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THE ARENS–MICHAEL ENVELOPE OF A SOLVABLE LIE ALGEBRA

IS A HOMOLOGICAL EPIMORPHISM

O. YU. ARISTOV

Abstract. The Arens–Michael envelope of the universal enveloping algebra of a finite-
dimensional complex Lie algebra is a homological epimorphism if and only if the Lie
algebra is solvable. The necessity was proved by Pirkovskii in [Proc. Amer. Math. Soc.
134, 2621–2631, 2006]. We prove the sufficiency.

Introduction

We are interested in the question under what conditions, for a given finite-dimensional
complex Lie algebra g, the universal completion (called the Arens–Michael envelope) of
U(g) (its universal enveloping algebra) is a homological epimorphism. This question is
implicitly contained in the works of J. Taylor published in early 70s [32, 33, 34, 35] and
explicitly formulated by Pirkovskii in [27, § 9, Problem 1].

Homological epimorphisms. Flat homomorphisms play an important role in algebra
and analysis but in some respects the requirement of flatness is too strong and must be
replaced by a weaker condition. The concept of homological epimorphism was introduced
J.Taylor [34] as a weakened form of flatness under the name of “absolute localization”
and has been rediscovered several times in different contexts and under different names
— “lifting”, “stably flat homomorphism”, “isocohomological morphism”, “homotopy epi-
morphism”; see references in [10, Remark 3.16]. An important property for applications is
that homological epimorphisms preserve homologies and cohomologies [34, Propositions
1.4 and 1.7]. We are interested in the functional analytic version of this concept that comes
back to Taylor and consider homological epimorphisms of complete locally convex algebras
with jointly continuous multiplication (we call them ⊗̂-algebras); see Definition 4.2.

An example of the use of homological epimorphisms is contained in Meyer’s preprint
[24], where Connes’s calculation of cyclic cohomology of a smooth non-commutative torus
in [15, § 6] is simplified. In addition, it was noted by Pirkovskii in [25] that flat homo-
morphisms are not sufficient for characterization of open embeddings of Stein varieties
but a weak version of the notion of homological epimorphism is adequate for this task;
for an extension of results to general Stein spaces see [10, 13]. Another motivation for
studying of homological epimorphisms in the context of functional analysis comes from
non-commutative spectral theory; see the introduction to [27] for a detailed discussion
and interpretation of Taylor’s ideas.

Arens–Michael envelopes. The idea to study Arens–Michael envelopes and, in par-
ticular, to look for conditions under which they are homological homomorphisms also
belongs to Taylor. Recall that the Arens–Michael envelope of a topological algebra A

is the universal completion with respect to the class of Banach algebras (equivalently,
1

http://arxiv.org/abs/2404.19433v1


2 O. YU. ARISTOV

the completion relative to the locally convex topology determined by all continuous sub-
multiplicative seminorms on A). Roughly speaking, this completion is responsible for
continuous representations of A on Banach spaces; see details in § 2. A prototype exam-
ple of an Arens–Michael envelope is the embedding of the polynomial algebra C[z1, . . . , zn]
to the algebra of entire functions O(Cn).

Taylor found explicit descriptions of the Arens–Michael envelopes of certain finitely-
generated associative algebras and proved that in some cases the envelope is a homological
epimorphism; also, he provided first counterexamples [34].

History and the main result. Let U(g) be the universal enveloping algebra of a finite-
dimensional complex Lie algebra g. The question of whether the Arens–Michael envelope

homomorphism U(g) → Û(g) is a homological epimorphism has been studied since 70s.
The affirmarive answer in the case when g is abelian, and the negative answer in the
case when it is semisimple, was given by Taylor in [34]. Three decades later, in [26],
Pirkovskii showed that the solvability a necessary condition. At the same time, the study
of the nilpotent case was started by Dosiev [16, 17]. It was continued by Pirkovskii in [27]
and recently completed by the author in [2], where it was shown that the nilpotency is a
sufficient condition. Thus, only the case when g is solvable but not nilpotent remained
uninvestigated (with one exception — the two-dimensional non-abelian algebra; see [27]).
Here we prove that the solvability is also a sufficient condition; see Theorem 4.4. Thus,
the final answer is that U(g) → Û(g) is a homological epimorphism if and only if g is
solvable.

