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Abstract— EVENODD+ codes are binary maximum distance
separable (MDS) array codes for correcting double disk failures
in RAID-6 with asymptotically optimal encoding/decoding/update
complexities. However, the number of bits stored in each disk
of EVENODD+ codes should be an odd number minus one.
In this paper, we present a new construction of EVENODD+
codes that have more flexible parameters. The number of bits
stored in each disk of our codes is an odd minus one times any
positive integer. Moreover, our codes not only have asymptotically
optimal encoding/decoding/update complexities but also have
lower encoding/decoding/update complexities than the existing
EVENODD+ codes.

I. INTRODUCTION

A
RRAY codes were initially used to correct track errors

in magnetic tape storage. After the concept of redundant

arrays of inexpensive disk (RAID) [1] was proposed, such

systems were characterized by a large number of data disks

and a small number of redundant disks, with a focus on

computational efficiency. Therefore, array codes are suitable

for these systems [2], [3].

In a storage system, the more redundancy added to the

system to increase fault tolerance, the higher the additional

cost of the system will be. As a type of erasure coding, binary

array codes [4] have the advantages of simple operations

and easy implementation. Maximum distance separable (MDS)

array codes have the additional advantage of high storage

efficiency. Encoding/decoding complexity is the key metric of

binary MDS array codes that is defined as the total number

of XORs involved in the encoding/decoding process. Another

important metric is the update complexity, which is defined as

the average number of parity bits affected by a change of a

single information bit.

There are many binary MDS array codes in the literature.

EVENODD codes [5] and RDP codes [6] are two impor-

tant binary MDS array codes with asymptotically optimal

encoding/decoding complexity but with sub-optimal update

complexity. Recently, EVENODD+ codes have been proposed

in [7] to achieve asymptotically optimal update complexity.

However, the number of bits stored in each column is restricted
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to be an odd number minus one. In this paper, we will present

new constructions of EVENODD+ that can support many more

parameters. Some other binary MDS array codes can be found

in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

We first provide an overview of EVENODD codes [5] and

EVENODD+ codes [7]. EVENODD codes are (p− 1)× (k+
2) array codes, where p ≥ k is prime. The first k columns

are information columns, and the last two columns are parity

columns. For i = 0, 1, . . . , p− 2, let bi,j be the bits stored in

column j, where j = 0, 1, . . . , k + 1. The parity bits bi,k in

column k are computed by

bi,k =
k−1∑

j=0

bi,j ,

and the parity bits bi,k+1 in column k + 1 are computed by

bi,k+1 = bp−1,k+1 +

k−1∑

j=0

bi−j,j ,

where bp−1,j = 0 for j = 0, 1, . . . , k − 1, and bp−1,k+1 =
∑k−1

j=1 bp−1−j,j is called the common bit. Note that the sub-

scripts above are taken modulo p. The minimum update

complexity of systematic MDS (p− 1)× (k+ 2) array codes

is 2+ 1
p
(1− 1

k
) [20]. We can count that the update complexity

of EVENODD codes is 3− p+k−2
k(p−1) , which is sub-optimal. The

main reason for the sub-optimal update complexity is that the

common bit bp−1,k+1 is added to all the parity bits in column

k + 1. EVENODD+ codes [7] can achieve the asymptotically

optimal update complexity by only adding the common bit

bp−1,k+1 to a partial of the parity bits in column k + 1.

Specifically, EVENODD+ codes add the common bit to the

first 2⌊k
2 ⌋ parity bits in column k+1. The update complexity

of EVENODD+ codes is 2 + (2⌊k
2 ⌋ − 1) k−1

k(p−1) , which is

asymptotically optimal for p ≫ k.

In this paper, We present a new construction for EVEN-

ODD+ codes with more flexible parameters. Our new codes

have two properties: (i) MDS property and (ii) lower encod-

ing/decoding/update complexity than EVENODD+ codes. The

new codes build on the observation that the number of bits

stored in each disk of EVENODD+ codes is an odd number

minus one. In contrast, the number of bits stored in each disk

of our codes can be an odd number minus one times any

positive integer so as to support more parameters.
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II. NEW CONSTRUCTION OF EVENODD+ CODES

In this section, we present a new construction of EVEN-

ODD+ codes with an array size of τ(p−1)× (k+2), where p

is an odd number, τ and k are positive integers. Denote the bit

in column j and row i as bi,j , where j = 0, 1, . . . , k + 1 and

i = 0, 1, . . . , τ(p− 1)− 1. Columns j with j = 0, 1, . . . , k− 1
are information columns that store the information bits, and

columns k and k + 1 are parity columns that store the parity

bits. In the rest of the paper, the subscripts are taken modulo

τp unless otherwise specified.

As with EVEONDD codes, the bits in column k are

computed by the summation of the information bits in the

same row, i.e.,

bi,k =

k−1∑

j=0

bi,j 0 ≤ i ≤ τ(p− 1)− 1. (1)

For easier presentation, let bi,j = 0 for i = τ(p − 1), τ(p −
1) + 1, . . . , τp− 1 and j = 0, 1, . . . , k − 1. Let

t = min(k − 1, τ).

