On irreducibility of eccentricity matrix of graphs and construction of ϵ-equienergetic graphs

Anjitha Ashokan *and Chithra A V ${ }^{\dagger}$
Department of Mathematics, National Institute of Technology, Calicut, Kerala, India-673601

Abstract

The eccentricity matrix $\epsilon(G)$, of a connected graph G is obtained by retaining the maximum distance from each row and column of the distance matrix of G and the other entries are assigned with 0 . In this paper, we discuss the eccentricity spectrum of subdivision vertex (edge) join of regular graphs. Also, we obtain new families of graphs having irreducible or reducible eccentricity matrix. Furthermore, we use these results to construct infinitely many ϵ-cospectral graph pairs as well as infinitely many pairs and triplets of ϵ-cospectral ϵ-equienergetic graphs. Moreover, we present some new family of ϵ-integral graphs.

Keywords: eccentricity matrix, eccentricity spectrum, eccentricity equienergetic graphs, subdivision vertex (edge) join, irreducibility.
Mathematics Subject Classifications: 05C50, 05C76.

1 Introduction

Let $G=(V(G), E(G))$ be a simple, (p, q) connected undirected graph with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$, and edge set $E(G)=\left\{e_{1}, \ldots, e_{q}\right\}$. If two vertices v_{i} and v_{j} are adjacent in G, we write $v_{i} \sim v_{j}$, and the edge between them is denoted by $e_{i j}$. The vertex v_{i} is incident with e_{j}, if v_{i} is an end vertex of edge e_{j}. The degree of a vertex v_{i} is denoted by $\operatorname{deg}\left(v_{i}\right)$. A graph G is r-regular if the degree of every vertex is r. The complement \bar{G} of a graph G has $V(G)$ as its vertex set and two vertices are adjacent in \bar{G} if and only if they are not adjacent in G. The line graph $L(G)$ of a graph G, is a graph with its vertex set as the edge set of G and two vertices in $L(G)$ become adjacent in $L(G)$ if the corresponding edges of G share a common end vertex. The line graph of the graph $L(G)$ is represented as $L^{2}(G)$. We denote by K_{p} the complete graph on p vertices and by $K_{p_{1}, p_{2}}$ the complete bipartite graph on $p_{1}+p_{2}$ vertices. Throughout, we represent J and I as the all-one and identity matrices, respectively, in an appropriate order. The equitable quotient matrix [1] of a partitioned matrix is denoted by F. The incidence matrix $R=R(G)$ of a graph G, is the $p \times q$ matrix,

$$
(R(G))_{i j}= \begin{cases}1 & \text { if } v_{i} \text { is incident with } e_{j} \\ 0 & \text { otherwise }\end{cases}
$$

The adjacency matrix $A=A(G)$ of a graph G, is a square symmetric matrix,

$$
(A(G))_{i j}=\left\{\begin{array}{lc}
1 & \text { if } v_{i} \sim v_{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

[^0]The eigenvalues of $A(A$-eigenvalues $)$ are real and ordered as $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p}$. The A-spectrum of $G, \operatorname{spec}(G)$, is the collection of all A-eigenvalues of G along with their multiplicities. Two nonisomorphic graphs of the same order are cospectral if they have the same A-spectrum. The energy $E_{A}(G)$, of a graph G is defined as, $E_{A}(G)=\sum_{i=1}^{p}\left|\lambda_{i}\right|$. If the energy of two graphs with the same order is equal, they are said to be equienergetic. A graph G is A-integral if all A - eigenvalues of G are integers. The adjacency matrix of the complement of a graph G is $A(\bar{G})=J-I-A(G)$.

The distance matrix $D=D(G)$ of a graph G is a symmetric matrix, whose rows and columns are indexed by the set of vertices, and whose $(i j)^{t h}$ entry represents the distance between the vertices v_{i} and v_{j}. The distance between two vertices v_{i} and v_{j} is denoted as $d\left(v_{i}, v_{j}\right)$.

The eccentricity $e\left(v_{i}\right)$ of a vertex v_{i}, is defined as $e\left(v_{i}\right)=\max \left\{d\left(v_{i}, v_{j}\right) ; v_{i} \in V(G)\right\}$. If $d\left(v_{i}, v_{k}\right)=$ $e\left(v_{i}\right)$, then v_{k} is an eccentric vertex of v_{i}. The minimum and maximum eccentricity of all vertices in G is known as $\operatorname{radius}(G)(r(G))$ and diameter of $G(\operatorname{diam}(G))$ respectively. A graph G is selfcentered if $r(G)=\operatorname{diam}(G)$. In [8], Randić introduced the notion of eccentricity matrix of a graph, then known as $D_{M A X}$ - matrix and later in [11], Wang et al. renamed it as eccentricity matrix. The eccentricity matrix, $\epsilon=\epsilon(G)$ of a graph G of order p is defined as follows,

$$
(\epsilon(G))_{i j}= \begin{cases}d\left(v_{i}, v_{j}\right) & \text { if } d\left(v_{i}, v_{j}\right)=\min \left\{\epsilon\left(v_{i}\right), \epsilon\left(v_{j}\right)\right\} \\ 0 & \text { otherwise }\end{cases}
$$

The eccentricity and adjacency matrix of a connected graph is obtained from the distance matrix by preserving only the largest and smallest non-zero distances in each row and column, respectively. Thus, the graph's eccentricity matrix is also known as its anti-adjacency matrix. A graph G is eccentricity regular (ϵ-regular) if the row sum of $\epsilon(G)$ is constant. A matrix N is said to be irreducible if it is not permutationally similar to an upper triangular block matrix, and is reducible if there exists a permutation matrix P such that

$$
N=P^{T}\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) P
$$

where A and C are square block matrices.
In contrast to the adjacency and distance matrices of a connected graph, the eccentricity matrix of a graph need not be irreducible. In [11, the authors asked the following question: For which connected graphs the eccentricity matrix is either reducible or irreducible?

The eccentricity matrix of a complete bipartite graph is reducible, whereas that of a tree is irreducible [6]. One of our aim is to find families of connected graphs whose eccentricity matrix is either irreducible or reducible.

Eccentricity matrix of a graph is a real symmetric matrix and its eigenvalues (ϵ-eigenvalues) are real. If $\epsilon_{1}>\ldots>\epsilon_{k}$ are the distinct ϵ-eigenvalues of G, then the eccentricity spectrum(ϵ-spectrum) of G is defined as,

$$
\operatorname{spec}_{\epsilon}(G)=\left(\begin{array}{cccc}
\epsilon_{1} & \epsilon_{2} & \cdots & \epsilon_{k} \\
s_{1} & s_{2} & \cdots & s_{k}
\end{array}\right),
$$

where s_{j} indicates the algebraic multiplicity of the ϵ-eigenvalue ϵ_{j}. A graph G is eccentricity integral (ϵ-integral) if all the ϵ-eigenvalues are integers. The largest eigenvalue of $\epsilon(G)$ is called the eccentricity spectral radius (ϵ-spectral radius) of $G\left(\rho_{\epsilon}(G)\right)$. The ϵ-Wiener index [7, $W_{\epsilon}(G)$ of a graph G, defined as

$$
W_{\epsilon}(G)=\frac{1}{2} \sum_{i, j}(\epsilon(G))_{i j} .
$$

Two non-isomorphic graphs of the same order are said to be eccentricity cospectral (ϵ-cospectral) if they have the same ϵ-spectrum, otherwise, they are non ϵ-cospectral. In [10], Wang et al. introduced the concept of eccentricity energy (ϵ-energy), $E_{\epsilon}(G)$ and it is defined as the sum of absolute values
of ϵ - eigenvalues of G. Two graphs having the same order are said to be eccentricity equienergetic (ϵ-equienergetic) if they have the same ϵ-energy. Obviously, ϵ-cospectral graphs are ϵ-equienergetic. But ϵ-equienergetic graphs need not be ϵ-cospectral. Here, we focus on the construction of non isomorphic non ϵ-cospectral ϵ-equienergetic graphs.

In [4, Indulal introduced the graph operations, subdivision vertex join, and subdivision edge join of two graphs and determined its adjacency spectrum. In 2019 [3], the authors studied about the corresponding distance spectrum. Motivated from this we study the ϵ-spectrum of subdivision vertex join and subdivision edge join of two regular graphs.

This paper is organized as follows: In Section 2, we collect the definitions and preliminary results needed. In Sections 3 and 4, we discuss the ϵ - spectrum of subdivision vertex(edge) join and join of graphs. Also, we obtain new families of graphs having either irreducible or reducible eccentricity matrix. Moreover, we construct families of ϵ - cospectral graphs. In Section 5, we present infinitely many pairs and triplets of non ϵ-cospectral ϵ-equienergetic graphs and some families of ϵ-integral graphs.

2 Preliminaries

In this section, we collect some basic definitions and results which will be used in the subsequent sections.

Definition 2.1. [2] The subdivision graph $S(G)$ of a graph G is obtained from G by subdividing each edge of G using a new vertex. The collection of such new vertices is denoted by $I(G)$.

Definition 2.2. [4] The subdivision-vertex join $G_{1} \vee G_{2}$ of two vertex disjoint graphs G_{1} and G_{2} is the graph obtained from $S\left(G_{1}\right)$ and G_{2} by joining each vertex of $V\left(G_{1}\right)$ to every vertex of $V\left(G_{2}\right)$.

Definition 2.3. 4 The subdivision-edge join $G_{1} \underline{\vee} G_{2}$ of two vertex disjoint graphs G_{1} and G_{2} is the graph obtained from $S\left(G_{1}\right)$ and G_{2} by joining each vertex of $I\left(G_{1}\right)$ with every vertex of $V\left(G_{2}\right)$.