The following papers of the author precede this work.

• In [2], the nilpotent case is considered. The structure of Û(g) is described and
proved that Arens–Michael envelope is a homological epimorphism (using a method
different from that applied in this article).
• In [3], the structure of the algebra of analytic functionals on a connected complex

Lie group is discussed. In particular, the results there can be applied to Û(g) for
a general finite-dimensional Lie algebra. Some improvements is obtained in [8].
• A decomposition into iterated analytic smash products (which is essential here) is
constructed in [9].
• The decomposition mentioned above exists not only for the Arens–Michael enve-
lope but for other completions. Some preliminary work for these completions is
done in [6, 7]. Formally, [9] is based on those preliminary results but, in fact, the
case of the Arens–Michael envelope can be studied without reference to [6, 7].

Our main result is of independent interest but, on the other hand, this text is a part
of a big project on completions of universal enveloping algebras and algebras of analytic
functionals. Homological properties related with the first topic (universal enveloping
algebras) is a subject of this paper. The author plans to study homological properties of
algebras of analytic functionals and their completions in a separate article.

The result was announced at the seminar “Algebras in Analysis” in Moscow State
University in 2018. The author later discovered a gap in the proof proposed at the time.
This text contains an argument in which the gap is filled.
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1. Main ideas of the proof

The proof is based on two circles of ideas: author’s results on decomposition of Û(g) into
an iterated analytic smash products obtained in [9] and a powerful technique of relative
homological epimorphisms developed by Pirkovskii in [28]. In fact, the analytic part of
preliminary work is contained in [9] and preceding articles. Pirkovskii’s technique, which
is applied below, is more algebraic in nature.

When studying homological epimorphisms, the question of finding a convenient projec-
tive resolution is important. To construct such a resolution one can use a decomposition
of U(g) into an iterated Ore extension. In group homology, a construction of a resolution
of the trivial module of a semi-direct product is well known (see, e.g., [21, Chapter 5, § 2,
pp. 250–251]). It is not hard to generalize this construction for cocommutative Hopf alge-
bras and transfer it into the context of functional analysis. (This topic will be discussed
elsewhere.) Unfortunately, it is not clear whether or not the tensor product functor (4.1)
sends such projective resolution to a similar resolution. In [28], to overcome this kind of
difficulty it was proposed to use relative homological homomorphisms instead of usual.
We show below that, with an appropriate modification, this idea works well in our case.

Outline of Pirkovskii’s results. In [28, Theorem 9.12], Pirkovskii proved that the
Arens–Michael envelope is a homological epimorphism for a number of finitely-generated
non-commutative algebras. In this paper, we are interested only in generalizing of Parts (vi)
and (vii) of the above theorem, the parts that concern the two-dimensional non-abelian
and three-dimensional Heisenberg Lie algebra. This section contains an extract of argu-
ment in these cases. We postpone the necessary definitions until § 4.

In both the two-dimensional and three-dimensional cases considered in [28], a decom-
position of g into a semidirect sum induces a decomposition of U(g) into an Ore extension
of a commutative algebra. Namely, U(g) is isomorphic to C[x][t; δ], where δ = y d

dy
, in

the first case and C[x, y][t; δ], where δ = y ∂
∂x

in the second. As a corollary, Û(g) can be

represented as an analytic Ore extension O(C, Rδ; δ̂), where Rδ is a certain completion

of R and δ̂ is the extension δ to Rδ [28, Theorem 5.1]. (Here and below O stands for
holomorphic functions.)

Pirkovskii used a two-step argument. First he showed that R → Rδ is a homological
homomorphism and next that ι is a one-sided relative homological homomorphism with
respect to Rδ. Both conditions are included into the hypotheses of the following result.

Theorem 1.1. [28, Theorem 9.1(ii)] Let (f, g) : (A,R)→ (B, S) be an R-S-homomorphism
from an R-⊗̂-algebra A to an S-⊗̂-algebra B. Suppose that

(1) g is a homological epimorphism;
(2) f is a left or right relative homological epimorphism;
(3) A is projective in R-mod and B is projective in S-mod;
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(4) A is an R-⊗̂-algebra of (f2)-finite type.
Then f is a homological epimorphism.