The bits in column k + 1 are computed by,

bi,k+1 =







Si mod t+
k−1∑

j=0

bi−j,j

0 ≤ i ≤ 2⌊k−1
2 ⌋t− 1,

k−1∑

j=0

bi−j,j

2⌊k−1
2 ⌋t ≤ i ≤ τ(p − 1)− 1,

(2)

where Sµ =
k−1∑

j=1

bτ(p−1)+µ−j,j are t common bits for µ =

0, 1, . . . , t − 1. Similar to the construction of EVENODD+

codes in [7], we also add the common bit to a partial of the

parity bits in column k + 1. This is the essential reason for

our codes to achieve asymptotically optimal update complexity.

Note that the codes in [7] are a special class of our codes with

τ = 1. Note that our codes can support many more parameters.

The number of bits stored in each column of our codes can

be an odd number minus one times any positive integer, while

the number of bits in each column should be an odd number

minus one in [7].

Table I illustrates an example of our codes with (τ, p, k) =
(2, 5, 3). We have two common bits S0 = b7,1 + b6,2 and

S1 = b7,2 that are added to the first four bits in column 4.

TABLE I: Example of (τ, p, k) = (2, 5, 3).

b0,0 b0,1 b0,2 b0,0 + b0,1 + b0,2 b0,0 + S0

b1,0 b1,1 b1,2 b1,0 + b1,1 + b1,2 b1,0 + b0,1 + S1

b2,0 b2,1 b2,2 b2,0 + b2,1 + b2,2 b2,0 + b1,1 + b0,2 + S0

b3,0 b3,1 b3,2 b3,0 + b3,1 + b3,2 b3,0 + b2,1 + b1,2 + S1

b4,0 b4,1 b4,2 b4,0 + b4,1 + b4,2 b4,0 + b3,1 + b2,2
b5,0 b5,1 b5,2 b5,0 + b5,1 + b5,2 b5,0 + b4,1 + b3,2
b6,0 b6,1 b6,2 b6,0 + b6,1 + b6,2 b6,0 + b5,1 + b4,2
b7,0 b7,1 b7,2 b7,0 + b7,1 + b7,2 b7,0 + b6,1 + b5,2

III. THE MDS PROPERTY

In this section, we show that the proposed codes are MDS

codes by giving the decoding method for any two-column

failures.

Theorem 1. Our codes are MDS codes if p is an odd integer

such that all divisors of p except 1 are larger than k − 1.

Proof. Suppose that two columns are erased. We show that

we can retrieve all the information bits if p is an odd integer

and all divisors of p except 1 are larger than k− 1. We divide

the decoding method on two column erasures into two cases:

(i) one information and one parity column are erased; (ii) two

information columns are erased.

Case (i). Suppose that columns f and k + 1 are erased,

where 0 ≤ f ≤ k − 1. We can recover the information bits in

column f by

bi,k+(bi,0+ bi,1+ · · ·+ bi,f−1+ bi,f+1+ · · ·+ bi,k−1) = bi,f ,

according to Eq. (1), for i = 0, 1, . . . , τ(p − 1) − 1. Second,

suppose that columns f and k are erased, where 0 ≤ f ≤
k − 1. When f = 0, we can compute the bit bi,0 for i =
0, 1, . . . , τ(p− 1)− 1 by

bi,k+1 + Si +

k−1∑

j=1

bi−j,j

= Si +

k−1∑

j=0

bi−j,j + Si +

k−1∑

j=1

bi−j,j = bi,0.

When 1 ≤ f ≤ k−1, we have 0 ≤ f−1 ≤ k−2 ≤2⌊k
2 ⌋t−1.

According to Eq. (2) with i = f − 1, we can recover

bτ(p−1)+(f−1) mod t−f,f by

bf−1,k+1 +
k−1∑

j=1,j 6=f

bτ(p−1)+(f−1) mod t−j,j+

k−1∑

j=0,j 6=f

bf−1−j,j

=

k−1∑

j=0

bf−1−j,j +

k−1∑

j=1

bτ(p−1)+(f−1) mod t−j,j+

k−1∑

j=1,j 6=f

bτ(p−1)+(f−1) mod t−j,j +

k−1∑

j=0,j 6=f

bf−1−j,j

= bτ(p−1)+(f−1) mod t−f,f + bpτ−1,f

= bτ(p−1)+(f−1) mod t−f,f .

Similarly, by Eq. (2), we can recover bτ(p−1)+i mod t−f,f for

i = f − 1, f − 2, . . . ,max(0, f − t), and then compute the t

common bits. For

i ∈ {0, 1, · · · , 2⌊
k − 1

2
⌋t−1}\{f−1, f−2, . . . ,max(0, f−t)},



we can recover the bit bi−f,f by

bi,k+1 + Si +

k−1∑

j=0,j 6=f

bi−j,j

= Si +

k−1∑

j=0

bi−j,j + Si +

k−1∑

j=0,j 6=f

bi−j,j = bi−f,f .