Definition 2.4. [9] Let G be a (p, q) graph. The eccentric graph of G is denoted by G^{e} whose vertex set is $V\left(G^{e}\right)=V(G)$ and $v_{i} \sim v_{j}$ in G^{e} if and only if $d\left(v_{i}, v_{j}\right)=\min \left\{e\left(v_{i}\right), e\left(v_{j}\right)\right\}$.

Theorem 2.5. [9] Let G be any (p, q) graph. Then the matrix $\epsilon(G)$ is an irreducible if and only if G^{e} is a connected graph.

Lemma 2.6. [2] Let G be an r-regular, (p, q) graph with an adjacency matrix A and an incidence matrix R. Let $L(G)$ be the line graph of G. Then $R R^{T}=A+r I, R^{T} R=B+2 I$, where B is the adjacency matrix of $L(G)$. Also, if J is an all-one matrix of appropriate order, then $J R=2 J=R^{T} J$ and $J R^{T}=r J=R J$.

Lemma 2.7. [2] Let G be an r-regular, (p, q) graph with $\operatorname{spec}(G)=\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$. Then

$$
\operatorname{spec}(L(G))=\left(\begin{array}{ccccc}
2 r-2 & \lambda_{2}+r-2 & \cdots & \lambda_{p}+r-2 & -2 \\
1 & 1 & \cdots & 1 & q-p
\end{array}\right) .
$$

Also, Z is an eigenvector corresponding to the eigenvalue -2 if and only if $R Z=0$.
Lemma 2.8. [5] For every $t \geq 3$, there exists a pair of non-cospectral cubic graphs on $2 t$ vertices.
Lemma 2.9. [5] Let G be a r-regular $(r \geq 3),(p, q)$ graph with $\operatorname{spec}(G)=\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$. Then

$$
\operatorname{spec}\left(L^{2}(G)\right)=\left(\begin{array}{cccccc}
4 r-6 & \lambda_{2}+3 r-6 & \cdots & \lambda_{p}+3 r-6 & 2 r-6 & -2 \\
1 & 1 & \cdots & 1 & \frac{1}{2} p(r-2) & \frac{1}{2} p r(r-2)
\end{array}\right) .
$$

Lemma 2.10. [2] Let G be a r-regular, (p, q) graph. If the $\operatorname{spec}(G)=\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$, then the spectrum of the complement of G is, $\operatorname{spec}(\bar{G})=\left\{p-r-1,-\left(\lambda_{2}+1\right), \ldots,-\left(\lambda_{p}+1\right)\right\}$.
Theorem 2.11. [7] Let G be a connected, (p, q) graph. Then $\rho_{\epsilon}(\epsilon(G)) \geq 2 \frac{W_{\epsilon}}{p}$. Moreover, equality holds if and only if G is $\epsilon-$ regular.

3 Irreducibility and eccentricity spectrum of subdivision vertex join of two graphs

In this section, we discuss about the irreducibility, $\epsilon-$ spectrum, and eccentricity Wiener index of subdivision vertex join of two graphs.

Theorem 3.1. Let G_{i} be a $\left(p_{i}, q_{i}\right)$ graph, $i=1,2$. Then $\epsilon\left(G_{1} \vee G_{2}\right)$ is irreducible, unless $G_{1}=K_{1,1}$.
Proof. Let $G=G_{1} \vee G_{2}, V(G)=V\left(G_{1}\right) \cup I\left(G_{1}\right) \cup V\left(G_{2}\right)$. The vertices in $V\left(G_{1}\right), I\left(G_{1}\right)$, and $V\left(G_{2}\right)$ are denoted by v_{j}, u_{k}, and w_{l} respectively. If $G_{1}=K_{1}$, then clearly G^{e} is connected.
Case 1: G_{1} is not a star graph
In G, it is easy to check that,

$$
\begin{array}{r}
e\left(v_{j}\right)=3, \text { for all } v_{j} \in V\left(G_{1}\right), \\
3 \leq e\left(u_{k}\right) \leq 4, \text { for all } u_{k} \in I\left(G_{1}\right), \\
e\left(w_{l}\right)=2, \text { for all } w_{l} \in V\left(G_{2}\right) .
\end{array}
$$

In G^{e}, every vertex of $I\left(G_{1}\right)$ is adjacent to every vertex in $V\left(G_{2}\right)$ since $d\left(u_{k}, w_{l}\right)=2=\min \left\{e\left(u_{k}\right)\right.$, $\left.e\left(w_{l}\right)\right\}$. Here G_{1} is not a star graph, so for each vertex v_{j} in $V\left(G_{1}\right)$, there is a vertex u_{k} in $I\left(G_{1}\right)$ such that $d\left(v_{j}, u_{k}\right)=3=\min \left\{e\left(v_{j}\right), e(u k)\right\}$. Therefore, each v_{j} in $V\left(G_{1}\right)$ is adjacent to some u_{k} in $I\left(G_{1}\right)$. Hence G^{e} is connected.
Case 2: $G_{1}=K_{1, p_{1}-1}, p_{1} \geq 3$.
Let v_{1} be the unique vertex in $V\left(G_{1}\right)$ such that $d_{e g}\left(v_{1}\right)=p_{1}-1$. In G, it is easy to see that $e\left(v_{j}\right)=3$, for all $v_{j} \in V\left(G_{1}\right) \backslash\left\{v_{1}\right\}$ and $e\left(v_{1}\right)=2$. Also $e\left(u_{k}\right)=3$ for all $u_{k} \in I\left(G_{1}\right)$ and $e\left(w_{l}\right)=2$, for each w_{l} in $V\left(G_{2}\right)$. Since $d\left(u_{k}, w_{l}\right)=2=\min \left\{e\left(u_{k}\right), e\left(w_{l}\right)\right\}$, in G^{e}, every vertex of $V\left(G_{2}\right)$ is adjacent to every vertex in $I\left(G_{1}\right)$. Also, for each vertex $v_{j}, j \neq 1$, there exist $p_{1}-2$ vertices in $I\left(G_{1}\right)$ such that $d\left(v_{j}, u_{k}\right)=3=\min \left\{e\left(v_{j}\right), e\left(u_{k}\right)\right\}$. Moreover, for $j \neq 1, d\left(v_{1}, v_{j}\right)=2=\min \left\{e\left(v_{1}, e\left(v_{j}\right)\right\}\right.$. Hence there is a path joining vertices of $V\left(G_{1}\right)$ and $I\left(G_{1}\right)$. Therefore, G^{e} is a connected graph. By Theorem 2.5, $\epsilon\left(G_{1} \vee G_{2}\right)$ is irreducible.

Theorem 3.2. Let G_{j}, be r_{j}-regular $\left(r_{1} \geq 2\right)$, $\left(p_{j}, q_{j}\right)$ graph, $j=1,2$. Let $\left\{r_{1}, \lambda_{2}, \ldots, \lambda_{p_{1}}\right\}$ and $\left\{r_{2}, \beta_{2}, \ldots, \beta_{p_{2}}\right\}$ be the A-eigenvalues of G_{1} and G_{2} respectively. Then the ϵ-eigenvalues of $\epsilon\left(G_{1} \vee G_{2}\right)$ consists of

1. 4 , with multiplicity $q_{1}-p_{1}$.
2. $-2\left(1+\beta_{k}\right), k=2,3, \ldots, p_{2}$.
3. $-3 t_{1}+4-4\left(\lambda_{i}+r_{1}\right), i=2,3, \ldots, p_{1}$, where $t_{1}=\frac{2\left(1-\left(\lambda_{i}+r_{1}\right)\right)+\sqrt{4\left(\lambda_{i}+r_{1}\right)^{2}+\left(\lambda_{i}+r_{1}\right)+4}}{3}$.
4. $-3 t_{2}+4-4\left(\lambda_{i}+r_{1}\right), i=2,3, \ldots, p_{1}$, where $t_{2}=\frac{2\left(1-\left(\lambda+r_{1}\right)-\sqrt{4\left(\lambda_{i}+r_{1}\right)^{2}+\left(\lambda_{i}+r_{1}\right)+4}\right.}{3}$.
5. 3 eigenvalues of the equitable quotient matrix of $\epsilon\left(G_{1} \vee G_{2}\right)$,

$$
\left(\begin{array}{ccc}
0 & 3 q_{1}-3 r_{1} & 0 \\
3 p_{1}-6 & 4 q_{1}-8 r_{1}+4 & 2 p_{2} \\
0 & 2 q_{1} & 2\left(p_{2}-r_{2}-1\right)
\end{array}\right)
$$

Proof. Let G_{1} and G_{2} be regular graphs with regularity $r_{1}(\geq 2)$ and r_{2} respectively. Then, by a appropriate labelling of the vertices of $G_{1} \vee G_{2}$, its eccentricity matrix can be written as

$$
\epsilon\left(G_{1} \vee G_{2}\right)=\left(\begin{array}{ccc}
0 & 3(J-R) & 0 \\
3\left(J-R^{T}\right) & 4(J-I-B) & 2 J \\
0 & 2 J & 2\left(J-I-A_{2}\right)
\end{array}\right),
$$

where R, B and A_{2} represents the incidence matrix of G_{1}, adjacency matrix of $L\left(G_{1}\right)$ and adjacency matrix of G_{2} respectively.
Now, let Z be an eigenvector of B corresponding to the eigenvalue -2 (with multiplicity $q_{1}-p_{1}$). By Lemma 2.7 $R Z=0$. Consider $U=\left(\begin{array}{l}0 \\ Z \\ 0\end{array}\right)$, then we have

$$
\epsilon\left(G_{1} \vee G_{2}\right) U=\left(\begin{array}{ccc}
0 & 3(J-R) & 0 \\
3\left(J-R^{T}\right) & 4(J-I-B) & 2 J \\
0 & 2 J & 2\left(J-I-A_{2}\right)
\end{array}\right)\left(\begin{array}{l}
0 \\
Z \\
0
\end{array}\right)=\left(\begin{array}{c}
3(J-R) Z \\
4(J-I-B) Z \\
2 J Z
\end{array}\right)=4\left(\begin{array}{l}
0 \\
Z \\
0
\end{array}\right)=4 U .
$$

