∩ s ⊂ s

is a maximal Abelian subspace of s.
We will now follow [Ara62; War72; Hel84; Hel01] to describe aspects

of the geometry of the symmetric space U/K through the properties of
the symmetric pair (uC, kC). Let, again, σ denote the antilinear involution
extended to uC by antilinearity from the following linear involution on u,

σ(X) =

{
X if X ∈ k

−X if X ∈ s .

Note that σ|a = Ida. The antilinear involution σ defines an antilinear in-
volution on u

∗
C, which leaves the root system Φ of (uC, tC) invariant, and
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defines an involutive isometry of Φ [Ara62, 1.3].

u
∗
C ∋ ξ 7→ ξσ ∈ u

∗
C

ξσ(X) := ξ(σ(X)) , ∀X ∈ uC .(8)

Let Eα, α ∈ Φ, be a choice of root vectors such that [Eα, E−α] = Hα,
where Hα denotes the coroot vector corresponding to α, that is β(Hα) =
〈α, β〉, β ∈ Φ, where 〈·, ·〉 denotes the inner product on it obtained from the
fixed invariant inner product on u and extended to uC. If uα := CEα denotes
the root space generated by the vector Eα, then

σ(Eα) ∈ uασ .

The pair (Φ, σ) is called a σ-root system. The subset

Φ0 := {α ∈ Φ | ασ = −α } =
{
α ∈ Φ | α|a = 0

}

is a root subsystem of Φ.
The order of it∗ with positive cone Cone(Λ+), where Λ+ is the set of

dominant integral weights induced by the choice of positive roots, Φ+ ⊂ Φ,
is called a σ-order if [Ara62, 2.8], [War72, p. 23]

(9) α ∈ (Φ \ Φ0) ∩ Φ+ ⇒ ασ ∈ Φ+ .

If ∆ is a system of simple roots for a σ-order, then ∆0 := ∆∩Φ0 is a system
of simple roots for Φ0. Let r := rank(Φ), r0 := rank(Φ0) and

∆ = {α1, . . . , αr−r0 , αr−r0+1, . . . , αr}
with

∆0 = {αr−r0+1, . . . , αr} .

Then σ induces a permutation of ∆\∆0 as there is an involutive permutation
σ̃ of {1, . . . , r − r0} such that [War72, Lemma 1.1.3.2]

(10) ασ
j = ασ̃(j) +

r∑

k=r−r0+1

c
(j)
k αk , j = 1, . . . , r − r0 ,

with coefficients c
(j)
k ≥ 0. Then the restriction of roots to a,

Σ := (Φ \ Φ0) |a ⊂ a
∗ ,

is a root system, called the restricted root system of the σ-system (Φ, σ),
with system of simple roots, ∆− given by

(11) ∆− := {β1, . . . , βl} := (∆ \∆0) |a ,
where l := dim(a) = rank(U/K). Note that, if α ∈ Φ \ Φ0 then, since
α ∈ it∗ = iHomR(t,R), one obtains ασ

|a
= α|a.

We see from (10) that the simple roots αj and ασ̃(j) map to the same
restricted root βj . These are the only relations for the restriction of simple
roots from ∆\∆0 to a and the restricted root systems can be obtained from
the Dynkin diagram of ∆ by a Satake diagram: Simple roots from ∆0 are
represented by black circles and roots from ∆ \∆0 are represented by white
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circles. White circles related by the permutation σ̃ are linked by a curved
arrow. One has, therefore,

(12) l = r − nb − na,

where nb is the number of black circles and na the number of arrows in
the Satake diagram for U/K. The classification of irreducible symmetric
spaces is then given by the possible Satake diagrams. Those corresponding
to simple u are listed by the tables in [Ara62, p. 32, 33] and [War72, p.
30–32].

It follows from [Hel01, Lemma VI.3.6] that sC has the following decom-
position

(13) sC = aC +
∑

α∈(Φ\Φ0)∩Φ+

C (Eα − θEα) ,

where θ denotes the C–linear involution on uC that on u coincides with σ so
that θ|kC = IdkC and θ|sC = −IdsC .

2.4. Spherical representations. Recall that we are assuming that U is
simply-connected.2 (Note that since U is compact one has a splitting u =
[u, u]⊕ b where b is abelian; since U is simply-connected one has b = {0} so
that U is semisimple.) We have the isomorphism

L2(U/K) ∼= L2(U)K ,

where L2(U)K denotes the subspace of right K-invariant functions. Let

Û denote the set of equivalence classes of irreducible representations Vλ of
U , labelled by highest weight λ. Recall the Peter-Weyl theorem giving an
orthogonal decomposition

L2(U) ∼=
⊕̂

λ∈Û
End(Vλ),

where the hat over the sum denotes the norm completion. The summand

End(Vλ) ∼= Vλ ⊗ V ∗
λ

is realized by

fλ,v⊗w∗(x) = tr(πλ(x)v ⊗ w∗) ∈ L2(U), λ ∈ Û , v ∈ Vλ, w
∗ ∈ V ∗

λ ,

where πλ(x) ∈ End(Vλ) denotes the representative of x ∈ U . Then L2(U/K)
is given by the terms which are invariant under the right K-action. From,
Theorem 4.1 in Chapter 5 in [Hel84], each Vλ in Û contains at most a one-
dimensional subspace of so-called K-spherical vectors which are invariant
under K. The corresponding representations are called K-spherical repre-
sentations and we denote them by ÛK .

2Just as in [Bai+23], this condition makes the presentation simpler but we expect the
generalization to other cases to be straightforward. See Remark 5.
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If λ ∈ ÛK let vKλ ∈ Vλ be a non-trivial K-spherical vector and let V K
λ =

C · vKλ be the one-dimensional subspace of K-spherical vectors. Then, we
obtain an orthogonal decomposition

L2(U/K) ∼=
⊕̂

λ∈ÛK

Hom(Vλ, V
K
λ ),

where the summand Hom(Vλ, V
K
λ ) ∼= V K

λ ⊗ V ∗
λ is realized by the right K-

invariant functions
fλ,vK

λ
⊗v∗ ∈ L2(U), v∗ ∈ V ∗

λ .

(Note that the choice of spherical vector vKλ is unique up to a multiplicative
constant c and that fλ,cvK

λ
⊗v∗ = cfλ,vK

λ
⊗v∗ .)

From Theorem 4.1 in Chapter 5 in [Hel84] we also obtain the explicit
characterization of the highest weights for the K-spherical representations.
If t∗Z denotes the weight lattice for U , we have that a highest weight λ ∈ t

∗
Z

is the highest weight of a K-spherical representation if and only if

λ(i(t ∩ k)) = 0.

We denote by ΛK
+ the set of highest weights of K-spherical representations.

In particular, the cone generated by ΛK
+ is

Cone(ΛK
+ ) = a

∗
+,

where a∗+ := i(t∗+∩s
∗) and t

∗
+ is the closed positive Weyl chamber associated

to the choice of positive roots Φ+ ⊂ Φ, defined by

t
∗
+ = {ξ ∈ t

∗ : 〈α, iξ〉 ≥ 0, α ∈ Φ+}
(Note that a∗ = HomR(a,R) = HomR(t ∩ s, iR) = i(t∗ ∩ s

∗).)

Remark 5. If U is not simply-connected, the above needs to be adapted
since not all representations of u will integrate to representations of U .

Remark 6. In particular, from Remark 3, since the Legendre transform maps
the positive Weyl chamber in u

∗ to its dual (see Lemma 4.7 in [Bai+23]),
dξ+g ∈ −ia+ = t+ ∩ s if and only if ξ+ ∈ −ia∗+ = t

∗
+ ∩ s

∗.

2.5. The invariant moment map and invariant torus action. Recall
the sweeping map s : u∗ → t

∗
+, given by conjugation to the positive Weyl

chamber. The invariant moment map is

(14) µinv := s ◦ µ,
whose image defines the Kirwan polytope. The µ-regular stratum T ∗(U/K)reg
is the pre-image under µinv of the relative interior of the top-dimensional
face of the Kirwan polytope which is called the principal stratum. Along
T ∗(U/K)reg, as we will recall later, µinv is the moment map for a smooth
effective Hamiltonian torus action by a torus Tinv which will play a crucial
role in our analysis. The torus Tinv is a quotient by a discrete subgroup of
the torus T̃inv whose Lie algebra is determined by the principal stratum. Let
τU/K denote the principal stratum of T ∗(U/K) ∼= U ×K s

∗.
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Proposition 1. A point [x, ξ] ∈ U ×K s
∗ is µ–regular if and only if

(15) 〈s(ξ), α〉 6= 0 , ∀α ∈ Φ \ Φ0 .

