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Abstract. We study the cosmology of the complete quadratic (in torsion and nonmetricity)
metric-affine gravity. Namely, we add to the scalar-curvature gravitational Lagrangian, the
17 independent quadratic (parity-even and parity-odd) torsion and nonmetricity invariants.
Sticking to a homogeneous and isotropic Friedmann-Robertson-Walker spacetime and assum-
ing a perfect hyperfluid source, we explore the new effects that torsion and nonmetricity bring
into play. It is shown that the inclusion of these invariants offers rich phenomenology. In
particular, some well-known examples of exotic matter like cosmic strings, domain walls, stiff
matter, etc., emerge quite naturally as manifestations of the fluid’s intrinsic structure (hy-
permomentum). By studying the extended Friedmann equations in the complete quadratic
theory and isolating the various parts of the hypermomentum, we find a plethora of solutions
with interesting features.

1Corresponding author.
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1 Introduction

Metric-Affine Gravity (MAG) has been a promising alternative to modified theories of metric
gravity [1]. Effectively, it can be thought of as a geometric way to introduce additional degrees
of freedom besides the graviton. Instead of adding new fields by hand (or via the Kaluza–
Klein mechanism), the origin of these degrees of freedom is purely geometric in MAG; they
can be ascribed to the distortion of the spacetime geometry itself due to the connection having
torsion and nonmetricity, in addition to curvature. MAG can be appealing to both the field
theorist and the geometer. The former will choose to represent the additional degrees of
freedom as fields that may propagate alongside the graviton, while the latter will treat them
as components of an independent affine connection on the spacetime manifold.1 Arguably, it
is more natural to equip the spacetime manifold with a general affine connection in place of
the Levi-Civita connection, letting the field equations decide its fate, rather than making ab
initio assumptions about the geometry.

In MAG, the connection is elevated to a gravitational field variable alongside the metric.
Since it plays an equal part in gravitation, matter couplings to it should be subject to
investigation (and historically, they have been). Such couplings give rise to perhaps one of
the most intriguing features of MAG, the intrinsic hypermomentum current [1, 3, 4], from

1The geometric nature of the additional fields is not abolished in the field-theoretical approach. They are
identified with the connection and, by that very fact, associated with non-integrabilities. See [2] for more
details.
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which the distortion of the geometry is sourced, in analogy with how hypermomentum-free
matter gravitates.2 This current can be decomposed into spin, dilation, and shear parts [3, 4],
a fact hinting at a possible link between gravitation and microphysics, though this opinion
is supported by mostly group-theoretical arguments thus far. Nevertheless, it is certainly
interesting to scrutinize the implications of having matter with hypermomentum for our
Cosmos. Could torsion and nonmetricity fit in with our present-day understanding of the
Universe?

Cosmology with torsion and nonmetricity is far from being an unheard-of idea. Al-
ready in the 1970s, Kopczynski [9] and Trautman [10] demonstrated that spacetime torsion,
sourced from the spin of dust particles, could be used to eliminate cosmological singularities
in Friedmann universes. Later, Gasperini [11] proposed an intricate thermal explanation for
the extreme smallness of the current value of the cosmological constant, utilizing a connection
with Weyl nonmetricity. Stelmach [12], inspired by earlier works of Gasperini, brought forth a
model of nonmetricity-driven quasi-exponential inflation, unfortunately eternal, taking place
right after the Planck time.

The consideration of a metric-affine setup in the last two works was necessary because
both relied on the existence of a uniform tangent-space acceleration experienced by a test
particle in a local frame where the gravitational field has been transformed away, even in the
absence of matter. Only then could the authors appeal to a physical equivalence between
temperature and acceleration [13], locally valid for quantum systems, to obtain a classical
theory for microscopic gravity at finite temperature, one that can provide a classical descrip-
tion of the thermal corrections to the geometry. Still, a suitable spacetime averaging of the
microscopic geometries was mandatory to reveal the effective contribution of the tempera-
ture to the macroscopic geometries, what would be a cosmological constant term in [11] for
example.3

Motivated by these notable applications of MAG to the hot early Universe, in this work,
we wish to embark on a less edgy (though equally important) course of action. We will deal
with a Lagrangian density which contains all independent quadratic torsion and nonmetricity
invariants, probing the theory for exact cosmological solutions. To be more precise, we extend
the action presented in [20, 21] by including all independent parity-violating invariants. Since
there are no derivatives of torsion or nonmetricity in the action functional (modulo boundary
terms), it can easily be shown that the distortion vanishes in the absence of hypermomentum
sources when the field equations hold [22]. Consequently, to excite the post-Riemannian
structure, we will introduce a matter action that is a functional of both the metric and the
connection. When we make the cosmological ansatz, matter will take the form of a perfect
hyperfluid [23, 24]. Various cosmological solutions, not necessarily restricted to early times
and high energy densities, will be discussed to some extent.

The paper is organized as follows. In Sec. 2.1, we communicate all the necessary ge-
ometric ingredients, introducing conventions and notation. We then make the Friedmann-
Robertson-Walker (FRW) ansatz in Sec. 2.2, and we elaborate on the implications of isotropy

2Of course, it is always possible to make up a theory in which the distortion degrees of freedom propagate in
vacuum. For instance, this can happen if we include quadratic curvature invariants in the gravitational action,
though one should be very careful when writing down such an action since such theories are in general prone
to instabilities [5]. However, there do exist healthy subsectors, given certain constraints on the parameters
(see [6] for example). The particle spectrum of the full theory is still under investigation. For some recent
progress in this direction, we refer the reader to [7, 8].

3For some recent studies of Palatini and metric-affine inflation, see [14–18]. A quite exhaustive list of the
various studies on non-Riemannian effects in cosmology can be found in the nice review [19].
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and homogeneity for the non-Riemannian structure, finally reviewing the notion of the per-
fect cosmological hyperfluid. Next, we turn our attention to building the theory in Sec. 4,
registering the complete 17-parameter quadratic MAG action. The latter consists of two
terms linear in curvature, namely the Ricci-curvature scalar and the so-called Hojman (or
Holst) invariant, and 17 coordinate invariants quadratic in torsion and nonmetricity, eleven
of them being parity-symmetric and six of them violating parity. In Sec. 4, we derive the
modified Friedmann equations and solve the connection field equations in a sophisticated
way. After doing so, we immediately throw ourselves into exploring the solution spectrum,
reporting a variety of solutions with distinct and interesting features. Finally, we summarize
our findings in Sec. 5, also making recommendations for future research.

2 Preliminaries

2.1 MAG essentials

Let spacetime be modeled by a four-dimensional manifold equipped with a Lorentzian (mostly
plus) metric and a general affine connection ∇. Associated with ∇ is a set of connection
coefficients Γλ

µν and a covariant derivative ∇µ, which acts on a tensor Bµ
ν in the following

way:

∇µB
λ
ν = ∂µB

λ
ν + Γλ

ρµB
ρ
ν − Γρ

νµB
λ
ρ. (2.1)

The general connection has torsion and nonmetricity,

Sµν
λ := Γλ

[µν], Qλµν := −∇λgµν , (2.2)

respectively. In the presence of torsion, the connection coefficients are no longer symmetric
in the last two indices, and parallel transport of vectors along curves in spacetime can never
result in so-called closed quadrilaterals. Moreover, covariant derivatives acting on scalar fields
no longer commute, as we can appreciate from

∇[µ∇ν]ϕ = Sµν
λ∇λϕ. (2.3)

In the presence of nonmetricity, the metric fails to be covariantly constant, and the inner
product of vectors changes as the latter are transported along a path. By using the metric
or Kronecker’s delta, we can obtain three vectors from torsion and nonmetricity, namely

Sµ := Sµν
ν , Qµ := Qµνλg

νλ, qµ := Qλνµg
λν , (2.4)

where the one in the middle is often dubbed Weyl vector in the literature.
From

∇[µ∇ν]v
λ = 1

2R
λ
ρµνv

ρ + Sµν
ρ∇ρv

λ, (2.5)

where
Rλ

ρµν := ∂µΓ
λ
ρν + Γλ

σµΓ
σ
ρν − µ↔ ν (2.6)

are the components of the curvature of ∇, we see that covariant derivatives acting on vectors
do not commute even in flat spacetime if torsion is present. By using Kronecker’s delta, we
can obtain two type (0,2) tensors from the curvature tensor, namely

Rµν := Rλ
µλν , Rµν := Rλ

λµν . (2.7)
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The former is the Ricci-curvature tensor, whereas the latter is known as the homothetic-
curvature tensor, vanishing if the Weyl 1-form Q := Qµ dx

µ is closed. Using the metric, we
can further obtain the tensor

Rµ
ν := Rµ

λνρg
λρ, (2.8)

to which we refer as coRicci tensor. Only a single curvature scalar exists, and that is the
Ricci-curvature scalar

Rµ
µ =: R := Rµνg

µν . (2.9)

The distortion of the geometry is encoded in the honest tensor

Nλ
µν := Γλ

µν − Γ̃λ
µν , (2.10)

which measures the deviation from (pseudo-)Riemannian geometry. Without further assump-
tions, it packs the daunting amount of 64 functions of the spacetime coordinates. Here,

Γ̃λ
µν = 1

2 g
λρ(∂µgρν + ∂νgρµ − ∂ρgµν) (2.11)

are the familiar Christoffel symbols associated with the Levi-Civita connection ∇̃, the cur-
vature of which is given by the Riemann tensor R̃λ

ρµν .
4 The distortion tensor, defined in

eq. (2.10), can always be expressed in terms of torsion and nonmetricity via

Nλ
µν = 1

2g
λρ(Qµνρ +Qνρµ −Qρµν) + gλρ(Sµνρ − Sρµν − Sνµρ). (2.12)

The mere rearrangement Γλ
µν = Γ̃λ

µν + Nλ
µν tells us that any quantity associated

with the general affine connection ∇, admits a so-called post-Riemannian expansion which
separates the Riemannian piece from the non-Riemannian contributions. As an example, the
post-Riemannian expansion of the curvature tensor Rλ

ρµν reads

Rλ
ρµν = R̃λ

ρµν + ∇̃µN
λ
ρν +Nλ

σµN
σ
ρν − µ↔ ν, (2.13)

where ∇̃µ is the covariant derivative associated with ∇̃. Overall, quantities with a tilde
accent are associated with the Levi-Civita connection ∇̃.