For 2⌊k−1
2 ⌋t ≤ i ≤ τ(p−1)−1, the common bit is not added

to the bit bi,k+1, we can recover the bit bi−f,f by

bi,k+1 +

k−1∑

j=0,j 6=f

bi−j,j

=

k−1∑

j=0

bi−j,j +

k−1∑

j=0,j 6=f

bi−j,j = bi−f,f .

We have recovered all the bits in column f .

Case (ii). Suppose that information columns f and g are

erased, where 0 ≤ f < g ≤ k−1. We can first compute
t−1∑

µ=0
Sµ

by summing all the parity bits in columns k and k+1. In the

following, we present the decoding method by considering two

sub-cases: (ii.1) τ ≥ k − 1 and (ii.2) τ < k − 1.

Sub-case (ii.1) τ ≥ k−1. We have t = k−1 common bits.

We first consider the special case of f = 0 and g = k − 1.

By subtracting the τ(p − 1)(k − 2) information bits in k − 2
surviving information columns from the parity bits bi,k and

bi,k+1, we can obtain the following bits

b′i,k = bi,0 + bi,k−1, (3)

where i = 0, 1, . . . , (p− 1)τ − 1,

b′i,k+1 =







S′
i mod (k−1) +bi,0 + bi−(k−1),k−1,

0 ≤ i ≤ 2⌊k−1
2 ⌋t− 1,

bi,0 +bi−(k−1),k−1,

2⌊k−1
2 ⌋t ≤ i ≤ τ(p − 1)− 1,

(4)

where S′
µ = bτ(p−1)+µ−(k−1),k−1 for µ = 0, 1, . . . , k − 2. If

τ(p− 1) is divisible by k − 1, by summing the bit in Eq. (3)

with i = 0 and the two bits in Eq. (4) with i = 0 and i = k−1,

we have

(S′
0 + b0,0 + b1−k,k−1) + (S′

0 + bk−1,0 + b0,k−1)+

(b0,0 + b0,k−1)

= bk−1,0,

where the above equality comes from b1−k,k−1 = 0. Then we

can compute bk−1,k−1 by Eq. (3) with i = k − 1. Let i =
ℓ(k−1) with integer ℓ ≥ 1, the bit in Eq. (4) does not contain

the common bit if ℓ(k − 1) mod τ(p − 1) ≥ 2⌊k−1
2 ⌋(k − 1),

and we can compute bℓ(k−1),0 and bℓ(k−1),k−1 recursively by

Eq. (3) and Eq. (4), where 1 ≤ ℓ ≤ τ(p−1)
k−1 .

By summing the bit in Eq. (3) with i = 0+m and the two

bits in Eq. (4) with i = 0 +m and i = k − 1 +m, we have

(S′
m + bm,0 + bm+1−k,k−1) + (S′

m + bk−1+m,0 + bm,k−1)

+ (bm,0 + bm,k−1)

= bk−1+m,0,

where 0 ≤ m ≤ k − 2, the above equality comes from

bm+1−k,k−1 = 0. Then we can compute bk−1+m,k−1 by Eq.

(3) with i = k− 1+m. By summing bk−1+m,k−1 and the bit

in Eq. (4) with i = 2(k − 1) +m, we have

bk−1+m,k−1 + (b2(k−1)+m,0 + b(k−1)+m,k−1)

= b2(k−1)+m,0.

Let i = ℓ(k − 1) + m with integer ℓ ≥ 1. The bit in Eq.

(4) does not contain the common bit if ℓ(k − 1) + m mod
τ(p− 1) ≥ 2⌊k−1

2 ⌋(k − 1), and we can compute bℓ(k−1)+m,0

and bℓ(k−1)+m,k−1 recursively by Eq. (3) and Eq. (4), where

1 ≤ ℓ ≤ τ(p−1)
k−1 , 0 ≤ m ≤ k − 2.

As the bit bk−1+m,k−1 is known, if the bit in Eq. (4)

contains the common bit, we use Eq. (4) with i = 2(k−1)+m

to compute

bk−1+m,k−1 + (S′
m + b2(k−1)+m,0 + b(k−1)+m,k−1)

= b2(k−1)+m,0 + S′
m.

By Eq. (3) with i = 2(k − 1) + m, we can compute

b2(k−1)+m,k−1 + S′
m. By summing the bit in Eq. (4) with

i = 3(k − 1) +m, we have

b2(k−1)+m,k−1 + S′
m + (S′

m + b3(k−1)+m,0 + b2(k−1)+m,k−1)

= b3(k−1)+m,0.

By repeating the above process for ℓ = 2, 3, . . . , τ(p−1)
k−1 − 1,

we can compute

bℓ(k−1)+m,k−1 + S′
m

= bτ(p−1)−(k−1)+m,k−1 + bτ(p−1)+m−(k−1),k−1

= 0.

Therefore, we can have S′
m, and further obtain bℓ(k−1)+m,0

and bℓ(k−1)+m,k−1 by Eq. (3) and Eq. (4), where 1 ≤ ℓ ≤
τ(p−1)
k−1 , 0 ≤ m ≤ k − 2.

