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On irreducibility of eccentricity matrix of graphs and

construction of ǫ−equienergetic graphs
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Abstract

The eccentricity matrix ǫ(G), of a connected graph G is obtained by retaining the maximum
distance from each row and column of the distance matrix of G and the other entries are assigned
with 0. In this paper, we discuss the eccentricity spectrum of subdivision vertex (edge) join of
regular graphs. Also, we obtain new families of graphs having irreducible or reducible eccentricity
matrix. Furthermore, we use these results to construct infinitely many ǫ−cospectral graph pairs
as well as infinitely many pairs and triplets of ǫ−cospectral ǫ−equienergetic graphs. Moreover, we
present some new family of ǫ−integral graphs.
Keywords: eccentricity matrix, eccentricity spectrum, eccentricity equienergetic graphs, subdivi-
sion vertex (edge) join, irreducibility.
Mathematics Subject Classifications: 05C50, 05C76.

1 Introduction

Let G = (V (G),E(G)) be a simple, (p, q) connected undirected graph with vertex set V (G) ={v1, v2, . . . , vp}, and edge set E(G) = {e1, . . . , eq}. If two vertices vi and vj are adjacent in G, we write
vi ∼ vj, and the edge between them is denoted by eij .The vertex vi is incident with ej , if vi is an end
vertex of edge ej . The degree of a vertex vi is denoted by deg(vi). A graph G is r−regular if the degree
of every vertex is r. The complement Ḡ of a graph G has V (G) as its vertex set and two vertices
are adjacent in Ḡ if and only if they are not adjacent in G. The line graph L(G) of a graph G, is
a graph with its vertex set as the edge set of G and two vertices in L(G) become adjacent in L(G)
if the corresponding edges of G share a common end vertex. The line graph of the graph L(G) is
represented as L2(G). We denote by Kp the complete graph on p vertices and by Kp1,p2 the complete
bipartite graph on p1 + p2 vertices. Throughout, we represent J and I as the all-one and identity
matrices, respectively, in an appropriate order. The equitable quotient matrix [1] of a partitioned
matrix is denoted by F. The incidence matrix R = R(G) of a graph G, is the p × q matrix,

(R(G))ij =
⎧⎪⎪⎨⎪⎪⎩
1 if vi is incident with ej ,

0 otherwise.

The adjacency matrix A = A(G) of a graph G, is a square symmetric matrix,

(A(G))ij =
⎧⎪⎪⎨⎪⎪⎩
1 if vi ∼ vj ,
0 otherwise.
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The eigenvalues of A(A−eigenvalues) are real and ordered as λ1 ≥ λ2 ≥ . . . ≥ λp. The A−spectrum
of G, spec(G), is the collection of all A − eigenvalues of G along with their multiplicities. Two non-
isomorphic graphs of the same order are cospectral if they have the same A − spectrum. The energy
EA(G), of a graph G is defined as, EA(G) = ∑p

i=1 ∣λi∣. If the energy of two graphs with the same order
is equal, they are said to be equienergetic. A graph G is A−integral if all A− eigenvalues of G are
integers. The adjacency matrix of the complement of a graph G is A(Ḡ) = J − I −A(G).

The distance matrix D =D(G) of a graph G is a symmetric matrix, whose rows and columns are
indexed by the set of vertices, and whose (ij)th entry represents the distance between the vertices vi
and vj. The distance between two vertices vi and vj is denoted as d(vi, vj).

The eccentricity e(vi) of a vertex vi, is defined as e(vi) =max{d(vi, vj);vi ∈ V (G)}. If d(vi, vk) =
e(vi), then vk is an eccentric vertex of vi. The minimum and maximum eccentricity of all vertices
in G is known as radius(G)(r(G)) and diameter of G(diam(G)) respectively. A graph G is self−
centered if r(G) = diam(G). In [8], Randić introduced the notion of eccentricity matrix of a graph,
then known as DMAX− matrix and later in [11], Wang et al. renamed it as eccentricity matrix. The
eccentricity matrix, ǫ = ǫ(G) of a graph G of order p is defined as follows,

(ǫ(G))ij =
⎧⎪⎪⎨⎪⎪⎩
d(vi, vj) if d(vi, vj) =min{ǫ(vi), ǫ(vj)},
0 otherwise.

The eccentricity and adjacency matrix of a connected graph is obtained from the distance matrix by
preserving only the largest and smallest non-zero distances in each row and column, respectively. Thus,
the graph’s eccentricity matrix is also known as its anti-adjacency matrix. A graph G is eccentricity
regular (ǫ−regular) if the row sum of ǫ(G) is constant. A matrix N is said to be irreducible if it
is not permutationally similar to an upper triangular block matrix, and is reducible if there exists a
permutation matrix P such that

N = P T (A B

0 C
)P,

where A and C are square block matrices.
In contrast to the adjacency and distance matrices of a connected graph, the eccentricity matrix

of a graph need not be irreducible. In [11], the authors asked the following question: For which
connected graphs the eccentricity matrix is either reducible or irreducible?

The eccentricity matrix of a complete bipartite graph is reducible, whereas that of a tree is
irreducible [6]. One of our aim is to find families of connected graphs whose eccentricity matrix is
either irreducible or reducible.

Eccentricity matrix of a graph is a real symmetric matrix and its eigenvalues (ǫ−eigenvalues) are
real. If ǫ1 > . . . > ǫk are the distinct ǫ−eigenvalues of G, then the eccentricity spectrum(ǫ−spectrum)
of G is defined as,

specǫ(G) = (ǫ1 ǫ2 ⋯ ǫk
s1 s2 ⋯ sk

) ,
where sj indicates the algebraic multiplicity of the ǫ−eigenvalue ǫj . A graph G is eccentricity integral
(ǫ−integral) if all the ǫ−eigenvalues are integers. The largest eigenvalue of ǫ(G) is called the eccentricity
spectral radius (ǫ−spectral radius) of G (ρǫ(G)). The ǫ-Wiener index [7],Wǫ(G) of a graph G, defined
as

Wǫ(G) = 1

2
∑
i,j

(ǫ(G))ij .
Two non-isomorphic graphs of the same order are said to be eccentricity cospectral (ǫ−cospectral) if

they have the same ǫ−spectrum, otherwise, they are non ǫ−cospectral. In [10], Wang et al. introduced
the concept of eccentricity energy (ǫ−energy), Eǫ(G) and it is defined as the sum of absolute values
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of ǫ− eigenvalues of G. Two graphs having the same order are said to be eccentricity equienergetic
(ǫ−equienergetic) if they have the same ǫ−energy. Obviously, ǫ−cospectral graphs are ǫ−equienergetic.
But ǫ−equienergetic graphs need not be ǫ−cospectral. Here, we focus on the construction of non
isomorphic non ǫ−cospectral ǫ−equienergetic graphs.