Next, let us define the 2-forms

(pλ, tλ) := (Qµν
λ, Sµν

λ)∗(dxµ ∧ dxν). (2.14)

The corresponding tensors are

(pλµν , t
λ
µν) = (Qρσλ, Sρσλ)ϵ̃ρσµν , (2.15)

where

ϵ̃λρµν :=
√
−gϵλρµν , ϵ̃λρµν =

ϵλρµν√
−g

, (2.16)

with ϵλρµν being the four-dimensional alternating symbol, ϵ0123 = 1 = −ϵ0123. With g we
denote the determinant of the metric g. We will also use the axial vector

tµ := tν
νµ, (2.17)

4We refer to R̃λ
ρµν , R̃µν , and R̃ as the Riemann tensor, the Ricci tensor, and the Ricci scalar, respectively,

as opposed to the curvature tensor Rλ
ρµν , the Ricci-curvature tensor Rµν , and the Ricci-curvature scalar R.
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which is not to be confused with the form tµ. A useful operator-like entity that will appear
in this manuscript is

Dµ :=
2Sµ −∇µ√

−g
. (2.18)

Continuing, if Sm is the matter action that depends on the metric and the connection
(and arbitrarily many matter fields), then

Tµν := − 2√
−g

δSm
δgµν

, ∆λ
µν := − 2√

−g
δSm
δΓλ

µν
(2.19)

are the Energy-Momentum Tensor (EMT) and HyperMomentum Tensor (HMT) of matter,
respectively. We will often refer to Tµν as the real EMT, to distinguish it from the various
effective EMTs that will appear in this study, which we treat as purely fictitious. Vacuum
is understood as Tµν = 0 = ∆λ

µν and hypervacuum as Tµν = 0 ̸= ∆λ
µν . A spacetime in

hypervacuum will be called hypervac (in analogy with electrovac).

2.2 The cosmological ansatz

Let us make the ansatz of a flat Friedmann–Robertson–Walker (FRW) spacetime, namely

ds2 = −dt2 + a2(t)δijdx
idxj , (2.20)

where the scale factor a is a function of the synchronous time t, while {xi} = {x, y, z} are
spatial comoving coordinates. Spacetime is foliated by three-dimensional flat spaces, and its
isometry group is given by the product of translations and rotations in three dimensions,
namely

Pi := ∂i, Ji :=
∑
k,j

ϵijkx
j∂k, (2.21)

where i, j, k, . . . = 1, 2, 3, and ϵijk is the three-dimensional alternating symbol.

To extend the above cosmological ansatz to non-Riemannian spaces, we must also de-
mand that the distortion tensor respects the isometries of the metric, i.e.,

£PiNλµν = 0 = £JiNλµν (2.22)

Such a condition simplifies things a lot, reducing the initial 64 functions down to five. It
yields the form [25]

Nλµν = V (t)uλuµuν +X(t)uλhµν + Z(t)uνhλµ + Y (t)uµhνλ +W (t) ϵ̃λµνρu
ρ, (2.23)

which is compatible with spatial homogeneity and isotropy. Here, u = uµ∂µ := ∂t is the
vector field of isotropic timelike observers, which will later be taken to coincide with the
four-velocity of the hyperfluid. The tensor hµν is the projection tensor hµν := gµν + uµuν ,
which projects to spatial hypersurfaces. It is then straightforward to show that torsion and
nonmetricity assume the forms (see [25–27])

Sµνλ = 2Φ(t)u[µhν]λ +W (t) ϵ̃λµνρu
ρ, (2.24)

Qλµν = A(t)uλhµν +B(t)hλ(µuν) + C(t)uλuµuν , (2.25)
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where we performed the following function redefinitions:

X = 1
2(B −A− 4Φ),

Y = 1
2(A+ 4Φ),

(Z, V ) = 1
2(A,C).

(2.26)

The condition we imposed on the distortion will be also imposed on the real EMT and
the HMT. This gives

Tµν = ρ(t)uµuν + p(t)hµν (2.27)

and

∆λµν = ω(t)uλuµuν + ψ(t)uλhµν + ϕ(t)uνhλµ + χ(t)uµhλν + ζ(t) ϵ̃λµνρu
ρ, (2.28)

respectively. To distinguish hypermomentum-free matter from matter with hypermomentum,
we will call the latter hypermatter [28]. Equation (2.27) is then the EMT of hypermatter in
a perfect fluid form, and eq. (2.28) its hypermomentum. Hypermatter in fluid form is exactly
what we call a hyperfluid [23, 24], which is perfect in our case. The function ρ stands for the
energy density of the hyperfluid, while p encodes its isotropic pressure.

Since the functions appearing in the ansatz (2.28) do not themselves have any direct
physical interpretation, it is perhaps more meaningful to use linear combinations of them
which correspond to the spin, dilation, and shear parts of the hypermomentum tensor. If we
define the 1-form ∆µν := ∆µνλdx

λ, then [1]

∆µν = σµν +Σµν +
1
4∆gµν , (2.29)

is its decomposition into the various irreducible subspaces. The form σµν := ∆[µν] denotes
the spin part, Σµν := ∆(µν)−∆gµν/4 the shear part, and the last one the dilation. Note that
∆ := ∆µνg

µν . In the cosmological ansatz, one can straightforwardly work out the tensors

σµνλ = 2σ(t)u[µhν]λ + ζ(t) ϵ̃µνλρu
ρ,

Σµνλ = 2Σ1(t)u(µhν)λ +Σ2(t) (hµν + 3uµuν)uλ,

∆λ = D(t)uλ,

(2.30)

by performing the function redefinitions

ψ = Σ1 + σ, χ = Σ1 − σ, ϕ = Σ2 +
1
4D, ω = 3Σ2 − 1

4D. (2.31)

Finally, let us mention some formulas which will prove useful in what follows. For an
arbitrary scalar function f(t), it holds true that

∇̃µ(fu
µ) = ḟ + 3fH, (2.32)

where ḟ := ∂f/∂t , and H = ȧ/a is the Hubble parameter. We also have the identities

∂µf = −ḟuµ,
Γ̃λ

µλu
µ = 3H,

Γ̃λ
µνuλ = −Hhµν ,

Γ̃λ
µνu

µuν = 0,
∂µuν = 0 = Γ̃λ

µνuλu
ν , (2.33)

valid in the ansatz (2.20), with uµ = δµ0 . The symbol f0 will be used to denote the value
of f at a reference time t0. We will take t0 to be the time today, whereas we normalize the
scale factor to be one when t = t0. Without further ado, let us proceed with presenting the
theory.
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3 The complete quadratic field theory

As advertised in the introduction, we will extend the quadratic Lagrangian density presented
in [20], by including all independent torsion and nonmetricity invariants that are not invariant
under parity inversion. The gravitational action principle for the complete quadratic field
theory is

Sgrav[g,Γ] = (2κ)−1

∫ √
−g (L+ + L−) d4x, (3.1)

where L+ := R+L+ is the parity-symmetric part of the full gravitational Lagrangian density√
−gLgrav, with

L+ = a1QλµνQ
λµν + a2QλµνQ

µνλ + a3QµQ
µ + a4qµq

µ + a5Qµq
µ + b1SλµνS

λµν

+b2SλµνS
µνλ + b3SµS

µ + c1QλµνS
λµν + c2QµS

µ + c3qµS
µ, (3.2)

and

L− = a6pλ
µνQµν

λ + b4Sµt
µ + b5tλ

µνSµν
λ + c4Qµt

µ + c5q
µtµ + c6pλ

µνSµν
λ (3.3)

is the parity-violating part. The parameters a1, . . . , b1, . . . , c1, . . . are dimensionless (our
system of units is the natural one, ℏ = 1 = c). The full action is obtained by adding a matter
action Sm[g,Γ,Ψ] to Sgrav, namely S := Sgrav + Sm, where Ψ collectively denotes all sorts of
matter fields.