Otherwise, if ℓ ≥ τ(p−1)
k−1 , the bit in Eq. (4) contains the

common bit, we can compute one erased bit by summing two

bits in Eq. (4). For example, when ℓ = τ(p−1)
k−1 , by summing

the known bit b(ℓ−1)(k−1),k−1 and the bit in Eq. (4) with i =
ℓ(k − 1), we have

b(ℓ−1)(k−1),k−1 + (bℓ(k−1),0 + b(ℓ−1)(k−1),k−1 + S′
0)

= bℓ(k−1),0 + bτ(p−1)−(k−1),k−1

= bℓ(k−1),0.

When i = τ(p−1)
k−1 , we have i(k− 1) mod τ(p− 1) = 0, we

can get

b(i−1)(k−1),k−1 + [bi(k−1) mod τ(p−1),0+

bi(k−1) mod τ(p−1)−(k−1),k−1 + S′
i(k−1) mod τ(p−1) mod k−1]

= b(i−1)(k−1),k−1 + [bi(k−1),0 + bpτ−(k−1),k−1 + S′
0]

= bi(k−1)−(k−1),k−1 + [bi(k−1),0 + 0 + bτ(p−1)−(k−1),k−1]

= bi(k−1),0.

Next, we show that we have recovered all the erased

bits, i.e., ℓ(k − 1) + m = {0, 1, . . . , τ(p − 1) − 1} with

ℓ = 1, 2, . . . , τ(p−1)
k−1 and m = 0, 1, . . . , k − 2. We need



to show that ℓ1(k − 1) + m1 6= ℓ2(k − 1) + m2, for

1 ≤ ℓ1 < ℓ2 ≤ τ(p−1)
k−1 and 0 ≤ m1 < m2 ≤ k − 2. Suppose

that ℓ1(k−1)+m1 = ℓ2(k−1)+m2 mod τ(p−1). We have

ℓ1(k − 1) +m1 + tτ(p − 1) = ℓ2(k − 1) +m2, and obtain,

(ℓ2 − ℓ1)(k − 1) + (m2 −m1)

τ(p− 1)
= t,

where t is a positive integer. We can further obtain that

1 ≤ (ℓ2 − ℓ1) ≤
τ(p− 1)

k − 1
− 1,

k ≤ (ℓ2 − ℓ1)(k − 1) + (m2 −m1) ≤τ(p− 1)− 1,

t =
(ℓ2 − ℓ1)(k − 1) + (m2 −m1)

τ(p− 1)
<1,

which contradicts with t ≥ 1. Therefore, we have recovered all

the erased bits of (g, f) = (k− 1, 0) and τ(p− 1) is divisible

by k − 1.

Next, we present the decoding method when τ(p − 1) is

not divisible by k − 1. By summing the bit in Eq. (3) with

i = 0 and the two bits in Eq. (4) with i = 0 and i = k − 1,

we have bk−1,0. Then we can compute bk−1,k−1 by Eq. (3)

with i = k − 1. Let i = ℓ(k − 1) with integer ℓ ≥ 1, the bit

in Eq. (4) does not contain the common bit if ℓ(k − 1) mod
τ(p−1) ≥ 2⌊k−1

2 ⌋(k−1), and we can compute bℓ(k−1),0 and

bℓ(k−1),k−1 recursively by Eq. (3) and Eq. (4), where 1 ≤ ℓ ≤
τ(p−1). Otherwise, if the bit in Eq. (4) contains the common

bit, we can compute one erased bit and the common bit by

summing two bits in Eq. (4). For example, when ℓ satisfies

0≤ (ℓ+1)(k−1) mod τ(p−1) ≤ k−2, by summing the known

bit bℓ(k−1),k−1 and the bit in Eq. (4) with i = (ℓ+ 1)(k − 1),
we have

bℓ(k−1),k−1 + (S′
[(ℓ+1)(k−1) mod τ(p−1)] mod k−1+

b(ℓ+1)(k−1),0 + b[(ℓ+1)(k−1) mod τ(p−1)]−(k−1),k−1)

= bℓ(k−1),k−1 + bℓ(k−1),k−1+

b(ℓ+1)(k−1),0 + bpτ−(k−1)+[(ℓ+1)(k−1) mod τ(p−1)],k−1

= bℓ(k−1),k−1 + bℓ(k−1),k−1 + b(ℓ+1)(k−1),0 + 0

= b(ℓ+1)(k−1),0.

where the first equation comes from that

S′
[(ℓ+1)(k−1) mod τ(p−1)] mod k−1 = bℓ(k−1),k−1. Therefore,

we can have S′
[(ℓ+1)(k−1) mod τ(p−1)] mod k−1, and further

obtain b(ℓ+1)(k−1),0 and b(ℓ+1)(k−1),k−1 by Eq. (3) and Eq.

(4), where 1 ≤ ℓ ≤ τ(p − 1). We have recovered all the

erased information bits.