Thus, 4 is an eigenvalue of $\epsilon\left(G_{1} \vee G_{2}\right)$ with multiplicity $q_{1}-p_{1}$.
Let W be an eigenvector of A_{2} corresponding to the eigenvalue $\beta_{k}\left(k=2, \ldots, p_{2}\right)$. Let $V=\left(\begin{array}{c}0 \\ 0 \\ W\end{array}\right)$, then we have

$$
\epsilon\left(G_{1} \vee G_{2}\right) V=\left(\begin{array}{ccc}
0 & 3(J-R) & 0 \\
3\left(J-R^{T}\right) & 4(J-I-B) & 2 J \\
0 & 2 J & 2\left(J-I-A_{2}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
W
\end{array}\right)=-2\left(1+\beta_{i}\right)\left(\begin{array}{c}
0 \\
0 \\
W
\end{array}\right)=-2\left(1+\beta_{i}\right) V .
$$

Thus, $-2\left(1+\beta_{i}\right)\left(\right.$ for $\left.i=2,3, \ldots, p_{2}\right)$ is an eigenvalue of $\epsilon\left(G_{1} \vee G_{2}\right)$.
Let X be an eigenvector of A_{1} corresponding to the eigenvalue λ_{i} (for $i=2, \ldots, p_{1}$), where A_{1} is the adjacency matrix of G_{1}. Using Lemma [2.6, we get $R^{T} X$ is an eigenvector of B corresponding to the eigenvalue $\lambda_{i}+r_{1}-2$. Thus the vectors X and $R^{T} X$ are orthogonal to the vector $J_{p_{1} \times 1}$.
Now, consider the vector $\phi=\left(\begin{array}{c}t X \\ R^{T} X \\ 0\end{array}\right)$. Next, we determine under what condition ϕ is an eigenvector of $\epsilon\left(G_{1} \vee G_{2}\right)$. If μ is an eigenvalue of $\epsilon\left(G_{1} \vee G_{2}\right)$ such that $\epsilon\left(G_{1} \vee G_{2}\right) \phi=\mu \phi$, then

$$
\begin{array}{rlc}
\left(\begin{array}{ccc}
0 & 3(J-R) & 0 \\
3\left(J-R^{T}\right) & 4(J-I-B) & 2 J \\
0 & 2 J & 2\left(J-I-A_{2}\right)
\end{array}\right)\left(\begin{array}{c}
t X \\
R^{T} X \\
0
\end{array}\right) & =\mu\left(\begin{array}{c}
t X \\
R^{T} X \\
0
\end{array}\right) \\
\left(\begin{array}{c}
-3\left(\lambda_{i}+r_{1}\right) X \\
\left(-3 t+4-4\left(\lambda_{i}+r_{1}\right)\right) R^{T} X \\
0
\end{array}\right) & =\mu\left(\begin{array}{c}
t X \\
R^{T} X \\
0
\end{array}\right)
\end{array}
$$

Therefore,

$$
\begin{aligned}
-3\left(\lambda_{i}+r_{1}\right) & =\mu t \\
-3 t+4-4\left(\lambda_{i}+r_{1}\right) & =\mu
\end{aligned}
$$

From this we will get

$$
3 t^{2}+4 t\left(\left(\lambda_{i}+r_{1}\right)-1\right)-3\left(\lambda_{i}+r_{1}\right)=0
$$

So t has two values

$$
\begin{aligned}
& t_{1}=\frac{2\left(1-\left(\lambda_{i}+r_{1}\right)\right)+\sqrt{4\left(\lambda_{i}+r_{1}\right)^{2}+\left(\lambda_{i}+r_{1}\right)+4}}{3} . \\
& t_{2}=\frac{2\left(1-\left(\lambda+r_{1}\right)-\sqrt{4\left(\lambda_{i}+r_{1}\right)^{2}+\left(\lambda_{i}+r_{1}\right)+4}\right.}{3} .
\end{aligned}
$$

Therefore, corresponding to each eigenvalue λ_{i} (for $i=2, \ldots, p_{1}$) of G_{1}, we get 2 eigenvalues for $\epsilon\left(G_{1} \vee G_{2}\right)$, as $-3 t_{1}+4-4\left(\lambda_{i}+r_{1}\right)$ and $-3 t_{2}+4-4\left(\lambda_{i}+r_{1}\right)$. Thus, we get $2\left(p_{1}-1\right)$ eigenvalues of $\epsilon\left(G_{1} \vee G_{2}\right)$.
The remaining 3 eigenvalues of $\epsilon\left(G_{1} \vee G_{2}\right)$ are eigenvalues of its equitable quotient matrix,

$$
F=\left(\begin{array}{ccc}
0 & 3 q_{1}-3 r_{1} & 0 \\
3 p_{1}-6 & 4 q_{1}-8 r_{1}+4 & 2 p_{2} \\
0 & 2 q_{1} & 2\left(p_{2}-r_{2}-1\right)
\end{array}\right)
$$

This completes the proof.
As an application we construct new pairs of ϵ-cospectral graphs in the following theorem.
Corollary 3.3. Let G_{1} and G_{2} be two regular cospectral graphs and H be any arbitrary regular graph. Then

1. $G_{1} \vee H$ and $G_{2} \vee H$ are ϵ-cospectral.
2. $H \vee G_{1}$ and $H \vee G_{2}$ are $\epsilon-$ cospectral.

Corollary 3.4. Let G_{j} be an r_{j}-regular $\left(r_{1} \geq 2\right)$, $\left(p_{j}, q_{j}\right)$ graph, $j=1,2$. Then the eccentricity Wiener index of $\epsilon\left(G_{1} \vee G_{2}\right)$ is given by,

$$
W_{\epsilon}\left(G_{1} \vee G_{2}\right)=q_{1}\left(3 p_{1}-4 r_{1}+2 q_{1}-1\right)+p_{2}\left(p_{2}+2 q_{1}-r_{2}-1\right)-\frac{3}{2} r_{1} p_{1}
$$

Corollary 3.5. Let G_{j} be an r_{j}-regular $\left(r_{1} \geq 2\right),\left(p_{j}, q_{j}\right)$ graph, $j=1,2$. Then

$$
\rho_{\epsilon}\left(G_{1} \vee G_{2}\right)>\frac{2 q_{1}\left(3 p_{1}-4 r_{1}+2 q_{1}-1\right)+2 p_{2}\left(p_{2}+2 q_{1}-r_{2}-1\right)-3 p_{1} r_{1}}{p_{1}+p_{2}+q_{1}} .
$$

Proof. Proof follows from Theorem 2.11 and corollary 3.4

4 Irreducibility and eccentricity spectrum of subdivision edge join of two graphs

Theorem 4.1. Let G_{i} be $a\left(p_{i}, q_{i}\right)$ graph, $i=1,2$. Then $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$ is irreducible.
Proof. Let $V\left(G_{1} \underline{\vee} G_{2}\right)=V\left(G_{1}\right) \cup I\left(G_{1}\right) \cup V\left(G_{2}\right)$ be a partition of the vertex set of $G=G_{1} \underline{\vee} G_{2}$. Let v_{l}, u_{j} and w_{k} represents the vertices in $V\left(G_{1}\right), I\left(G_{1}\right)$ and $V\left(G_{2}\right)$ respectively.
Case 1: G_{1} is not a star graph.
In $G_{1} \underline{\vee} G_{2}$ we get,

$$
3 \leq e\left(v_{l}\right) \leq 4, \text { for each } v_{l} \in V\left(G_{1}\right)
$$

$$
\begin{gathered}
e\left(u_{j}\right)=3 \text { for each } u_{j} \in I\left(G_{1}\right) \\
e\left(w_{k}\right)=2, \text { for each } w_{k} \in V\left(G_{2}\right)
\end{gathered}
$$

Since $d\left(w_{k}, v_{l}\right)=2=\min \left\{e\left(w_{k}\right), e\left(v_{l}\right)\right\}$, every vertex in $V\left(G_{2}\right)$ is adjacent to every vertex in $V\left(G_{1}\right)$ in G^{e}. Also for each vertex $u_{j} \in I\left(G_{1}\right)$, the eccentric vertex of u_{j} will be some v_{l}. Hence in G^{e} every vertex in $I\left(G_{1}\right)$ will be adjacent to some vertex in $V\left(G_{1}\right)$. Therefore G^{e} is connected.
Case 2: G_{1} is a star graph, $G_{1}=K_{1, p_{1}-1}$
If $p_{1}=2$, clearly $\left(G_{1} \underline{G_{2}}\right)^{e}$ is connected.
Let v_{1} be the unique vertex in G_{1} such that $\operatorname{deg}\left(v_{1}\right)=p_{1}-1, p_{1}>2$, then

$$
\begin{aligned}
e\left(v_{1}\right)=2 \text { and } e\left(v_{l}\right) & =4, \text { for } l \neq 1 \\
e\left(u_{j}\right) & =3, \text { for } u_{j} \in I\left(G_{1}\right) \\
e\left(w_{k}\right) & =2, \text { for } w_{k} \in V\left(G_{2}\right) .
\end{aligned}
$$

$d\left(v_{l}, w_{k}\right)=2=\min \left\{e\left(v_{l}\right), e\left(w_{k}\right)\right\}$, so every vertex in $V\left(G_{1}\right)$ is adjacent to every vertex in $V\left(G_{2}\right)$. And for each $v_{l}, l \neq 1$ there exist $p_{1}-2$ vertices u_{j} such that $d\left(v_{l}, u_{j}\right)=3=\min \left\{e\left(v_{l}\right), e\left(u_{j}\right)\right\}$. Therefore G^{e} is connected. Hence by Theorem [2.5] $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$ is irreducible.