Seeking the extremum of this action, we let its variations with respect to the metric and
the connection vanish, obtaining the field equations

κTµν = R(µν) − 1
2Rgµν +K+

µν − κH−
µν , (3.4)

κ∆λµν = gµν(
1
2Qλ + 2Sλ) + gλν(qµ − 1

2Qµ − 2Sµ)−Qλµν − 2Sλµν +K+
λµν +H−

λµν ,(3.5)

where

K+
µν := −1

2gµνL
+ − b2Sµ

λρSνρλ + a1[2Dλ(
√
−gQλ

µν) +Qµ
λρQνλρ − 2QλρνQ

λρ
µ]

+a5[D(µ(
√
−gQν)) +Dλ(

√
−ggµνqλ)−Qλµνq

λ] + b1(2Sµ
λρSνλρ − SλρνS

λρ
µ)

+a3[2Dλ(
√
−ggµνQλ)− 2QλµνQ

λ +QµQν ] + a4[2D(µ(
√
−gqν))− qµqν ]

+a2[2Dλ(
√
−gQ(µν)

λ)−Qλρ
µQρλν ] + b3SµSν + c3D(µ(

√
−gSν))

+c1[Dλ(
√
−gSλ

(µν))− Sλρ(µQ
λρ

ν) +Q(µ
λρSν)λρ]

+c2[Dλ(
√
−ggµνSλ)−QλµνS

λ +Q(µSν)], (3.6)

H−
µν := −â6[2gβ(µgν)λ(DαQγδ

λ)ϵαβγδ + pµ
λρQλρν ]− ĉ6gβ(µgν)λ(DαSγδ

λ)ϵαβγδ

−b̂4t(µν)ρSρ + b̂5tµ
λρSλρν − ĉ4[Dλ(

√
−ggµνtλ)−Qλµνt

λ + t(µν)
λQλ]

−ĉ5[D(µ(
√
−gtν))− q(µtν) + t(µν)

λqλ] (3.7)

are the contributions of L+ and L−, respectively, to the metric field equations, and

K+
λµν := (2a5 − 1

2c3)qνgλµ + 1
2(4a4 + c3)qµgλν + 2a4qλgµν + 2a2Qλµν

+1
2(4a2 + c1)Qµλν + (4a1 − 1

2c1)Qνλµ + a5gµνQλ + (a5 +
1
2c2)gλνQµ

+(4a3 − 1
2c2)gλµQν + b2Sλµν − (b2 + c1)Sλνµ + (2b1 − c1)Sµνλ

+c3gµνSλ + (b3 + c3)gλνSµ + (2c2 − b3)gλµSν , (3.8)

H−
λµν := (c6 − 2a6)pλµν − c5q

αϵ̃λµνα − 2a6pµλν − c4ϵ̃λµναQ
α + (2b5 − c6)tλµν

−c6tµλν − b4ϵ̃λµναS
α + c5gµνtλ + (12b4 + c5)gλνtµ + (2c4 − 1

2b4)gλµtν (3.9)
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their respective contributions to the connection field equations. The rescaled parameters
â1 = a1/κ, . . . have mass(-energy) dimension two.

Let us highlight a crucial observation. The energy-momentum of matter does not appear
to be conserved when the field equations hold true; there is in general no covariant derivative
∇̂µ for which ∇̂µT

µν = 0 on the shell. Interestingly, after a little bit of algebra, one can show
that

R(µν) − 1
2Rgµν +K+

µν = G̃µν − κH+
µν , (3.10)

where G̃µν = R̃µν − 1
2gµνR̃ is the Einstein tensor, and

H+
µν :=

{
− gµν [S

λ(2Sλ +Qλ − qλ)− 1
8 Q

λ(2qλ −Qλ)]− 2Sµ
λρSνλρ + SλρνS

λρ
µ + 4SµSν

−2D(µ(
√
−gSν)) + 1

4 [2Dλ(
√
−ggµνQλ)− 2QλµνQ

λ +QµQν ]− 2Sµ
λρSνρλ

−gµν [18Q
λρσ(2Qρλσ −Qλρσ)− 1

2S
λρσ(2Sλσρ + Sλρσ)−QλρσSλρσ]

−2[Dλ(
√
−gSλ

(µν))− Sλρ(µQ
λρ

ν) +Q(µ
λρSν)λρ]−K+

µν

−1
4 [2Dλ(

√
−gQλ

µν) +Qµ
λρQνλρ − 2QλρνQ

λρ
µ]

−1
2 [D(µ(

√
−gQν)) +Dλ(

√
−ggµνqλ)−Qλµνq

λ]

+2[Dλ(
√
−ggµνSλ)−QλµνS

λ +Q(µSν)]

+1
2 [2Dλ(

√
−gQ(µν)

λ)−Qλρ
µQρλν ]

}
/κ. (3.11)

Since ∇̃µG̃
µν vanishes identically, it follows that the tensor

Tµν := Tµν +Hµν , (3.12)

with Hµν := H+
µν +H−

µν , is covariantly conserved on the shell, namely ∇̃µT µν = 0 when the
field equations hold true. We can effectively interpret this tensor as a total EMT, as long as
we remember that it is fictitious by nature.

The Hojman (or Holst) term. The Hojman or Holst term ϵλρµνRλρµν does not appear
in L−. This is not a mistake, but rather a conscious choice. Its inclusion would simply result
in a shift of the coupling constants, always absorbable via parameter redefinitions, and a
boundary term. Indeed,

ϵλρµνRλρµν = 2
√
−g[(pλµν + tλ

µν)Sµν
λ + ∇̃µt

µ]. (3.13)

It is also evident that it vanishes in the absence of torsion.

In the absence of matter with hypermomentum, the connection field equations dictate
the vanishing of the distortion tensor, and the complete theory becomes, in effect, general
relativity (see [22] for the complete proof). On the other hand, in the presence of hypermat-
ter, the system of connection field equations is integrable; the distortion tensor is completely
determined by the hypermomentum tensor. In what follows, we will consider the cosmolog-
ical principle, further assuming that the hypermatter content in our Universe, viewed on a
sufficiently large scale, is modelled by a cosmological perfect hyperfluid [23, 24]. We will then
embark on a quest for exact cosmological solutions.
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4 Exact solutions

4.1 The modified Friedmann equations

We now make a cosmological ansatz. The details can be found in Sec. 2.2. The first order of
business is to register the cosmological forms of the constituents of Lgrav. These are

R = −6H2 + 3
4(2A

2 −AB +BC) + 6Φ(2A−B + 4Φ)− 6W 2

+3∇̃µ[(2H − 4Φ + 1
2B −A)uµ], (4.1)

L+ = −3(a1 + 3a3)A
2 − 3

4(2a1 + a2 + 3a4)B
2 − 3(2b1 − b2 + 3b3)Φ

2

+3(a4 +
1
2a5)BC − 3(c1 + 3c2)AΦ+ 3

2(c1 − 3c3)BΦ

+6(b1 + b2)W
2 − 3(a2 +

3
2a5)AB + 3(2a3 + a5)AC

+3(c2 + c3)CΦ− (a1 + a2 + a3 + a4 + a5)C
2, , (4.2)

L− = −6(3c4 + c6)AW + 3(c6 − 3c5)BW + 6(c4 + c5)CW − 6(3b4 + 4b5)ΦW. (4.3)

The last term in the right-hand side of eq. (4.1) becomes a total derivative when multiplied
by

√
−g. Some other remarks are in order.

Observe that a6 is not appearing in eq. (4.3). This happens because the invariant
pλ

µνQµν
λ vanishes identically in the cosmological ansatz. Moreover, the cautious reader may

notice that we do not need all the sixteen remaining parameters. There are only eleven linear
combinations of parameters featuring in eqs. (4.2) and (4.3). These are

α1 = −a1 − a2,

α2 = −1
3a1 − a3,

α3 = −1
3a1 − a4,

α4 =
2
3a1 − a5,

β1 = b1 + b2,

β2 = −b1 − b3,

β3 = −3
4b4 − b5,

γ1 = −c1 − 3c2,

γ2 = c2 + c3,

γ3 = c4 + c5,

γ4 = −3c4 − c6.

(4.4)

It follows that some of the invariants are not independent, given the high symmetry of
the ansätze (2.20) and (2.23). There should be exactly five independent relations between
invariants, three for the parity-symmetric, and two for the parity-violating. A little bit of
algebra reveals the identities

6QµνλQ[µν]λ +Qµ(2q
µ −Qµ)− qµq

µ = 0,

Sµ(Q
µ − qµ)− 3QµνλSµνλ = 0,

2Sλ(µν)S
λµν − SµS

µ = 0,

tµ(Q
µ − qµ)− 3pλ

µνSµν
λ = 0,

Sµtµ − 3
4 tλ

µνSµν
λ = 0,

(4.5)

valid in the cosmological ansatz.

Recall now that we managed to write down the metric field equations in the form

G̃µν − κTµν = 0. (4.6)
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Multiplying the above by uµuν , we get the first Friedmann equations

H2 =
κ

3
ρ+ 1

2 [2λ1 + 3(λ2 + λ4)]A
2 − 3

8(λ1 + 3λ3)B
2 + 1

6(λ1 + λ2 + λ3 + λ4)C
2

−2
3(λ1 + λ2 + λ3 + λ4)Ċ − γ2Φ̇− 2γ3Ẇ − 2(λ1 − 3λ2)AH − 1

2(2λ1 − 3λ4)BH

−(λ2 + λ3 + λ4)AC + 1
2(8λ1 + 12λ4 − 3γ2)AΦ+ 1

4(8λ1 + 24λ3 + 3γ2 + λ7)BΦ

+1
2 [λ5 + 3λ6 − 4(3γ2 + λ7)]Φ

2 − λ5W
2 + 3

4(2λ3 − λ4)AB + 1
4(2λ3 + λ4)BC

−1
2(8λ3 + 4λ4 − γ2)CΦ+ (3γ3 + γ4)(A+B − 4Φ)W + (2λ2 + λ4)Ȧ

−[2(λ1 + λ2) + λ4]CH + λ7ΦH + 2γ4WH + 1
2(2λ3 + λ4)Ḃ, (4.7)

where we performed yet another list of parameter redefinitions, in particular

λ1 = α1 +
1
4 ,

λ2 = α2 +
1
6 ,

λ3 = α3 − 1
12 ,

λ4 = α4 − 1
3 ,

λ5 = β1 − 1,

λ6 = β2 + 3,
λ7 = γ1 + 4. (4.8)