In the case of low-dimensional Lie algebras, consider R-Rδ-homomorphism

(ι, g) : (U(g), R)→ (Û(g), Rδ),

where g denotes the R→ Rδ. To prove that ι is a homological epimorphism it suffices to
check Conditions (1)–(4) in Theorem 1.1 for (ι, g).

For Ore extensions and analytical Ore extensions, Condition (3) easily follows from def-
initions. An Ore extension of R is relatively (f2)-quasi-free R-algebra [28, Example 8.1],
which in particular implies that it is of (f2)-finite type [28, Definition 8.5 and Proposi-
tion 7.3.]. Thus Condition (4) holds. (Note that the use of relatively quasi-free algebras
was an important innovation in this topic.) Checking of Conditions (1) and (2) is more
challenging.

To prove Condition (2) Pirkovskii applied the following result.

Theorem 1.2. [28, Theorem 7.6(ii)] Let A, R, S be ⊗̂-algebras and g : R → S an
epimorphism of ⊗̂-algebras. Suppose that A is an R-⊗̂-algebra and its Arens–Michael
envelope Â is an S-⊗̂-algebra such that the pair (ιA, g) is an R-S-homomorphism from A

to Â. Assume also that A is relatively quasi-free over R. Then ιA : A→ Â is a two-sided
relative homological epimorphism.

It is essential in the proof that ιA : A → Â satisfies to the unique extension property
for derivations (Property (UDE)); see the corresponding definition in § 3.

Verifying Condition (1) is arduous since R → Rδ is not an Arens–Michael envelope in
general. To surmount this challenge Pirkovskii applied another technique, which we do
not use in this paper; see details in the proof of Parts (vi) and (vii) of Theorem 9.12
in [28].

In the high dimensional case, it is natural to use induction. Specifically, if an algebra
A has a chain of subalgebras C = R0 ⊂ R1 ⊂ · · · ⊂ Rn = A, where each of Ri is relatively
quasi-free over Ri−1, then an iterative application of Theorem 1.1 enable us with a tool for

proving that A→ Â is a homological epimorphism; see the introduction to [28]. This plan
works well in some situations but unfortunately cannot be applied to all high-dimensional
solvable Lie algebras. Indeed, a finite-dimensional solvable complex Lie algebra g admits
an iterated semidirect sum decomposition,

g = ((· · · (f1 ⋊ f2)⋊ · · · )⋊ fn,

where f1, . . . , fn are 1-dimensional. Moreover, this decomposition actually induces an
decomposition of the universal enveloping algebra into an iterated Ore extension; see,
e.g., [23, pp. 33–34, 1.7.11(iv)]. Nevertheless, in this case, Rn−1 → (Rn−1)δ is not usually
an Arens–Michael envelope and, moreover, (Rn−1)δ cannot be represented as an analytic
Ore extension.

Plan of the proof. Our strategy is to apply Theorem 1.1 using iterations. But the
scheme proposed in [28] needs to be modified, as is obvious from previous considerations.

1. We use iterated analytic smash products instead of analytic Ore extensions; see
Theorem 2.5. An analytic Ore extension with trivial twisting is an analytic smash product
but when the twisting is non-trivial this is not the case. (Thus most of parts of Theorem
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9.12 in [28] are not covered by our approach.) Some preliminaries on Hopf ⊗̂-algebras,
analytic smash products and Arens–Michael envelopes is contained in § 2.

2. We use completions of C[z] other than O(C), the algebras As; see definition in (2.7).
The essential point is that O(C)→ As and some induced homomorphisms of analytic Ore
extensions satisfy Property (UDE). To prove theses facts we apply an auxiliary result on
pushouts; see Theorem 3.4 and preliminary results in § 2.

3. We get an Arens–Michael envelope only on the final step of iteration. So we have
to replace Theorem 1.2 by a more general result on homomorphisms satisfying Property
(UDE), Theorem 4.7. Combining it with a decomposition result essentially proved in [9]
(Theorem 2.5), we finally deduce Theorem 4.4.