Proof. The point [x, ξ] being not µ-regular means that s(µ([x, ξ])) = s(ξ) is
in the (relative) boundary of τU/K . From the discussion in Section 2.3, we
see that this happens if and only if 〈s(ξ), β〉 = 0, for some β ∈ Σ, which,
since s(ξ) ∈ ia∗+ = (t∗+ ∩ s

∗), is equivalent to 〈s(ξ), α〉 = 0 for some root
α ∈ Φ \ Φ0. �

Concerning the momentum set of T ∗(U/K) one has the following.

Proposition 2. The Kirwan polytope of T ∗(U/K) is −i times the cone
generated by dominant K-spherical weights

(16) µ(T ∗(U/K)) ∩ t
∗
+ = −i a∗+ .

Remark 7. The principal stratum τU/K is the unique stratum with nonempty
intersection with the relative interior of this cone. Therefore, the dimension
of τU/K is equal to the rank of U/K.

Remark 8. Equation (16) implies that two different roots, α, γ ∈ Φ\Φ0, that
are equal when restricted to a correspond to the same component of µinv

with respect to a basis of ia∗ given by restricted roots. (The components of
µinv are also called Guillemin-Sternberg action coordinates.)

Proof. From the form of the moment map (3) it follows that the image of
the moment map contains the cone

−ia∗+ = t
∗
+ ∩ s

∗ .

On the other hand [Hel84, Theorem III.4.14] implies that any element ξ ∈ s
∗

can be conjugated to −ia+ by the Ad∗K-action, and therefore also by the
Ad∗U -action, to a unique element so that we have

µ(T ∗(U/K)) ∩ t
∗
+ = t

∗
+ ∩ s

∗ = −ia∗+ .

�

Example 1. Let us consider the example of the group K considered as a
symmetric space

K ∼= (K ×K)/Kdiag ,

where the quotient is taken with respect to the diagonal action and Kdiag :=
diag(K) = {(x, x) : x ∈ K}. Then, if tk is a Cartan subalgebra of k, we have
that t := tk ⊕ tk is a Cartan subalgebra of U = K ×K and we have

kdiag = {(X,X) | X ∈ k}
s = {(X,−X) | X ∈ k}
a = i {(H,−H) | H ∈ tk} .

The antilinear involution σ is defined on it by

(iX, iX)σ := −i(X,X)

(iY,−iY )σ := i(Y,−Y ) , X, Y ∈ tk ,



MABUCHI RAYS ON SYMMETRIC SPACES 11

and therefore, on it∗ takes the form

(η1, η2)
σ = −(η2, η1) , η1, η2 ∈ it∗k .

Let r0 be the rank of K (so that r = 2r0) and consider an order on it∗
k

corresponding to the simple roots ∆k = {α1, . . . , αr0} for the root system
Φk ⊂ it∗

k
and an order on it∗ corresponding to the following simple roots for

t = tk ⊕ tk,

∆ := {(α1, 0), . . . , (αr0 , 0), (0,−α1), . . . , (0,−αr0)} .

Then,

Φ = {(α, 0), (0, β) | α, β ∈ Φk} ,

and

Φ+ = {(α, 0), (0,−β) | α, β ∈ Φk,+} ,

Φ0 =
{
(α, β) ∈ Φ | (α, β)|a = 0

}
= ∅ .

Then,

∆0 = ∆ ∩ Φ0 = ∅ ,
so that there are no black circles in the Satake diagram and therefore the
principal stratum is the interior of the Weyl chamber, with

dim(τU/K) = l = r0 .

Let us now verify that this order is a σ–order. We have that

(17) (αj , 0)
σ = (0,−αj), (0,−αj)

σ = (αj , 0) ,

and
(Φ \Φ0) ∩ Φ+ = Φ+ .

Then, since (α,−β)σ = (β,−α) we find that

σ : (Φ \ Φ0) ∩Φ+ = Φ+ −→ Φ+ ,

so that indeed the condition (9) is verified. From (10) and (17) we see that
σ̃ simply permutes the simple roots of one factor with the simple roots of
the second factor so that the Satake diagram reads:

Satake diagram of (so(10)⊕ so(10), sodiag(10))
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For the Guillemin–Sternberg coordinates we therefore have the relations,
(αj , 0) = −(0, αj) .

Let us now describe the action of the invariant torus in more detail.
Recall from [GS84; Lan17; Kno11] that, under mild conditions, if X is
a smooth manifold with an Hamiltonian U -action with equivariant mo-
ment map µ : X → u

∗, then along the (open dense) regular stratum
Xreg = µ−1

inv(τX), where µinv = s ◦ µ as in (14) and τX is the principal
stratum of the Kirwan polytope associated with the U -action on X, is the
moment map for a Hamiltonian action of a torus Tinv,

t ⋆ p = (u−1tu) · p, p ∈ Xreg, t ∈ Tinv,

where Ad∗uµ(p) ∈ τX . In our case, T ∗(U/K)reg, writing τU/K as before
instead of τT ∗(U/K), we have that

τU/K = −iǎ∗+,

where

ǎ
∗
+ = {η ∈ a

∗ | ∀β ∈ Σ+ : 〈β, η〉 > 0},
and Σ+ := {α|a | α ∈ Φ+ \ Φ0}. Using the K-action, as in the proof of
Proposition 2, an element [x, ξ] ∈ T ∗(U/K)reg can be written uniquely in
the form [u, ξ+] where u ∈ U and ξ+ ∈ −iǎ∗+. The invariant torus is then

Tinv
∼= Ts := exp(ia),

with action

[u, ξ+] ⋆ t = [ut−1, ξ+], t ∈ Tinv.

2.6. Fourier harmonics for Tinv. Let f : T ∗(U/K)reg → C. We obtain a
Fourier decomposition in terms of characters of Tinv,

f =
∑

ν∈T̂inv

f̂ν,

where

f̂ν(p) =

∫

Tinv

χν(t)f(p ⋆ t)dt,

and χν is the character associated to the weight ν of Tinv. We have

f̂ν(p ⋆ t) = χν(t
−1)f̂ν(p).

Let now g be an invariant uniformly convex function on u
∗ and denote by

Îg the corresponding U -invariant Kähler structure on T ∗(U/K) as described

in Theorem 1. The coordinate ring of (T ∗(U/K), Îg) ∼= UC/KC is generated

by the Îg-holomorphic functions

(18) f g

λ,vK
λ
⊗v∗

([x, ξ]) := tr(πλ(xe
idξg)vKλ ⊗ v∗),
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where λ ∈ ÛK , v∗ ∈ V ∗
λ . The restriction of f g

λ,vK
λ
⊗v∗

to the regular set

T ∗(U/K)reg can then be conveniently written as

(19) f g

λ,vK
λ
⊗v∗

([x, ξ+]) = tr(πλ(xe
idξ+ g)vKλ ⊗ v∗),

with ξ+ ∈ −iǎ∗+. (Note that, from [Bai+23], this implies that dξ+g ∈ ia+.)
Let Pν : Vλ → Vλ denote the projection onto the weight space for the

weight ν ∈ s
∗
Z := {λ ∈ t

∗
Z : λ|i(t∩k) = 0}. Then, for A ∈ End(Vλ),

tr(πλ(xe
idξ+ g)PνA) = ei〈ν,dξ+g〉 tr(πλ(x)PνA).

We then obtain the analog of Proposition 4.5 of [Bai+23].

Proposition 3. The Fourier harmonics for the Îg-holomorphic functions
f g

λ,vK
λ
⊗v∗

read

̂(f g

λ,vK
λ
⊗v∗

)
ν
([x, ξ+]) = tr(πλ(xe

idξ+ g)Pνv
K
λ ⊗ v∗).

Proof. This is a special case of the proof of Proposition 4.5 in [Bai+23].
Namely, in Proposition 4.5 of [Bai+23], just take A ∈ End(Vλ) to be

A = vKλ ⊗ v∗,

and, moreover, consider the case when ν ∈ s
∗
Z. Note that, in general, the

spherical vector vKλ will have non-zero components along different weight
spaces. �

3. Mabuchi rays and a mixed polarization on T ∗(U/K)

3.1. The polarization P∞ on T ∗(U/K)reg. In this section, we will apply
the concept of fibering polarization, developed in Section 3 of [Bai+23], to
the symplectic manifold T ∗(U/K)reg. This will provide a generalization of
the Kirwin–Wu polarization on (T ∗K)reg, PKW, which was studied in detail
in [Bai+23], and which corresponds to the case U = K ×K and U/K ∼= K.

Consider the diagram

U ×K s
∗
reg

‖
T ∗(U/K)reg

u
∗
−ia∗ −ia∗+

µinvµ

φ

where u
∗
−ia∗ ⊂ u

∗ is the subset of elements whose coadjoint orbits intersect
t
∗ in −ia∗ and φ is the restriction of the sweeping map s to this set. As
detailed in [Bai+23], this describes a U -invariant mixed polarization P∞, of
T ∗(U/K)reg whose real directions are given by the orbits of Tinv and whose
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complex directions are given by the fibers of the map φ. In our case, these
are coadjoint orbits

φ−1(ξ+) = Oξ+ , ξ+ ∈ −ia∗+,

which carry a canonical complex structure given by the identifications

Oξ+
∼= UC/B,

where B is a Borel subgroup. The fibers of µinv define the coisotropic dis-
tribution

E := (P∞ + P∞) ∩ T (T ∗(U/K)reg).