To get the second Friedmann equation, we need the Ricci form of eq. (4.6). To calculate it,
we take the trace of (4.6), obtaining

R̃ = −κT , (4.9)

where T is the trace of the fictitious EMT Tµν , and we substitute the Ricci scalar in eq. (4.6).
Multiplying the result by uµuν , we find the second Friedmann equation,

ä

a
= −1

6κ(ρ+ 3p)− 1
2(2λ1 + 6λ2 + 3λ4)A

2 + 1
4(λ1 + 3λ3)B

2 − 1
3(λ1 + λ2 + λ3 + λ4)C

2

+(6γ2 − λ5 − 3λ6 + 2λ7)Φ
2 − 1

2(λ1 + 3λ3)AB + 1
2(4λ2 + 2λ3 + 3λ4)AC + 3γ3AW

+1
2(3γ2 − 8λ1 − 12λ4 − λ7)AΦ− 2(λ1 + 3λ3)BΦ− (γ2 − 4λ3 − 2λ4)CΦ− γ3CW

−1
2(3γ3 + γ4)BW − 4(β3 − 3γ3 − γ4)ΦW + 1

2(4λ2 − λ4)Ȧ+ 1
2(λ1 − λ3 + λ4)Ḃ

+1
6(2λ1 − 4λ2 + 2λ3 − λ4)Ċ + 1

2(γ2 + λ7)Φ̇ + (γ3 + γ4)Ẇ − (3γ3 − γ4)HW

+1
2(4λ1 + 12λ2 + 3λ4)AH + 1

2 [5λ1 + 3(λ3 + λ4)]BH − 1
2(3γ2 − λ7)HΦ

+1
2(2λ1 − 4λ2 − 2λ3 − 3λ4)CH. (4.10)

If we rewrite the Friedmann equations as

H2 = 1
3κϱ,

ä

a
= −1

6κ(ϱ+ 3℘), (4.11)

it is straightforward to verify that

Tµν = ϱ(t)uµuν + ℘(t)hµν . (4.12)

The four-velocity of the total effective fluid is that of the hyperfluid. The function ϱ can be
interpreted as its energy density and ℘ as its isotropic pressure. Since this fictitious EMT is
conserved on the shell, the effective fluid obeys a continuity equation

ϱ̇+ 3H(ϱ+ ℘) = 0, (4.13)
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which dictates how its energy density evolves with time. Despite the simple appearance of
eqs. (4.11) and (4.12), this is a very messy equation, because ϱ and ℘ contain derivatives
of the fields and couplings to the Hubble parameter. Since the second Friedmann equation
can be extracted from the first and the continuity equation, in general, we have only two
independent equations for eight unknowns! As a result, six additional equations must be
provided to solve the system.

4.2 Solving the connection field equations

Observe that the Friedmann equations and the continuity equation are themselves unaware of
hypermomentum; they only see distortion. It is the system of the connection field equations
which ties everything together by dictating how the distortion of the geometry is sourced from
the hypermomentum of matter. Hypermatter excites torsion and nonmetricity, and these
directly affect the FRW spacetime by eventually entering the scale factor via the Friedmann
equations.

In the cosmological ansatz, one can show that the system of connection field equations
is equivalent to the following five equations,

ζ = 1
6∆λµν ϵ̃

λµνρuρ,

ω = −∆λµνu
λuµuν ,

ψ = −1
3∆λµνh

µνuλ,

ϕ = −1
3∆λµνh

λµuν ,

χ = −1
3∆λµνh

λνuµ,
(4.14)

where the HMT is understood as the right-hand side of eq. (3.5), divided by κ, in the
ansätze (2.20) and (2.23). If we introduce the column vectors U = (ζ;ω;ψ;ϕ;χ) and P =
(A;B;C; Φ;W ), then we can mold eqs. (4.14) into the single matrix equation

MP = κU, (4.15)

where M can be found in Table 1. It is invertible under certain parameter conditions following
from detM ̸= 0.5 Consequently, the solution to the connection field equations is

P = κM−1U. (4.16)

Here, we will not display the elements of M−1 explicitly, since they are huge expressions
(see however footnote 5). Instead, we will perform a sequence of parameter redefinitions in
order to achieve a presentable form. Let us start by introducing 25 parameters m1, . . . ,m25

in the following way:

(M−1)ab = mb+5(a−1). (4.17)

These represent the elements of M−1, and since M features eleven independent parameters, so
must M−1 do. Therefore, thirteen parameter relations must exist for this to be true. Indeed,

5The determinant of this matrix and the inverse matrix M−1, can be found in the file Supplement.pdf

accompanying this manuscript in the arXiv bundle.
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M
=

     
γ
4

−
1 2
(3
γ
3
+
γ
4
)

γ
3

4β
3

2λ
5

6(
2λ

2
+
λ
4
)

3(
2
λ
3
+
λ
4
)

−
4
(λ

1
+
λ
2
+
λ
3
+
λ
4
)

−
6γ

2
−
1
2
γ
3

−
2λ

1
−
3
λ
4

−
λ
1
−

3λ
3

2λ
3
+
λ
4

3γ
2
+
λ
7

2
(3
γ
3
+
γ
4
)

1 2
(λ

7
−

24
λ
2
)

−
2
λ
1
−
3
λ
4
−

3 4
γ
2
−

1 4
λ
7

1 2
(8
λ
2
+
4
λ
4
+
γ
2
)

λ
5
+
3
λ
6
−

2λ
7

4
(β

3
−
γ
4
)

−
2λ

1
−

3λ
4
−

1 2
λ
7

1 4
(3
γ
2
+
λ
7
−

4λ
1
−
1
2
λ
3
)

2
λ
3
+
λ
4
−

1 2
γ
2

3γ
2
+
λ
7
−
λ
5
−

3λ
6
6γ

3
+
2
γ
4
−
4β

3

     

M
−
1
=

     
−
4
k
1
0

k
2

k
1

k
4
+
k
5
−
k
1
−

3k
2
k
4
+
k
5
+
4
k
7
−
k
1
−

3k
2

−
4(
k
3
+
k
9
)

2(
k
4
+
k
5
+
2
k
7
)
−
k
8
−
k
1
−

4k
2

k
1
+
9
k
2
−
4
k
4
−
3
k
5
−

8k
7
+
3
k
8

k
4
+
k
5
+
4
k
7
−

3k
2

k
4

4(
k
1
0
+
k
3
+
k
9
)

k
8

6
k
4
+
5
k
5
+
1
2
k
7
−

3k
8
−

3k
1
−

1
2k

2
3k

2
k
5

k
1
0
−
k
9

1 1
2
(k

5
−

3k
2
)

1 4
[3
k
2
−
k
5
−

4
(k

6
+
k
7
)]

k
7

k
6

k
1
1

−
1 3
(k

1
0
+
k
3
+
k
9
)

k
3

k
1
0

k
9

     

Table 1: The matrix M and its reparametrized inverse.
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it holds that

m10 =
1
3 [3m12 +m13 +m14 − 2(m15 + 6m19)− 3m4],

m3 =
1
3 [3m12 +m13 − 2m14 +m15 − 6(2m19 +m4)],

m9 =
1
3(3m12 +m13 − 2m14 +m15 − 3m4),

m20 =
1
4 [m14 −m15 − 4(m18 +m19)],

m8 = m14 −m13 + 4m19 + 2m4,

m23 =
1
4m11 +m16 − 2m24,

m7 =
1
3(m13 +m15),

m1 = −4m24,

m2 =
1
3m14,

m22 = − 1
12m11,

m17 =
1
12(m15 −m14),

m25 = m24 −m16,

m5 = 4m19 +m4,

m6 = 4m24 −m11.

(4.18)

Finally, we may choose to redefine the remaining parameters as follows:

k1 = m12 +
1
3m13 − 2

3m14 +
1
3m15 − 4m19 − 2m4,

k3 =
1
4m11 +m16 − 2m24,

k4 =
1
3(3m12 +m13 +m14 − 2m15 − 12m19 − 3m4),

k6 =
1
4(m14 −m15 − 4m18 − 4m19),

k9 = m24 −m16,

k2 =
1
3m14,

k5 = m15,

k7 = m19,

k8 = m12,

k10 = m24,

k11 = m21.

(4.19)

This leads us to the form displayed in Table 1.