2. Hopf ⊗̂-algebras, analytic smash products and Arens–Michael

envelopes

Consider the bifunctor (−) ⊗̂ (−) of complete projective tensor product on the category
of complete locally convex spaces and Hopf algebras in the corresponding symmetric
monoidal category. We call them Hopf ⊗̂-algebras (read ‘topological Hopf algebras’); see
[22] or [27]. Also, ⊗̂-algebras and ⊗̂-(bi)modules, i.e., complete locally convex algebras and
(bi)modules with jointly continuous multiplication, are considered. We assume that each
algebra contains an identity and each module is unital. A ⊗̂-(bi)module over a ⊗̂-algebra
A is referred as an A-⊗̂-(bi)module. We also assume that ⊗̂-algebra homomorphisms
preserve identity and are continuous (as well as ⊗̂-module morphisms).

Generalized Sweedler notation. The Sweedler notation is widely used in the Hopf
algebra theory instead of the tensor notation because the latter is not always convenient.
It was noted in [1, § 2.4] that this notation can be generalized to topological Hopf algebras.
A version of the generalized Sweedler notation sufficient for our purposes is described in [9]
and we briefly recall it here.

In the classical Sweedler notation, the comultiplication ∆ on a Hopf algebra has the
form

∆(h) =
∑

h(1) ⊗ h(2). (2.1)

Here an arbitrary representation of ∆(h) is taken.
Before using this type of notation for Hopf ⊗̂-algebras note that, in the Fréchet space

context, we can treat (2.1) not as a finite sum but as a convergent series. However, in
general this is not always possible and we write ∆(h) as the limit of a net of finite sums
of elementary tensors:

∆(h) = lim
ν

nν∑

i=1

h
ν,i

(1) ⊗ h
ν,i

(2).

In the case of a Hopf ⊗̂-algebra, (2.1) is a short notation for such a representation.
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For example, in the full form, the coassociativity axiom, (1⊗∆)∆(h) = (∆⊗ 1)∆(h),
can be written as

lim
ν

(
nν∑

i=1

h
ν,i

(1) ⊗

(
lim
µ

mµ∑

j=1

(hν,i(2))
µ,j

(1) ⊗ (hν,i(2))
µ,j

(2)

))
=

= lim
ν

((
lim
λ

lλ∑

j=1

(hν,i(2))
λ,j

(1) ⊗ (hν,i(2))
λ,j

(2)

)
⊗

nν∑

i=1

h
ν,i

(2)

)
, (2.2)

where

∆(hν,i(1)) = lim
λ

lλ∑

j=1

(hν,i(2))
λ,j

(1) ⊗ (hν,i(2))
λ,j

(2) and ∆(hν,i(2)) = lim
µ

mµ∑

j=1

(hν,i(2))
µ,j

(1) ⊗ (hν,i(2))
µ,j

(2) .

In the generalized Sweedler notation, it takes the same form as in the classical Sweedler
notation: ∑

h(1) ⊗
(∑

(h(2))(1) ⊗ (h(2))(2)

)
=
(∑

(h(1))(1) ⊗ (h(1))(2)

)
⊗ h(2).

By the iterated limit theorem [20, Chapter 2, p. 69, Theorem 4], both iterated limits
in (2.2) can be replaced by a simple limit of a net. In particular, this means that the
iteration of the comultipication can be written as

(1⊗∆)∆(h) =
∑

h(1) ⊗ h(2) ⊗ h(3),

where a simple limit is also implied.
Also, in this notation, the antipode axiom for a Hopf ⊗̂-algebra takes the form

∑
S(h(1))h(2) = ε(h)1 =

∑
h(1)S(h(2)).

This formula stands for

lim
ν

nν∑

i=1

S(hν,i(1))h
ν,i

(2) = ε(h)1 = lim
ν

nν∑

i=1

h
ν,i

(1)S(h
ν,i

(2)).

Analytic smash products. In this section, we recall the necessary information on an-
alytic smash products, which were introduced in [26]. In the definitions we follow [9],
where some historical remarks can also be found.