In [4], Indulal introduced the graph operations, subdivision vertex join, and subdivision edge join
of two graphs and determined its adjacency spectrum. In 2019 [3], the authors studied about the
corresponding distance spectrum. Motivated from this we study the ǫ−spectrum of subdivision vertex
join and subdivision edge join of two regular graphs.

This paper is organized as follows: In Section 2, we collect the definitions and preliminary results
needed. In Sections 3 and 4, we discuss the ǫ− spectrum of subdivision vertex(edge) join and join
of graphs. Also, we obtain new families of graphs having either irreducible or reducible eccentricity
matrix. Moreover, we construct families of ǫ− cospectral graphs. In Section 5, we present infinitely
many pairs and triplets of non ǫ−cospectral ǫ−equienergetic graphs and some families of ǫ−integral
graphs.

2 Preliminaries

In this section, we collect some basic definitions and results which will be used in the subsequent
sections.

Definition 2.1. [2] The subdivision graph S(G) of a graph G is obtained from G by subdividing each
edge of G using a new vertex. The collection of such new vertices is denoted by I(G).
Definition 2.2. [4] The subdivision-vertex join G1 /G2 of two vertex disjoint graphs G1 and G2 is
the graph obtained from S(G1) and G2 by joining each vertex of V (G1) to every vertex of V (G2).
Definition 2.3. [4] The subdivision-edge join G1 ∨G2 of two vertex disjoint graphs G1 and G2 is the
graph obtained from S(G1) and G2 by joining each vertex of I(G1) with every vertex of V (G2).
Definition 2.4. [9] Let G be a (p, q) graph. The eccentric graph of G is denoted by Ge whose vertex
set is V (Ge) = V (G) and vi ∼ vj in Ge if and only if d(vi, vj) =min{e(vi), e(vj)}.
Theorem 2.5. [9] Let G be any (p, q) graph. Then the matrix ǫ(G) is an irreducible if and only if
Ge is a connected graph.

Lemma 2.6. [2] Let G be an r−regular, (p, q) graph with an adjacency matrix A and an incidence
matrix R. Let L(G) be the line graph of G. Then RRT = A + rI , RTR = B + 2I, where B is the
adjacency matrix of L(G). Also, if J is an all-one matrix of appropriate order, then JR = 2J = RTJ

and JRT = rJ = RJ.
Lemma 2.7. [2] Let G be an r−regular, (p, q) graph with spec(G) = {r,λ2, . . . , λp}. Then

spec(L(G)) = (2r − 2 λ2 + r − 2 ⋯ λp + r − 2 −2
1 1 ⋯ 1 q − p) .

Also, Z is an eigenvector corresponding to the eigenvalue −2 if and only if RZ = 0.
Lemma 2.8. [5] For every t ≥ 3, there exists a pair of non-cospectral cubic graphs on 2t vertices.

Lemma 2.9. [5] Let G be a r − regular (r ≥ 3), (p, q) graph with spec(G) = {r,λ2, . . . , λp}. Then

spec(L2(G)) = (4r − 6 λ2 + 3r − 6 ⋯ λp + 3r − 6 2r − 6 −2
1 1 ⋯ 1 1

2
p(r − 2) 1

2
pr(r − 2)) .

3



Lemma 2.10. [2] Let G be a r − regular, (p, q) graph. If the spec(G) = {r,λ2, . . . , λp}, then the
spectrum of the complement of G is, spec(Ḡ) = {p − r − 1,−(λ2 + 1), . . . ,−(λp + 1)}.
Theorem 2.11. [7] Let G be a connected, (p, q) graph. Then ρǫ(ǫ(G)) ≥ 2Wǫ

p
. Moreover, equality

holds if and only if G is ǫ− regular.

3 Irreducibility and eccentricity spectrum of subdivision vertex join

of two graphs

In this section, we discuss about the irreducibility, ǫ− spectrum, and eccentricity Wiener index of
subdivision vertex join of two graphs.

Theorem 3.1. Let Gi be a (pi, qi) graph, i = 1,2. Then ǫ(G1 /G2) is irreducible, unless G1 =K1,1.

Proof. Let G = G1 /G2, V (G) = V (G1) ∪ I(G1) ∪ V (G2). The vertices in V (G1), I(G1), and V (G2)
are denoted by vj , uk, and wl respectively. If G1 =K1, then clearly Ge is connected.
Case 1: G1 is not a star graph
In G, it is easy to check that,

e(vj) = 3, for all vj ∈ V (G1),
3 ≤ e(uk) ≤ 4, for all uk ∈ I(G1),

e(wl) = 2, for all wl ∈ V (G2).
In Ge, every vertex of I(G1) is adjacent to every vertex in V (G2) since d(uk,wl) = 2 = min{e(uk),
e(wl)}. Here G1 is not a star graph , so for each vertex vj in V (G1), there is a vertex uk in I(G1)
such that d(vj , uk) = 3 = min{e(vj), e(uk)}. Therefore, each vj in V (G1) is adjacent to some uk in
I(G1). Hence Ge is connected.
Case 2: G1 =K1,p1−1, p1 ≥ 3.
Let v1 be the unique vertex in V (G1) such that deg(v1) = p1 − 1. In G, it is easy to see that e(vj) = 3,
for all vj ∈ V (G1) ∖ {v1} and e(v1) = 2. Also e(uk) = 3 for all uk ∈ I(G1) and e(wl) = 2 , for each
wl in V (G2). Since d(uk,wl) = 2 = min{e(uk), e(wl)}, in Ge, every vertex of V (G2) is adjacent to
every vertex in I(G1). Also, for each vertex vj , j ≠ 1, there exist p1 − 2 vertices in I(G1) such that
d(vj , uk) = 3 = min{e(vj), e(uk)}. Moreover, for j ≠ 1, d(v1, vj) = 2 = min{e(v1, e(vj)}. Hence there
is a path joining vertices of V (G1) and I(G1). Therefore, Ge is a connected graph. By Theorem 2.5,
ǫ(G1 /G2) is irreducible.
Theorem 3.2. Let Gj , be rj−regular (r1 ≥ 2), (pj , qj) graph, j = 1,2. Let {r1, λ2, . . . , λp1} and{r2, β2, . . . , βp2} be the A-eigenvalues of G1 and G2 respectively. Then the ǫ-eigenvalues of ǫ(G1 /G2)
consists of

1. 4, with multiplicity q1 − p1.
2. −2(1 + βk), k = 2,3, . . . , p2.
3. −3t1 + 4 − 4(λi + r1), i = 2,3, . . . , p1, where t1 = 2(1−(λi+r1))+

√
4(λi+r1)2+(λi+r1)+4
3

.