Now that we know the relations governing the interplay between the distortion of the
geometry and the hypermomentum of matter, we can proceed with evaluating the Friedmann
equations. Since we have already cast them into eq. (4.11), it suffices to register ϱ and ℘,
which we choose to express in terms of the “physical” field variables σ, ζ, Σ1, Σ2, and D
(refer to Sec. 2.2 for details). Before doing so, we do yet another set of redefinitions, in
particular

s1 =
1

128 [3k1 + 15k2 − 3(k4 + k5)− k8],

s2 =
1
16(9k1 + 21k2 − 9k4 − 7k5 − 24k7 + 3k8),

s3 =
3
8(3k1 + 27k2 − 13k4 − 9k5 − 24k7 + 9k8),

s4 =
3
16(k1 + k2 − k4 − k5 + k8),

s5 = − 3
4(k1 + 9k2 − 5k4 − 3k5 − 8k7 + 3k8),

s6 =
3
8(k1 − 3k2 − k4 − k5 − 3k8),

s7 = − 3
4(k1 − 15k2 + 11k4 + 5k5 − 16k6 + 8k7 − 9k8),

s8 =
1
6(4k10 + k3 + k9),

(4.20)
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to express ϱ and ℘ in the tidiest way possible. We find

ϱ = ρ− 3
8H(D − 8Σ1 − 12Σ2 − 8σ) + 1

8(12Σ̇2 − Ḋ)

+κs1D
2 + κs2DΣ1 + κs3Σ

2
1 + κs4DΣ2 + κs5Σ1Σ2

+κs6Σ
2
2 + κs4Dσ + κs7Σ1σ − 2κ(2s3 + 2s5 + s6)Σ2σ

+1
2κ(s7 − 2s3 − 3s5)σ

2 − 6k3κΣ1ζ − 6k3κσζ − 3
2k11κζ

2, (4.21)

℘ = p+ 1
8H(3D + 8Σ1 + 12Σ2 − 16σ) + 1

8(Ḋ + 4Σ̇2 − 8σ̇)

+1
3κ(2s5 + s7)Σ1σ − 2

3κ(2s3 + 3s5 + s6)Σ2σ + 1
6κ(2s3 − s5 − s7)σ

2

+κs8Dζ + 2k9κΣ1ζ − 2(k3 + k9)κΣ2ζ − 2k9κσζ +
1
2k11κζ

2

+κs1D
2 + 1

3κ(s2 − 2s4)DΣ1 − 1
3κ(s3 + 2s5)Σ

2
1 + κs4DΣ2

+1
3κ(8s3 + 9s5 + 4s6)Σ1Σ2 + κs6Σ

2
2 +

1
3κ(−2s2 + s4)Dσ. (4.22)

All sorts of interactions between the various parts of hypermomentum appear, alongside time
derivatives and couplings to H. Recall that the system of equations defined by eqs. (4.11)
and (4.13) is in general underdetermined unless we provide additional independent equations
that restrict six degrees of freedom. In what follows, we will discuss various cases in which
we obtain exact solutions.

4.3 Matter with completely antisymmetric hypermomentum

Considering matter with a completely antisymmetric HMT, i.e.,

∆λµν = ζϵ̃µνλρu
ρ, (4.23)

is tantamount to imposing the additional equations

σνµ
ν = 0, Σλµν = 0, ∆λ = 0, (4.24)

with these tensors defined in eq. (2.30). Namely we are focusing on the one out of the two
spin hypermomentum parts. The above equations introduce four constraints which read

σ = 0, Σ1 = 0, Σ2 = 0, D = 0. (4.25)

We are still left with four unknowns, the scale factor, the energy density and the isotropic
pressure of the hyperfluid, and ζ.

In this universe, the total density and pressure are

ϱ = ρ− 3
2k11κζ

2, ℘ = p+ 1
2k11κζ

2, (4.26)

respectively. As our two independent equations, we take the first Friedmann equation,

H2 = 1
3κ(ρ−

3
2k11κζ

2), (4.27)

and the continuity equation,

ρ̇+ 3H(ρ+ p) = 3k11κζ(Hζ + ζ̇). (4.28)

We still need to supply these two with two additional constraints.
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4.3.1 Hypermomentum-driven “cosmic strings”

Let these two constraints be that the hyperfluid is barotropic with p = wρ, and that it obeys
the continuity equation ρ̇+ 3H(ρ+ p) = 0. This pair of equations uniquely fixes ρ in terms
of the scale factor as

ρ = ρ0a
−3(1+w). (4.29)

In turn, eq. (4.28) becomes
ζ(Hζ + ζ̇) = 0. (4.30)

Besides the trivial solution ζ = 0, the above is satisfied for

ζ =
ζ0
a
. (4.31)

It follows that
ϱ = ρ0a

−3(1+w) + ρζ0a
−2, (4.32)

where ρζ0 := −3k11κζ
2
0/2 is the value of the function ρζ := ρζ0a

−2 today. We take k11 to be
negative in order to have a positive ρζ . The total effective pressure reads

℘ = wρ− 1
3ρζ , (4.33)

and it becomes obvious that the fictitious total fluid is just the sum of two species, one with
equation of state p = wρ and energy density ∝ a−3(1+w), and another with equation of state
pζ = −ρζ/3 and energy density ∝ a−2.

The latter component looks like a “curvature” fluid, but this interpretation cannot fit
in with the fact that spatial slices are flat in this model. The field equations can admit
solutions that only exist for closed or open universes, though this universe is flat. This is
reminiscent of what happens in the case of the so-called cosmic strings with zero intercom-
muting probability [29], formed at low energies (see also [30–32] for more information on
the topic). As a matter of fact, if we take k11 < 0 to have ρζ > 0, and assuming that
ρζ,0 = ρs,0, a hypermomentum-dominated universe would pretty much be indistinguishable
from a string-dominated one; light straight strings and hypermomentum contribute the same
effective density proportional to a−2. Hence, derived observational constraints on a string-
dominated universe (see [33] for example) could be used to restrict the quantity ρζ,0 ∝ κζ20 ,
if one wishes to utilize this model—instead of the string networks of Vilenkin—to explain
certain phenomena.

Notice that instead of considering a single-species hyperfluid, we could have assumed a
multicomponent one. Letting the fluid consist of radiation and matter, the first Friedmann
equation becomes

H2 =
κ

3
(ρζ0a

−2 + ρm0a
−3 + ρr0a

−4). (4.34)

The solution to this equation is well-known, and there is no reason to write it down here.
It is textbook material. It can either be given as t(a), or one can switch to conformal time
η to obtain a(η). Various other solutions can be found, all of them known, depending on
which kind of species we neglect in eq. (4.34). We could have also introduced a cosmological
constant resulting in a vacuum energy component. The important thing to remember here
is that this string-like (or “curvature”-like) component does not enter the energy budget by
hand and that it has nothing to do with either spatial curvature or the formation of strings at
a phase transition in the early times. Its origin is the deformation of the spacetime geometry,
the latter sourced from the hypermomentum of hypermatter.
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4.3.2 Total barotropic fluid with ℘ = weffϱ

An alternative pair of constraints is p = wρ and ℘ = weffϱ. These imply

ζ = ±
[

2(weff − w)ρ

k11(1 + 3weff)κ

]1/2
, (4.35)

provided, of course, that the quantity under the square root is positive and that weff ̸= −1/3.
With the total energy density becoming

ϱ =
1 + 3w

1 + 3weff
ρ, (4.36)

the continuity eq. (4.28) assumes the form

(1 + 3w)[ρ̇+ 3H(1 + weff)ρ] = 0. (4.37)

If w = −1/3 we get ϱ = 0 = ℘, and the solution to the Friedmann equations is Minkowski
spacetime for any ρ. We discard this for obvious reasons and assume that w ̸= −1/3.

The solution to eq. (4.37), besides the trivial one ρ = 0, reads

ρ = ρ0a
−3(1+weff). (4.38)

Consequently, provided that weff ̸= 1, the first Friedmann equation gives

a = [1 + 3
2(1 + weff)H0(t− t0)]

2/3(1+weff), (4.39)

which is valid for

t > t0 −
2

3H0(1 + weff)
. (4.40)

We can choose the age to be

t0 =
2

3H0(1 + weff)
, (4.41)

so that the scale factor vanishes at t = 0, which then is the time of the Big Bang. It follows
that

a =

(
t

t0

)2/3(1+weff)

, (4.42)

which implies that ρ ∝ t−2 and that ζ decays as ∼ 1/t with

ζ0 = ±
[
6(weff − w)

k11(1 + 3w)

]1/2 H0

κ
. (4.43)

4.4 Matter with spin hypermomentum

If only the spin part of the HMT of matter is nonvanishing, we have

Σλµν = 0 = ∆λ. (4.44)

These equations restrict three degrees of freedom, namely

Σ1 = 0, Σ2 = 0, D = 0. (4.45)
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For simplicity, we also ask that σ[λµν] = 0 which introduces an additional constraint ζ = 0.
We are left with four unknowns, the scale factor, the energy density and the isotropic pressure
of the hyperfluid, and σ.

The total effective variables read

ϱ = ρ+ 3Hσ + l1κσ
2, ℘ = p− 2Hσ − σ̇ + l2κσ

2, (4.46)

where

l1 :=
1
2(s7 − 3s5 − 2s3), l2 :=

1
6(2s3 − s5 − s7). (4.47)

As our two independent equations, we take the first Friedmann equation,

H2 − κHσ − 1
3κ(ρ+ l1κσ

2) = 0, (4.48)

and the continuity equation,

ρ̇+ 3H(ρ+ p) = −σ(3Ḣ + 2l1κσ̇ + 3H[H + (l1 + l2)κσ]). (4.49)

We still need to supply these two with two additional constraints.

4.4.1 The hypervac solution

Let the two constraints be ρ = 0 = p, namely hypervacuum. The hypervac solution we will
present should be understood as a hypermomentum-dominated universe, assuming that there
is a time interval where ρ, p≪ κσ2. Equation (4.48) gives us the Hubble parameter in terms
of σ. Provided that 3 + 4l1 ≥ 0, this is

H = l±κσ, l± := 1
2(1±

√
1 + 4l1/3). (4.50)

We want the cosmic size to increase, thus we demand that l±σ > 0. The continuity equa-
tion (4.49) becomes

κ[l2 + l±(3l± − 2)]σ2 + (2l± − 1)σ̇ = 0. (4.51)

Provided that l± ̸= 1/2, the solution reads

σ =
σ0

1 + κm±σ0(t− t0)
, m± :=

l2 + l±(3l± − 2)

2l± − 1
, (4.52)

and plugging this back into eq. (4.50), we can solve the latter for the scale factor

a = [1 + κm±σ0(t− t0)]
l±/m, (4.53)

the solution being valid for

t > t0 −
1

κm±σ0
. (4.54)

If the hypervac universe is to expand eternally, and since H ∼ l±/m±t as t → ∞, it
better be that m±l± > 0. We also wish to place the time of the Big Bang at t = 0, hence we
choose the age to be t0 = (κm±σ0)

−1. This leads us to

a =

(
t

t0

)l±/m±

, σ = σ0
t0
t
. (4.55)
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Since this is a power law solution, it makes sense to introduce the number

weff :=
2m±
3l±

− 1, (4.56)

which due to our previous demands is greater than −1. By doing so, we have that

a =

(
t

t0

)2/3(1+weff)

, (4.57)

with the total energy density becoming

ϱ = ϱ0a
−3(1+weff), (4.58)

where ϱ0 := 3κl2±σ
2
0. Since this universe is critical, ϱ0 is just the critical density today, equal

to 3H2
0/κ. The total fluid obeys an equation of state ℘ = weffϱ.
For the hypervac solution to describe a dark energy dominated universe, it must be that

a particular relation between the parameters l1 and l2 holds. This relation is

l2 + l±(3l± − 2) = 0, (4.59)

in which case, eq. (4.51) tells us that σ = σ0. It then straightforwardly follows that

a = e
√

Λeff/3(t−t0), (4.60)

where Λeff := 3(κl±σ0)
2 is an effective cosmological constant driven by the constant profile

of the hypermomentum function σ.