Let H be a Hopf ⊗̂-algebra and A a ⊗̂-algebra that is a left H-⊗̂-module. Then A ⊗̂A
and C are left H-⊗̂-modules with respect to

h · (a⊗ b) :=
∑

(h(1) · a)⊗ (h(2) · b) (h ∈ H, a, b ∈ A);

h · λ := ε(h)λ, (h ∈ H, λ ∈ C).

Recall that A is called a (left) H-⊗̂-module algebra if the linearized multiplication
µ : A ⊗̂ A→ A and the unit map C→ A are left H-module morphisms, i.e.,

h · (ab) =
∑

(h(1) · a)(h(2) · b) and h · 1 = ε(h)1 (h ∈ H, a, b ∈ A). (2.3)

For a ⊗̂-algebra homomorphism ψ : H → B consider the adjoint action H on B:

h · b :=
∑

ψ(h(1)) b ψ(S(h(2))) (h ∈ H, b ∈ B). (2.4)

It is easy to see that B is an H-⊗̂-module algebra with respect to this action.
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Definition 2.1. Let H be a Hopf ⊗̂-algebra and A an H-⊗̂-module algebra. The analytic

smash product A #̂H is defined as a ⊗̂-algebra endowed with ⊗̂-algebra homomorphisms

i : A→ A #̂H and j : H → A #̂H such that the following conditions holds.
(A) i is a ⊗̂-module algebra homomorphisms with respect to the adjoint action associ-

ated with j.
(B) For every ⊗̂-algebra B, ⊗̂-algebra homomorphism ψ : H → B and H-⊗̂-module

algebra homomorphism ϕ : A→ B (with respect to the adjoint action associated with ψ)
there is a unique ⊗̂-algebra homomorphism θ such that the diagram

A #̂H

θ

��✤
✤
✤
✤
✤
✤
✤

A

i
<<②②②②②②②②②

ϕ
##●

●●
●●

●●
●●

H

j
bb❋❋❋❋❋❋❋❋❋

ψ{{✇✇
✇✇
✇✇
✇✇
✇

B

is commutative.

The explicit construction is as follows. The formula

(a⊗ h)(a′ ⊗ h′) =
∑

a(h(1) · a
′)⊗ h(2)h

′ (h, h′ ∈ H ; a, a′ ∈ A). (2.5)

determines a multiplication on A ⊗̂ H . Endowed with the maps i : a 7→ a ⊗ 1 and
j : h 7→ 1⊗ h and this multiplication, A ⊗̂H is an analytic smash product.

Remark 2.2. In the case when H = O(C) and act on A by a derivation, the analytic
smash product coincides with the corresponding analytic Ore extension [28, Remarks 4.4
and 4.2]. The same holds in the pure algebraic case, i.e., when C[z] acts by a derivation.

The following lemma follows directly from the definitions.

Lemma 2.3. [9, Lemma 3.10] Let H and K be Hopf ⊗̂-algebras, R a H-⊗̂-module algebra
and S a K-⊗̂-module algebra. If β : H → K is a Hopf ⊗̂-algebra homomorphism and
α : R→ S is a ⊗̂-algebra homomorphism that is an H-⊗̂-module morphism (i.e., α(h·r) =
β(h) · α(r) when h ∈ H, r ∈ R), then the formula

α #̂ β : R #̂H → S #̂K : r ⊗ h 7→ α(r)⊗ β(h) (2.6)

determines a ⊗̂-algebra homomorphism.

Smash product decomposition of Arens–Michael envelopes. In what follows we
need a family of Hopf ⊗̂-algebras importance of which for finding Arens–Michael envelopes
was discovered in [4] and [8].

For s ∈ [0,+∞) put

As :=
{
a =

∞∑

n=0

anz
n : ‖a‖r,s :=

∞∑

n=0

|an|
rn

n!s
<∞ ∀r > 0

}
, (2.7)

where z is treated as a formal variable, and endow As with the topology determined by
the seminorm family (‖ · ‖r,s; r > 0). Denote also C[[z]], the algebra of all power series in
z, by A∞.
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Lemma 2.4. Let s ∈ [0,+∞]. Then As is a Hopf ⊗̂-algebra with respect to the operations
continuously extended from C[z] and so the natural embedding β : C[z] → As is a Hopf
⊗̂-algebra homomorphism.