Each of the coadjoint orbits Oξ+ , ξ+ ∈ −ia∗+ is then the base of a Tinv-
principal fiber bundle given by the corresponding fiber of µinv and corre-
sponds to its coisotropic reduction.

Since T ∗(U/K)reg is multiplicity free (the orbits of the U -action are sep-
arated by the values of µ) we can apply Corollary 3.19 of [Bai+23] so that
any P∞-polarized section will be supported on the inverse image under µinv

of the intersection of the interior of the Kirwan polytope with −i times the
ρ-translate of the character lattice of the maximal torus, where ρ is the
half-sum of positive roots.

The notation P∞ is justified below when we show that P∞ can be ob-
tained at infinite geodesic time along a Mabuchi ray of U -invariant Kähler
polarizations of T ∗(U/K).

3.2. Local description of P∞. Let us describe the polarization P∞ locally
in terms of Hamiltonian vector fields. Consider the functions

Fλ,vK
λ
⊗v∗([x, ξ+]) := tr(πλ(x)Pλv

K
λ ⊗ v∗), [x, ξ+] ∈ T ∗(U/K),

for v∗ ∈ V ∗
λ .

Proposition 4. Let Vλ be a highest weight representation of U with highest
weight λ ∈ ÛK . For v∗1 , v

∗
2 ∈ V ∗

λ , the complex function

Fλ,vK
λ
⊗v∗1

Fλ,vK
λ
⊗v∗2

,

defined on the subset O ⊂ T ∗(U/K)reg where the denominator does not
vanish, is Tinv-invariant and hence descends to a function on O/Tinv on an
open subset of s∗. The family of such functions, for all possible choices of
v∗1, v

∗
2 ∈ V ∗

λ generate the complex directions of the polarization P∞.

Proof. This analogous to the proof of Proposition 4.2 of [Bai+23]. Namely,
the functions Fλ,vK

λ
⊗v∗ are Tinv-equivariant,

Fλ,vK
λ
⊗v∗([x, ξ] ⋆ t) = χλ(t

−1)Fλ,vK
λ
⊗v∗ [x, ξ], t ∈ Tinv,

so that their quotients will be invariant under Tinv.Moreover, we see that the
functions Fλ,vK

λ
⊗v∗ are defined on UC, are B-equivariant and that therefore

they define holomorphic sections of the ample Borel–Weil line bundle Lλ →
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Oξ+ on UC/B, where B ⊂ UC is the Borel subgroup associated to the choice
of positive roots. For fixed λ and varying v∗ ∈ V ∗

λ we thus obtain

H0(Oλ, Lλ) ∼= V ∗
λ
∼=
{
Fλ,vK

λ
⊗v∗ | v∗ ∈ V ∗

λ

}
.

The quotients therefore generate the structure sheaf of Oξ+ and the Hamil-
tonian vector fields of their complex conjugates define an holomorphic po-
larization along the coisotropic reductions. �

As described in Section 3.1, the remaining real directions of the mixed po-
larization P∞ are generated by the Hamiltonian vector fields of the Guillemin–
Sternberg action coordinates given by the components of µinv.

3.3. Convergence of polarizations. We will now describe how the mixed
polarization P∞ arises at infinite geodesic time along a Mabuchi ray of
U -invariant Kähler polarizations Pgt , t > 0, associated to the U -invariant

Kähler structures Îgt, where gt := g + th for g, h ∈ Conv∞unif(u
∗)Ad∗

U .

Lemma 2. For the Mabuchi ray of U -invariant Kähler polarizations on
T ∗(U/K)reg given by the complex structures Îgt , t > 0, one has, for λ ∈
ÛK , v∗ ∈ V ∗

λ :

(i) limt→+∞ e−i〈λ,Lgt◦µinv
〉f gt

λ,vK
λ
⊗v∗

= Fλ,vK
λ
⊗v∗ ,

(ii) limt→+∞
1
t lnf

gt
λ,vK

λ
⊗v∗

= i〈λ,Lh ◦ µinv〉.

Proof. This follows from Lemma 4.8 and equation (30) in [Bai+23]. �

Theorem 2. The family of Kähler polarizations Pgt , t > 0, on T ∗(U/K)reg
converges pointwise to the mixed polarization P∞ as t → +∞.

Proof. For the real directions of P∞, we see from (ii) in Lemma 2 that the
distribution generated by the vector fields

(f gt
λ,vK

λ
⊗v∗

)−1Xf
gt

λ,vK
λ

⊗v∗
,

for λ ∈ ÛK , v∗ ∈ V ∗
λ , converges, as t → +∞, pointwise to the distribution

generated by the Hamiltonian vector fields of the components of µinv. On
the other hand, from (i) in Lemma 2, we see that the distribution generated
by the Hamiltonian vector fields

X f
gt

λ,vK
λ

⊗v∗

f
gt

λ,vK
λ

⊗w∗

, λ ∈ ÛK , v∗, w∗ ∈ V ∗
λ ,

converges, as t → +∞, to the distribution generated by the Hamiltonian
vector fields

X F
λ,vK

λ
⊗v∗

F
λ,vK

λ
⊗w∗

, λ ∈ ÛK , v∗, w∗ ∈ V ∗
λ

which, from Proposition 4, gives the holomorphic directions of P∞. �
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3.4. The half-form bundle for P∞. In this section, we will study the half-
form bundle for P∞. To do so, let us describe the sections of the canonical
bundle for the Kähler polarizations Pgt , t > 0.

Recall from [Akh86] that homogeneous holomorphic vector bundles on
UC/KC, that is vector bundles with a lift of the UC-action on the base, are in
bijective correspondence with holomorphic representations of KC. Sections
of a homogeneous line bundle Lχ → UC/KC, defined by the character χ of
KC, are therefore in bijection with χ-equivariant functions on UC, that is
with functions f : UC → C such that

f(u · k) = χ(k)−1f(u), u ∈ UC, k ∈ KC.

The canonical bundle K of UC/KC is associated to the character defined by,
see [Akh86],

det (Adh : sC → sC) , h ∈ KC.

Since this determinant gets a contribution from both positive and negative
roots for the adjoint action of kC it defines the trivial character. (Note that
these roots are with respect to a choice of Cartan subalgebra for u which
extends a Cartan subalgebra for k and which in general will be different from
t.) Therefore, K is trivializable.

Recall from Theorem 1 that for g ∈ Conv∞unif(u
∗)Ad∗

U the Legendre trans-

form Lg provides a biholomorphism between (T ∗(U/K), Îg) and UC/KC,

and therefore also the canonical bundle Kg := L∗
gK of (T ∗(U/K), Îg), is

trivializable.
Holomorphic trivializing sections for K and Kg can be obtained by mak-

ing use of the transitive holomorphic left action of UC, as follows. (See
Proposition 3.3.22 in [Kay15].) On a sufficiently small open neighborhood
A of [e] ∈ UC/KC one can choose a local section s : A → UC of the canonical
projection p : UC → UC/KC, identifying

T[e](UC/KC) ∼= s⊕ is ∼= sC.

Given a basis of s∗, one can then define a holomorphic form of top degree on
T ∗
[e](UC/KC). When K is connected, as in the case that we are considering,

this form can then be extended to a global holomorphic form of top degree,
Ω, on the whole of UC/KC by imposing invariance under the holomorphic
transitive left action of UC. (Connectedness of K ensures that the right
action of KC preserves Ω, see Proposition 3.2.33 in [Kay15].) Ω then defines
a global holomorphic frame for K → UC/KC, so that L∗

gΩ is a global UC-left
invariant holomorphic trivializing frame for Kg → T ∗(U/K).

Letting dimK = n,dimU = d + n, let us consider a basis of U -left-
invariant one-forms on U , ωj , j = 1, . . . , d+n, dual to an orthonormal basis
of u adapted to the decomposition u = k⊕ s that is, such that (ωj)|k = 0 for

j = 1, . . . d and (ωj)|s = 0 for j = d+ 1, . . . , d+ n.
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Lemma 3. (Lemma 3.3 in [KMN13]) A UC-left-invariant holomorphic frame
of one-forms on (T ∗U, Ig) is given by

Ωj
g(x, ξ) :=

d+n∑

k=1

[
e
−iaddξg

]j
k
ωk +

[
1− e

−iaddξg

addξg
·Hessg(ξ)

]j

k

dξk,

j = 1, . . . , d+n. This is obtained by pulling-back a frame of left UC-invariant
holomorphic one-forms on UC by the Legendre transform Lg.