4.4.2 A universe with constant σ: effective vacuum energy, “domain walls”,
and “cosmic strings”

We may choose the two remaining constraints to be

σ = σ0, ρ̇+ 3H(ρ+ p) = 0, (4.61)

where σ0 is a constant. The second equation tells us that the hyperfluid obeys a continuity
equation, but it does not tell us whether it is a single species or a multicomponent fluid. Since
the number of free variables now matches the number of equations, solving the system means
determining the scale factor and the density ρ (or the pressure p). Any further assumptions
about the fluid would render the system overdetermined and potentially inconsistent.

Taking into account eqs. (4.61), the continuity equation (4.49) becomes a differential
equation for the Hubble parameter, in particular

Ḣ

H
= −H − (l1 + l2)κσ0. (4.62)

This can be integrated to give

H =
H0e

−(l1+l2)κσ0(t−t0)

a
, (4.63)

which we in turn solve for the scale factor, obtaining

a =
H0 + (l1 + l2)κσ0

(l1 + l2)κσ0
(1− e−(l1+l2)κσ0t). (4.64)
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We assume H0 + (l1 + l2)κσ0 > 0 to have a positive scale factor, and we have also set

t0 = −
ln H0

H0+(l1+l2)κσ0

(l1 + l2)κσ0
(4.65)

to have the initial singularity at t = 0.
We shall now plug our result into the first Friedmann equation (4.48), only to find out

that it is satisfied iff
ρ = ρ{0} + ρ{1} + ρ{2}, (4.66)

where ρ{n} := ρ{n},0a
−n with

ρ{0},0 := [3(l1 + l2)
2 + 3(l1 + l2)− l1]κσ

2
0,

ρ{1},0 := −3[1 + 2(l1 + l2)][H0 + (l1 + l2)κσ0]σ0,

ρ{2},0 := 3[H0 + (l1 + l2)κσ0]
2/κ.

(4.67)

Finally, from our constraint ρ̇+3H(ρ+p) = 0, we can extract the pressure of the hyperfluid,
which reads

p = −ρ{0} − 2
3ρ{1} −

1
3ρ{2}. (4.68)

Remarkably, we arrived at a multicomponent hyperfluid, consisting of (i) an effective vacuum
energy component with equation of state p{0} = −ρ{0}, (ii) another component with p{1} =
−2ρ{1}/3 which behaves a fluid of domain walls [32], and (iii) a string-like component which
satisfies p{2} = −ρ{2}/3.

The total fluid retains this structure, with the density and pressure being

ϱ = ρcc + ρdw,0a
−1 + ρs,0a

−2, ℘ = −ρcc − 2
3ρdw − 1

3ρs, (4.69)

respectively, where we defined

ρcc := 3(l1 + l2)
2κσ20,

ρdw,0 := −6(l1 + l2)[H0 + (l1 + l2)κσ0]σ0,

ρs,0 := ρ{2},0.

(4.70)

We remind the reader that the labels “domain walls” and “cosmic strings” are just a conve-
nient way to name barotropic fluids with densities scaling like ∼ a−1 (w = −2/3) and ∼ a−2

(w = −1/3), respectively. Here, such energy forms need not actually stem from (discrete
or continuous, global or local) symmetry breakings in the early universe; they are rather
sourced from the spin part of hypermomentum. We also have that ϱ0 = 3H2

0/κ, that is, the
total energy density today is equal to the critical density today, which makes sense since we
are dealing with a flat model after all. This solution is obviously unrealistic for modelling
our Universe as a whole, since matter is totally absent. Nevertheless, we may treat this as
an approximation for epochs where matter dominance would be suppressed by other fluids
whose energy densities either decay slower or do not decay at all.

Additionally, observe that the deceleration parameter is

q := − äa
ȧ2

= e(l1+l2)κσ0t − 1. (4.71)

If (l1 + l2)σ0 < 0, the expansion of this universe is accelerating, otherwise decelerating. It
is easy to see that decelerated expansion is in fact linked to the effective domain-wall fluid
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having a negative energy density, i.e., ρdw < 0 (the total energy density is still positive).
Anyway, in both cases, the cosmic size is increasing, as we can appreciate from the Hubble
parameter

H =
(l1 + l2)κσ0

e(l1+l2)κσ0t − 1
, (4.72)

which is always positive.
An interesting feature of the decelerating case is the following. Even though the constant

energy density due to an effective cosmological constant term dominates ϱ at very late times,
the cosmic size will grow very slowly towards a constant value! Indeed,

a ∼
t→∞

1 +
√
3/ΛeffH0, lim

t→∞
H = 0, (4.73)

where Λeff := κρcc, with the expansion of the universe undergoing exponential deceleration
as t→ ∞, a very peculiar fate one could say. On the other hand, for (l1+ l2)σ0 < 0, we have
a scale factor asymptotic to

a ∼
t→∞

[√
3/ΛeffH0 − 1

]
e
√

Λeff/3t, (4.74)

typical of inflation, with q → −1 as t→ ∞. The universe “ends” in a steady state.
Whatever the sign of (l1+ l2)σ0, the expansion of the scale factor about the time origin

yields
a =

t→0
[H0 + (l1 + l2)κσ0]t+O(t2). (4.75)

Therefore, the particle horizon, given by

lim
ϵ→0

∫ t0

ϵ

dt′

a(t′)
, (4.76)

diverges logarithmically as

∼ ln
(
1− e−(l1+l2)κσ0ϵ

)
, (4.77)

exactly like what happens in the case of a Dirac–Milne universe [34, 35]. The latter features
a scale factor a ∝ t and negatively curved spatial slices. Here we instead have a flat universe
and a scale factor that evolves linearly with time only near the initial singularity. Conse-
quently, this solution does not have a horizon problem; there cannot simply be any causally
disconnected regions of space in the past.

If we introduce the density parameter (today) Ωcc,0 := ρcc/ϱ0, then

Λeff = 3Ωcc,0H
2
0 . (4.78)

Moreover, it holds that

Ωs,0 :=
ρs,0
ϱ0

=
Ω2
dw,0

4Ωcc,0
, (4.79)

and it follows from the closure equation that

Ω2
dw,0 + 4Ωcc,0Ωdw,0 − 4Ωcc,0(1− Ωcc,0) = 0. (4.80)

Consequently,

Ωdw,0 = 2(
√
Ωcc,0 − Ωcc,0) = 0.286(17), Ωs,0 = 0.030(4) (4.81)
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Figure 1: Panel (a): log-log plot of the various densities over the critical density today
against the scale factor in the accelerating case. Panel (b): plot of the scale factor as a
function of the dimensionless quantity H0t. For the accelerating case, we used the values
Ωcc,0 = 0.6847, Ωdw,0 = 0.286, and Ωs,0 = 0.0293. For the decelerating case, we considered
Ωcc,0 = 0.6847, Ωdw,0 = −3.024, and Ωs,0 = 3.3393

for an accelerating universe with ρdw > 0, or

Ωdw,0 = −2(
√

Ωcc,0 +Ωcc,0) = −3.024(17), Ωs,0 = 3.34(5) (4.82)

for the decelerating one. To derive the above estimates, we took Ωcc,0 = 0.6847(73) [36].
We may also express the scale factor as

a± = ±
(

Ωs,0

Ωcc,0

)1/2 (
1− e∓

√
Ωcc,0H0t

)
, (4.83)

where the plus branch is for q > 0, and the minus branch for q < 0. Plots of the densities
and the scale factor can be found in Fig. 1. It is straightforward to find the various species-
equality times (only for the inflating case). The effective fluid of “domain walls” starts
taking the lead after t1 = 0.181(23)/H0 = 2.62(34)Gyr, with the scale factor at the time
of equality being a−(t1) = 0.104(14). The effective cosmological constant term dominates
the density only after t2 = 0.417(25)/H0 = 6.0(4)Gyr, with the scale factor at the time
of equality being a−(t2) = 0.266(21). To obtain the above estimates, we also used H0 =
2.184(16)× 10−18 s−1 [36]. If we rewrite eq. (4.65) as

H0t0 =
ln
(
1 +

√
Ωcc,0

)√
Ωcc,0

= 0.729(5), (4.84)

it is easy to see that this universe is only 10.57(11) billion years old, thus falling short by
about 3.22 billion years. The other way around, a universe 13.787(20) billion years old, would
imply that the effective cosmological constant is Λeff ≈ 10−124 l−2

