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ABSTRACT

Image quality assessment often relies on raw opinion
scores provided by subjects in subjective experiments, which
can be noisy and unreliable. To address this issue, postpro-
cessing procedures such as ITU-R BT.500, ITU-T P.910, and
ITU-T P.913 have been standardized to clean up the original
opinion scores. These methods use annotator-based statistical
priors, but they do not take into account extensive informa-
tion about the image itself, which limits their performance in
less annotated scenarios. Generally speaking, image quality
datasets usually contain similar scenes or distortions, and it is
inevitable for subjects to compare images to score a reason-
able score when scoring. Therefore, In this paper, we pro-
posed Subjective Image Quality Score Preprocessing Method
perceptual similarity Subjective Preprocessing (PSP), which
exploit the perceptual similarity between images to alleviate
subjective bias in less annotated scenarios. Specifically, we
model subjective scoring as a conditional probability model
based on perceptual similarity with previously scored images,
called subconscious reference scoring. The reference images
are stored by a neighbor dictionary, which is obtained by a
normalized vector dot-product based nearest neighbor search
of the images’ perceptual depth features. Then the prepro-
cessed score is updated by the exponential moving average
(EMA) of the subconscious reference scoring, called similar-
ity regularized EMA. Our experiments on multiple datasets
(LIVE, TID2013, CID2013) show that this method can effec-
tively remove the bias of the subjective scores. Additionally,
Experiments prove that the Preprocesed dataset can improve
the performance of downstream IQA tasks very well.

Index Terms— Blind image quality assessment (BIQA),
Subjective Image Quality, Subjective Score Preprocessing,
Perceptual Similarity.

1. INTRODUCTION

Image quality assessment [1, 2, 3, 4, 5, 6, 7], assessing the
quality of an image is a crucial aspect of image processing
research. Its goal is to enable computers to automatically an-
alyze the features of an image and determine its strengths and
weaknesses, such as the presence of distortion or other de-
fects. The explosion of data has created a need for efficient

Fig. 1. Left: traditional MOS model, Gaussian Distribution.
Middle: model with annotator information added, Gaussian
multimodal distribution. Right: model with image informa-
tion added, Gaussian multimodal distribution. u(x) is re-
garded as the true quality. f(s) is a learnable bias of anno-
tator s. u(x

′
) is regarded as the true quality of the reference

image. S(x, x
′
) represents the score residual converted from

the perceptual similarity between images.

processing of large amounts of image and video data. As
a result, image quality assessment has become increasingly
important for both practical applications and scientific re-
search. It is typically divided into two categories: assessment
with reference, and assessment without reference. Reference-
based methods require a high-quality reference image to com-
pare against, but this is not always feasible in practice. There-
fore, no-reference assessment has become an active area of
research in academia and industry.

To reduce the subjectivity of non-reference image quality
assessment, this method requires manual labeling of image
quality, collection of scores, and data processing to obtain the
MOS value. However, there are various errors in human la-
beling. Currently, the processing methods only take into ac-
count the image and personnel numbers and only focus on the
statistical results of the data. They ignore the feature informa-
tion contained in the images themselves. Simply processing
the labeling results statistically cannot eliminate the error of
personnel labeling, but only provides a smooth process.

The core hypothesis of image quality assessment labeling
is that two images with similar image quality have similar la-
beling scores. However, current MOS processing methods do
not pay attention to the hidden information caused by image
similarity, which is just the core of the image quality assess-
ment task and does not have task specificity. For the first time,
this article introduces image quality correlation to help solve
Data postprocessing problems. For the task of image quality
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assessment without reference, the objective and unbiased tag-
ging data is the most important for the training of the model.