The left actions of UC on itself and UC/KC, and the corresponding actions
on T ∗U and T ∗(U/K) induced by the respective Legendre transforms Lg are,
of course, all compatible. We have then,

Proposition 5. On T ∗U ,

(20) Ωg := (L∗
g ◦ p∗)Ω =

d∧

j=1

Ωj
g.

Proof. The forms on both sides of (20) are UC-left-invariant and are therefore
defined by their values at (e, 0) ∈ T ∗U , where e ∈ U is the identity. From
Remark 2 we have that ξ ∈ s

∗ ⇐⇒ dξg ∈ s and ξ ∈ k
∗ ⇐⇒ dξg ∈ k

∗.

This implies, in particular, that dξ=0g = 0.3 From (c) in Proposition 2.7 in
[Bai+23], we have that, as endomorphisms of u∗,

ad∗ξ∗ = Hess−1
g (ξ) ad∗dξg,

where ξ∗ ∈ u corresponds to ξ ∈ u
∗ via the invariant form on u. It follows

that the endomorphism Hessg(ξ) preserves the decomposition u
∗ = k

∗ ⊕ s
∗

for any ξ ∈ u
∗. Therefore, since [s, k] ⊂ k and [s, s] ⊂ k, we have that at

(e, 0), for j = 1, . . . d,

Ωj
g(e, 0) = ωj + i

d∑

k=1

[Hessg(0)]
j
kdξ

k = (L∗
g ◦ p∗)Ωj(e),

where e also denotes the identity in UC and where Ωj is the UC-left-invariant
1-form on UC/KC such that (p∗Ωj)(e) = dξj + idξj. Then, from Proposition
3.3.22 in [Kay15], we get

Ω =

d∧

j=1

Ωj.

This ends the proof. �

Remark 9. Note that each individual Ωj
g is not the pull-back of an holomor-

phic one-form on UC/KC since KC will not act trivially on it.

3Recall that we are assuming that g is compatible with the symmetric space involution
σ as in Remark 2.
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Note that, while the form Ω is fixed, the left UC actions on T ∗U and
T ∗(U/K) are induced by the Legendre transforms Lg and therefore depend
on the choice of g. For that reason, to study the behavior of Ωg+th as
t → +∞ for the families of Kähler structures considered in Section 3.3, it
is not enough to consider the restriction to the identity coset [e] ∈ UC/KC.
On the other hand, the restriction of p ◦ Lg to U × s

∗ is surjective onto
UC/KC so that it is enough to study the form Ωg in (20) along U × s

∗.
Along U × s

∗, since j also runs from 1 to d, only terms with even powers
of addξg contribute, again due to the conditions [s, k] ⊂ k and [s, s] ⊂ k. We
can, moreover, using the Ad∗K-action, restrict the study of the behavior of
Ωg even further to U × (−i)a∗+.

Let, for j = 1, . . . , d and ξ+ ∈ (−i)a∗,

(21) Ω̃j
g(x, ξ+) :=

d∑

k=1

[
cosh(iaddξg)

]j
k
ωk +

[
sinh(iaddξg)

addξg
·Hessg(ξ)

]j

k

dξk,

so that over U × (−i)a∗ we have

(22) Ωg =
d∧

j=1

Ω̃j
g.

Remark 10. Note that under the involution (IdU × σ) on T ∗U , which de-
scends to the anti-holomorphic involution [x, ξ] 7→ [x,−ξ] on T ∗(U/K), see

[Ste90], and using Remarks 2, 3 and 6, we do obtain that (IdU×σ)∗Ω̃j
g = Ω̃j

g.
On the other hand, the involution σ on u lifts to a holomorphic involution
σ of T ∗(U/K) which acts as [x, ξ] 7→ [σ(x),−ξ] where x 7→ σ(x) is the invo-
lution on U induced from σ by the exponential map. In particular, at the

points (e, ξ) it is easy to check that the pull-back of Ω̃j
g under the lift of this

involution to T ∗U is −Ω̃j
g, consistently with σ being holomorphic.

We then have, with gt = g + th, t ≥ 0,

Proposition 6. On T ∗Ureg ∩ (U × (−i)a∗),
(23)

lim
t→+∞

t−le
−2〈ρ̂,d

ξ̃+
gt〉

Ωgt(x, ξ+) = c0i
l2−#(Σ∩Φ+) det

(
Hessh(ξ̃+)

)
ia
Ω̂∞,

where ρ̂ is the half-sum of the positive restricted roots weighted by multiplic-
ity, c0 is a nonzero constant, and where

(24) Ω̂∞ :=

l∧

j=1

dξj ·
∧

α∈Σ∩Φ+

(ωα − ωασ − 〈α, ξ+〉−1(dξα − dξα
σ

)).

The right-hand sides of (23) and (24) define smooth form on T ∗Ureg by the
K right-invariant extension from U × (−i)a∗.

Proof. If η ∈ ia, we have

ad2η(Eα − Eασ) = 〈β, η〉2(Eα − Eασ),



MABUCHI RAYS ON SYMMETRIC SPACES 19

where β is the restricted root obtained by restricting α to a. (Recall from
Section 2.3 that for restricted roots ασ

|a
= α|a .) We then have, from (21),

the proof of Lemma 4.14 in [Bai+23] and from Remarks 2 and 3, for regular
ξ+,

lim
t→+∞

t−l
l∧

j=1

Ω̃j
gt(x, ξ+) = il det (Hessh(ξ+))ia dξ

1 ∧ · · · ∧ dξl

and

lim
t→+∞

e−2〈ρ̂,dξ+gt〉
∧

α∈Σ∩Φ+

(
Ω̃α
gt − Ω̃ασ

gt

)
(x, ξ+) =

= 2−#(Σ∩Φ+)
∧

α∈Σ∩Φ+

(ωα − ωασ − 〈α, ξ+〉−1(dξα − dξα
σ

).

The constant c0 comes from the fact that we are changing from an orthonor-
mal basis in (21) to a Chevalley basis. �

Let p̃ : U × s
∗ → U ×K s

∗ be the canonical projection.

Proposition 7. The form Ω̂∞ is the pull-back by p̃ of a trivializing section
Ω̃∞ of the canonical bundle of P∞ over T ∗(U/K)reg,

Ω̂∞ = p̃∗Ω̃∞.

Proof. We have p ◦ Lgt = Lgt ◦ p̃, t > 0, so that L∗
gt ◦ p∗ = p̃∗ ◦ L∗

gt . From
Proposition 5 and since (23) extends by right K-invariance we have that the
left-hand side of (23) can be written as the limit as t → ∞ of a pull-back
by p̃ ◦ Lgt from UC/KC. But since p̃ is a submersion this implies that the
right-hand side of (23) is the pull-back under p̃ of a well defined form on

T ∗(U/K)reg whence Ω̂∞ = p̃∗Ω̃∞.
Moreover, since limt→∞ Pgt = P∞, pointwise in the Lagrangian Grass-

mannian over T ∗(U/K)reg we obtain that Ω̃∞, which is never vanishing,
gives a trivializing section of the corresponding canonical bundle. �

We also have,

Remark 11. Note that, from Theorem 4.1 in Chapter 5 in [Hel84], as recalled
in Section 2.4, we obtain that ρ̂ is a spherical weight. Moreover, one can
check that the representation Vρ̂ is self-dual so that under the identification
Vρ̂

∼= V ∗
ρ̂ via an invariant inner product, since the subspace of spherical

vectors is one-dimensional, we can take (vKρ̂ )∗ = vKρ̂ .

Proposition 8. On the subset of W̌ where Fρ̂,vK
ρ̂
⊗vK

ρ̂
is nonzero,

Ω∞ := F−2
ρ̂,vK

ρ̂
⊗vK

ρ̂

Ω̃∞

is a polarized section of P∞.

Proof. This follows from Proposition 6 and from Lemma 2, since both Ωgt

and f gt
ρ̂,vK

ρ̂
⊗vK

ρ̂

are Pgt-polarized for all t > 0. �
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Since the canonical bundle of P∞ over T ∗(U/K)reg is trivializable, with

trivialing section Ω̃∞, we can define a bundle of half-forms by taking its

square root with trivializing section Ω̃
1
2
∞.

4. Quantizations of T ∗(U/K) along Mabuchi rays

In this section we will describe the quantizations of T ∗(U/K) for the
vertical (or Schrödinger) polarization and for the U -invariant Kähler po-

larizations determined by the complex structures Îg, g ∈ Conv∞unif(u
∗)Ad∗

U .
We will then relate them to the space of polarized sections for the limit
polarization P∞ which, as we will describe, inherits a natural Hilbert space
structure, H∞, so that we obtain an extended bundle of quantum Hilbert
spaces

H → {0} ∪ Conv∞unif(u
∗)Ad∗U ∪ {∞} ,

equipped with a natural U -invariant flat connection.