Theorem 4.2. Let G_{j} be r_{j}-regular $\left(r_{1} \geq 2\right)$, $\left(p_{j}, q_{j}\right)$ graph, $j=1,2$. Let $\left\{r_{1}, \lambda_{2}, \ldots, \lambda_{p_{1}}\right\}$ and $\left\{r_{2}, \gamma_{2}, \ldots, \gamma_{p_{2}}\right\}$ be the A-eigenvalues of G_{1} and G_{2} respectively. Then the ϵ-eigenvalues of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$ consists of

1. 0 , with multiplicity $q_{1}-p_{1}$.
2. $-2\left(1+\gamma_{k}\right), k=2,3, \ldots, p_{2}$.
3. $-2\left(1+\lambda_{i}\right) \pm \sqrt{4\left(1+\lambda_{i}\right)^{2}+9\left(\lambda_{i}+r_{1}\right)}, i=2, \ldots, p_{1}$.
4. 3 eigenvalues of the equitable quotient matrix of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$,

$$
\left(\begin{array}{ccc}
4\left(p_{1}-1-r_{1}\right) & 3\left(q_{1}-r_{1}\right) & 2 p_{2} \\
3\left(p_{1}-2\right) & 0 & 0 \\
2 p_{1} & 0 & 2\left(p_{2}-r_{2}-1\right)
\end{array}\right) .
$$

Proof. By a proper labeling of the vertices of $G_{1} \underline{\vee} G_{2}$, we get

$$
\epsilon\left(G_{1} \underline{\vee} G_{2}\right)=\left(\begin{array}{ccc}
4\left(J-I-A_{1}\right) & 3(J-R) & 2 J \\
3\left(J-R^{T}\right) & 0 & 0 \\
2 J & 0 & 2\left(J-I-A_{2}\right)
\end{array}\right),
$$

where R and A_{j} represents the incidence matrix of G_{1}, adjacency matrix of G_{j} for $j=1,2$.
Let Z be an eigenvector of B corresponding to the eigenvalue -2 (with multiplicity $q_{1}-p_{1}$), where B is the adjacency matrix of $L\left(G_{1}\right)$. By Lemma [2.7, $R Z=0$. Consider $\psi=\left(\begin{array}{l}0 \\ Z \\ 0\end{array}\right)$. Then we have

$$
\epsilon\left(G_{1} \underline{\vee} G_{2}\right) \psi=\left(\begin{array}{ccc}
4\left(J-I-A_{1}\right) & 3(J-R) & 2 J \\
3\left(J-R^{T}\right) & 0 & 0 \\
2 J & 0 & 2\left(J-I-A_{2}\right)
\end{array}\right)\left(\begin{array}{l}
0 \\
Z \\
0
\end{array}\right)=0\left(\begin{array}{l}
0 \\
Z \\
0
\end{array}\right)=0 \psi .
$$

Thus, 0 is an eigenvalue of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$ with multiplicity $q_{1}-p_{1}$.
Let W be an eigenvector of A_{2} corresponding to the eigenvalue γ_{k} (for $k=2, \ldots, p_{2}$). Let $\zeta=\left(\begin{array}{c}0 \\ 0 \\ W\end{array}\right)$, then we have $\epsilon\left(G_{1} \underline{\vee} G_{2}\right) \zeta=-2\left(1+\gamma_{k}\right) \zeta$. Thus, $-2\left(1+\gamma_{k}\right)$ (for $\left.k=2, \ldots, p_{2}\right)$ is an eigenvalue of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$.

Let X be an eigenvector of A_{1} corresponding to the eigenvalue $\lambda_{i}\left(\right.$ for $\left.i=2, \ldots, p_{1}\right)$. Using Lemma 2.6, we get $R^{T} X$ is an eigenvector of B corresponding to the eigenvalue $\lambda_{i}+r_{1}-2$. Thus, the vectors X and $R^{T} X$ are orthogonal to the vector $J_{p_{1} \times 1}$.
Now, consider the vector $\phi^{*}=\left(\begin{array}{c}t X \\ R^{T} X \\ 0\end{array}\right)$. Next, we determine under what condition ϕ^{*} is an eigenvector of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$. If μ^{*} is an eigenvalue of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$ such that $\epsilon\left(G_{1} \underline{\vee} G_{2}\right) \phi^{*}=\mu^{*} \phi^{*}$, then

$$
\begin{array}{rlc}
\left(\begin{array}{ccc}
4\left(J-I-A_{1}\right) & 3(J-R) & 2 J \\
3\left(J-R^{T}\right) & 0 & 0 \\
2 J & 0 & 2\left(J-I-A_{2}\right)
\end{array}\right)\left(\begin{array}{c}
t X \\
R^{T} X \\
0
\end{array}\right) & =\mu^{*}\left(\begin{array}{c}
t X \\
R^{T} X \\
0
\end{array}\right) \\
\left(\begin{array}{c}
-4 t\left(1+\lambda_{i}\right) X-3\left(\lambda_{i}+r_{1}\right) X \\
-3 t R^{T} X \\
0
\end{array}\right) & =\mu^{*}\left(\begin{array}{c}
t X \\
R^{T} X \\
0
\end{array}\right) .
\end{array}
$$

Therefore

$$
\begin{aligned}
-\left(4 t+4 t \lambda_{i}+3 \lambda_{i}+3 r_{1}\right) & =\mu^{*} t \\
-3 t & =\mu^{*} .
\end{aligned}
$$

From this we will get

$$
3 t^{2}-4\left(1+\lambda_{i}\right) t-3\left(\lambda_{i}+r_{1}\right)=0
$$

so that t has two values

$$
t_{1}=\frac{2\left(1+\lambda_{i}\right)+\sqrt{4\left(1+\lambda_{i}\right)^{2}+9\left(\lambda_{i}+r_{1}\right)}}{3}, t_{2}=\frac{2\left(1+\lambda_{i}\right)-\sqrt{4\left(1+\lambda_{i}\right)^{2}+9\left(\lambda_{i}+r_{1}\right)}}{3} .
$$

Therefore, corresponding to each eigenvalue λ_{i} (for $i=2, \ldots, p_{1}$) of G_{1} we get 2 eigenvalues of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$ as $-3 t_{1}$ and $-3 t_{2}$. Hence, we get $2\left(p_{1}-1\right)$ eigenvalues of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$.
The remaining 3 eigenvalues of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$ are eigenvalues of its equitable quotient matrix,

$$
F=\left(\begin{array}{ccc}
4\left(p_{1}-1-r_{1}\right) & 3\left(q_{1}-r_{1}\right) & 2 p_{2} \\
3\left(p_{1}-2\right) & 0 & 0 \\
2 p_{1} & 0 & 2\left(p_{2}-r_{2}-1\right)
\end{array}\right) .
$$

The following corollary gives new pairs of ϵ-cospectral graphs.
Corollary 4.3. Let G_{1} and G_{2} be two regular cospectral graphs and H be any arbitrary regular graph. Then

1. $G_{1} \underline{\vee} H$ and $G_{2} \underline{\vee} H$ are $\epsilon-$ cospectral.
2. $H \underline{\vee} G_{1}$ and $H \underline{\vee} G_{2}$ are $\epsilon-$ cospectral.

Corollary 4.4. Let $G_{j}, j=1,2$ be a r_{j}-regular $\left(r_{1} \geq 2\right)$, ($\left.p_{i}, q_{i}\right)$ graph. Then the eccentricity Wiener index of $\epsilon\left(G_{1} \underline{\vee} G_{2}\right)$ is given by,

$$
W_{\epsilon}\left(G_{1} \underline{\vee} G_{2}\right)=2 p_{1}^{2}+p_{2}^{2}-\frac{p_{1}}{2}\left(4-4 p_{2}+7 r_{1}\right)+3 q_{1}\left(p_{1}-1\right)-p_{2}\left(r_{2}+1\right)
$$

Corollary 4.5. Let G_{j} be an r_{j}-regular $\left(r_{1} \geq 2\right),\left(p_{j}, q_{j}\right)$ graph, $j=1,2$. Then

$$
\rho_{\epsilon}\left(G_{1} \underline{\vee} G_{2}\right)>\frac{4 p_{1}^{2}+2 p_{2}^{2}-p_{1}\left(4-4 p_{2}+7 r_{1}\right)+6 q_{1}\left(p_{1}-1\right)-2 p_{2}\left(r_{2}+1\right)}{p_{1}+p_{2}+q_{1}}
$$

The join $G_{1} \vee G_{2}$ of two graphs G_{1} and G_{2}, is the graph obtained from $G_{1} \cup G_{2}$ by joining every vertex of G_{1} with every vertex of G_{2}, where $G_{1} \cup G_{2}$ denotes the disjoint union of G_{1} and G_{2}. In [11] the authors established that, if G is a r-regular graph of order p and diameter 2, then

$$
\epsilon\left(G \vee K_{1}\right)=\left(\begin{array}{cc}
2(J-I-A) & J \\
J & 0
\end{array}\right)
$$

where A is the adjacency matrix of G. The same matrix is obtained if G is a r - regular graph with order p and $\operatorname{diam}(G) \geq 2$. In the next theorem, we consider the join of a non-complete regular graph with $\operatorname{diam}(G) \geq 2$ and K_{1}.