We have presented the decoding method for the special case

of f = 0 and g = k − 1 in the above. In the following, we

present the decoding method when g − f < k − 1. First, we

can compute the summation of the t common bits by summing

all the parity bits in columns k and k + 1, i.e.,

τ(p−1)−1
∑

i=0

bi,k +

τ(p−1)−1
∑

i=0

bi,k+1

=

τ(p−1)−1
∑

i=0

k−1∑

j=0

bi,j +

τ(p−1)−1
∑

i=0

k−1∑

j=0

bi−j,j +

S0 + · · ·+ St−1 + S0 + · · ·+ St−1
︸ ︷︷ ︸

(k−1)t terms if k is odd,kt terms if k is even

=

k−1∑

j=0

pτ−1
∑

i=0

bi,j +

k−1∑

j=0

pτ−1
∑

i=0

bi−j,j +

k−1∑

j=0

t−1∑

µ=0

bτ(p−1)+µ−j,j

=

t−1∑

µ=0

Sµ.

By subtracting the τ(p − 1)(k − 2) information bits in k − 2
surviving information columns from the parity bits bi,k and

bi,k+1, we can obtain the following bits

b′i,k = bi,f + bi,g, (5)

where i = 0, 1, . . . , (p− 1)τ − 1,

b′i,k+1 =







S′
i mod (k−1) +bi−f,f + bi−g,g,

0 ≤ i ≤ 2⌊k−1
2 ⌋t− 1,

bi−f,f +bi−g,g,

2⌊k−1
2 ⌋t ≤ i ≤ τ(p− 1)− 1,

(6)

where i = 0, 1, . . . , (p − 1)τ − 1 and S′
µ = bτ(p−1)+µ−f,f +

bτ(p−1)+µ−g,g for µ = 0, 1, . . . , k − 2. Similarly, we need to

consider two cases: whether τ(p − 1) is divisible by (g − f).
If τ(p− 1) is divisible by (g − f), by summing the bit in Eq.

(5) with i = 0 − f, (g − f) − f, . . . , (k − 3)(g − f)− f , the

bits in Eq. (6) with i = 0, (g− f), . . . , (k− 2)(g− f) and the

sum of the common bits, we have

[S′
0 + bpτ−f,f + bpτ−g,g + S′

g−f + b(g−f)−f,f + bpτ−f,g+

· · ·+ S′
(k−2)(g−f) + b(k−2)(g−f)−f,f + b(k−3)(g−f)−f,g]+

[bpτ−f,f + bpτ−g,g + · · ·+ b(k−3)(g−f)−f,f+

b(k−3)(g−f)−f,g] +

k−2∑

µ=0

S′
µ

= b(k−2)(g−f)−f,f ,

By summing the bit in Eq. (5) with i = 0 − f +m, (g −
f)− f +m, . . . , (k − 3)(g − f)− f +m, the bits in Eq. (6)

with i = 0+m, (g− f)+m, . . . , (k− 2)(g− f)+m and the

sum of the common bits, we have b(k−2)(g−f)−f+m,f , where

0 ≤ m ≤ g − f − 1. Let i = ℓ(g − f) + m with integer

ℓ ≥ 1. The bit in Eq. (6) does not contain the common bit

if ℓ(g − f) + m mod τ(p − 1) ≥ 2⌊k−1
2 ⌋(k − 1), and we

can compute bℓ(g−f)−f+m,f and bℓ(g−f)−f+m,g recursively

by Eq. (5) and Eq. (6), where k − 2 ≤ ℓ ≤ τ(p−1)
g−f

+ k − 3,

0 ≤ m ≤ g − f − 1.



TABLE II: The encoding/decoding/update complexity of our codes and EVENODD+ codes.

Encoding Decoding Update

EVENODD+(p, k) 2− 2p−k

k(p−1)
2 +

2⌊ k

2
⌋−1

k(p−1)
2+(2⌊k

2
⌋ − 1) k−1

k(p−1)

(g − f) | τ(p − 1) (g − f) ∤ τ(p − 1)

Our codes

τ ≥ k − 1
g − f = k − 1

2− k
2
+

2[⌊ k−1

2
⌋−1](k−1)

k(p−1)τ

4
k
+ k−2

kτ(p−1)
2 + k−2

kτ(p−1) 2 + (2⌊k−1
2

⌋ − 1) k−1
kτ(p−1)

g − f<k − 1 4
k
+ (g−f)(k−2))

kτ(p−1)
2(g−f+1)

k
+ (g−f)(k−2)

kτ(p−1)

τ<k − 1

g − f = τ

2−
2p−2⌊ k

2
⌋−1

k(p−1)

2
k
+ 2pτ−τ−1

kτ(p−1)

2 + (2⌊k
2
⌋ − 1) k−1

kτ(p−1)g − f<τ
4
k
+ (g−f)(τ−1)−1

kτ(p−1)
2(g−f+1)

k
+ (g−f)(τ−1)

kτ(p−1)

g − f>τ

Otherwise, if the bit in Eq. (6) contains the common bit, we

can compute the common bit by the bit in Eq. (6). For example,

when ℓ = τ(p−1)
g−f

, the bit in Eq. (6) with i = ℓ(g − f) +m is

S′
ℓ(g−f)+m + bℓ(g−f)−f+m,f + bℓ(g−f)−g+m,g

= S′
m + bτp−f+m,f + bτp−g+m,g

= S′
m,

where 0 ≤ m ≤ g − f − 1. Therefore, we can get S′
m, and

further obtain bℓ(g−f)−f+m,f and bℓ(g−f)−f+m,g by Eq. (5)

and Eq. (6), where k − 2 ≤ ℓ ≤ τ(p−1)
g−f

+ k − 3, 0 ≤ m ≤
g − f − 1.