4.1. The Schrödinger and the Kähler quantizations for Pgt, t > 0.
The quantization of T ∗(U/K) in the Schrödinger, or vertical, polarization
PSch is given by

(25) HSch := L2(U/K)⊗
√
dx

where dx denotes the pull-back to T ∗(U/K), by the canonical projection, of
a unit-volume U -invariant volume form on U/K. We have then,

HSch =
⊕̂

λ∈ÛK

{
σ0
λ,v∗ | λ ∈ ÛK , v∗ ∈ V ∗

λ

}
,

where
σ0
λ,v∗(x) := tr(πλ(x)v

K
λ ⊗ v∗)⊗

√
dx,

and where the hat denotes norm completion with respect to the (usual)
U -invariant L2 inner product,

〈σ0
λ,v∗ , σ

0
λ̃,ṽ∗

〉 = d−1
λ δλλ̃〈v∗, ṽ∗〉V ∗

λ
.

From Theorem 1, the Kähler structure of T ∗(U/K) for the complex struc-

ture Îg, for g ∈ Conv∞unif(u
∗)Ad∗

U , is obtained from a Kähler quotient of

(T ∗U, Îg). From equations (18), (19) and Section 3.4 we also obtain that the
half-form corrected quantization of T ∗(U/K) in the holomorphic quantiza-

tion associated to the complex structure Îg, is given by the Hilbert space

(26) Hg :=
⊕̂

λ∈ÛK

{
σg
λ,v∗ | λ ∈ ÛK , v∗ ∈ V ∗

λ

}
,

where

(27) σg
λ,v∗ := e−g(λ+ρ̂)f g

λ,vK
λ
⊗v∗

e−
1
2
κg ⊗ Ω

1
2
g ,

and where the inner product in Hg is the usual inner product for half-form
corrected Kähler quantization (see, for instance, Section 4 of [KMN13]).
Of course, this is an instance of the celebrated results of Guillemin and
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Sternberg [GS82]. (While T ∗(U/K) ∼= UC/KC is not compact the quotient
can be described in terms of an action of KC.)

As will be discussed below in Section 4.2, the first exponential factor in
(27) is justified by the fact that

(28)
{
σg
λ,v∗

j
| λ ∈ ÛK , v∗j ∈ V ∗

λ , j = 1, . . . ,dimVλ

}
,

with {vj}j=1,...,dimVλ
a basis of Vλ, gives a parallel frame for a naturally

defined flat connection on the extended quantum bundle.

4.2. The flat connection on the quantum bundle. In the previous sub-
section, for the family of U -invariant Kähler quantizations of T ∗(U/K), we
obtained a quantum bundle of Hilbert spaces of polarized sections, with fiber
Hg over g ∈ Conv∞unif(u

∗)Ad∗U . In the spirit of [ADPW91] (see also [Flo+05;
KMN14]), this bundle comes equipped with a flat connection, ∇Q, which
relates the different U -invariant Kähler quantizations. This connection is
obtained by covariantly differentiating sections of the quantum bundle along
a tangent vector h to Conv∞unif(u

∗)Ad∗
U by combining the prequantum oper-

ator ĥ and a fiber-preserving “quantum” operator Q(h). In the case of the
quantization of symplectic vector spaces along translation invariant Kähler
polarizations, this combination defines a flat connection whose (unitary) par-
allel transport intertwines natural representations of the Heisenberg group
on the different fibers.

For h ∈ Conv∞unif(u
∗)Ad∗U , consider the half-form corrected Kostant-Souriau

prequantum operator (let ∇ denote the connection on the prequantum bun-
dle obtained from the prequantum data on T ∗U by Kähler reduction, à la
Guillemin-Sternberg)

ĥ := (i∇Xh
+ h)⊗ 1 + 1⊗ iLXh

.

Consider also the quantum operator Q(h) defined by

Q(h)σg
λ,v∗ := h(λ+ ρ̂)σg

λ,v∗ ,

for any g ∈ Conv∞unif(u
∗)Ad∗U , λ ∈ ÛK , v∗ ∈ V ∗

λ . As in Section 2.4 of [Flo+05]
and Section 5.3 of [Bai+23], consider sections of the quantum bundle of the
form

s(g, [x, ξ]) = f(g, xeidξg)e−
1
2
κg ⊗ Ω

1
2
g ,

such that, for fixed g, f is holomorphic in UC/KC. The connection ∇Q is
then defined by

∇Q
h s :=

δ

δh
s+ ĥs−Q(h)s

where h is a tangent vector to Conv∞unif(u
∗)Ad∗U . (This is an analog of equa-

tion (1.30) in [ADPW91].) The evaluation of the connection form, in this

frame, along the tangent vector h is therefore given by (ĥ − Q(h)). Note
that the quantum operator Q acts through the isotypical decomposition of
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s under U -representations, corresponding to the decomposition of s in the
frame.

For T ∗U , as described in Section 5.3 of [Bai+23], the equation of covariant
constancy determined by ∇Q (along quadratic h) corresponds to the heat
equation described in [Flo+05]. (The first order differential operator in the

connection form, given by the prequantum operator ĥ, does not show up
explicitly in the heat equation in [Flo+05] because there the equation was
written in UC, not in T ∗U , so the that term corresponding to the Legendre
transform Lg+th is implicit there.) Also for quadratic h, the condition of
covariant constancy is an analog of the heat equation satisfied by theta
functions for varying moduli in the quantization of an abelian variety.

Note that the sections σg+th
λ,v∗ , for λ ∈ ÛK , v∗ ∈ V ∗

λ , which are linear

combinations with constant coefficients of the frame sections in (28), satisfy
the equation of parallel transport:

d

dt
σg+th
λ,v∗ = ∇Q

h σ
g+th
λ,v∗ = ĥσg+th

λ,v∗ − h(λ+ ρ̂)σg+th
λ,v∗ ,

which follows explicitly from (27) and from (see Proposition 3.19 in [KMN13])

etĥ
(
f g

λ,vK
λ
⊗v∗

e−
1
2
κg ⊗ Ω

1
2
g

)
= f g+th

λ,vK
λ
⊗v∗

e−
1
2
κg+th ⊗ Ω

1
2

g+th.

In particular, this shows that ∇Q is flat.
Since the operators ĥ and Q(h) commute, the parallel transport of ∇Q

along the Mabuchi ray generated by h is given by exponentiating the con-
nection form, which gives a generalized coherent state transform (gCST)
defined by

Ct,h := etĥ ◦ e−tQ(h).

In fact, one can take this parallel transport operator to act also on the
Hilbert space of the vertical polarization HSch. The following is an immedi-
ate corollary of [KMN13] or Section 5.2 of [Bai+23].

Proposition 9. Let g = 0 or g ∈ Conv∞unif(u
∗)Ad∗U . For t ≥ 0,

Ct,hσ
g
λ,v∗ = σg+th

λ,v∗ .

Therefore, Ct,h is a U -equivariant isomorphism

Ct,h : Hg → Hg+th, t ≥ 0.

(Here, H0 := HSch.)

Corollary 1. For g = 0 or g ∈ Conv∞unif(u
∗)Ad∗U , letting

(29) Hλ
g :=

{
σg
λ,v∗ | v∗ ∈ V ∗

λ

}
, λ ∈ ÛK ,

we obtain from U -equivariance that there exist constants at,h,λ ∈ R\{0}, for
t > 0, λ ∈ ÛK , such that

at,h,λCt,h : Hλ
g → Hλ

g+th
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are unitary isomorphisms.

As we describe next, parallel transport along Mabuchi rays of the frame{
σg
λ,v∗ | v∗ ∈ V ∗

λ , λ ∈ ÛK

}
has a nice behavior at infinite geodesic time.

4.3. Convergence of quantizations as t → +∞. In this section, in the
spirit of [Bai+23], we want to study the limit of the family of Kähler quan-
tizations Hg+th as t → +∞.

Definition 1. The distributions δµ−1
inv(λ+ρ̂), λ ∈ ÛK , are defined by the unit

mass measure supported on µ−1
inv(λ+ ρ̂) such that, for f ∈ Cc(T

∗(U/K)),

(30)

∫

T ∗(U/K)
fδµ−1

inv
(λ+ρ̂) =

∫

U/K
f([x, λ+ ρ̂])dx,

where dx is the normalized U -invariant measure on U/K.

Let, for λ ∈ ÛK , v∗ ∈ V ∗
λ ,

(31)

σ∞
λ,v∗ := c0(2π)

l/2il2−#(Σ∩Φ+)P (λ+ρ̂)2Fλ,vK
λ
⊗v∗Fρ̂,vK

ρ̂
⊗vK

ρ̂
δµ−1

inv
(λ+ρ̂)⊗F−1

ρ̂,vK
ρ̂
⊗vK

ρ̂

Ω̃1/2
∞ ,

where P (λ+ ρ̂) := Πα∈Σ∩Φ+
〈α, λ + ρ̂〉.