Such a crowdsourcing way is costly and time-consuming.
Some subjective score postprocessing methods have been
proposed to replace MOS such as P910 [8], P913 [9],
BT500 [10]. However, existing techniques for image quality
assessment rely only on the collected scores and ignore the
essential information contained in the original images. This
can be problematic when the number of annotations is small
or when only a single annotator is available. To address this
issue, we propose a method named PSP-IQA for postprocess-
ing IQA data based on subconscious reference scoring. It as-
sumes that, When the human visual system makes a subjec-
tive quality assessment, it subconsciously gives a score based
on a reference image. Specifically, we use the nearest neigh-
bor search (NNS) to find a reference image based on percep-
tual similarity. Then similarity information in the dataset can
help us to modify scores as a regularized item. It takes advan-
tage of the hypothesis that similar image features should have
similar scores, thus leveraging the implicit information in the
dataset to correct the bias of subjective labeling. Although
this regularization term of perceived similarity will limit the
fraction away from his similar image. We still believe that
the original marked score has a high degree of confidence, so
we use EMA to fine-tune the original score by using the per-
ceptual regularization term, which is called perceptual reg-
ularization fine-tuning. This simple and effective method is
suitable for IQA data postprocessing and is particularly use-
ful when only a limited number of annotations are available.
The proposed perceptual similarity postprocessing method is
proven to be effective in theory and experiment. We experi-
mented with the IQA task (3 datasets). The results show that
the proposed method reduces the adverse effect of subjective
bias data on the model performance.

2. RELATED WORK

Image quality assessment.
For image quality assessment datasets [4], there are sev-

eral acquisition and processing techniques, such as guarantee-
ing the consistency of the subjective assessment environment
[5], adding post-processing to the obtained data [6], and elim-
inating outliers [7]. Without a doubt, however, several anno-
tators are required for the large-scale subjective assessment
datasets that are all amassed through crowdsourcing.

IQA tasks [1, 2, 3], which are frequently thought of as re-
gression problems and have a regressive sigmoid head, have
recently been the subject of DNN-based objective assess-
ment algorithms that may perform better. In addition, numer-
ous alternative frameworks for subjective assessment tasks
have also been developed using GAN [11], VAE [12], and
transformers [13]. For many novel visual tasks and scenar-
ios, such as distorted images [4], virtual reality [14, 15],
light fields [16], and dehazing images [17, 18], there is cur-

rently a high demand for fresh datasets. We try to reduce
the number of annotations required by the data set by MOS
post-processing method, while ensuring the reliability of the
model.
Crowdsourced annotations and Noisy label. Any complex
function can be learned by an over-parameterized network
from corrupted labels [19, 20, 21, 22, 22, 23]. According
to Zhang et al. [24], DNNs can easily fit the entire training
dataset with any corrupted label ratio, resulting in less gener-
ality on the test dataset. Robust loss functions [20, 21, 25],
regularization [26], robust network architecture [22], sample
selection [23], training strategy [27, 28], and other techniques
are proposed to train deep networks in noisy environments.

Most methods, however, are designed around one-hot la-
bel properties such as classification task [26] sparsity and
noise tolerance [29]. As a result, it cannot be directly applied
to the subjective bias problem. Annotators for subjective as-
sessment problems are frequently crowdsourced [30, 31, 32],
and each person’s score is biased against the ideal objective
evaluator.

Furthermore, the International Telecommunication Union
(ITU) and researchers have proposed a number of crowd-
sourced data processing standards [10, 8, 9] to eliminate sub-
jective bias in MOS. However, these proposed methods do not
take into account specific task information but instead rely on
iterative fitting to remove subjective bias in the data, the appli-
cability of different tasks is limited, and more data is required,
making it difficult to apply under a single annotation.

3. METHODS

In previous papers, the main modeling method of subjective
scoring can be expressed as the following formula:

p(y|x) = Es|xp(y|x, s)p(s|x) (1)

Rather than modeling the scoring p(y|x) as a Gaussian
distribution p(y|x) ∼ N

(
u(x), σ2

)
, additional annotator in-

formation is introduced to model the conditional Gaussian
distribution p(y|x, s) ∼ N

(
u(x) + f(s), σ2

)
. It is gener-

ally believed that annotators have the same bias for different
images. u(x) is regarded as the true quality.

Compared with introducing additional annotator informa-
tion, we use the perceptual similarity of the image itself as a
constraint. We consider the score of the mark to be related to
a potential reference image when scoring.

p(y|x) = Ex′ |xp(y|x, x
′
)p(x

′
|x) (2)

where p(y|x, x′
) ∼ N

(
u(x

′
) + S(x, x

′
), σ2

)
, p(x

′ |x)
represents the probability distribution of the potential refer-
ence images when the annotator scores. S(x, x

′
) represents

the score residual converted from the perceptual similarity be-
tween images.