The assertion of the lemma is proved in [8, Example 2.4] when s 6= ∞ and can be
directly checked when s =∞.

Recall that an Arens–Michael algebra is a topological algebra whose topology can be
determined by a family of submultiplicative seminorms. The Arens–Michael envelope of
a topological C-algebra A is a pair (Â, ιA), where Â is an Arens–Michael algebra and ιA
is a continuous homomorphism A→ Â such that for every Arens–Michael algebra B and
every continuous homomorphism ϕ : A→ B there is a unique continuous homomorphism

ϕ̂ : Â→ B making the diagram

A
ιA //

ϕ ��❃
❃❃

❃❃
❃❃

❃ Â

ϕ̂

��✤
✤
✤

B

commutative. More concrete, we can take as ιA the completion homomorphism with re-
spect to the topology determined by all possible (continuous) submultiplicative seminorms
on A.

In the case when A is an arbitrary associative C-algebra, we can endow it with the
strongest locally convex topology or, equivalently, take arbitrary homomorphism ϕ in the
definition. In the Lie algebra case, we can replace U(g) by g in the diagram (assuming

that ϕ is a Lie algebra homomorphism) and say that Û(g) is the Arens–Michael envelope
of g.

Our proof of the main result, Theorem 4.4, is based on the following structural theorem,
which is easily implied by results in [9].

Theorem 2.5. Let g be a finite-dimensional solvable complex Lie algebra and fix an
iterated semidirect sum decomposition g = ((· · · (f1 ⋊ f2) ⋊ · · · ) ⋊ fn, where f1, . . . , fn are
1-dimensional. Then there is a non-increasing sequence i1, . . . , in in [0,∞] such that

Û(g) ∼= (· · · (Ai1 #̂Ai2) #̂ · · · ) #̂Ain (2.8)

Moreover, the homomorphism U(g)→ Û(g) is compatible with the decomposition

U(g) ∼= (· · · (U(f1)#U(f2))# · · · )#U(fn)

induced by the decomposition of g.

Here the compatibility of decompositions means that at each step we have a smash
product with a homomorphism of the form β considered in Lemma 2.4 as described in
Lemma 2.3. (Note that U(fi) ∼= C[z] for every i.)

Proof. We use reduction to algebras of analytic functionals. Let G be a simply connected
complex Lie group whose Lie algebra is isomorphic to g. Also, let A (G) denote the

corresponding algebra of analytic functionals and Â (G) the Arens–Michael algebra of
A (G). Then the natural embedding U(g) → A (G) induces a topological isomorphism

Û(g) → Â (G) [2, Proposition 2.1]. So we can apply results on Â (G), Theorems 6.5
and 6.4 in [9], which give the existence of the decomposition in (2.8) and the compatibility
with the decomposition of U(g), respectively. �
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Smash product and pushouts. We use the results in this section when proving The-
orem 3.4.

Proposition 2.6. Let H be a Hopf ⊗̂-algebra and α : R → S an H-⊗̂-module algebra
homomorphism. If α has dense range, then

R

α

��

iR

// R #̂H

α #̂ 1
��

S
iS

// S #̂H,

where iR and iS are the canonical homomorphisms, is a pushout diagram.

Proof. Let ϕ : S → B and χ : R #̂H → B be ⊗̂-algebra homomorphisms such that
ϕα = χiR. We want to use the universal property in Definition 2.1. Put ψ := χj,

where j : H → R #̂H is the canonical homomorphism. It suffices to find a ⊗̂-algebra
homomorphism θ making the diagram

R
iR //

α

��

R #̂H

α #̂ 1
��

χ

��✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶

H
j
oo

ψ

��

S
iS //

ϕ

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚ S #̂H

θ !!❉
❉

❉
❉

B

commutative and prove that it is unique.
If h ∈ H and r ∈ R, then by the definition of the adjoint action in (2.4), we have that

h · ϕα(r) =
∑

ψ(h(1))ϕα(r)ψ(S(h(2))) = χ
(∑

j(h(1)) iR(r) j(S(h(2)))
)
= χiR(h · r).