Theorem 3. Let g = 0 or g ∈ Conv∞unif(u
∗)Ad∗

U and h ∈ Conv∞unif(u
∗)Ad∗U .

In the distributional sense,

lim
t→+∞

Ct,hσ
g
λ,v∗ = σ∞

λ,v∗ , λ ∈ ÛK , v∗ ∈ V ∗
λ .

Proof. The proof follows the same calculations as in the proof of theorems
5.5 and 5.8 of [Bai+23]. �

Corollary 2. The distributional sections σ∞
λ,v∗ , λ ∈ ÛK , v∗ ∈ V ∗

λ are P∞-
polarized.

Proof. This is an analog of the proof of Corollary 5.7 of [Bai+23]: one can
generate P∞ by limits of Hamiltonian vector fields generating the Kähler
polarizations and σ∞

λ,v∗ arises as a limit of Kähler polarized sections. �

In fact, these distributional sections obtained at infinite Mabuchi geodesic
time comprise all of the polarized sections of P∞.

Theorem 4. The vector space of P∞-polarized sections is given by the clo-
sure of

W∞ :=
⊕

λ∈ÛK

{
σ∞
λ,v∗ | v∗ ∈ V ∗

λ , λ ∈ ÛK

}
.

in (Cc(T
∗(U/K)))∗ ⊗ Ω̃

1
2
∞.
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Proof. Half-form corrected P∞-polarized sections can be written in the form

σ = s⊗ Ω
1
2
∞,

where, from Proposition 8, Ω
1
2
∞ is already P∞-polarized. Note that instead

of Ω
1
2
∞ one can use other polarized sections of the half-form bundle of P∞,

with different divisors, by multiplying Ω∞ by (P∞-polarized) factors of the
form Fρ̂,v

ρ̂K
⊗vK

ρ̂
F−1
ρ̂,vρ̂⊗z∗, z

∗ ∈ V ∗
ρ̂ and by multiplying with the inverse factor

on the left factor of the tensor product. The section σ will then be P∞-
polarized iff s is P∞-polarized. The prequantum connection on T ∗U is given
by ∇ = d+ iθ where the connection form can be written as

θ =
n∑

j=1

ξjω̃j ,

where {ω̃j}j=1,...,n is a basis of right-invariant 1-forms on U , corresponding

to an orthonormal basis of u, pulled-back to T ∗U by the canonical projection
T ∗U → U (see Sections 2 and 4 of [KMN13]), and ξj are the coordinates
of ξ in the corresponding dual basis of u∗. By symplectic reduction [GS82],
this induces the prequantum connection on the prequantum line bundle on
T ∗(U/K), so that over a point [u, ξ+] ∈ T ∗(U/K), with ξ+ ∈ −ia∗+, the
connection form reads

l∑

j=1

(ξ+)jω̃j ,

where indices have been chosen such that j = 1, . . . , l runs over a basis of
a = i(t∩ s). This connection form exactly matches the one that one obtains
for symplectic toric manifolds, along the open dense subset diffeomorphic to
T ∗((S1)l). Therefore, using Fourier decomposition of sections with respect
to the action of Tinv, the equations for covariant constancy along the real
directions of P∞, given precisely by the orbits of Tinv, match the equations
of covariant constancy along the real toric polarization of a symplectic toric
manifold. From Proposition 3.1 in [Bai+11], the solutions are proportional
to a Dirac delta distribution supported on the Bohr-Sommerfeld set, which
in our case is given by the level sets µ−1

inv(λ+ ρ̂) for highest weights λ ∈ ÛK ,
as mentioned in Section 3.1 and as can be explicitly checked from the pre-
vious formula for the connection form. In particular, there are no solutions
proportional to derivatives of Dirac delta distributions. On the other hand,
covariant constancy along the holomorphic directions of P∞ just correspond
to holomorphicity along the coadjoint orbits Oλ+ρ̂. But then all such holo-
morphic sections arise by taking the sections σ∞

λ,v∗ above, with v∗ ∈ V ∗
λ .

Indeed, V ∗
λ+ρ̂ is an irreducible component in the tensor product V ∗

λ ⊗ V ∗
ρ̂ .

Thus Fλ+ρ̂,vK
λ+ρ̂

⊗w∗, for w ∈ V ∗
λ+ρ̂, decomposes into sums of products of

Fλ,vK
λ
⊗v∗Fρ̂,vK

ρ̂
⊗z∗, v

∗ ∈ V ∗
λ , z

∗ ∈ V ∗
ρ̂ . So, by multiplying and dividing Ω

1
2
∞ by
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different Fρ̂,vK
ρ̂
⊗z∗ , z

∗ ∈ V ∗
ρ̂ , in (31) we can describe all holomorphic sections

of the Borel-Weil line bundle Lλ+ρ̂ → Oλ+ρ̂. (Note also that, as described in

Proposition 4, the holomorphic directions of P∞ along µ−1
inv(λ+ ρ̂) select as

polarized functions elements of the ring generated by quotients of the form
Fλ+ρ̂,vK

λ+ρ̂
⊗w∗

1
F−1
λ+ρ̂,vK

λ+ρ̂
⊗w∗

2

, for w1, w2 ∈ V ∗
λ+ρ̂, so that no other irreducible

components of V ∗
λ ⊗ V ∗

ρ̂ contribute to give P∞-polarized sections supported
on that fiber of µinv. �

Since U itself can be described as a symmetric space of compact type, we
obtain the

Corollary 3. The Hilbert space

HKW =
⊕̂

λ∈ÛK

{
σ∞
λ,A | λ ∈ Û , A ∈ End(Vλ)

}
,

as described in Section 5.3 of [Bai+23], is the Hilbert space of polarized
sections for the Kirwin-Wu polarization of T ∗U .

4.4. The Hilbert space H∞. In this section, we will see that the inner
products on the fibers of the quantum bundle induce naturally an inner
product structure on W∞ so that one obtains the Hilbert space of P∞-
polarized sections, H∞, by taking the norm completion of W∞.

For the Hilbert space of the Schrödinger quantization HSch = L2(U/K)⊗√
dx, we have the U -invariant inner product,

〈σ0
λ,v∗ , σ

0
λ̃,ṽ∗

〉 = d−1
λ δλλ̃〈v∗, ṽ∗〉V ∗

λ
.

Let us now study the evolution of the norms of σth
λ,v∗ , t > 0, for h ∈

Conv∞unif(u
∗)Ad∗U and λ ∈ ÛK . From Theorem 3.3.25 in [Kay15] we obtain

that, for gstd = 1
2 ||ξ||2, ||L∗

gstd
Ω

1
2 || is an Ad∗K-invariant function

||L∗
gstd

Ω
1
2 ||2([x, ξ]) = η(ξ),

where

η(ξ+) := Πα∈Σ∩Φ+

(
sinh(2α(ξ+))

2α(ξ+)

)mα
2

,

for ξ+ ∈ −ia∗+. For other Kähler structures determined by a symplectic

potential g ∈ Conv∞unif(u
∗)Ad∗

U , we need to pull-back by the composition of
Legendre transforms Lg ◦ L−1

gstd
. This composition of Legendre transforms is

not a symplectomorphism of T ∗(U/K) but it is straightforward to obtain the
correcting factor for the pull-back of the Liouville measure (see, for instance,
Lemma 2.4 in [KMN14]) to obtain for the contribution of the half-form

||L∗
gΩ

1
2 ||2([x, ξ+]) = η(dξ+g).det(Hessg|s∗

(ξ+))
1
2 .

We will now study the behavior of the norms of the polarized sections σgt
λ,v∗

as t → +∞ where, throughout this section we will take

gt = th, t > 0, h ∈ Conv∞unif(u
∗)Ad∗U ,
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so that we are considering a Mabuchi geodesic ray that connects the Schrödinger
(vertical) polarization to the polarization P∞. Since the half-form corrected
inner product on Hgt is U -invariant, we obtain that two different isotypi-

cal components Hλ
gt,Hλ̃

gt are orthogonal for λ 6= λ̃. Moreover, we have that

on each isotypical component Hλ
g the inner product is fixed up to a mul-

tiplicative constant and it is determined, in particular, by the norm of the
K-left-invariant vectors

σgt
λ,(vK

λ
)∗
, λ ∈ ÛK

with (vKλ )∗ defined from vKλ via the anti-linear bijection Vλ → V ∗
λ explained

in Appendix A. For λ ∈ ÛK let vKλ be a unit norm spherical vector (for an U -
invariant inner product on Vλ) and consider the Harish-Chandra c-function
[HPV02, §4],

c(λ+ ρ̂) = |〈vλ, vKλ 〉Vλ
|2 6= 0.