Theorem 4.6. Let G be a r-regular, non-complete, (p, q) graph. Then

$$
\operatorname{spec}_{\epsilon}\left(G \vee K_{1}\right)=\left(\begin{array}{cccc}
(p-r-1) \pm \sqrt{(p-r-1)^{2}+p} & -2\left(\lambda_{2}+1\right) & \cdots & -2\left(\lambda_{p}+1\right) \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

where $\left\{r, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{p}\right\}$ are A-eigenvalues of G.
Proof. By a proper labeling of vertices in $G \vee K_{1}$, we get $\epsilon\left(G \vee K_{1}\right)=\left(\begin{array}{cc}2(J-I-A) & J \\ J & 0\end{array}\right)$, where A is the adjacency matrix of G. Let X be an eigenvector of A corresponding to the eigenvalue λ_{i} (for $i=2, \ldots, p)$. Then we have

$$
\epsilon\left(G \vee K_{1}\right)\binom{X}{0}=-2\left(1+\lambda_{i}\right)\binom{X}{0}
$$

Thus, $-2\left(1+\lambda_{i}\right)$ (for $\left.i=2, \ldots, p\right)$ is an eigenvalue of $\epsilon\left(G \vee K_{1}\right)$. The remaining 2 eigenvalues are given by the equitable quotient matrix of $\epsilon\left(G \vee K_{1}\right),\left(\begin{array}{cc}2(p-r-1) & 1 \\ p & 0\end{array}\right)$.

In [11], the authors discussed the ϵ-spectrum of $G \vee G$, where G is a regular graph with $\operatorname{diam}(G)=$ 2. Later in [6], Mahato et al. discussed the ϵ - spectrum of $G_{1} \vee G_{2}$, where G_{1} and G_{2} are non-complete connected graphs.
In this context, we will refer to the subsequent theorem for its application in Section 5.
Theorem 4.7. [6] Let G is a r-regular, non complete, (p, q) graph. Then the ϵ-spectrum of $G \vee G$ is given by,

$$
\operatorname{Spec}_{\epsilon}(G \vee G)=\left(\begin{array}{cccc}
2(p-r-1) & -2\left(\lambda_{2}+1\right) & \cdots & -2\left(\lambda_{p}+1\right) \\
2 & 2 & \cdots & 2
\end{array}\right)
$$

where $\lambda_{i} \neq r, i=2,3, \ldots, p$ are the A-eigenvalues of G.
Next, we will discuss the join and subdivision vertex (edge)join of a connected graph with a non-connected graph having two components. We will explore its ϵ - spectrum and reveal some new graph families with irreducible or reducible eccentricity matrix.

Theorem 4.8. Let G_{j} be an r_{j}-regular, $\left(p_{j}, q_{j}\right)$ graph, $j=0,1,2$, and $\operatorname{diam}\left(G_{1}\right) \geq 2$. Let $\left\{r_{0}, \lambda_{2}, \lambda_{3}\right.$, $\left.\ldots, \lambda_{p_{0}}\right\},\left\{r_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{p_{1}}\right\}$ and $\left\{r_{2}, \gamma_{2}, \gamma_{3}, \ldots, \gamma_{p_{2}}\right\}$ are the A - eigenvalues of G_{0}, G_{1} and G_{2} respectively. Then $\epsilon-$ eigenvalues of $G_{0} \vee\left(G_{1} \cup G_{2}\right)$ consists of

1. $-2\left(1+\lambda_{i}\right), i=2, \ldots, p_{0}$.
2. $-2\left(1+\beta_{k}\right), k=2, \ldots, p_{1}$.
3. $-2\left(1+\gamma_{l}\right), l=2, \ldots, p_{2}$.
4. 3 eigenvalues of the equitable quotient matrix of $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)$,

$$
\left(\begin{array}{ccc}
2\left(p_{0}-1-r_{0}\right) & 0 & 0 \\
0 & 2\left(p_{1}-1-r_{1}\right) & 2 p_{2} \\
0 & 2 p_{1} & 2\left(p_{2}-1-r_{2}\right)
\end{array}\right)
$$

Proof. By a proper labeling for the vertices of $G_{0} \vee\left(G_{1} \cup G_{2}\right)$, we get

$$
\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)=\left(\begin{array}{ccc}
2\left(J-I-A_{0}\right) & 0 & 0 \\
0 & 2\left(J-I-A_{1}\right) & 2 J \\
0 & 2 J & 2\left(J-I-A_{2}\right)
\end{array}\right)
$$

where A_{j} denotes the adjacency matrix of G_{j} for $j=0,1,2$.
Let X be an eigenvector of A_{0} corresponding to the eigenvalue λ_{i} (for $i=2, \ldots, p_{0}$), Y be an eigenvector of A_{1} corresponding to the eigenvalue β_{k} (for $k=2, \ldots, p_{1}$), and Z be an eigenvector of A_{2} corresponding to the eigenvalue γ_{l} (for $\left.l=2, \ldots, p_{2}\right)$. Then we have, $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)\left(\begin{array}{c}X \\ 0 \\ 0\end{array}\right)=-2\left(1+\lambda_{i}\right)\left(\begin{array}{c}X \\ 0 \\ 0\end{array}\right)$, $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)\left(\begin{array}{c}0 \\ Y \\ 0\end{array}\right)=-2\left(1+\beta_{k}\right)\left(\begin{array}{c}0 \\ Y \\ 0\end{array}\right)$, and $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)\left(\begin{array}{l}0 \\ 0 \\ Z\end{array}\right)=-2\left(1+\gamma_{l}\right)\left(\begin{array}{l}0 \\ 0 \\ Z\end{array}\right)$. The remaining 3 eigenvalues of $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)$ are given by its equitable quotient matrix,

$$
F=\left(\begin{array}{ccc}
2\left(p_{0}-1-r_{0}\right) & 0 & 0 \\
0 & 2\left(p_{1}-1-r_{1}\right) & 2 p_{2} \\
0 & 2 p_{1} & 2\left(p_{2}-1-r_{2}\right.
\end{array}\right)
$$

Theorem 4.9. Let G_{0}, G_{1} and G_{2} be any three graphs. The following gives some new families of graphs having either a reducible or irreducible eccentricity matrix.

1. If G_{0} is self-centered and diam $\left(G_{0}\right)=2$, then $G_{0} \vee\left(G_{1} \cup G_{2}\right)$ is reducible.
2. If G_{0} is not self-centered and diam $\left(G_{0}\right)=2$, then $G_{0} \vee\left(G_{1} \cup G_{2}\right)$ is irreducible.
3. If $\operatorname{diam}\left(G_{0}\right) \geq 3$, then $G_{0} \vee\left(G_{1} \cup G_{2}\right)$ is reducible.

Proof. Let $G=G_{0} \vee\left(G_{1} \cup G_{2}\right), V(G)=V\left(G_{0}\right) \cup V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and let u_{i}, v_{j}, w_{k} be the vertices in $V\left(G_{0}\right), V\left(G_{1}\right)$, and $V\left(G_{2}\right)$ respectively. In G,

$$
\begin{aligned}
e\left(v_{j}\right) & =2, \text { for every } v_{j} \in V\left(G_{1}\right) \\
e\left(w_{k}\right) & =2, \text { for every } w_{k} \in V\left(G_{2}\right)
\end{aligned}
$$

and $d\left(v_{j}, w_{k}\right)=2$. Therefore, every vertex in $V\left(G_{1}\right)$ is adjacent to every vertex of $V\left(G_{2}\right)$ in G^{e}.

1. If G_{0} is self-centered and $\operatorname{diam}\left(G_{0}\right)=2$, clearly in G for each u_{i} in $V\left(G_{0}\right), e\left(u_{i}\right)=2$. But

$$
\begin{gathered}
d\left(u_{i}, v_{j}\right)=1 \neq \min \left\{e\left(u_{i}\right), e\left(v_{j}\right)\right\} \\
d\left(u_{i}, w_{k}\right)=1 \neq \min \left\{e\left(u_{i}\right), e\left(w_{k}\right)\right\} .
\end{gathered}
$$

Therefore, G^{e} is a disconnected graph. Thus, the result follows from Theorem 2.5,
2. If G_{0} is not self-centered and $\operatorname{diam}(G)=2$, then there exist at least one u_{l} in $V\left(G_{0}\right)$ such that $e\left(u_{l}\right)=1$. Then we have

$$
\begin{aligned}
d\left(u_{l}, u_{i}\right) & =1=\min \left\{e\left(u_{l}\right), e\left(u_{i}\right)\right\}, \text { for all } u_{i} \text { in } V\left(G_{0}\right), \\
d\left(u_{l}, v_{j}\right) & =1=\min \left\{e\left(u_{l}\right), e\left(v_{j}\right)\right\}, \text { for all } v_{j} \text { in } V\left(G_{1}\right), \\
d\left(u_{l}, w_{k}\right) & =1=\min \left\{e\left(u_{l}\right), e\left(w_{k}\right)\right\}, \text { for all } w_{k} \text { in } V\left(G_{2}\right) .
\end{aligned}
$$

Thus, the eccentric graph G^{e} is connected. Therefore, $\epsilon(G)$ is irreducible by Theorem 2.5.
3. If $\operatorname{diam}\left(G_{0}\right) \geq 3$, then in $G, e\left(u_{i}\right)=2$, for every u_{i} in $V\left(G_{0}\right)$. So in G^{e}, no vertex in $V\left(G_{0}\right)$ is adjacent to any vertex in $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. Thus, G^{e} is disconnected. Hence, using Theorem [2.5, $\epsilon(G)$ is reducible.