When τ(p−1) is not divisible by (g−f), by summing the bit

in Eq. (5) with i = 0− f, (g− f)− f, . . . , (k− 3)(g− f)− f ,

the bits in Eq. (6) with i = 0, (g − f), . . . , (k − 2)(g − f)
and the sum of the common bits, we have b(k−2)(g−f)−f,f .

Then let i = ℓ(g − f) with integer ℓ ≥ 1, we can similarly

compute bℓ(g−f)−f,f and bℓ(g−f)−f,g if the bit in Eq. (6) does

not contain the common bit, where k−2 ≤ ℓ ≤τ(p−1)+k−3.

If the bit in Eq. (6) contains the common bit, we let i = ℓ(g−f)
after getting b(k−2)(g−f)−f,f . We can compute one erased bit

and the common bit by summing two bits in Eq. (6). For

example, when ℓ = τ(p− 1)− 1, by summing the known bit

bℓ(g−f),g and the bit in Eq. (6) with i = (ℓ + 1)(g − f), we

have

bℓ(g−f)−f,g + (S′
[(ℓ+1)(g−f) mod τ(p−1)] mod k−1+

b(ℓ+1)(g−f)−f,f + b[(ℓ+1)(g−f) mod τ(p−1)]−g,g)

= bℓ(g−f)−f,g + S′
0 + bpτ−f,f + bpτ−g,g

= bpτ−g,g + S′
0 + 0 + 0

= S′
0.

Therefore, we can have S′
0, and further obtain bℓ(g−f)−f,f and

bℓ(g−f)−f,g by Eq. (5) and Eq. (6), where k − 2 ≤ ℓ ≤τ(p−
1) + k − 3.

Sub-case (ii.2) τ < k − 1. The decoding method of sub-

case (ii.2) τ < k − 1 is similar to that of sub-case (ii.1)
τ ≥ k − 1. Please see the detailed proof in Appendix A.

IV. COMPLEXITY ANALYSIS

In this section, we evaluate encoding/decoding/update com-

plexities for our codes. Table II summarizes the results of our

codes and EVENODD+ codes [7]. We focus on the decoding

complexity for decoding two information erasures.

We first consider the encoding complexity. Computing the

bits in column k takes (k− 1)τ(p− 1) XORs. Computing the

bits in column k+1 takes (k−1)τ(p−1)−(k−1)+2⌊k−1
2 ⌋(k−

1) XORs when τ ≥ k − 1 and (k − 1)τ(p − 1)− τ + 2⌊k
2⌋τ

XORs when τ < k − 1. Thus, the encoding complexity is

2[(k− 1)τ(p− 1)]− (k− 1)+2⌊k−1
2 ⌋(k− 1) when τ ≥ k− 1

and 2[(k − 1)τ(p− 1)]− τ + 2⌊k
2⌋τ when τ < k − 1.

Next, we consider the decoding complexity of two infor-

mation erasures. In our decoding method, we first compute

the summation of the t common bits that takes 2τ(p− 1)− 1
XORs. Then, we divide the decoding method into two cases:

τ ≥ k− 1 and τ < k− 1. When τ ≥ k− 1 and g− f = k− 1,

if τ(p − 1) is divisible by g − f , we can compute the erased

bits with (k− 1)[1+ 2τ(p−1)
k−1 ] XORs; otherwise, if τ(p− 1) is

not divisible by g− f , then it requires (k− 1)[1 + 2τ(p− 1)]
XORs. When τ ≥ k − 1 and g − f < k − 1, we require

(g − f)[k− 1+ 2τ(p−1)
g−f

] if τ(p− 1) is divisible by g− f and

(g − f)[k − 2 + 2τ(p− 1)] XORs if τ(p− 1) is not divisible

by g − f .

When τ < k−1 and g−f = τ , we can obtain the bits with

τ [1 + 2(p− 1)] XORs. When τ < k − 1 and g − f < τ , we

require (g− f)[τ − 1+ 2τ(p−1)
g−f

] XORs if τ(p− 1) is divisible

by g− f and (g− f)[τ − 1+ 2τ(p− 1)] XORs if τ(p− 1) is

not divisible by g − f . When τ < k − 1 and g − f > τ , we

require (g− f)[τ − 1+ 2τ(p−1)
g−f

] XORs if τ(p− 1) is divisible

by g− f and (g− f)[τ − 1+ 2τ(p− 1)] XORs if τ(p− 1) is

not divisible by g − f .

We define the normalized encoding complexity as the ratio

of encoding complexity to the number of information bits

and normalized decoding complexity as the ratio of decoding

complexity to the number of information bits. The normalized

encoding complexity of our codes is 2 − 2
k

when τ ≥ k − 1

and 2 −
2p−2⌊ k

2
⌋−1

k(p−1) when τ ≤ k. Recall that the normalized

encoding complexity of EVENODD+(p, k) [7] is 2 − 2p−k
k(p−1) .