4. −3t2 + 4 − 4(λi + r1), i = 2,3, . . . , p1, where t2 = 2(1−(λ+r1)−
√
4(λi+r1)2+(λi+r1)+4

3
.

5. 3 eigenvalues of the equitable quotient matrix of ǫ(G1 /G2),
4



⎛⎜⎝
0 3q1 − 3r1 0

3p1 − 6 4q1 − 8r1 + 4 2p2
0 2q1 2(p2 − r2 − 1)

⎞⎟⎠.

Proof. Let G1 and G2 be regular graphs with regularity r1(≥ 2) and r2 respectively. Then, by a
appropriate labelling of the vertices of G1 /G2, its eccentricity matrix can be written as

ǫ(G1 /G2) = ⎛⎜⎝
0 3(J −R) 0

3(J −RT ) 4(J − I −B) 2J
0 2J 2(J − I −A2)

⎞⎟⎠ ,
where R, B and A2 represents the incidence matrix of G1, adjacency matrix of L(G1) and adjacency
matrix of G2 respectively.
Now, let Z be an eigenvector of B corresponding to the eigenvalue −2 (with multiplicity q1 − p1). By
Lemma 2.7 RZ = 0. Consider U = ⎛⎜⎝

0
Z

0

⎞⎟⎠ , then we have

ǫ(G1 /G2)U = ⎛⎜⎝
0 3(J −R) 0

3(J −RT ) 4(J − I −B) 2J
0 2J 2(J − I −A2)

⎞⎟⎠
⎛⎜⎝
0
Z

0

⎞⎟⎠ =
⎛⎜⎝

3(J −R)Z
4(J − I −B)Z

2JZ

⎞⎟⎠ = 4
⎛⎜⎝
0
Z

0

⎞⎟⎠ = 4U.
Thus, 4 is an eigenvalue of ǫ(G1 /G2) with multiplicity q1 − p1.
Let W be an eigenvector of A2 corresponding to the eigenvalue βk (k = 2, . . . , p2). Let V = ⎛⎜⎝

0
0
W

⎞⎟⎠ , then
we have

ǫ(G1 /G2)V = ⎛⎜⎝
0 3(J −R) 0

3(J −RT ) 4(J − I −B) 2J
0 2J 2(J − I −A2)

⎞⎟⎠
⎛⎜⎝
0
0
W

⎞⎟⎠ = −2(1 + βi)
⎛⎜⎝
0
0
W

⎞⎟⎠ = −2(1 + βi)V.
Thus, −2(1 + βi) ( for i = 2,3, . . . , p2)is an eigenvalue of ǫ(G1 /G2).
Let X be an eigenvector of A1 corresponding to the eigenvalue λi ( for i = 2, . . . , p1), where A1 is the
adjacency matrix of G1. Using Lemma 2.6, we get RTX is an eigenvector of B corresponding to the
eigenvalue λi + r1 − 2. Thus the vectors X and RTX are orthogonal to the vector Jp1×1.

Now, consider the vector φ = ⎛⎜⎝
tX

RTX

0

⎞⎟⎠ . Next, we determine under what condition φ is an eigenvector

of ǫ(G1 /G2). If µ is an eigenvalue of ǫ(G1 /G2) such that ǫ(G1 /G2)φ = µφ, then
⎛⎜⎝

0 3(J −R) 0

3(J −RT ) 4(J − I −B) 2J
0 2J 2(J − I −A2)

⎞⎟⎠
⎛⎜⎝
tX

RTX

0

⎞⎟⎠ = µ
⎛⎜⎝
tX

RTX

0

⎞⎟⎠
⎛⎜⎝

−3(λi + r1)X(−3t + 4 − 4(λi + r1))RTX

0

⎞⎟⎠ = µ
⎛⎜⎝
tX

RTX

0

⎞⎟⎠
Therefore,

−3(λi + r1) = µt−3t + 4 − 4(λi + r1) = µ
5



From this we will get
3t2 + 4t((λi + r1) − 1) − 3(λi + r1) = 0

So t has two values

t1 = 2(1 − (λi + r1)) +√4(λi + r1)2 + (λi + r1) + 4
3

.

t2 = 2(1 − (λ + r1) −√4(λi + r1)2 + (λi + r1) + 4
3

.

Therefore, corresponding to each eigenvalue λi ( for i = 2, . . . , p1) of G1, we get 2 eigenvalues for
ǫ(G1 /G2), as −3t1 + 4 − 4(λi + r1) and −3t2 + 4 − 4(λi + r1). Thus, we get 2(p1 − 1) eigenvalues of
ǫ(G1 /G2).
The remaining 3 eigenvalues of ǫ(G1 /G2) are eigenvalues of its equitable quotient matrix,

F = ⎛⎜⎝
0 3q1 − 3r1 0

3p1 − 6 4q1 − 8r1 + 4 2p2
0 2q1 2(p2 − r2 − 1)

⎞⎟⎠.
This completes the proof.

As an application we construct new pairs of ǫ−cospectral graphs in the following theorem.

Corollary 3.3. Let G1 and G2 be two regular cospectral graphs and H be any arbitrary regular graph.
Then

1. G1 /H and G2 /H are ǫ−cospectral.
2. H /G1 and H /G2 are ǫ− cospectral.

Corollary 3.4. Let Gj be an rj−regular (r1 ≥ 2), (pj , qj) graph, j = 1,2. Then the eccentricity
Wiener index of ǫ(G1 /G2) is given by,

Wǫ(G1 /G2) = q1(3p1 − 4r1 + 2q1 − 1) + p2(p2 + 2q1 − r2 − 1) − 3

2
r1p1.