Theorem 4.10. Let G_{j} be an r_{j}-regular ($r_{0} \geq 2$), (p_{j}, q_{j}) graph, $j=0,1,2$ and let $\left\{r_{0}, \lambda_{2}, \ldots, \lambda_{p_{0}}\right\}$, $\left\{r_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{p_{1}}\right\}$ and $\left\{r_{2}, \gamma_{2}, \gamma_{3}, \ldots, \gamma_{p_{2}}\right\}$ be the A - eigenvalues of G_{0}, G_{1} and G_{2} respectively. Then ϵ - eigenvalues of $G_{0} \vee\left(G_{1} \cup G_{2}\right)$ consists of

1. 4 with multiplicity $q_{0}-p_{0}$.
2. $-2\left(1+\beta_{k}\right), k=2, \ldots, p_{1}$.
3. $-2\left(1+\gamma_{l}\right), l=2, \ldots, p_{2}$.
4. $-3 t_{1}-4-4\left(\lambda_{i}+r_{0}-2\right), i=2, \ldots, p_{0}, t_{1}=\frac{2\left(1-\left(\lambda_{i}+r_{0}\right)\right)+\sqrt{4\left(1-\left(\lambda_{i}+r_{0}\right)\right)^{2}+9\left(\lambda_{i}+r_{0}\right)}}{3}$.
5. $-3 t_{2}-4-4\left(\lambda_{i}+r_{0}-2\right), i=2, \ldots, p_{0}, t_{2}=\frac{2\left(1-\left(\lambda_{i}+r_{0}\right)\right)-\sqrt{4\left(1-\left(\lambda_{i}+r_{0}\right)\right)^{2}+9\left(\lambda_{i}+r_{0}\right)}}{3}$.
6. 4 eigenvalues of the equitable quotient matrix of $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)$,

$$
\left(\begin{array}{cccc}
0 & 3\left(q_{0}-r_{0}\right) & 0 & 0 \\
3\left(p_{0}-2\right) & 4\left(q_{0}-2 r_{0}+1\right) & 2 p_{1} & 2 p_{2} \\
0 & 2 q_{0} & 2\left(p_{1}-r_{1}-1\right) & 2 p_{2} \\
0 & 2 q_{0} & 2 p_{1} & 2\left(p_{2}-r_{2}-1\right)
\end{array}\right) .
$$

Proof. By a proper ordering of the vertices of $G_{0} \vee\left(G_{1} \cup G_{2}\right)$,

$$
\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)=\left(\begin{array}{cccc}
0 & 3\left(J-R_{0}\right) & 0 & 0 \\
3\left(J-R_{0}^{T}\right) & 4\left(J-I-B_{0}\right) & 2 J & 2 J \\
0 & 2 J & 2\left(J-I-A_{1}\right) & 2 J \\
0 & 2 J & 2 J & 2\left(J-I-A_{2}\right)
\end{array}\right),
$$

where R_{0} represents the incidence matrix of G_{0} and B_{0}, A_{1}, A_{2} represents the adjacency matrix of $L\left(G_{0}\right), G_{1}, G_{2}$ respectively. Let W be an eigenvector of A_{1} corresponding to the eigenvalue β_{k} (for $\left.k=2, \ldots, p_{1}\right), V$ be an eigenvector of A_{2} corresponding to the eigenvalue γ_{l} (for $l=2, \ldots, p_{2}$), and
X be the eigenvector of B_{0} corresponding to the eigenvalues -2 (with multiplicity $q_{0}-p_{0}$). Then we have

$$
\left.\begin{array}{l}
\left(\begin{array}{cccc}
0 & 3\left(J-R_{0}\right) & 0 & 0 \\
3\left(J-R_{0}^{T}\right) & 4\left(J-I-B_{0}\right) & 2 J & 2 J \\
0 & 2 J & 2\left(J-I-A_{1}\right) & 2 J \\
0 & 2 J & 2 J & 2\left(J-I-A_{2}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
W \\
0
\end{array}\right)=-2\left(1+\beta_{k}\right)\left(\begin{array}{c}
0 \\
0 \\
W \\
0
\end{array}\right), \\
\left(\begin{array}{cccc}
0 & 3\left(J-R_{0}\right) & 0 & 0 \\
3\left(J-R_{0}^{T}\right) & 4\left(J-I-B_{0}\right) & 2 J & 2 J \\
0 & 2 J & 2\left(J-I-A_{1}\right) & 2 J \\
0 & 2 J & 2 J & 2\left(J-I-A_{2}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
V
\end{array}\right)=-2\left(1+\gamma_{l}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
V
\end{array}\right), \\
\left(\begin{array}{ccc}
0 & 3\left(J-R_{0}\right) & 0 \\
3\left(J-R_{0}^{T}\right) & 4\left(J-I-B_{0}\right) & 2 J \\
0 & 2 J & 2\left(J-I-A_{1}\right) \\
0 & 2 J & 2 J
\end{array} 2\left(J-I-A_{2}\right)\right.
\end{array}\right)\left(\begin{array}{c}
0 \\
X \\
0 \\
0
\end{array}\right)=4\left(\begin{array}{c}
0 \\
X \\
0 \\
0
\end{array}\right) ., ~ l
$$

Let U be an eigenvector corresponding to the A - eigenvalue λ_{i} (for $i=2, \ldots, p_{0}$) of G_{0}. Using Lemma 2.6, we get $R_{0}^{T} U$ is an eigenvector of B_{0} corresponding to the eigenvalue $\lambda_{i}+r_{0}-2$. Thus, the vectors U and $R_{0}^{T} U$ are orthogonal to the vector $J_{p_{0} \times 1}$.
Now, consider the vector $\tilde{\phi}=\left(\begin{array}{c}t U \\ R_{0}^{T} U \\ 0 \\ 0\end{array}\right)$. Next, we determine under what condition $\tilde{\phi}$ is an eigenvector of $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)$. If $\tilde{\mu}$ is an eigenvalue of $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)$ such that $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right) \tilde{\phi}=\tilde{\mu} \tilde{\phi}$, then

$$
\left(\begin{array}{cccc}
0 & 3\left(J-R_{0}\right) & 0 & 0 \\
3\left(J-R_{0}^{T}\right) & 4\left(J-I-B_{0}\right) & 2 J & 2 J \\
0 & 2 J & 2\left(J-I-A_{1}\right) & 2 J \\
0 & 2 J & 2 J & 2\left(J-I-A_{2}\right)
\end{array}\right)\left(\begin{array}{c}
t U \\
R_{0}^{T} U \\
0 \\
0
\end{array}\right)=\tilde{\mu}\left(\begin{array}{c}
t U \\
R_{0}^{T} U \\
0 \\
0
\end{array}\right)
$$

Therefore,

$$
\begin{aligned}
-3\left(\lambda_{i}+r_{0}\right) & =\tilde{\mu} t \\
-3 t-4-4\left(\lambda_{i}+r_{0}-2\right) & =\tilde{\mu}
\end{aligned}
$$

From this we will get,

$$
\tilde{\mu}=-3 t_{1}-4-4\left(\lambda_{i}+r_{0}-2\right), i=2, \ldots, p_{0}, \text { where } t_{1}=\frac{2\left(1-\left(\lambda_{i}+r_{0}\right)\right)+\sqrt{4\left(1-\left(\lambda_{i}+r_{0}\right)\right)^{2}+9\left(\lambda_{i}+r_{0}\right)}}{3}
$$

and

$$
\tilde{\mu}=-3 t_{2}-4-4\left(\lambda_{i}+r_{0}-2\right), i=2, \ldots p_{0}, \text { where } t_{2}=\frac{2\left(1-\left(\lambda_{i}+r_{0}\right)\right)-\sqrt{4\left(1-\left(\lambda_{i}+r_{0}\right)\right)^{2}+9\left(\lambda_{i}+r_{0}\right)}}{3}
$$

And the remaining 4 eigenvalues of $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)$ are given by its equitable quotient matrix,

$$
F=\left(\begin{array}{cccc}
0 & 3\left(q_{0}-r_{0}\right) & 0 & 0 \\
3\left(p_{0}-2\right) & 4\left(q_{0}-2 r_{0}+1\right) & 2 p_{1} & 2 p_{2} \\
0 & 2 q_{0} & 2\left(p_{1}-r_{1}-1\right) & 2 p_{2} \\
0 & 2 q_{0} & 2 p_{1} & 2\left(p_{2}-r_{2}-1\right)
\end{array}\right)
$$

The following remarks describes a family of graphs with an irreducible eccentricity matrix.
Remark 4.11. For any three connected graphs G_{0}, G_{1} and G_{2} the matrix $\epsilon\left(G_{0} \vee\left(G_{1} \cup G_{2}\right)\right)$ is irreducible, unless $G_{0}=K_{1,1}$.

Remark 4.12. For any connected graphs $G_{i}, i=0,1, \ldots, p$, the matrix $\epsilon\left(G_{0} \vee\left(\cup_{l=1}^{p} G_{l}\right)\right.$ is irreducible, unless $G_{0}=K_{1,1}$.