Fig. 2. The overall framework of the proposed method. When the marked score yn is biased large, the perceptual similarity
score and the similar image estimation score can get the correct real score, thus correcting yn.

In fact, p(x
′ |x) is difficult to obtain because it is difficult

to tell which image the annotator subconsciously compares
with. It is natural to think that all images have an equal prob-
ability of being adopted by the annotator for reference. How-
ever, this would make us computationally unbearable. For
simplicity, we model it as a nearest-neighbor search model
here. We think people always tend to compare with similar
images.

Given a noisy dataset {(xn, yn)}Ni=1, maximizing the log-
likelihood can be converted to minimizing the mean squared
error (MSE).

argmin
θ

1

N

N∑
n=1

(yn − (S(xn,NNS(xn)) + u(x
′

n)))
2, (3)

In short, compared to traditional MOS u(xn) = yn, we
added perceptual similarity as a regular term to fine-tune the
final score.

Specifically, we use perceptual similarity LPIPS [33] as
a metric to search for the most similar images, resulting in
NNS. The perceptual similarity score S is obtained by using
the features of LPIPS through a scorer, which consists of a
ResNet network.

When starting optimization, we initialize u(xn) as yn, by
defining a score matrix U ∈ R1×N . Iterate the network pa-
rameters via gradient descent and update the estimated true
score by fine-tuning from y using EMA:

 ut+1(xn) = EMA(St(xn,x
′

n) + ut(x
′

n), u
t(xn))

θt+1 = θt − λ∆θ
(4)

where ∆θ obtained by backpropagation:

∇θ

{
1

N

N∑
n=1

(yn − (St(xn,NNS(xn)) + ut(x
′

n)))
2

}
. (5)

In the actual implementation, we set a warm-up time T for
the perceptual similarity function S. Before the training epoch
times T, we do not adjust the labels. After training the epoch
times T times, we use EMA to fine-tune the score:

ut+1(xn) =

 EMA(St(xn,x
′

n) + ut(x
′

n), u
t(xn))

yn,when : t < T
(6)

4. EXPERIMENTS

In this section, we first describe the experimental setups, in-
cluding datasets, assessment criteria, and network architec-
ture details. Then we compare the performance of PSP with
other preprocessing methods. We next conduct a series of
ablation studies to identify the contribution of the key com-
ponents of PSP. Finally, we also present some visualization
cases.

4.1. Datasets and Settings

Datasets. Since there are no existing image quality assess-
ment datasets to measure preprocessing performance with
specific annotation information. We selected existing popu-
lar quality assessment datasets to generate data with subjec-
tive bias, including LIVE [36] and TID2013 [37] and popular
quality assessment datasets CID2013 [6] with specific anno-
tation information.



Table 1. We compare the performance of our method with subjective preprocess methods and ablation study on bias label (bias
rate 100%) from image quality databases of LIVE, TID2013, and CID2013. We report SROCC, KROCC, and MSE results
between the preprocessed quality scores and the true MOS provided by the database. We highlight the best results in bold font.

Datasets LIVE TID CID

Methods\Metrics SROCC PLCC KROCC MSE SROCC PLCC KROCC MSE SROCC PLCC KROCC MSE

MOS [34] 0.7537 0.7510 0.5638 0.0314 0.7848 0.7956 0.5889 0.0160 0.6584 0.6753 0.4756 0.0588
Zhi Li [35] 0.7537 0.7510 0.5638 0.0314 0.7848 0.7956 0.5889 0.0160 0.6584 0.6753 0.4756 0.0588
w/o score matrix 0.7858 0.7598 0.5800 0.0281 0.8151 0.8274 0.6181 0.0248 0.6821 0.6904 0.4955 0.0434
ours 0.8501 0.8220 0.6593 0.0181 0.8329 0.8492 0.6387 0.0085 0.7374 0.7474 0.5436 0.0293

Table 2. Performance comparison when the noise rate is set to different values. We conduct this test on the LIVE database and
report the SROCC, PLCC, KROCC, and MSE results between the preprocessed quality scores and the true subjective scores of
LIVE.