Corollary 3.5. Let Gj be an rj−regular (r1 ≥ 2), (pj , qj) graph, j = 1,2. Then

ρǫ(G1 /G2) > 2q1(3p1 − 4r1 + 2q1 − 1) + 2p2(p2 + 2q1 − r2 − 1) − 3p1r1
p1 + p2 + q1 .

Proof. Proof follows from Theorem 2.11 and corollary 3.4

4 Irreducibility and eccentricity spectrum of subdivision edge join

of two graphs

Theorem 4.1. Let Gi be a (pi, qi) graph, i = 1,2. Then ǫ(G1 ∨G2) is irreducible.

Proof. Let V (G1 ∨G2) = V (G1) ∪ I(G1) ∪ V (G2) be a partition of the vertex set of G = G1 ∨G2. Let
vl, uj and wk represents the vertices in V (G1), I(G1) and V (G2) respectively.
Case 1: G1 is not a star graph.
In G1 ∨G2 we get,

3 ≤ e(vl) ≤ 4, for each vl ∈ V (G1)
6



e(uj) = 3 for each uj ∈ I(G1)
e(wk) = 2, for each wk ∈ V (G2)

Since d(wk, vl) = 2 = min{e(wk), e(vl)}, every vertex in V (G2) is adjacent to every vertex in V (G1)
in Ge. Also for each vertex uj ∈ I(G1), the eccentric vertex of uj will be some vl. Hence in Ge every
vertex in I(G1) will be adjacent to some vertex in V (G1). Therefore Ge is connected.
Case 2: G1 is a star graph, G1 =K1,p1−1
If p1 = 2, clearly (G1 ∨G2)e is connected.
Let v1 be the unique vertex in G1 such that deg(v1) = p1 − 1, p1 > 2, then

e(v1) = 2 and e(vl) = 4, for l ≠ 1
e(uj) = 3, for uj ∈ I(G1)
e(wk) = 2, for wk ∈ V (G2).

d(vl,wk) = 2 =min{e(vl), e(wk)}, so every vertex in V (G1) is adjacent to every vertex in V (G2). And
for each vl, l ≠ 1 there exist p1 − 2 vertices uj such that d(vl, uj) = 3 = min{e(vl), e(uj)}. Therefore
Ge is connected. Hence by Theorem 2.5 ǫ(G1 ∨G2) is irreducible.
Theorem 4.2. Let Gj be rj−regular (r1 ≥ 2), (pj , qj) graph, j = 1,2. Let {r1, λ2, . . . , λp1} and{r2, γ2, . . . , γp2} be the A-eigenvalues of G1 and G2 respectively. Then the ǫ-eigenvalues of ǫ(G1 ∨G2)
consists of

1. 0, with multiplicity q1 − p1.
2. −2(1 + γk), k = 2,3, . . . , p2.
3. −2(1 + λi) ±√4(1 + λi)2 + 9(λi + r1), i = 2, . . . , p1.
4. 3 eigenvalues of the equitable quotient matrix of ǫ(G1 ∨G2),

⎛⎜⎝
4(p1 − 1 − r1) 3(q1 − r1) 2p2
3(p1 − 2) 0 0

2p1 0 2(p2 − r2 − 1)
⎞⎟⎠.

Proof. By a proper labeling of the vertices of G1 ∨G2, we get

ǫ(G1 ∨G2) = ⎛⎜⎝
4(J − I −A1) 3(J −R) 2J

3(J −RT ) 0 0
2J 0 2(J − I −A2)

⎞⎟⎠ ,
where R and Aj represents the incidence matrix of G1, adjacency matrix of Gj for j = 1,2.
Let Z be an eigenvector of B corresponding to the eigenvalue −2 (with multiplicity q1 − p1), where B
is the adjacency matrix of L(G1). By Lemma 2.7, RZ = 0. Consider ψ = ⎛⎜⎝

0
Z

0

⎞⎟⎠. Then we have

ǫ(G1 ∨G2)ψ = ⎛⎜⎝
4(J − I −A1) 3(J −R) 2J

3(J −RT ) 0 0
2J 0 2(J − I −A2)

⎞⎟⎠
⎛⎜⎝
0
Z

0

⎞⎟⎠ = 0
⎛⎜⎝
0
Z

0

⎞⎟⎠ = 0ψ.
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Thus, 0 is an eigenvalue of ǫ(G1 ∨G2) with multiplicity q1 − p1.
Let W be an eigenvector of A2 corresponding to the eigenvalue γk ( for k = 2, . . . , p2). Let ζ = ⎛⎜⎝

0
0
W

⎞⎟⎠ ,
then we have ǫ(G1 ∨ G2)ζ = −2(1 + γk)ζ. Thus, −2(1 + γk) ( for k = 2, . . . , p2) is an eigenvalue of
ǫ(G1 ∨G2).

Let X be an eigenvector of A1 corresponding to the eigenvalue λi ( for i = 2, . . . , p1). Using Lemma
2.6, we get RTX is an eigenvector of B corresponding to the eigenvalue λi + r1 − 2. Thus, the vectors
X and RTX are orthogonal to the vector Jp1×1.

Now, consider the vector φ∗ = ⎛⎜⎝
tX

RTX

0

⎞⎟⎠ . Next, we determine under what condition φ∗ is an eigenvector

of ǫ(G1 ∨G2). If µ∗ is an eigenvalue of ǫ(G1 ∨G2) such that ǫ(G1 ∨G2)φ∗ = µ∗φ∗, then
⎛⎜⎝
4(J − I −A1) 3(J −R) 2J

3(J −RT ) 0 0
2J 0 2(J − I −A2)

⎞⎟⎠
⎛⎜⎝
tX

RTX

0

⎞⎟⎠ = µ
∗
⎛⎜⎝
tX

RTX

0

⎞⎟⎠
⎛⎜⎝
−4t(1 + λi)X − 3(λi + r1)X−3tRTX

0

⎞⎟⎠ = µ
∗
⎛⎜⎝
tX

RTX

0

⎞⎟⎠ .
Therefore

−(4t + 4tλi + 3λi + 3r1) = µ∗t−3t = µ∗.
From this we will get

3t2 − 4(1 + λi)t − 3(λi + r1) = 0
so that t has two values

t1 = 2(1 + λi) +√4(1 + λi)2 + 9(λi + r1)
3

, t2 = 2(1 + λi) −√4(1 + λi)2 + 9(λi + r1)
3

.