(The last equality follows from the fact that iR is an H-⊗̂-module morphism with respect
to the adjoint action.) Thus h ·ϕα(r) = ϕα(h ·r). Hence ϕα is an H-⊗̂-module morphism.

Further, by the hypothesis, α is also an H-⊗̂-module morphism and so is ϕ since the

range of α is dense. Hence, by the universal property of smash product written for S #̂H ,

there is a unique ⊗̂-algebra homomorphism θ such that θiS = ϕ and θ(α #̂ 1)j = ψ.
Since ϕα is an H-⊗̂-module algebra homomorphism, it follows from the universal prop-

erty of smash product written for R #̂H that a homomorphism χ such that χiR = ϕα

and χj = ψ is unique. Therefore θ(α #̂ 1) = χ.

To complete the proof we need to show that θ such that θiS = ϕ and θ(α #̂ 1) =
χ is unique. If θ′ is another ⊗̂-algebra homomorphism with these properties, then

θ′(α #̂ 1)iR = ϕα and θ′(α #̂ 1)j = ψ. The uniqueness statement above implies that
θ′ = θ. �
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Proposition 2.7. Let β : H → K be a Hopf ⊗̂-algebra homomorphism and S a K-⊗̂-
module algebra. If β has dense range, then

S #̂H

1 #̂β
��

H

β

��

jH

oo

S #̂K K,
jK

oo

where jH and jK are the canonical homomorphisms, is a pushout diagram.

Proof. Let ψ : K → B and χ : S #̂H → B be ⊗̂-algebra homomorphisms such that ψβ =
χjH . We use the universal property in Definition 2.1 as in the proof of Proposition 2.6.

Put ϕ := χi, where i : S → S #̂H is the canonical homomorphism. It suffices to find a
⊗̂-algebra homomorphism θ making the diagram

S

ϕ

��

i // S #̂H

χ

��☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

1 #̂β
��

H

β

��

jHoo

S #̂K

θ
||②
②
②
②
②

K,
jK

oo

ψ

tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐

B

commutative and prove that it is unique.
Recall that S is endowed with the action h · s = β(h) · s. If h ∈ H and s ∈ S, then by

the definition of the adjoint action, we have

β(h) · ϕ(s) =
∑

ψ(β(h(1)))ϕ(s)ψ(β(S(h(2)))) =

χ
(∑

jH(h(1)) i(s) jH(S(h(2)))
)
= χ(i(β(h) · s)).

(The last equality follows from the fact that i is an H-⊗̂-module morphism with respect
to the adjoint action associated with jH .) Hence k · ϕ(s) = ϕ(k · s) when k = β(h).
Therefore ϕ is a K-⊗̂-module morphism since the range of β is dense.

Similarly, using density again, we have that (1 #̂ β)jH is a K-⊗̂-module morphism with
respect to the adjoint action associated with jK . Hence, by the universal property of

smash product written for S #̂K, there is a unique ⊗̂-algebra homomorphism θ such that

θjK = ψ and θ(1 #̂ β)i = ϕ. The first equality implies that θ(1 #̂ β)jH = ψβ.
Being a K-⊗̂-module morphism, ϕ is also an H-⊗̂-module morphism. Then the uni-

versal property of smash product written for S #̂H implies that a homomorphism χ such

that χi = ϕ and χjH = ψβ is unique. Therefore θ(1 #̂β) = χ.

To complete the proof we need to show that θ such that θjK = ψ and θ(1 #̂ β) = χ is

unique. If θ′ is another ⊗̂-algebra homomorphism with these properties, then θ′(1 #̂β)i =

ϕ and θ′(1 #̂β)jH = ψβ. The uniqueness statement above implies that θ′ = θ. �

3. Unique extension property for derivations

When A is a ⊗̂-algebra andX is an A-⊗̂-bimodule, we denote the vector space of contin-
uous derivations from A to X by Der(A,X). It is clear that a ⊗̂-algebra homomorphism
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ϕ : A→ B induces the linear map

ϕ̃X : Der(B,X)→ Der(A,X) : D 7→ Df.

Definition 3.1. We say that a homomorphism ϕ : A→ B of ⊗̂-algebras satisfies Property
(UDE) (the unique extension property for derivations) if ϕ̃X : Der(B,X)→ Der(A,X) is
bijective for each B-⊗̂-bimodule X .