Datasets LIVE TID CID

Methods\Metrics SROCC PLCC KROCC MSE SROCC PLCC KROCC MSE SROCC PLCC KROCC MSE

MOS rate=0.6 0.8437 0.8407 0.6886 0.0193 0.8565 0.8617 0.6991 0.0099 0.7675 0.7794 0.5988 0.0336
Ours rate=0.6 0.8567 0.8339 0.6682 0.0190 0.8575 0.8713 0.6673 0.0083 0.8346 0.8350 0.6413 0.0201
MOS rate=0.8 0.8231 0.8131 0.6451 0.0246 0.8133 0.8230 0.6308 0.0134 0.7004 0.7141 0.5149 0.0465
Ours rate=0.8 0.8637 0.8429 0.6710 0.0169 0.8415 0.8550 0.6475 0.0082 0.7578 0.7595 0.5599 0.0277

If the dataset contains annotation information, we ran-
domly sample the labeled scores of each image and average
them to obtain a MOS with subjective bias as the training set.
The original MOS is used as the test set. If the data set does
not contain annotation information, we use the original MOS
of each image as the mean, and the variance takes the given
variance of the data set (or sets it to 0.2) as a Gaussian distri-
bution to obtain a biased MOS.

Evaluation Criteria. The Pearson Linear Correlation Co-
efficient (PLCC), Spearman Rank Order Correlation Coef-
ficient (SROCC), Kendall rank-order correlation coefficient
(KROCC), and MSE are used to measure performance, as in
previous work.

4.2. Detailed Implementation

Since perceptual similarity models have recently demon-
strated great capability. We employ LPIPS and ResNet-50
as the backbone. The images in the training set are resized to
320, and randomly cropped to 320. The images in the test set
are fed directly into our model with no data augmentation. All
of this is done with the assumption that preprocessed images
have the same score as the original. We use ResNet50 as the
proposed method’s backbone network based on the general
configuration of network structure in IQA fields. The model’s
hyperparameter settings include learning rate = 0.01, SGD as
the optimizer, epoch = 10, and training batch size = 16. The
model was trained using a single GeForce RTX 3090 GPU.

4.3. Performance assessment and Comparison

In this section, experiments within individual standard IQA
databases are conducted to evaluate the effectiveness of PSP.
We discuss how to use single subjective labels to achieve per-
formance under the labels obtained from many annotators. As
the question has never been explored, we select the typical
subjective assessment models, namely ResNet-50 [38] and
LPIPS [33], and then test the accuracy of the models when
using single subjective labels. To simulate the scenario of sin-
gle labels, we replace all the labels in the datasets (except for
CID2013). In other words, the bias label rate is 100 percent.
Single subjective labels are generated via Gaussian Sampling
from the labels processed by several annotators. Real single
labels are obtained on CID2013 datasets, and the labels pro-
cessed by several annotators are replaced randomly with the
labels processed by a single annotator.

The experimental results in table 1 demonstrate the corre-
lation between the score obtained by a small amount of score
(just need one score in 1) and the real Ground Truth. The
closer the first three indexes (SROCC, PLCC, and KROCC)
are to one, the closer they are to Ground Truth, and the smaller
the last is (MSE), the smaller the margin of error. Note that
the comparison here is a comparison of the accuracy of the
pre-processing method, and the quality of the labeling directly
affects the performance of the model training. Compared with
other mainstream crowdsourced subjective scores processing
methods, such as MOS and Zhi Li’s, the proposed method
is superior to others in SROCC, PLCC, KROCC, and MSE.
The results are shown in Table 1. The accuracy of the mod-
els is significantly lower when trained with single subjective



Table 3. The performance impact of the dataset after the PSP
subjective quality score preprocessing method on the quality
assessment task. We conduct this test on the LIVE database
and report SROCC, PLCC, KROCC, and MSE results be-
tween quality rating performance and LIVE true subjective
scores. The quality evaluation model uses NIMA. The sub-
jective bias scale was set to 1.0 and the bias variance to 0.2.
We found that the scoring after PSP subjective quality score
preprocessing can endow the quality evaluation model with
better performance.

SROCC PLCC KROCC MSE

MOS-GT 0.9317 0.8988 0.7790 0.0112

MOS 0.8704 0.8653 0.6877 0.0238

PSP 0.9202 0.8966 0.7582 0.0178

labels than when trained with the labels processed in the orig-
inal dataset (standard MOS). It indicates that the bias from
the single subjective labels exerts a great negative impact on
the accuracy of the models. However, the accuracy remains
at similar levels when trained by the subjective labels pro-
cessed by several annotators and when trained by the single
subjective labels. When trained by single subjective labels,
the proposed model is more accurate than other subjective bi-
ased models. we have the following observations.