Therefore, corresponding to each eigenvalue λi ( for i = 2, . . . , p1) of G1 we get 2 eigenvalues of
ǫ(G1 ∨G2) as −3t1 and −3t2. Hence, we get 2(p1 − 1) eigenvalues of ǫ(G1 ∨G2).
The remaining 3 eigenvalues of ǫ(G1 ∨G2) are eigenvalues of its equitable quotient matrix,

F = ⎛⎜⎝
4(p1 − 1 − r1) 3(q1 − r1) 2p2
3(p1 − 2) 0 0

2p1 0 2(p2 − r2 − 1)
⎞⎟⎠.

The following corollary gives new pairs of ǫ−cospectral graphs.
Corollary 4.3. Let G1 and G2 be two regular cospectral graphs and H be any arbitrary regular graph.
Then

1. G1 ∨H and G2 ∨H are ǫ− cospectral.

2. H ∨G1 and H ∨G2 are ǫ− cospectral.
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Corollary 4.4. Let Gj , j = 1,2 be a rj−regular (r1 ≥ 2), (pi, qi) graph. Then the eccentricity Wiener

index of ǫ(G1 ∨G2) is given by,

Wǫ(G1 ∨G2) = 2p21 + p22 − p12 (4 − 4p2 + 7r1) + 3q1(p1 − 1) − p2(r2 + 1).
Corollary 4.5. Let Gj be an rj−regular (r1 ≥ 2), (pj , qj) graph, j = 1,2. Then

ρǫ(G1 ∨G2) > 4p21 + 2p22 − p1(4 − 4p2 + 7r1) + 6q1(p1 − 1) − 2p2(r2 + 1)
p1 + p2 + q1 .

The join G1 ∨G2 of two graphs G1 and G2, is the graph obtained from G1 ∪G2 by joining every
vertex of G1 with every vertex of G2, where G1 ∪G2 denotes the disjoint union of G1 and G2. In [11]
the authors established that, if G is a r−regular graph of order p and diameter 2, then

ǫ(G ∨K1) = (2(J − I −A) J

J 0
) ,

where A is the adjacency matrix of G. The same matrix is obtained if G is a r− regular graph with
order p and diam(G) ≥ 2. In the next theorem, we consider the join of a non-complete regular graph
with diam(G) ≥ 2 and K1.

Theorem 4.6. Let G be a r−regular, non-complete, (p, q) graph. Then

specǫ(G ∨K1) = ((p − r − 1) ±
√(p − r − 1)2 + p −2(λ2 + 1) ⋯ −2(λp + 1)
1 1 ⋯ 1

) ,
where {r,λ2, λ3, . . . , λp} are A−eigenvalues of G.

Proof. By a proper labeling of vertices in G ∨K1, we get ǫ(G ∨K1) = (2(J − I −A) J

J 0
) , where A

is the adjacency matrix of G. Let X be an eigenvector of A corresponding to the eigenvalue λi (for
i = 2, . . . , p) . Then we have

ǫ(G ∨K1)(X0 ) = −2(1 + λi)(X0 ) .
Thus, −2(1 + λi) (for i = 2, . . . , p) is an eigenvalue of ǫ(G ∨K1) . The remaining 2 eigenvalues are

given by the equitable quotient matrix of ǫ(G ∨K1), (2(p − r − 1) 1
p 0

).

In [11], the authors discussed the ǫ−spectrum of G∨G, where G is a regular graph with diam(G) =
2. Later in [6], Mahato et al. discussed the ǫ− spectrum of G1∨G2, where G1 and G2 are non-complete
connected graphs.
In this context, we will refer to the subsequent theorem for its application in Section 5.

Theorem 4.7. [6] Let G is a r−regular, non complete, (p, q) graph. Then the ǫ−spectrum of G ∨G
is given by,

Specǫ(G ∨G) = (2(p − r − 1) −2(λ2 + 1) ⋯ −2(λp + 1)
2 2 ⋯ 2

) ,
where λi ≠ r, i = 2,3, . . . , p are the A−eigenvalues of G.

Next, we will discuss the join and subdivision vertex(edge)join of a connected graph with a
non-connected graph having two components. We will explore its ǫ− spectrum and reveal some new
graph families with irreducible or reducible eccentricity matrix.
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Theorem 4.8. Let Gj be an rj−regular, (pj , qj) graph, j = 0,1,2, and diam(G1) ≥ 2. Let {r0, λ2, λ3,
. . . , λp0}, {r1, β2, β3, . . . , βp1} and {r2, γ2, γ3, . . . , γp2} are the A− eigenvalues of G0, G1 and G2 respec-
tively. Then ǫ− eigenvalues of G0 ∨ (G1 ∪G2) consists of

1. −2(1 + λi), i = 2, . . . , p0.
2. −2(1 + βk), k = 2, . . . , p1.
3. −2(1 + γl), l = 2, . . . , p2.
4. 3 eigenvalues of the equitable quotient matrix of ǫ(G0 ∨ (G1 ∪G2)),

⎛⎜⎝
2(p0 − 1 − r0) 0 0

0 2(p1 − 1 − r1) 2p2
0 2p1 2(p2 − 1 − r2)

⎞⎟⎠.

Proof. By a proper labeling for the vertices of G0 ∨ (G1 ∪G2), we get

ǫ(G0 ∨ (G1 ∪G2)) = ⎛⎜⎝
2(J − I −A0) 0 0

0 2(J − I −A1) 2J
0 2J 2(J − I −A2)

⎞⎟⎠,
where Aj denotes the adjacency matrix of Gj for j = 0,1,2.
LetX be an eigenvector of A0 corresponding to the eigenvalue λi (for i = 2, . . . , p0), Y be an eigenvector
of A1 corresponding to the eigenvalue βk (for k = 2, . . . , p1), and Z be an eigenvector of A2 correspond-

ing to the eigenvalue γl (for l = 2, . . . , p2). Then we have, ǫ(G0 ∨ (G1 ∪G2))⎛⎜⎝
X

0
0

⎞⎟⎠ = −2(1 + λi)
⎛⎜⎝
X

0
0

⎞⎟⎠ ,

ǫ(G0 ∨(G1 ∪G2))⎛⎜⎝
0
Y

0

⎞⎟⎠ = −2(1+βk)
⎛⎜⎝
0
Y

0

⎞⎟⎠ , and ǫ(G0 ∨(G1 ∪G2))⎛⎜⎝
0
0
Z

⎞⎟⎠ = −2(1+γl)
⎛⎜⎝
0
0
Z

⎞⎟⎠ . The remaining

3 eigenvalues of ǫ(G0 ∨ (G1 ∪G2)) are given by its equitable quotient matrix,

F = ⎛⎜⎝
2(p0 − 1 − r0) 0 0

0 2(p1 − 1 − r1) 2p2
0 2p1 2(p2 − 1 − r2

⎞⎟⎠.