P , where lP is the Planck
length. This is two orders of magnitude smaller than what we observe.
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4.5 Matter with dilation hypermomentum: as stiff as it gets

Recall that if only the dilation piece of the HMT is nonvanishing, then the latter is of the
form ∆µνλ = 1

4∆λgµν . The vanishing of the spin and shear parts,

σλµν = 0 = Σλµν , (4.85)

restricts four degrees of freedom in the following way:

σ = 0, ζ = 0, Σ1 = 0, Σ2 = 0. (4.86)

We are thus left with four unknowns, the scale factor, ρ, p, and D.
The energy density and the pressure of the total effective fluid read

ϱ = ρ− 1
8(Ḋ + 3HD) + κs1D

2, ℘ = p+ 1
8(Ḋ + 3HD) + κs1D

2. (4.87)

As our two independent equations, we take the first Friedmann equation,

H2 + 1
8κHD + 1

24κḊ − 1
3κ(ρ+ κs1D

2) = 0, (4.88)

and the continuity equation,

ρ̇+ 3H(ρ+ p) = 1
8D̈ + 3

8ḢD − 2κs1ḊD + 3H
(
1
8Ḋ − 2κs1D

2
)
. (4.89)

We still need to provide two additional constraints to solve the field equations.
Here, we will choose one of the two to be the covariant conservation of the HMT. Observe

that
∇̃λ∆µν

λ = 1
4gµν∇̃λ(Du

λ). (4.90)

Requesting that this vanishes, we obtain

Ḋ + 3HD = 0, (4.91)

where to get the above we used eq. (2.32). This is satisfied for

D = D0a
−3. (4.92)

Hence, one additional constraint remains, and this is going to be that the hyperfluid is
barotropic with p = wρ.

Remarkably, the right-hand side of the continuity equation (4.89) vanishes identically,
and it follows that

ρ = ρ0a
−3(1+w). (4.93)

The energy density of the total fluid becomes

ϱ = ρ0a
−3(1+w) + ρD,0a

−6, (4.94)

where ρD,0 := s1κD
2
0, while its pressure is ℘ = wρ+ρD, where ρD := ρD,0a

−6. The total fluid
is just a sum of a single-species component and another component which falls off as ∼ a−6

and obeys an equation of state pD = ρD, typical of a stiff matter fluid (assuming s1 > 0).
Stiff fluids can be used to approximate the inner cores of neutron stars [37–39], while they
are also relevant in other cosmological applications [40, 41]. Should this component appear
in the energy budget of the Universe, it would have been important just before the radiation
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era. Therefore the dilation part of hypermometum naturally contains a stiff fluid component.
Our result is in perfect agreement with previous findings supporting this statement, see [20]
and also [21], even though our gravitational action here is considerably more complicated.

Considering a hyperfluid obeying a radiation equation of state, p = ρ/3, the first Fried-
mann equation assumes the form

H =
√
κ/3a−3

(
ρD,0 + ρ0a

2
)1/2

. (4.95)

The solution to this can be either given as t(a), or we can switch to conformal time η with
dt = a dη, to cast the above into

a da√
ρD,0 + ρ0a2

=
√
κ/3 dη. (4.96)

This can be integrated to give

a = κ1/4
√
η/3

(√
κρ0η + 2

√
3ρD,0

)1/2
, (4.97)

where we took the age to be

η0 =
√
3/κ

√
ϱ0 −

√
ρD,0

ρ0
, (4.98)

so that the Big Bang is at the conformal time origin η = 0.6

Cosmic time is then given by t(η) =
∫
a dη. This is a transcendental function of confor-

mal time, which does not have a closed-form inverse. Nevertheless, as η → 0, we have that
t ∼ η3/2, whereas t ∼ η2 as η → ∞. Equivalently, η ∼ t2/3 as t approaches the time origin,
whereas η ∼

√
t as t→ ∞. Having this in mind, it is easy to see that a ∼ t1/3 (stiff matter)

as t→ 0, while a ∼
√
t (radiation) for very late epochs.

4.6 Matter with shear hypermomentum: (yet) another explanation for dark
energy

The condition that only the shear part of the HMT is nonvanishing, amounts to the con-
straints

σµνλ = 0 = ∆µ. (4.99)

These two equations restrict three degrees of freedom, namely

σ = 0, ζ = 0, D = 0. (4.100)

We are thus left with five unknowns, a, ρ, p, Σ1, and Σ2.
Proceeding exactly as in all the preceding cases, we should first write the explicit ex-

pressions for the total density and pressure of the fictitious fluid. These read

ϱ = ρ+ 3
2 Σ̇2 +

3
2(2Σ1 + 3Σ2)H + κ(s3Σ

2
1 + s5Σ1Σ2 + s6Σ

2
2), (4.101)

℘ = p+ 1
2 Σ̇2 +

1
2(2Σ1 + 3Σ2)H − 1

3κ(s3 + 2s5)Σ
2
1

+1
3κ(8s3 + 9s5 + 4s6)Σ1Σ2 + κs6Σ

2
2. (4.102)

As our two independent equations, we again consider the first Friedmann equation,

H2 − 1
2κ(2Σ1 + 3Σ2)H − 1

3κρ−
1
2κΣ̇2 − 1

3κ
2(s3Σ

2
1 + s5Σ1Σ2 + s6Σ

2
2) = 0, (4.103)

6Today we have a(η0) = 1.
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and the continuity equation,

ρ̇+ 3H(ρ+ p) = −3
2 Σ̈2 − 3

2(2Σ1 + 3Σ2)Ḣ − κ[Σ1(2s3Σ̇1 + s5Σ̇2) + Σ2(s5Σ̇1 + 2s6Σ̇2)]

−2κ[(s3 − s5)Σ
2
1 + 2(2s3 + 3s5 + s6)Σ1Σ2 + 3s6Σ

2
2]H

−1
2(6Σ̇1 + 21Σ̇2)H − 6(2Σ1 + 3Σ2)H

2. (4.104)

We readily see that trying to solve the above pair is going to be an immensely challenging
task. Recall that we still have five unknowns and two equations, ergo we need to provide
three additional constraints.

In this section, we will present a model where the theory parameters completely dictate
the form of the energy due to hypermomentum. We will discuss only some physically relevant
examples. In particular, we will show that there is a specific parameter tuning, for which the
solution can successfully describe our Universe, providing a geometric explanation for dark
energy. There is also a different parameter tuning that yields a matter-dominated universe,
in which we can perceive the effects of dark matter as the result of distorting the spacetime
geometry. A solution with an effective dark fluid would, in theory, describe all things dark,
but we are unable to derive such a thing here. Let us immediately discuss the three additional
equations we will consider.

First, let us restrict ourselves to a hyperfluid with p = wρ. Second, we would like the
fluid itself to obey a continuity equation, namely ρ̇+ 3H(ρ+ p) = 0. Combining these two,
the result is ρ = ρ0a

−3(1+w). Note that we can always take the hyperfluid to be a sum of
barotropic fluid components. The third constraint should concern the additional degrees of
freedom sourced from hypermomentum, either Σ1, or Σ2. Perhaps the simplest relation that
comes to mind is Σ1 = λΣ2, where λ is a real constant, so let us go by that. Taking into
consideration these three additional equations, we have

ϱ = ρ+ 3
2 [Σ̇2 + (3 + 2λ)HΣ2] + κ(l2 + l1λ)Σ

2
2, (4.105)

℘ = p+ 1
2 [Σ̇2 + (3 + 2λ)HΣ2] +

1
3κ[l1(9− 2λ)λ+ l2(3 + 4λ)]Σ2

2, (4.106)

where we performed the redefinitions

l1 = s5 +
2
3(λ+ 2)s3, l2 = s6 +

1
3(λ− 4)λs3. (4.107)

Ideally, we would like the first Friedmann equation (4.103),

H2 − 1
3κρ−

1
2κ[Σ̇2 + (3 + 2λ)HΣ2]− 1

3κ
2(l2 + l1λ)Σ

2
2 = 0, (4.108)

to be as simple as possible, i.e., a pure quadratic equation with respect to the Hubble pa-
rameter, which does not contain derivatives of Σ2. The most general way to achieve this is
by demanding that

Σ̇2 + (3 + 2λ)HΣ2 = 0, (4.109)

which yields Σ2 = Σ2,0a
−(3+2λ). This is an additional constraint which renders the system

of equations overdetermined and eventually—without further assumptions—inconsistent, as
we can appreciate from eq. (4.104), which becomes

l1(λ− 1)λΣ2
2,0a

−2(3+2λ)H = 0. (4.110)

For solutions to exist, this has to vanish identically, and there are three ways to make that
happen, either λ = 1, or λ = 0, or l1 = 0.
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Since only the square of Σ2 contributes to ϱ, setting λ = 1, or equivalently Σ1 = Σ2,
would correspond to the presence of an effective barotropic fluid with index w = 7/3; the
speed of sound would be superluminal, thus we discard this case. On the other hand, setting
λ = 0, or equivalently Σ1 = 0, would lead to the emergence of a stiff-matter component.
Such a scenario has been already addressed in the previous section, so we will not reconsider
it here. Finally, the choice l1 = 0 amounts to setting

λ = −2− 3s5
2s3

, (4.111)

and it leads us to the first Friedmann equation

H2 = 1
3κ(ρ+ κl2Σ

2
2,0a

2(s3+3s5)/s3). (4.112)

Therefore, assuming a single-species hyperfluid, the total fluid is a two-species one, where
the second species is determined by the exact values of the theory parameters, with the total
fluid variables being

ϱ = ρ+ ρ2, ℘ = wρ+ weffρ2. (4.113)