Theorem 4.13. Let G_{j} be an r_{j}-regular ($r_{0} \geq 2$), $\left(p_{j}, q_{j}\right)$ graph, $j=0,1,2,\left\{r_{0}, \lambda_{2}, \ldots, \lambda_{p_{0}}\right\}$, $\left\{r_{1}, \beta_{2}\right.$, $\left.\beta_{3}, \ldots, \beta_{p_{1}}\right\}$ and $\left\{r_{2}, \gamma_{2}, \gamma_{3}, \ldots, \gamma_{p_{2}}\right\}$ are the A - eigenvalues of G_{0}, G_{1} and G_{2} respectively. Then $\epsilon-$ eigenvalues of $G_{0} \underline{\vee}\left(G_{1} \cup G_{2}\right)$ consists of

1. 0 with multiplicity $q_{0}-p_{0}$.
2. $-2\left(1+\beta_{k}\right), k=2, \ldots, p_{1}$.
3. $-2\left(1+\gamma_{l}\right), l=2, \ldots, p_{2}$.
4. $-2\left(1+\lambda_{i}\right) \pm \sqrt{4\left(1+\lambda_{i}\right)^{2}+9\left(\lambda_{i}+r_{0}\right)}, i=2, \ldots, p_{0}$.
5. 4 eigenvalues of the equitable quotient matrix of $\epsilon\left(G_{0} \underline{\vee}\left(G_{1} \cup G_{2}\right)\right)$,

$$
\left(\begin{array}{cccc}
4\left(p_{0}-1-r_{0}\right) & 3\left(q_{0}-r_{0}\right) & 2 p_{1} & 2 p_{2} \\
3\left(p_{0}-2\right) & 0 & 0 & 0 \\
2 p_{0} & 0 & 2\left(p_{1}-1-r_{1}\right) & 2 p_{2} \\
2 p_{0} & 0 & 2 p_{1} & 2\left(p_{2}-1-r_{2}\right)
\end{array}\right)
$$

Proof. Proof is similar to Theorem4.10.
Remark 4.14. For any three connected graphs G_{0}, G_{1} and G_{2} the matrix $\epsilon\left(G_{0} \underline{\vee}\left(G_{1} \cup G_{2}\right)\right)$ is irreducible. This gives a new family of graphs having irreducible eccentricity matrix.

Remark 4.15. For any connected graphs $G_{i}, i=0,1, \ldots, p$, the matrix $\epsilon\left(G_{0} \underline{\vee}\left(\cup_{l=1}^{p} G_{l}\right)\right.$ is irreducible.

5 Applications

This section will explore some of the applications of the results discussed in sections 3 and 4 .

5.1 Eccentricity equienergetic graphs

The construction of non cospectral equienergetic graphs is a significant problem in spectral graph theory. In [7], Mahato et al. constructed a pair of non ϵ-cospectral ϵ-equienergetic graphs for every $p \geq 5$. Motivated by this, in this section we will discuss the construction some non ϵ-cospectral ϵ-equienergetic graphs.

Theorem 5.1. For every $t \geq 3$, there exist a pair of non ϵ - cospectral ϵ-equienergetic graphs on $12 t$ vertices.

Proof. Let G_{1} and G_{2} be two non-cospectral cubic graphs on $2 t$ vertices as in Lemma 2.8 with $\operatorname{spec}\left(G_{1}\right)=\left\{3, \lambda_{2}, \ldots, \lambda_{2 t}\right\}$ and $\operatorname{spec}\left(G_{2}\right)=\left\{3, \beta_{2}, \ldots, \beta_{2 t}\right\}$. Using Lemma 2.9,

$$
\operatorname{spec} L^{2}\left(G_{1}\right)=\left(\begin{array}{cccccc}
6 & \lambda_{2}+3 & \cdots & \lambda_{2 t}+3 & 0 & -2 \\
1 & 1 & \cdots & 1 & t & 3 t
\end{array}\right)
$$

and

$$
\operatorname{spec} L^{2}\left(G_{2}\right)=\left(\begin{array}{cccccc}
6 & \beta_{2}+3 & \cdots & \beta_{2 t}+3 & 0 & -2 \\
1 & 1 & \cdots & 1 & t & 3 t
\end{array}\right)
$$

Using Theorem 4.7 we have

$$
\begin{aligned}
& \operatorname{spec}_{\epsilon}\left(L^{2}\left(G_{1}\right) \vee L^{2}\left(G_{1}\right)=\left(\begin{array}{cccc}
2(6 t-7) & -2\left(\lambda_{i}+4\right) & -2 & 2 \\
2 & 2 & 2 t & 6 t
\end{array}\right), i=2, \ldots, 2 t\right. \\
& \operatorname{spec}_{\epsilon}\left(L^{2}\left(G_{2}\right) \vee L^{2}\left(G_{2}\right)=\left(\begin{array}{cccc}
2(6 t-7) & -2\left(\beta_{j}+4\right) & -2 & 2 \\
2 & 2 & 2 t & 6 t
\end{array}\right), j=2, \ldots, 2 t .\right.
\end{aligned}
$$

Then we have,

$$
E_{\epsilon}\left(L^{2}\left(G_{1}\right) \vee L^{2}\left(G_{1}\right)\right)=E_{\epsilon}\left(L^{2}\left(G_{2}\right) \vee L^{2}\left(G_{2}\right)\right)=72 t-56
$$

Example 5.2. Let G_{1} and G_{2} are two graphs as in Figure 1.

Figure 1: G_{1} and G_{2} are non isomorphic non cospectral cubic graphs on 6 vertices.
Then, $\operatorname{spec}\left(G_{1}\right)=\left(\begin{array}{cccc}3 & 1 & 0 & -2 \\ 1 & 1 & 2 & 2\end{array}\right)$ and $\operatorname{spec}\left(G_{2}\right)=\left(\begin{array}{lll}3 & 0 & 3 \\ 1 & 4 & 1\end{array}\right) . N o w, L^{2}\left(G_{l}\right) \vee L^{2}\left(G_{l}\right), l=1,2$ is a graph having 36 vertices. Also, its eccentricity spectrum is given by,

$$
\begin{aligned}
& \operatorname{spec}_{\epsilon}\left(\left(L^{2}\left(G_{1}\right) \vee L^{2}\left(G_{1}\right)\right)=\left(\begin{array}{cccccc}
22 & -10 & -8 & -4 & -2 & 2 \\
2 & 2 & 4 & 4 & 6 & 18
\end{array}\right)\right. \\
& \operatorname{spec}_{\epsilon}\left(\left(L^{2}\left(G_{2}\right) \vee L^{2}\left(G_{2}\right)\right)=\left(\begin{array}{cccc}
22 & -8 & -2 & 2 \\
2 & 8 & 8 & 18
\end{array}\right) .\right.
\end{aligned}
$$

Figure 2: non isomorphic non ϵ-cospectral ϵ equienergetic graphs on 36 -vertices with $E_{\epsilon}=160$
Theorem 5.3. For every $t \geq 3$, there exist a pair of non ϵ-cospectral ϵ-equienergetic graphs on $6 t+1$ vertices.

Proof. Let G_{1} and G_{2} are two non-cospectral cubic graphs on $2 t$ vertices, as in Lemma 2.8 with $\operatorname{spec}\left(G_{1}\right)=\left\{3, \lambda_{2}, \ldots, \lambda_{2 t}\right\}$ and $\operatorname{spec}\left(G_{2}\right)=\left\{3, \beta_{2}, \ldots, \beta_{2 t}\right\}$. Then using Lemma 2.8 and Theorem 4.6,

$$
\begin{gathered}
\operatorname{spec}_{\epsilon}\left(L^{2}\left(G_{1}\right) \vee K_{1}\right)=\left(\begin{array}{cccc}
(6 t-7) \pm \sqrt{(6 t-7)^{2}+6 t} & -2\left(\lambda_{i}+4\right) & -2 & 2 \\
1 & 1 & t & 3 t
\end{array}\right), i=2, \ldots, 2 t . \\
\operatorname{spec}_{\epsilon}\left(L^{2}\left(G_{2}\right) \vee K_{1}\right)=\left(\begin{array}{cccc}
(6 t-7) \pm \sqrt{(6 t-7)^{2}+6 t} & -2\left(\beta_{j}+4\right) & -2 & 2 \\
1 & 1 & t & 3 t
\end{array}\right), j=2, \ldots, 2 t .
\end{gathered}
$$

Then we have

$$
E_{\epsilon}\left(L^{2}\left(G_{1}\right) \vee K_{1}\right)=E_{\epsilon}\left(L^{2}\left(G_{2}\right) \vee K_{1}\right)=24 t-14+2 \sqrt{(6 t-7)^{2}+6 t} .
$$

Example 5.4. Let G_{1} and G_{2} are two non cospectral cubic graphs as in figure 1. Now, $L^{2}\left(G_{l}\right) \vee K_{1}$, $l=1,2$ is a graph having 19 vertices. Also, its eccentricity spectrum is given by,

$$
\begin{aligned}
\operatorname{spec}_{\epsilon}\left(L^{2}\left(G_{1}\right) \vee K_{1}\right) & =\left(\begin{array}{cccccc}
11 \pm \sqrt{139} & -10 & -8 & -4 & -2 & 2 \\
1 & 1 & 2 & 2 & 3 & 9
\end{array}\right) \\
\operatorname{spec}_{\epsilon}\left(L^{2}\left(G_{2}\right) \vee K_{1}\right) & =\left(\begin{array}{cccc}
11 \pm \sqrt{139} & -8 & -2 & 2 \\
1 & 4 & 4 & 9
\end{array}\right) . \\
\text { Then we have, } E_{\epsilon}\left(L^{2}\left(G_{1}\right) \vee K_{1}\right) & =E_{\epsilon}\left(L^{2}\left(G_{2}\right) \vee K_{1}\right)=81.579 .
\end{aligned}
$$

Figure 3: non isomorphic non ϵ-cospectral ϵ equienergetic graphs on 19 -vertices with $E_{\epsilon}=81.579$
Next, we give a method for the construction of new pairs and triplets of non ϵ - cospectral ϵ-equienergetic graphs.