Theorem 4.9. Let G0, G1 and G2 be any three graphs. The following gives some new families of
graphs having either a reducible or irreducible eccentricity matrix.

1. If G0 is self -centered and diam(G0) = 2, then G0 ∨ (G1 ∪G2) is reducible.

2. If G0 is not self-centered and diam(G0) = 2, then G0 ∨ (G1 ∪G2) is irreducible.

3. If diam(G0) ≥ 3, then G0 ∨ (G1 ∪G2) is reducible.

Proof. Let G = G0 ∨ (G1 ∪G2), V (G) = V (G0) ∪ V (G1) ∪ V (G2) and let ui, vj, wk be the vertices in
V (G0), V (G1), and V (G2) respectively. In G,

e(vj) = 2, for every vj ∈ V (G1)
e(wk) = 2, for every wk ∈ V (G2)

and d(vj ,wk) = 2. Therefore, every vertex in V (G1) is adjacent to every vertex of V (G2) in Ge.
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1. If G0 is self-centered and diam(G0) = 2, clearly in G for each ui in V (G0) , e(ui) = 2. But
d(ui, vj) = 1 ≠min{e(ui), e(vj)}
d(ui,wk) = 1 ≠min{e(ui), e(wk)}.

Therefore, Ge is a disconnected graph. Thus, the result follows from Theorem 2.5.

2. If G0 is not self-centered and diam(G) = 2, then there exist at least one ul in V (G0) such that
e(ul) = 1. Then we have

d(ul, ui) = 1 =min{e(ul), e(ui)}, for all ui in V (G0),
d(ul, vj) = 1 =min{e(ul), e(vj)}, for all vj in V (G1),
d(ul,wk) = 1 =min{e(ul), e(wk)}, for all wk in V (G2).

Thus, the eccentric graph Ge is connected. Therefore, ǫ(G) is irreducible by Theorem 2.5.

3. If diam(G0) ≥ 3, then in G, e(ui) = 2 , for every ui in V (G0). So in Ge, no vertex in V (G0) is
adjacent to any vertex in V (G1) and V (G2). Thus, Ge is disconnected. Hence, using Theorem
2.5, ǫ(G) is reducible.

Theorem 4.10. Let Gj be an rj−regular (r0 ≥ 2), (pj , qj) graph, j = 0,1,2 and let {r0, λ2, . . . , λp0},{r1, β2, β3, . . . , βp1} and {r2, γ2, γ3, . . . , γp2} be the A− eigenvalues of G0, G1 and G2 respectively. Then
ǫ− eigenvalues of G0 / (G1 ∪G2) consists of

1. 4 with multiplicity q0 − p0.
2. −2(1 + βk), k = 2, . . . , p1.
3. −2(1 + γl), l = 2, . . . , p2.
4. −3t1 − 4 − 4(λi + r0 − 2), i = 2, . . . , p0, t1 = 2(1−(λi+r0))+

√
4(1−(λi+r0))2+9(λi+r0)

3
.

5. −3t2 − 4 − 4(λi + r0 − 2), i = 2, . . . , p0, t2 = 2(1−(λi+r0))−
√
4(1−(λi+r0))2+9(λi+r0)

3
.

6. 4 eigenvalues of the equitable quotient matrix of ǫ(G0 / (G1 ∪G2)),
⎛⎜⎜⎜⎝

0 3(q0 − r0) 0 0
3(p0 − 2) 4(q0 − 2r0 + 1) 2p1 2p2

0 2q0 2(p1 − r1 − 1) 2p2
0 2q0 2p1 2(p2 − r2 − 1)

⎞⎟⎟⎟⎠
.

Proof. By a proper ordering of the vertices of G0 / (G1 ∪G2) ,

ǫ(G0 / (G1 ∪G2)) =
⎛⎜⎜⎜⎝

0 3(J −R0) 0 0

3(J −RT
0
) 4(J − I −B0) 2J 2J

0 2J 2(J − I −A1) 2J
0 2J 2J 2(J − I −A2)

⎞⎟⎟⎟⎠
,

where R0 represents the incidence matrix of G0 and B0, A1, A2 represents the adjacency matrix of
L(G0), G1, G2 respectively. Let W be an eigenvector of A1 corresponding to the eigenvalue βk (for
k = 2, . . . , p1), V be an eigenvector of A2 corresponding to the eigenvalue γl (for l = 2, . . . , p2), and
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X be the eigenvector of B0 corresponding to the eigenvalues −2 (with multiplicity q0 − p0). Then we
have

⎛⎜⎜⎜⎝

0 3(J −R0) 0 0

3(J −RT
0
) 4(J − I −B0) 2J 2J

0 2J 2(J − I −A1) 2J
0 2J 2J 2(J − I −A2)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
0
0
W

0

⎞⎟⎟⎟⎠
= −2(1 + βk)

⎛⎜⎜⎜⎝
0
0
W

0

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝
0 3(J −R0) 0 0

3(J −RT
0
) 4(J − I −B0) 2J 2J

0 2J 2(J − I −A1) 2J
0 2J 2J 2(J − I −A2)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
0
0
0
V

⎞⎟⎟⎟⎠
= −2(1 + γl)

⎛⎜⎜⎜⎝
0
0
0
V

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝
0 3(J −R0) 0 0

3(J −RT
0
) 4(J − I −B0) 2J 2J

0 2J 2(J − I −A1) 2J
0 2J 2J 2(J − I −A2)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
0
X

0
0

⎞⎟⎟⎟⎠
= 4
⎛⎜⎜⎜⎝
0
X

0
0

⎞⎟⎟⎟⎠
.

Let U be an eigenvector corresponding to the A− eigenvalue λi (for i = 2, . . . , p0) of G0. Using
Lemma 2.6, we get RT

0
U is an eigenvector of B0 corresponding to the eigenvalue λi + r0 − 2. Thus, the

vectors U and RT
0
U are orthogonal to the vector Jp0×1.