For convenience, we defined ρ2 := ρ2,0a
−3(1+weff), where ρ2,0 := κl2Σ

2
2,0 and

weff := −5

3
− 2s5

s3
(4.114)

This brings us to the two examples we advertised earlier. First, a theory with s3 = −3s5,
together with the choices w = 0 and ρ ≡ ρm, yield a universe filled with matter and dark
energy, the latter due to an effective cosmological constant

Λeff = κ2(s6 − 33
4 s5)Σ

2
2,0, (4.115)

where it goes without saying that s6 >
33
4 s5. Note that in this case, both parts of shear hyper-

momentum are constant, namely, Σ2 = Σ2,0 = −2Σ1/3. If Λeff is to agree with observations
and assuming that ϵ is the order of magnitude of both s3 and s5, then

Σ2,0 ≈
√
2H0√
ϵκ

. (4.116)

Second, a theory with s3 = −6s5/5, together with the choice w = 0, yield a matter-
dominated universe. If we assume that ρ is the energy density of baryonic matter only, i.e.,
ρ ≡ ρb, then if ϱ is the density of all matter, ϱ ≡ ρm, it follows that ρ2 must be equal to
the observed dark matter density, namely ρ2 ≡ ρdm. In such a case, Σ1 = −3Σ2/4 ∝ a−3/2,
where we also have

ρdm,0 = κ(s6 − 57
40s5)Σ

2
2,0. (4.117)

Of course, one must also assume that s6 >
57
40s5 for ρdm to be positive. Since we know that

ρdm ≈ 5ρb, it must be that

Σ2,0 ≈
√

15Ωb,0H0√
ϵκ

, (4.118)

where we assumed again that ϵ is the order of magnitude of both parameters.
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5 Summary and prospects

We studied the complete (17-parameter) quadratic Metric-Affine Gravity. Considering a uni-
verse filled with a perfect hyperfluid, we derived the extended/modified Friedmann equations
along with the associated energy-conservation law, altogether governing the evolution of this
cosmos. We showed that, given the high symmetry of the cosmological ansatz, only eleven
out of the 17 invariants are truly independent in homogeneous and isotropic backgrounds.
Using simple techniques, we recast the modified Friedmann equations into their standard
GR-like form by defining an effective energy-momentum tensor, conserved on the shell, that
also includes the back-reaction of the hypermomentum of matter (allegedly associated with
its microstructure). This allows us to make exact comparisons with known results, while
we are also able to give a “physical” meaning to the extra contributions coming from the
non-Riemannian degrees of freedom.

From our analysis, we conclude the following. For a completely antisymmetric hypermo-
mentum, and given that the perfect-fluid part of the hyperfluid satisfies the usual continuity
equation, the contribution of the extra degree of freedom to the Friedmann equations as-
sumes a form reminiscent of a fluid of cosmic strings. Quite remarkably, this string-like
component, powered by the completely antisymmetric part of the hypermomentum tensor,
emerges naturally, i.e., it is not introduced “by hand”. Another solution, a universe filled
with an effective single-species barotropic fluid, is also reported. Next, if only the first
part of the spin hypermomentum is nonvanishing (the axial part vanishes), and assuming a
hypermomentum-dominated era, we find nice power-law solutions for the scale factor, with
the exponent depending on the parameters of the complete theory. For a specific parameter
space, the resulting hypervac solution describes a dark energy-dominated universe, expanding
à la de Sitter, with the effective cosmological constant depending on the hypermomentum
degree of freedom, an integration constant in this case. Yet another solution is discussed in
the pure spin case, where the scalar is assumed to have a constant profile. This assumption
suffices to produce a peculiar universe, filled with a multicomponent effective fluid, comprised
of vacuum energy, cosmic strings, and domain walls, all of them powered by hypermomentum.

Moving on to the case of a pure dilation hyperfluid with a conserved hypermomentum
tensor, we have shown that, in this instance, the extra degree of freedom leads to the emer-
gence of a stiff-matter fluid component. This result confirms some previous findings [20, 21],
and also provides a natural way to associate this kind of unconventional matter (p = ρ)
with a piece of the hypermomentum tensor, relating it, therefore, to the micro-properties of
the fluid. Finally, we studied the case of a pure-shear hyperfluid in the complete quadratic
theory. Depending on the equation of state relating the two shear variables and some further
assumptions, there are some quite interesting possibilities. Keeping only the second part of
the shear-only hypermomentum, i.e., setting Σ1 = 0, we find again an additional stiff-matter
component, as in the pure dilation case. On the other hand, keeping both shear functions
but relating their constant ratio with the parameters of the quadratic theory, it is possible to
obtain a universe filled with a multicomponent fluid, where one of its components, the one
due to hypermomentum, depends on the relations between the theory parameters. It is then
possible, for example, to identify the hypermomentum-driven part either with dark matter,
or with dark energy, but not with both at the same time.

It would be interesting to extend the current study of the complete quadratic theory in
the presence of a hyperfluid, by allowing all three irreducible pieces of the hypermomentum
current (spin, dilation, and shear) to be nonvanishing at the same time. Even though the
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analysis would be much more complex in this generalized case, the phenomenology would also
be much richer. One would see how the various components of the hypermomentum interact
with each other and (what kind of and) how many additional fluids they carry into effect.
Based on our findings, we have good reason to speculate that all kinds—though perhaps
more than one wishes—of energy forms can, definitely on paper, be associated with hyper-
momentum. A dark fluid with a geometric origin is arguably the most intriguing scenario.
We hope that these results rekindle the interest in the concept of hypermomentum and its
manifestation in the physical realm. Results in non-Riemannian cosmology can perhaps aid
in materializing the so-far theoretical link between intrinsic hypermomentum and the various
microproperties of matter. Additionally, we remark that one could study the cosmological
perturbations of the quadratic theory, using the recent results in [42, 43]. Finally, it would
be also interesting to scrutinize the cosmological aspects of the gravity/statistical manifold
correspondence, introduced in [44] within the context of the biconnection theory. In this
case, the non-Riemannian structure is expected to be sourced from the so-called principal
hypermomentum. Many of these problems are currently under investigation.
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[35] A. Benoit-Lévy and G. Chardin, Introducing the Dirac-Milne universe, A&A 537 (2012) A78
[1110.3054].

– 28 –

https://arxiv.org/abs/2401.12314
https://doi.org/10.1103/PhysRevD.102.044029
https://doi.org/10.1103/PhysRevD.102.044029
https://arxiv.org/abs/2005.14571
https://doi.org/10.1142/S0219887823300076
https://arxiv.org/abs/2303.14148
https://doi.org/10.1103/PhysRevD.106.024015
https://doi.org/10.1103/PhysRevD.106.024015
https://arxiv.org/abs/2204.03003
https://doi.org/10.1103/PhysRevD.99.104020
https://doi.org/10.1103/PhysRevD.99.104020
https://arxiv.org/abs/1812.03420
https://doi.org/10.1016/j.newar.2005.01.022
https://arxiv.org/abs/gr-qc/0404119
https://doi.org/10.48550/arXiv.gr-qc/9705039
https://arxiv.org/abs/gr-qc/9705039
https://doi.org/10.1103/PhysRevD.105.024007
https://doi.org/10.1103/PhysRevD.105.024007
https://arxiv.org/abs/2109.06167
https://doi.org/10.1088/1361-6382/ac6058
https://arxiv.org/abs/2112.09154
https://doi.org/10.1140/epjc/s10052-020-08634-z
https://doi.org/10.1140/epjc/s10052-020-08634-z
https://arxiv.org/abs/2003.07384
https://doi.org/10.1088/1475-7516/2021/04/072
https://doi.org/10.1088/1475-7516/2021/04/072
https://arxiv.org/abs/2101.07289
https://doi.org/10.1140/epjc/s10052-020-08634-z
https://doi.org/10.1140/epjc/s10052-020-08634-z
https://arxiv.org/abs/2003.07384
https://doi.org/https://doi.org/10.1016/0375-9601(79)90265-2
https://doi.org/10.1088/0264-9381/17/15/312
https://arxiv.org/abs/2312.06780
https://doi.org/10.1103/PhysRevLett.53.1016
https://doi.org/10.1098/rsta.1986.0137
https://doi.org/10.1098/rsta.1986.0137
https://doi.org/10.1103/PhysRevD.33.328
https://doi.org/10.1016/0370-1573(85)90033-X
https://doi.org/10.1093/mnras/227.2.453
https://doi.org/10.1051/0004-6361/201016103
https://arxiv.org/abs/1110.3054


[36] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys.
641 (2020) A6 [1807.06209].

[37] C.E. Rhoades and R. Ruffini, Maximum mass of a neutron star, Phys. Rev. Lett. 32 (1974) 324.

[38] V. Kalogera and G. Baym, The Maximum Mass of a Neutron Star, ApJ 470 (1996) L61
[astro-ph/9608059].

[39] T.S. Olson, Maximally incompressible neutron star matter, Phys. Rev. C 63 (2000) .

[40] T.J. Battefeld and D.A. Easson, Perturbations in a holographic universe and in other stiff fluid
cosmologies, Phys. Rev. D 70 (2004) .

[41] T. Banks, W. Fischler and L. Mannelli, Microscopic quantum mechanics of the p = ρ universe,
Phys. Rev. D 71 (2005) 123514 [hep-th/0408076].

[42] K. Aoki, S. Bahamonde, J. Gigante Valcarcel and M.A. Gorji, Cosmological Perturbation
Theory in Metric-Affine Gravity, 2310.16007.

[43] O. Castillo-Felisola, R. Gannouji, M. Morocho-López and M. Rozas-Rojas, A model for
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