We can see that when τ ≥ k−1, the normalized encoding com-

plexity of our codes is smaller than that of EVENODD+ codes.

The normalized decoding complexity of EVENODD+(p, k)

[7] is 2 +
2⌊ k

2
⌋−1

k(p−1) . From the results in Table II, we see that

our codes have lower decoding complexity than EVENODD+

codes when τ ≥ k − 1.



Finally, we consider the update complexity. If an infor-

mation bit is changed, we need to update one parity bit

in column k and 1 + (2⌊k−1
2 ⌋ − 1) k−1

kτ(p−1) parity bits in

column k + 1 on average when τ ≥ (k − 1) and update

1+(2⌊k
2⌋−1) k−1

kτ(p−1) parity bits when τ < (k−1). Thus, the

update complexity of our codes is 2 + (2⌊k−1
2 ⌋ − 1) k−1

kτ(p−1)

when τ ≥ (k−1) and 2+(2⌊k
2 ⌋−1) k−1

kτ(p−1) when τ < (k−1).
Recall that the update complexity of EVENODD+ codes is

2+(2⌊k
2⌋−1) k−1

k(p−1) . Therefore, our codes have lower update

complexity than EVENODD+ codes.

V. CONCLUSION

In this paper, we present a new construction for EVEN-

ODD+ codes with two parity columns such that the number

of bits stored in each column is prime minus one times any

positive integer. We show that our codes are MDS codes.

Moreover, our codes have lower encoding/decoding/update

complexity than the existing EVENODD+ codes.
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APPENDIX A

PROOF OF SUB-CASE (ii.2) τ < k − 1 IN THEOREM 1

Proof: When τ < k − 1, the number of common bits is

τ , we can divide the condition 0 ≤ f < g ≤ k − 1 into two

sub-conditions of 0 ≤ f < g ≤ τ and τ < g ≤ k − 1, where

the decoding method of the first sub-condition is the same as

that of τ < k − 1. We only need to consider the condition of

τ < g ≤ k − 1.

As with the sub-case (ii.1) τ ≥ k−1, we still first consider

the special sub-case of g − f = τ . Suppose that τ(p − 1)
is divisible by τ , and we can obtain the following bits by

subtracting the τ(p − 1)(k − 2) information bits in k − 2
surviving information columns from the parity bits bi,k and

bi,k+1,

b′i,k = bi,f + bi,g, (7)

where i = 0, 1, . . . , (p− 1)τ − 1.

b′i,k+1 =







S′
i( mod τ)+ bi−f,f + bi−g,g,

0 ≤ i ≤ 2⌊k
2 ⌋τ − 1,

bi−f,f+ bi−g,g,

2⌊k
2⌋τ ≤ i ≤ τ(p− 1)− 1,

(8)

where i = 0, 1, . . . , (p − 1)τ − 1 and S′
µ = bτ(p−1)+µ−f,f +

bτ(p−1)+µ−g,g for µ = 0, 1, . . . , τ − 1. When g − f = τ , we

can view the τ(p − 1)× (k + 2) array of our codes as the τ

codewords of EVENODD+ codes. Therefore, we can recover

all the erased bits in columns g and f by the decoding method

of EVENODD+ codes in [7], under the condition that p is an

odd number such that all divisors of p except 1 are larger than

k − 1.

In the following, we consider the case of g − f < τ , we

can get that 2 ≤ f < g and τ < g ≤ k − 1. In this situation,

we still need to discuss whether τ(p− 1) is divisible by g− f .

When τ(p − 1) is divisible by g − f , we sum the bit in Eq.

(7) with i = 0, (g− f), . . . , (τ − 2)(g− f), the bits in Eq. (8)

with f, g, 2g− f, . . . , (τ − 1)g− (τ − 2)f and the summation

of the τ common bits to obtain

[S′
f + b0,f + bf−g,g + S′

g + bg−f,f + b0,g + · · ·+

S′
(τ−1)g−(τ−2)f + b(τ−1)g−(τ−1)f,f + b(τ−2)g−(τ−2)f,g]+

[b0,f + b0,g + · · ·+ b(τ−2)(g−f),f + b(τ−2)(g−f),g] +

τ−1∑

µ=0

S′
µ

= b(τ−1)(g−f),f ,

where bpτ+f−g = 0. Let i = (ℓ + 1)g − ℓf +m with integer

ℓ ≥ 1. When the bit in Eq. (8) does not contain the common

bit, similarly, we can calculate bℓ(g−f)+m,f and bℓ(g−f)+m,g

recursively by Eq. (7) and Eq. (8), where (τ−1) ≤ ℓ ≤ τ(p−1)
g−f

+
(τ − 2), 0≤ m ≤ (g − f − 1). If the bit in Eq. (8) contain the

common bit, when ℓ = τ(p−1)
g−f

− 1, we can find the bits in Eq.

(8) with i = (ℓ+ 1)g − ℓf have

S′
(ℓ+1)g−ℓf + b[(ℓ+1)g−ℓf ]−f,f + b[(ℓ+1)g−ℓf ]−g,g.