4.4. Ablation studies

4.4.1. Different Noise Rates

Because there may be different annotations of labels for a sin-
gle image in the case of true labeling, this paper calls it the
noise rate. In order to simulate the scene and verify the ef-
fectiveness of the proposed PSP-IQA method, experiments
are carried out under the noise rate of 0.6 and 0.8 respec-
tively. The results are shown in Table 2, the proposed method
outperforms the MOS method at different noise rates (e. g.
0.6,0.8,1), which verifies the universality of PSP-IQA.

4.4.2. Different EMA Weights

To evaluate the performance of the proposed model, we per-
formed ablation experiments with respect to the EMA param-
eters of the model. In order to test the performance changes
under different EMA weights, interval ablation experiments
ranging from 0.2 to 1.0 were set up. The results are shown in
Table 4.

4.4.3. Different variance and T

We performed ablation experiments to σ of the Gaussian dis-
tribution p(y|x) ∼ N

(
u(x) + f(s), σ2

)
and to the T of the

Table 4. Performance comparison when the EMA Weights
is set to different values. We conduct this test on the LIVE
database and report the SROCC, PLCC, KROCC, and MSE
results between the preprocessed quality scores and the true
subjective scores of LIVE. We highlight the best results in
bold

SROCC PLCC KROCC MSE

EMA=0.2 0.4752 0.4324 0.3205 0.1247

EMA=0.4 0.5802 0.5492 0.4005 0.0758

EMA=0.8 0.7800 0.7484 0.5808 0.0271

EMA=0.9 0.8501 0.8220 0.6593 0.0181

EMA=1.0 0.7537 0.7510 0.5638 0.0314

Fig. 3. (a) ResNet-50: Accuracies on LIVE with different
variance σ.(b) ResNet-50: Accuracies on LIVE with different
T .

EMA. The results are shown in Figure 3. As shown in fig-
ure 3 (a), the proposed PSP-IQA method is superior to the
MOS method in different variance σ, and the larger the vari-
ance σ is, the more the performance gap between PSP-IQA
and MOS method can be reflected, and the validity of the
proposed method is verified. As shown in figure 3 (b), the
convergence rate of PSP-IQA is different under different T,
but the final convergence precision is close, which shows that
the proposed method is insensitive to iterative parameters and
robust.

4.5. Case Study

We conduct a case study to show the effectiveness of LPR-
IQA. As show in Fig. 4, we found that calculating the percep-
tual similarity score between the two found a large gap with
the actual annotated similarity score. In this way, we estimate
a score matrix to fine-tune the score so that the score is more
consistent with the actual distortion of the image. It is worth
noting that our method fine-tunes the score by weighing the
content of all images in the dataset and the distribution of
scores, rather than the two images shown. The marked score
of the image we selected is very different from the real score,
and the corresponding reference image searched by NSS is



Fig. 4. Given a biased MOS (below the image), our method
searches for images with similar perceptual similarities via
NSS and gets the finetune score.

also the same. There is a gap between our perceptual similar-
ity score (0.2905) and the annotated similarity score (0.5441).
However, the perceptual similarity score is correlated with
the whole dataset with higher confidence. Based on the per-
ceptual similarity score, we were able to fine-tune the image
score.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes a new IQA-perceptual similarity process-
ing method, which is a simple and effective image-perceptual
similarity-based IQA data preprocessing method PSP-IQA,
suitable for IQA tasks. PSP-IQA alleviates the subjective bias
problem when there are few annotators. This method can con-
sider not only the existing annotation labels, but also the per-
ceptual similarity relationship of images in the data set. In our
approach, we assume that the subjective annotation process
is a scoring process based on latent reference images, rela-
tive to the perceived similarity of another image. We propose
a conditional probability model based on LPISP and nearest
neighbor search (NSS) to model the subjective scoring pro-
cess. And fine-tune the existing labels based on EMA. On the
real dataset CID2013 and the popular IQA datasets LIVE and
TID, it is verified that our method can effectively alleviate the
bias of subjective scoring.
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