Note here that vλ and vKλ were assumed to be unit vectors so that the
expression for c(λ + ρ̂) is independent of the normalization of the inner
product on Vλ.

Theorem 5. There is a non-zero constant C0 (independent of h and λ)
such that

lim
t→+∞

||σgt
λ,(vK

λ
)∗
||2Hgt

= C0 P̂ (λ+ ρ̂)
1
2 c(λ+ ρ̂) ||σ0

λ,(vK
λ
)∗
||2HSch

,

where P̂ (ξ+) = Πα∈Σ∩Φ+
α(ξ+)

mα .

Proof. From the expression for the half-form corrected inner product on the
space of Kähler polarized sections (see, for example, Section 4 in [KMN13]),
we need to compute

||σgt
λ,(vK

λ
)∗
||2Hgt

= e−2th(λ+ρ̂)·

·
∫

T ∗(U/K)
tr(πλ(xe

itdξhvKλ ⊗ (vKλ )∗))tr(πλ(xe
itdξhvKλ ⊗ (vKλ )∗))·

·e−tκhη(tdξh) det(Hessth)
1
2

|s∗
ε,

where ε is the Liouville measure. From, Theorem 3.3.41 in [Kay15] (or
Theorem A.4 in [Kay20]), we obtain that, for some non-zero constant a, and
f any integrable function on T ∗(U/K) ∼= U ×K s

∗

∫

T ∗(U/K)
fε = a

∫

U×s∗

(p∗f)dxdξ,

where p : U×s
∗ → U×K s

∗ is the canonical projection, dx is the normalized
Haar measure on U and dξ is the Lebesgue measure on s

∗. Applying this
above and using the Weyl orthogonality relations

∫

U
πλ(x)ijπλ(x)kldx = d−1

λ δikδjl,



MABUCHI RAYS ON SYMMETRIC SPACES 27

we obtain
||σgt

λ,(vK
λ
)∗
||2Hgt

= ad−1
λ e−2th(λ+ρ̂)·

·
∫

s∗

tr(πλ(e
2itdξh)vKλ ⊗ (vKλ )∗)e−tκhη(tdξh) det(Hessth)

1
2

|s∗
dξ,

where we take a spherical vector vKλ of norm one. The integrand is Ad∗K-
invariant. From Theorem I.5.17 in [Hel84], we obtain that for f any inte-
grable Ad∗K -invariant function on s

∗

∫

s∗

f(ξ)dξ = a′
∫

a∗+

f(ξ+)P̂ (ξ+)dξ+

for some non-zero constant a′. Therefore,

||σgt
λ,(vK

λ
)∗
||2Hgt

=

= a
′′

d−1
λ e−2th(λ+ρ̂)

∫

a∗+

tr(πλ(e
2itdξ+h)vKλ ⊗(vKλ )∗)e−tκhη(tdξ+h) det(Hessth)

1
2

|s∗
P̂ (ξ+)dξ+,

where a
′′

is a non-zero constant. Therefore, the leading term in the expres-
sion for the norm as t → +∞ is

lim
t→+∞

||σgt
λ,(vK

λ
)∗
||2Hgt

= a
′′

d−1
λ c(λ+ ρ̂)·

lim
t→+∞

td/2e−2th(λ+ρ̂)

∫

a∗+

e−2t〈λ,dξ+h〉e−tκhη(tdξ+h) det(Hessh)
1
2

|s∗
P̂ (ξ+)dξ+,

where c(λ+ ρ̂) is the Harish-Chandra c-function and d = dim s
∗. From (13)

and the proof of Proposition 5, we obtain that

Hessh(ξ+)(Eα − Eασ) = (2α(ξ+))
−1ad∗(dξ+h)∗(Eα + Eασ),

so that along the subspace

(a∗)⊥ =
⊕

α∈(Φ\Φ0)∩Φ+

(Eα − Eασ) ⊂ s
∗

Hessh(ξ+) is diagonal with entries

α(dξ+h)

α(ξ+)
,

which is analogous to the case of T ∗U (see the proof of Lemma 4.14 in
[Bai+23]). Therefore

detHessh(ξ+)|s∗ =
P̂ ((dξ+h)

∗)

P̂ (ξ+)
detHessh(ξ+)|a∗ .

Therefore, the leading term for the norm as t → +∞ is

lim
t→+∞

||σgt
λ,(vK

λ
)∗
||2Hgt

= a
′′

d−1
λ c(λ+ ρ̂)·

· lim
t→+∞

td/2e−2th(λ+ρ̂)

∫

a∗+

e−2t〈λ,dξ+h〉e−tκhη(tdξ+h) det(Hessh)
1
2

|a∗
(P̂ (ξ+))

1
2 (P̂ ((dξ+h)

∗))
1
2dξ+.
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where in leading order

η(tdξ+h) ∼ const. t−#(Σ∩Φ+)e2tρ̂(dξ+h)P ((dξ+h)
∗)−

1
2 .

We obtain,

lim
t→+∞

||σgt
λ,(vK

λ
)∗
||2Hgt

= a
′′′

d−1
λ c(λ+ ρ̂)·

· lim
t→+∞

tl/2e−2th(λ+ρ̂)

∫

a∗+

e−2t〈(λ+ρ̂),dξ+h〉e−tκh det(Hessh)
1
2

|a∗
(P̂ (ξ+))

1
2dξ+,

where a
′′′

is a non-zero constant. Just as in the proof of Theorem 4.1 in
[KMN14] or in the proof of Lemma 5.4 in [Bai+23], the exponentials, the

power tl/2 and the determinant of the Hessian of h along a
∗ produce in the

limit t → +∞, up to a constant, a delta function δ(λ + ρ̂) so that

lim
t→+∞

||σgt
λ,(vK

λ
)∗
||2Hgt

= a
′′′′

d−1
λ P̂ (λ+ ρ̂)

1
2 c(λ+ ρ̂),

for a non-zero constant a
′′′′

. �

Remark 12. The factor of c(λ+ρ̂) in the statement of Theorem 5 is consistent
with the results of Stenzel in [Ste99]. By identifying the fibers of T ∗(U/K)
with the non-compact dual symmetric space to U/K, he considers a natural
measure on T ∗(U/K) for which the time-t CST, for the case h = 1

2 ||ξ||2,
becomes as unitary transform from L2(U/K) to a space of holomorphic
functions on UC/KC. This measure involves the time-2t heat kernel on the
non-compact dual symmetric space (see, for instance, [AO04]) which carries
a factor of |c(µ)|−2 (from the Plancherel formula for non-compact symmetric
spaces) and an integration along µ ∈ a

∗. From Theorem 3 in [Ste99], since
this CST is unitary with respect to this choice of measure, one can evaluate
the norm of tr(πλ(xe

iξ+)vKλ ⊗ v∗) asymptotically as t → +∞. The spherical
function ϕµ which features in the heat kernel will give a factor of c(µ) in
the asymptotic limit (see Section 2 of [Hel64] or Section 4 of [HPV02]). The
integration along ξ+ then produces Dirac delta functions supported on the
points (ν + ρ̂), where ν runs over the weights of Vλ. In the asymptotic limit
only the highest weight survives and the remaining factor of |c|−1 localizes
on (λ+ ρ̂), consistently with Theorem 5.

Using Theorems 3 and 5, we define an inner product on W∞ induced from
the asymptotic limit of the inner products on the Hilbert spaces for half-form
corrected Kähler quantizations Hth along any geodesic path of U -invariant
Kähler structures th, t > 0, that is by declaring that the generators

(
P̂ (λ+ ρ̂)

1
2 c(λ+ ρ)

dλ

)− 1
2

σ∞
λ,e∗j

, λ ∈ ÛK ,

give an orthonormal set, where ej , j = 1, . . . , dλ is an orthonormal basis for
Vλ. Taking the norm completion we obtain the Hilbert space

H∞ :=
⊕̂

λ∈ÛK

{
σ∞
λ,v∗ | λ ∈ ÛK , v∗ ∈ V ∗

λ

}
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of P∞-polarized sections.
Since the inner products on U -isotypical components in HSch and in H∞

are related by λ-dependent constants we obtain, as a corollary,

Theorem 6. The maps Ct,h : HSch → Hth are not asymptotically unitary

up to a (h-independent) constant as t → +∞ for any h ∈ Conv∞unif(u
∗)Ad∗U .

Note, however, that for Mabuchi rays generated by quadratic Hamiltoni-
ans, the Laplace approximation used in the proof of Theorem 5 is exact so
that, for strictly positive time, the corresponding gCST are unitary, that is
we have

Proposition 10. Let h ∈ Conv∞unif(u
∗)Ad∗

U be quadratic and s > 0. Then,
the U -equivariant maps

Ct,h : Hsh → H(s+t)h

are unitary for t > −s.