Now, consider the vector φ̃ =
⎛⎜⎜⎜⎝
tU

RT
0
U

0
0

⎞⎟⎟⎟⎠
. Next, we determine under what condition φ̃ is an eigenvector

of ǫ(G0 / (G1 ∪G2)). If µ̃ is an eigenvalue of ǫ(G0 / (G1 ∪G2)) such that ǫ(G0 / (G1 ∪G2))φ̃ = µ̃φ̃,
then ⎛⎜⎜⎜⎝

0 3(J −R0) 0 0

3(J −RT
0
) 4(J − I −B0) 2J 2J

0 2J 2(J − I −A1) 2J
0 2J 2J 2(J − I −A2)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
tU

RT
0
U

0
0

⎞⎟⎟⎟⎠
= µ̃
⎛⎜⎜⎜⎝
tU

RT
0
U

0
0

⎞⎟⎟⎟⎠
.

Therefore,

−3(λi + r0) = µ̃t−3t − 4 − 4(λi + r0 − 2) = µ̃.
From this we will get,

µ̃ = −3t1 − 4 − 4(λi + r0 − 2), i = 2, . . . , p0, where t1 = 2(1 − (λi + r0)) +√4(1 − (λi + r0))2 + 9(λi + r0)
3

and

µ̃ = −3t2 − 4 − 4(λi + r0 − 2), i = 2, . . . p0, where t2 = 2(1 − (λi + r0)) −√4(1 − (λi + r0))2 + 9(λi + r0)
3

.

And the remaining 4 eigenvalues of ǫ(G0 / (G1 ∪G2)) are given by its equitable quotient matrix,

F =
⎛⎜⎜⎜⎝

0 3(q0 − r0) 0 0
3(p0 − 2) 4(q0 − 2r0 + 1) 2p1 2p2

0 2q0 2(p1 − r1 − 1) 2p2
0 2q0 2p1 2(p2 − r2 − 1)

⎞⎟⎟⎟⎠
.
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The following remarks describes a family of graphs with an irreducible eccentricity matrix.

Remark 4.11. For any three connected graphs G0, G1 and G2 the matrix ǫ(G0 / (G1 ∪ G2)) is
irreducible, unless G0 =K1,1.

Remark 4.12. For any connected graphs Gi, i = 0,1, . . . , p, the matrix ǫ(G0 /(∪pl=1Gl) is irreducible,
unless G0 =K1,1.

Theorem 4.13. Let Gj be an rj−regular (r0 ≥ 2), (pj , qj) graph, j = 0,1,2, {r0, λ2, . . . , λp0}, {r1, β2,
β3, . . . , βp1} and {r2, γ2, γ3, . . . , γp2} are the A− eigenvalues of G0, G1 and G2 respectively. Then ǫ−
eigenvalues of G0 ∨ (G1 ∪G2) consists of

1. 0 with multiplicity q0 − p0.
2. −2(1 + βk), k = 2, . . . , p1.
3. −2(1 + γl), l = 2, . . . , p2.
4. −2(1 + λi) ±√4(1 + λi)2 + 9(λi + r0), i = 2, . . . , p0.
5. 4 eigenvalues of the equitable quotient matrix of ǫ(G0 ∨ (G1 ∪G2)),

⎛⎜⎜⎜⎝
4(p0 − 1 − r0) 3(q0 − r0) 2p1 2p2
3(p0 − 2) 0 0 0

2p0 0 2(p1 − 1 − r1) 2p2
2p0 0 2p1 2(p2 − 1 − r2)

⎞⎟⎟⎟⎠
.

Proof. Proof is similar to Theorem4.10.

Remark 4.14. For any three connected graphs G0, G1 and G2 the matrix ǫ(G0 ∨ (G1 ∪ G2)) is
irreducible. This gives a new family of graphs having irreducible eccentricity matrix.

Remark 4.15. For any connected graphs Gi, i = 0,1, . . . , p, the matrix ǫ(G0 ∨(∪pl=1Gl) is irreducible.
5 Applications

This section will explore some of the applications of the results discussed in sections 3 and 4.

5.1 Eccentricity equienergetic graphs

The construction of non cospectral equienergetic graphs is a significant problem in spectral graph
theory. In [7], Mahato et al. constructed a pair of non ǫ−cospectral ǫ−equienergetic graphs for every
p ≥ 5. Motivated by this, in this section we will discuss the construction some non ǫ−cospectral
ǫ−equienergetic graphs.

Theorem 5.1. For every t ≥ 3, there exist a pair of non ǫ− cospectral ǫ−equienergetic graphs on 12t
vertices.

Proof. Let G1 and G2 be two non-cospectral cubic graphs on 2t vertices as in Lemma 2.8 with
spec(G1) = {3, λ2, . . . , λ2t} and spec(G2) = {3, β2, . . . , β2t}. Using Lemma 2.9,

specL2(G1) = (6 λ2 + 3 ⋯ λ2t + 3 0 −2
1 1 ⋯ 1 t 3t

)
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and

specL2(G2) = (6 β2 + 3 ⋯ β2t + 3 0 −2
1 1 ⋯ 1 t 3t

) .
Using Theorem 4.7 we have

specǫ(L2(G1) ∨L2(G1) = (2(6t − 7) −2(λi + 4) −2 2
2 2 2t 6t

) , i = 2, . . . ,2t.
specǫ(L2(G2) ∨L2(G2) = (2(6t − 7) −2(βj + 4) −2 2

2 2 2t 6t
) , j = 2, . . . ,2t.

Then we have,
Eǫ(L2(G1) ∨L2(G1)) = Eǫ(L2(G2) ∨L2(G2)) = 72t − 56.

Example 5.2. Let G1 and G2 are two graphs as in Figure 1.

Figure 1: G1 and G2 are non isomorphic non cospectral cubic graphs on 6 vertices.

Then, spec(G1) = (3 1 0 −2
1 1 2 2

) and spec(G2) = (3 0 3
1 4 1

) . Now, L2(Gl) ∨ L2(Gl), l = 1,2 is a

graph having 36 vertices. Also, its eccentricity spectrum is given by,

specǫ((L2(G1) ∨L2(G1)) = (22 −10 −8 −4 −2 2
2 2 4 4 6 18

)
specǫ((L2(G2) ∨L2(G2)) = (22 −8 −2 2

2 8 8 18
) .

Then we have, Eǫ(L2(G1) ∨L2(G1)) = Eǫ(L2(G2) ∨L2(G2)) = 160.
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Figure 2: non isomorphic non ǫ−cospectral ǫequienergetic graphs on 36-vertices with Eǫ = 160
Theorem 5.3. For every t ≥ 3, there exist a pair of non ǫ−cospectral ǫ−equienergetic graphs on 6t+1
vertices.