Theorem 5.5. Let G_{1} and G_{2} be two non cospectral cubic graph on $2 t$ vertices, $t \geq 2$, and G be any $r-$ regular graph with $r \geq 2$. Let $H_{1}=L^{2}\left(G_{1}\right)$ and $H_{2}=L^{2}\left(G_{2}\right)$. Then

1. $G \vee H_{1}$ and $G \vee H_{2}$ are non ϵ-cospectral ϵ-equienergetic graphs.
2. $G \underline{\vee} H_{1}$ and $G \underline{\vee} H_{2}$ are non ϵ-cospectral ϵ-equienergetic graphs.
3. $G \vee\left(H_{1} \cup H_{2}\right)$ and $G \vee\left(H_{1} \cup H_{1}\right)$ and $G \vee\left(H_{2} \cup H_{2}\right)$ are non ϵ-cospectral ϵ-equienergetic graphs.
4. $G \underline{\vee}\left(H_{1} \cup H_{2}\right)$ and $G \underline{\vee}\left(H_{1} \cup H_{1}\right)$ and $G \underline{\vee}\left(H_{2} \cup H_{2}\right)$ are non ϵ-cospectral ϵ-equienergetic graphs.

Proof. The proof follows from Lemma [2.9, and Theorems 3.2, 4.2, 4.10, 4.13,
Corollary 5.6. For every $t \geq 3$, there exist 2 pairs of non ϵ-cospectral ϵ-equienergetic graph on $6+6 t$ vertices.

Proof. By Theorem 5.5 we have

$$
\begin{aligned}
E_{\epsilon}\left(K_{3} \vee H_{1}\right) & =E_{\epsilon}\left(K_{3} \vee H_{2}\right) \\
\text { and } E_{\epsilon}\left(K_{3} \vee H_{1}\right) & =E_{\epsilon}\left(K_{3} \vee H_{2}\right) .
\end{aligned}
$$

Corollary 5.7. For every $t \geq 3$, there exist 2 triplets of non ϵ-cospectral ϵ-equienergetic graphs on $6+12 t$ vertices.

Proof. By Theorem 5.5 we have

$$
\left.\begin{array}{rl}
E_{\epsilon}\left(K_{3} \underline{\vee}\left(H_{1} \cup H_{1}\right)\right) & =E_{\epsilon}\left(K_{3} \underline{\vee}\left(H_{2} \cup H_{2}\right)\right) \\
\text { and } E_{\epsilon}\left(K_{3} \vee\left(E_{\epsilon}\left(K_{3} \cup\left(H_{1} \cup H_{1}\right)\right)\right)\right. & \left.=E_{\epsilon}\left(K_{3} \vee\left(H_{2} \cup H_{2}\right)\right)\right)
\end{array}\right) E_{\epsilon}\left(K_{3} \vee\left(H_{1} \cup H_{2}\right)\right) . .
$$

5.2 Some ϵ-integral graphs

The problem of finding A-integral graphs is also an interesting one in spectral graph theory. Motivated by this, in this section, using the results obtained in previous sections, we give some methods to construct some new families of ϵ-integral graphs.

Proposition 5.8. Let G_{j} be a $r_{j}\left(r_{1} \geq 2\right)$ regular, $\left(p_{j}, q_{j}\right)$ graph. Then $G_{1} \vee G_{2}$ is ϵ-integral graph if and only if G_{2} is A-integral, roots of the equation $3 t^{2}+4 t\left(\left(\lambda_{i}+r_{1}\right)-1\right)-3\left(\lambda_{i}+r_{1}\right)=0, i=2, \ldots, p_{1}$, and eigenvalues of the matrix $\left(\begin{array}{ccc}0 & 3 q_{1}-3 r_{1} & 0 \\ 3 p_{1}-6 & 4 q_{1}-8 r_{1}+4 & 2 p_{2} \\ 0 & 2 q_{1} & 2\left(p_{2}-r_{2}-1\right.\end{array}\right)$ are integers.

Proposition 5.9. Let G_{j} be a $r_{j}\left(r_{1} \geq 2\right)$ regular graph, ($\left.p_{i}, q_{i}\right)$ graph. Then $G_{1} \underline{\vee} G_{2}$ is ϵ-integral graph if and only if G_{2} is A-integral and roots of the equation $3 t^{2}-4\left(1+\lambda_{i}\right) t-3\left(\lambda_{i}+r_{1}\right)=0, i=2, \ldots, p_{1}$, and eigenvalues of the matrix $\left(\begin{array}{ccc}4\left(p_{1}-1-r_{1}\right) & 3\left(q_{1}-r_{1}\right) & 2 p_{2} \\ 3\left(p_{1}-2\right) & 0 & 0 \\ 2 p_{1} & 0 & 2\left(p_{2}-r_{2}-1\right)\end{array}\right)$ are integers.

Now we present some ϵ-integral graphs,

1. The graph $K_{3} \vee K_{n}$ is ϵ-integral graphs if and only if $12 n+9$ is a perfect square. For example $K_{3} \vee K_{6}, K_{3} \vee K_{18}, K_{3} \vee K_{36}, K_{3} \vee K_{60}, K_{3} \vee K_{90}, K_{3} \vee K_{126}$.
2. The graph $K_{11} \underline{\vee} K_{n}$ is ϵ-integral if and only if $44 n+3645$ is a perfect square.

For example $K_{11} \underline{\vee} K_{45}$ is ϵ-integral.
3. Using Theorem 4.8

- If G is a A-integral graph then $G \vee(G \cup G)$ is ϵ-integral.
- If $G_{i}, i=0,1,2, r$ - regular, A-integral graph then $G_{0} \vee\left(G_{1} \cup G_{2}\right)$ is ϵ-integral.

The graphs $K_{n} \vee\left(K_{m} \cup K_{l}\right), K_{m, m} \vee\left(K_{m+1} \cup K_{m+1}\right), K_{m+1} \vee\left(K_{m, m} \cup K_{m, m}\right), K_{m, m} \vee\left(K_{m+1} \cup K_{m, m}\right)$ are some ϵ-integral graphs.

6 Conclusion

Using the graph operations subdivision vertex(edge) join and join of graphs, we have added new classes of connected graphs to the existing classes of graphs for which the irreducibility or reducibility of their eccentricity matrix is known. In addition, we analyzed their eccentricity spectra. These results enable us to provide infinitely many ϵ-cospectral graph pairs. Furthermore, infinitely many pairs and triplets of non ϵ-cospectral ϵ-equienergetic graphs are constructed. Moreover, some new families of ϵ-integral graphs are obtained.

Word count: 3178

Disclosure statement

All authors declare that they have no conflicts of interest.

References

[1] Andries E Brouwer and Willem H Haemers. Spectra of graphs. Springer Science \& Business Media, 2011.
[2] Dragoš M. Cvetković, Michael Doob, and Horst Sachs. Spectra of graphs, Theory and application. vol. 87, Academic Press, Inc, New York-London, 1980.
[3] Gopalapilla Indulal, Deena C. Scaria, and Xiaogang Liu. The distance spectrum of the subdivision vertex join and subdivision edge join of two regular graphs. Discrete Mathematics Letters, 1:3641, 2019.
[4] Gopalapillai Indulal. Spectrum of two new joins of graphs and infinite families of integral graphs. Kragujevac journal of mathematics, 36(38):133-139, 2012.
[5] Gopalapillai Indulal and Ambat Vijayakumar. Equienergetic self-complementary graphs. Czechoslovak Mathematical Journal, 58(4):911-919, 2008.
[6] Iswar Mahato, R Gurusamy, M Rajesh Kannan, and S Arockiaraj. Spectra of eccentricity matrices of graphs. Discrete Applied Mathematics, 285:252-260, 2020.
[7] Iswar Mahato, R Gurusamy, M Rajesh Kannan, and S Arockiaraj. On the spectral radius and the energy of eccentricity matrices of graphs. Linear and Multilinear Algebra, 71(1):5-15, 2023.
[8] Milan Randić. $\mathrm{D}_{\text {MAX - matrix of dominant distances in a graph. MATCH Commun. Math. }}$ Comput. Chem., 70(1):221-238, 2013.
[9] Sezer Sorgun and Hakan Küçük. On two problems related to anti-adjacency (eccentricity) matrix. Discrete Applied Mathematics, 328:1-9, 2023.
[10] Jianfeng Wang, Lu Lu, Milan Randić, and Guozheng Li. Graph energy based on the eccentricity matrix. Discrete Mathematics, 342(9):2636-2646, 2019.
[11] Jianfeng Wang, Mei Lu, Francesco Belardo, and Milan Randić. The anti-adjacency matrix of a graph: Eccentricity matrix. Discrete Applied Mathematics, 251:299-309, 2018.

[^0]: *anjitha_p220118ma@nitc.ac.in
 ${ }^{\dagger}$ chithra@nitc.ac.in