Thus, the inner product structure on H∞ can be obtained through the
continuous family of unitary gCST maps for the Mabuchi geodesic going
through quadratic Hamiltonians. For geodesics generated by non-quadratic
Hamiltonians one obtains only asymptotic unitarity of the gCST maps Ct,h.
Moreover, the U -invariant inner product structure for HSch is related to the
inner products for the Hilbert spaces of the Kähler polarizations and, hence
also to the inner product on H∞, through representation-dependent factors
in the U -isotypical decompositions.

Remark 13. In the case of T ∗U [Bai+23], the inner product for the limit
Kirwin-Wu polarization is also induced asymptotically by taking the inner
product along Mabuchy rays. By contrast, however, one can take the rays
to begin at the vertical polarization, that is, in the case of T ∗U , the inner
products for HSch, for the Kähler polarizations Hg, g ∈ Conv∞unif(u

∗)Ad∗
U ,

and for HKW are related t, h-dependent overall factors which do not vary
along the U -isotypical components. (In the case of Mabuchi rays of quadratic
Hamiltonians, the gCST provides a continuous family of unitary maps from
HSch to HKW.)

4.5. The extended quantum bundle. By including the fibers correspond-
ing to the vertical polarization and to P∞, one then obtains an extended
bundle of quantization Hilbert spaces

H → Conv∞unif(u
∗)Ad∗

U ∪ {0,∞}
with fibers Hg over g ∈ Conv∞unif(u

∗)Ad∗U , H0 = HSch over 0 and H∞ over
∞. As described in the previous sections, H comes equipped with a global
trivializing frame

{
σg
λ,v∗ | λ ∈ ÛK , v∗ ∈ V ∗

λ , g ∈ {0} ∪ Conv∞unif(u
∗)Ad∗U ∪ {∞}

}
,

which is parallel with respect to the flat connection ∇Q extended to H.
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The gCST maps Ct,h, t ≥ 0, h ∈ Conv∞unif(u
∗)Ad∗U , give U -equivariant iso-

morphisms between the fibers of H and define the parallel transport opera-
tors of ∇Q. If one excludes the fiber corresponding to the vertical polariza-
tion, the connection ∇Q is unitary along the Mabuchi rays going through
quadratic Hamiltonians while for other rays one obtains asymptotic unitar-
ity at infinite geodesic time.

4.6. Comparing C∞,h with the unitary Fourier transform. As in the
case of T ∗U , parallel transport in the extended quantum bundle along the
geodesic paths th, h ∈ Conv∞unif(u

∗)Ad∗
U , t ≥ 0, gives an U -equivariant iso-

morphism defined by the linear extension of

L2(U/K, dx) ∼= HSch ∋ tr(πλ(x)v
K
λ ⊗v∗)⊗

√
dx 7→ σ∞

λ,v∗ ∈ H∞, λ ∈ ÛK , v∗ ∈ V ∗
λ .

Clearly we have an U -equivariant isomorphism

ΦGQ : H∞
∼=
⊕̂

λ∈ÛK

V ∗
λ

with

ΦGQ(σ
∞
λ,v∗) = v∗.

From above, this defines a unitary (up to a constant) vector valued Fourier

transform with respect to the inner product on
⊕̂

λ∈ÛK
V ∗
λ such that, for a

basis of Vλ, {ej , j = 1, . . . , dλ}, orthonormal for a choice of U -invariant inner
product,

||e∗j ||GQ =

(
P̂ (λ+ ρ̂)

1
2 c(λ+ ρ)

dλ

)− 1
2

.

The standard unitary vector-valued Fourier transform for compact sym-
metric spaces (see [Hel84] and Appendix A)

F : L2(U/K) →
⊕̂

λ∈ÛK

Vλ
∼=
⊕̂

λ∈ÛK

V ∗
λ

can be defined by setting

L2(U/K) ∋
√

dλ tr(πλ(x)v
K
λ ⊗ v∗) 7→ v ∈ Vλ.

F is a unitary isomorphism of Hilbert spaces.
Therefore, unlike what happens for the case of T ∗U , the vector-valued

Fourier transform induced by geometric quantization along the Mabuchi
rays of U -invariant Kähler structures that we describe in this paper is not
identical to the standard Fourier transform. That is, if one considers the nat-
ural inner products making all the arrows in the following diagram unitary
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maps,

L2(U/K) HSch

⊕̂
λ∈ÛK

Vλ

⊕̂
λ∈ÛK

V ∗
λ H∞

F

ΦGQ

then, the diagram commutes only up to multiplication by the representation

dependent factor P̂ (λ+ ρ̂)−
1
2 c(λ+ ρ̂)−1, along the isotypical component for

λ ∈ ÛK , which is necessary to make ΦGQ unitary with respect to the inner
product structure on H∞ which is, as we described, induced by taking a
limit of the half-form corrected inner products for the Kähler quantizations
along Mabuchi geodesics connecting the vertical polarizations and P∞.

4.7. Quantum-geometric interpretation of P∞. The limit polarization
P∞ has an important quantum-geometric interpretation, in line with the
general program outlined in Section 7 of [Bai+23]. The Bohr-Sommerfeld
set of P∞, as we have seen, is given by

⋃

λ∈ÛK

µ−1
inv(λ+ ρ̂),

where these level sets were called “spectral manifolds” in [Bai+23]. In the
limit polarization P∞, the quantization of the coordinate components of µinv

is indeed given just by multiplication operators with spectrum determined
by evaluation at λ+ ρ̂, λ ∈ ÛK .

From Section 3.1 and Proposition 4, the coresponding symplectic reduc-
tions for the Hamiltonian action of Tinv on T ∗(U/K)reg give coadjoint orbits

µ−1
inv(λ+ ρ̂)/Tinv

∼= Oλ+ρ̂.

Let

Hλ
∞ := ⊕v∗∈V ∗

λ
〈σ∞

λ,v∗〉C ⊂ H∞, λ ∈ ÛK .

From Proposition 4 and (31), for λ ∈ ÛK , we obtain a natural U -equivariant
linear isomorphism

H0(Oλ, Lλ) ∼= Hλ
∞,

identifying the quantization of the (integral) coisotropic reductions of P∞

with subspaces of H∞, so that

H∞ = ⊕λ∈ÛK
Hλ

∞
∼= ⊕λ∈µinv(T ∗(U/K)reg)∩ΛK

+
H0(Oλ, Lλ).

Thus, as described in Section 7 of [Bai+23], the Hilbert space for the
quantization in the limit polarization P∞ “decomposes” as a sum of the
holomorphic quantizations of the symplectic reductions, with respect to the
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Hamiltonian action of Tinv, of the spectral manifolds given by the compo-
nents of the Bohr-Sommerfeld set for P∞.

Appendix A. The Fourier transform

[Hel84, Thm. V.4.3] shows that one has a unitary vector valued Fourier
transform

F : L2(U/K) →
⊕̂

λ∈ÛK

Vλ,

defined by

Ff =
∑

λ∈ÛK

dλ

∫

U
χλ(u)Luf du,

where Lu is the left regular representation of U on L2(U/K). Here we use
the isometric embeddings

Vλ → L2(U/K), v 7→
√

dλfv

where

fλ,v(u) := 〈v | πλ(u)vKλ 〉Vλ

and 〈· | ·〉Vλ
denotes the inner product on Vλ. Note that

Ffλ,v = fλ,v

Let V ∗
λ be the complex dual of Vλ. The characterization of the spher-

ical dual ÛK given in [Hel84, Thm. V.4.1] shows that the contragredient
representation (π̃λ, V

∗
λ ) of (πλ, Vλ) is spherical as well. Recall that

〈π̃λ(u)ν, v〉 = 〈ν, π̃λ(u−1)v〉
for U ∈ U, v ∈ Vλ, ν ∈ V ∗

λ and 〈·, ·〉 denoting the natural pairing of V ∗
λ and

Vλ. Writing 〈w | v〉Vλ
= 〈v∗, w〉 then defines an anti-linear bijection

Vλ → V ∗
λ , v 7→ v∗

which is U -equivariant with respect to πλ and π̃λ. We equip V ∗
λ with the

inner product making this map an isometry, i.e.

〈v∗ | w∗〉V ∗
λ
= 〈w | v〉Vλ

= 〈v∗, w〉.

Collecting these maps for all λ ∈ ÛK we obtain an anti-linear bijective
isometry

⊕̂

λ∈ÛK

Vλ −→
⊕̂

λ∈ÛK

V ∗
λ .

In view of

〈v | πλ(u)vKλ 〉Vλ
= 〈πλ(u)vKλ | v〉Vλ

= 〈v∗, πλ(u)vKλ 〉
we have isometric embeddings

V ∗
λ → L2(U/K), v∗ 7→

√
dλfλ,v∗
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where
fλ,v∗(u) := 〈v∗, πλ(u)vKλ 〉
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