Proof. Let G1 and G2 are two non-cospectral cubic graphs on 2t vertices, as in Lemma 2.8 with
spec(G1) = {3, λ2, . . . , λ2t} and spec(G2) = {3, β2, . . . , β2t}. Then using Lemma 2.8 and Theorem 4.6,

specǫ(L2(G1) ∨K1) = ((6t − 7) ±
√(6t − 7)2 + 6t −2(λi + 4) −2 2
1 1 t 3t

) , i = 2, . . . ,2t.
specǫ(L2(G2) ∨K1) = ((6t − 7) ±

√(6t − 7)2 + 6t −2(βj + 4) −2 2
1 1 t 3t

) , j = 2, . . . ,2t.
Then we have

Eǫ(L2(G1) ∨K1) = Eǫ(L2(G2) ∨K1) = 24t − 14 + 2√(6t − 7)2 + 6t.
Example 5.4. Let G1 and G2 are two non cospectral cubic graphs as in figure 1. Now, L2(Gl) ∨K1,
l = 1,2 is a graph having 19 vertices. Also, its eccentricity spectrum is given by,

specǫ(L2(G1) ∨K1) = (11 ±
√
139 −10 −8 −4 −2 2

1 1 2 2 3 9
)

specǫ(L2(G2) ∨K1) = (11 ±
√
139 −8 −2 2

1 4 4 9
) .

Then we have, Eǫ(L2(G1) ∨K1) = Eǫ(L2(G2) ∨K1) = 81.579.
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Figure 3: non isomorphic non ǫ−cospectral ǫequienergetic graphs on 19-vertices with Eǫ = 81.579
Next, we give a method for the construction of new pairs and triplets of non ǫ− cospectral ǫ−equienergetic
graphs.

Theorem 5.5. Let G1 and G2 be two non cospectral cubic graph on 2t vertices, t ≥ 2, and G be any
r− regular graph with r ≥ 2. Let H1 = L2(G1) and H2 = L2(G2). Then

1. G /H1 and G /H2 are non ǫ−cospectral ǫ−equienergetic graphs.

2. G ∨H1 and G ∨H2 are non ǫ−cospectral ǫ−equienergetic graphs.

3. G/(H1∪H2) and G/(H1∪H1) and G/(H2∪H2) are non ǫ−cospectral ǫ−equienergetic graphs.

4. G∨(H1∪H2) and G∨(H1∪H1) and G∨(H2∪H2) are non ǫ−cospectral ǫ−equienergetic graphs.

Proof. The proof follows from Lemma 2.9, and Theorems 3.2, 4.2, 4.10, 4.13.

Corollary 5.6. For every t ≥ 3, there exist 2 pairs of non ǫ−cospectral ǫ−equienergetic graph on 6+6t
vertices.

Proof. By Theorem 5.5 we have

Eǫ(K3 ∨H1) = Eǫ(K3 ∨H2)
and Eǫ(K3 /H1) = Eǫ(K3 /H2).

Corollary 5.7. For every t ≥ 3, there exist 2 triplets of non ǫ−cospectral ǫ−equienergetic graphs on
6 + 12t vertices.
Proof. By Theorem 5.5 we have

Eǫ(K3 ∨ (H1 ∪H1)) = Eǫ(K3 ∨ (H2 ∪H2)) = Eǫ(K3 ∨ (H1 ∪H2)),
and Eǫ(K3 / (H1 ∪H1)) = Eǫ(K3 / (H2 ∪H2)) = Eǫ(K3 / (H1 ∪H2)).

5.2 Some ǫ−integral graphs

The problem of finding A−integral graphs is also an interesting one in spectral graph theory.
Motivated by this, in this section, using the results obtained in previous sections, we give some
methods to construct some new families of ǫ−integral graphs.
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Proposition 5.8. Let Gj be a rj (r1 ≥ 2) regular, (pj , qj) graph. Then G1 /G2 is ǫ−integral graph if
and only if G2 is A−integral, roots of the equation 3t2 + 4t((λi + r1) − 1) − 3(λi + r1) = 0, i = 2, ..., p1,
and eigenvalues of the matrix

⎛⎜⎝
0 3q1 − 3r1 0

3p1 − 6 4q1 − 8r1 + 4 2p2
0 2q1 2(p2 − r2 − 1

⎞⎟⎠ are integers.

Proposition 5.9. Let Gj be a rj (r1 ≥ 2) regular graph, (pi, qi) graph. Then G1 ∨G2 is ǫ−integral
graph if and only if G2 is A−integral and roots of the equation 3t2−4(1+λi)t−3(λi+r1) = 0, i = 2, . . . , p1,
and eigenvalues of the matrix

⎛⎜⎝
4(p1 − 1 − r1) 3(q1 − r1) 2p2
3(p1 − 2) 0 0

2p1 0 2(p2 − r2 − 1)
⎞⎟⎠ are integers.

Now we present some ǫ−integral graphs,
1. The graph K3 /Kn is ǫ−integral graphs if and only if 12n + 9 is a perfect square.

For example K3 /K6, K3 /K18, K3 /K36, K3 /K60, K3 /K90, K3 /K126.

2. The graph K11 ∨Kn is ǫ−integral if and only if 44n + 3645 is a perfect square.
For example K11 ∨K45 is ǫ−integral.

3. Using Theorem 4.8

• If G is a A−integral graph then G ∨ (G ∪G) is ǫ−integral.
• If Gi, i = 0,1,2, r− regular, A−integral graph then G0 ∨ (G1 ∪G2) is ǫ−integral.

The graphsKn∨(Km∪Kl),Km,m∨(Km+1∪Km+1), Km+1∨(Km,m∪Km,m),Km,m∨(Km+1∪Km,m)
are some ǫ−integral graphs.

6 Conclusion

Using the graph operations subdivision vertex(edge) join and join of graphs, we have added new
classes of connected graphs to the existing classes of graphs for which the irreducibility or reducibility
of their eccentricity matrix is known. In addition, we analyzed their eccentricity spectra. These
results enable us to provide infinitely many ǫ−cospectral graph pairs. Furthermore, infinitely many
pairs and triplets of non ǫ−cospectral ǫ−equienergetic graphs are constructed. Moreover, some new
families of ǫ−integral graphs are obtained.
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