Since [(ℓ + 1)g − ℓf ] mod τ(p − 1) = f , the above bit

is the common bit S′
f , so we can compute bℓ(g−f)+m,f

and bℓ(g−f)+m,g, for (τ − 1) ≤ ℓ ≤ τ(p−1)
g−f

+ (τ − 2),
0≤ m ≤ (g − f − 1).

When τ(p − 1) is not divisible by g − f , by summing the

bit in Eq. (7) with i = 0, (g − f), . . . , (τ − 2)(g − f), the

bits in Eq. (8) with f, g, 2g − f, . . . , (τ − 1)g − (τ − 2)f
and the sum of the common bits, we have b(τ−1)(g−f),f . Let

i = (ℓ+ 1)g − ℓf with integer ℓ ≥ 1. When the bit in Eq. (8)

does not contain the common bit, we can calculate bℓ(g−f),f

and bℓ(g−f),g recursively by Eq. (7) and Eq. (8), where (τ −
1) ≤ ℓ ≤τ(p − 1) + (τ − 2). Otherwise, if the bit in Eq. (8)

contains the common bit, let ℓ = τ(p − 1) − 1, the bit with

i = (ℓ+ 1)g − ℓf in Eq. (8) have

S′
(i+1)g−if+b[(i+1)g−if ]modτ(p−1)−f,f+b[(i+1)g−if ]modτ(p−1)−g,g,

we can obtain the common bit and further compute the

information bits bℓ(g−f),f and bℓ(g−f),g, where τ − 1 ≤
ℓ ≤τ(p− 1) + τ − 2.

Consider that g−f > τ . if τ(p−1) is divisible by g−f , we

sum the bit in Eq. (7) with i = 0, (g− f), . . . , (τ − 2)(g− f),
the bits in Eq. (8) with i = f, g, 2g−f, . . . , (τ−1)g−(τ−2)f
and the summation of common bits to obtain

[S′
f + b0,f + bf−g,g + S′

g + bg−f,f + b0,g + · · ·+

S′
(τ−1)g−(τ−2)f + b(τ−1)g−(τ−2)f−f,f + b(τ−1)g−(τ−2)f−g,g+

[b0,f + b0,g + · · ·+ b(τ−2)(g−f),f + b(τ−2)(g−f),g] +
τ−1∑

µ=0

S′
µ

= bpτ−(g−f),g + b(τ−1)(g−f),f .

Let ℓ = τ(p−1)
g−f

− 1, by summing the bit in Eq. (8) with i =
(ℓ+ 1)g − ℓf and bℓ(g−f),f + bpτ−(g−f),g, we have

bℓ(g−f),f + bpτ−(g−f),g + S′
(ℓ+1)g−ℓf+

b[(ℓ+1)g−ℓf ] mod τ(p−1)−f,f + b[(ℓ+1)g−ℓf ] mod τ(p−1)−g,g

= bτ(p−1)−(g−f),f + bpτ−(g−f),g + bτ(p−1)+[(ℓ+1)g−ℓf ]−f,f+

bτ(p−1)+[(ℓ+1)g−ℓf ]−g,g + b[(ℓ+1)g−ℓf ] mod τ(p−1)−f,f+

bpτ−(g−f),g

= b[(ℓ+1)g−ℓf ] mod τ(p−1)−f,f = b0,f .

Therefore, we get the bit bpτ−(g−f),g and the common bit

S′
(ℓ+1)g−ℓf

. Let i = (ℓ + 1)g − ℓf + m with integer ℓ ≥ 1,

we can obtain bℓ(g−f)+m,f and bℓ(g−f)+m,g recursively by

Eq. (7) and Eq. (8), where (τ − 1) ≤ ℓ ≤ τ(p−1)
g−f

+ (τ − 2),
0≤ m ≤ (g − f − 1).

If τ(p−1) is not divisible by g−f , we can get bpτ−(g−f),g+
b(τ−1)(g−f),f similarly. When the bit in Eq. (8) contains the

common bit, let i = (ℓ + 1)g − ℓf with integer ℓ ≥ 1. When

ℓ = τ(p− 1)− 1, the bit bℓ(g−f),g +S′
(ℓ+1)g−ℓf + bpτ−(g−f),g

we can have

bℓ(g−f),g + S′
(ℓ+1)g−ℓf + bpτ−(g−f),g

= b[τ(p−1)(g−f)−(g−f)] mod τ(p−1),g + S′
(ℓ+1)g−ℓf + bpτ−(g−f),g

= bpτ−(g−f),g + S′
(ℓ+1)g−ℓf + bpτ−(g−f),g = S′

(ℓ+1)g−ℓf .

We can get S′
(ℓ+1)g−ℓf

. After obtaining the common bit, we

can compute bℓ(g−f), f and bℓ(g−f), f by Eq. (7) and Eq. (8),

where (τ − 1) ≤ ℓ ≤τ(p− 1) + (τ − 2).



We have shown that we can always compute all the erased

bits for any two erased columns, and therefore, our codes are

MDS codes.