It is proved in [28] that the Arens–Michael envelope always satisfies to Property (UDE).
In what follows we denote the pushout of ⊗̂-algebra homomorphisms A → B1 and

A→ B2 using relative free algebra notation, i.e., as B1 ∗A B2. Note that the category of
⊗̂-algebras is cocomplete and, in particular, pushout exists. But we do not need this fact
because we use only Propositions 2.6 and 2.7, which in particular imply the existence of
pushouts.

The following result is an analytic version of Proposition 5.2 in [14].

Proposition 3.2. In the category of unital ⊗̂-algebras, Property (UDE) is preserved by
pushouts.

For the proof we need an auxiliary proposition. Note that every (B1 ∗AB2)-⊗̂-bimodule
is both a B1-⊗̂- and B2-⊗̂-bimodule with the multiplications given by lifting along homo-
morphisms.

Proposition 3.3. Let ϕ1 : A → B1 and ϕ2 : A → B2 be homomorphisms of ⊗̂-algebras
and X be a (B1 ∗AB2)-⊗̂-bimodule. Suppose that D1 ∈ Der(B1, X), D2 ∈ Der(B2, X) and
D1ϕ1 = D2ϕ2. Then there exists a unique continuous derivation D making the diagram

A
ϕ2 //

ϕ1

��

B2

κ2

��
D2

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺

B1
κ1 //

D1

**❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱ B1 ∗A B2

D

##❍
❍

❍
❍

❍

X

commutative.

Proof. Consider the locally convex space (B1 ∗A B2)⊕X as a ⊗̂-algebra by letting

(c, x)(c′, y) = (cc′, cy + xc′) (c, c′ ∈ B1 ∗A B2, x, y ∈ X).

For j = 1, 2, define a ⊗̂-algebra homomorphism by

ψj : Bj → (B1 ∗A B2)⊕X : b 7→ (κj(b), Dj(b)).

By the pushout property, there is a unique homomorphism

ψ : B1 ∗A B2 → (B1 ∗A B2)⊕X

such that ψκj = ψj (j = 1, 2). Write ψ as c 7→ (α(c), D(c)), where α and D are
continuous linear maps. It is easy to see that α is an endomorphism of B1 ∗A B2 and D
is an α-derivation, i.e., D(cc′) = α(c)D(c′) +D(c)α(c′) (c, c′ ∈ B1 ∗AB2). Since ακj = κj

(j = 1, 2), the uniqueness of ψ implies that α = 1. Therefore D is a derivation such that
Dκj = Dj (j = 1, 2). Finally, D is unique since so is ψ. �



12 O. YU. ARISTOV

Proof of Proposition 3.2. Let

A
ϕ2 //

ϕ1

��

B2

κ2

��
B1 κ1

// B1 ∗A B2

be a pushout diagram such that ϕ1 satisfies Property (UDE).
Take a (B1∗AB2)-⊗̂-bimodule X and D2 ∈ Der(B2, X). Since D2ϕ2 is a derivation of A

and ϕ1 satisfies Property (UDE), there exists D1 ∈ Der(B1, X) such that D1ϕ1 = D2ϕ2.
By the universal property for derivations in Proposition 3.3, there is D ∈ Der(B1∗AB2, X)
such that D1 = Dκ1 and D2 = Dκ2. Hence, Der(B1∗AB2, X)→ Der(B2, X) is surjective.

Note that ϕ̃X is injective for each X if and only if ϕ is an epimorphism; cf. the Fréchet
algebra case in [10, Theorem 3.20]. Since epimorphisms are preserved by pushouts in an
arbitrary category, Der(B1 ∗A B2, X) → Der(B2, X) is injective for each X . Thus, κ2

satisfies Property (UDE). �

Now we apply Proposition 3.2 to analytic smash products.

Theorem 3.4. Let β : H → K be a Hopf ⊗̂-algebra homomorphism, R and S be an H- and
K-⊗̂-module algebras, resp., and α : R → S be an H-⊗̂-module algebra homomorphism.
If each of α and β has dense range and satisfies Property (UDE), then so is the ⊗̂-algebra

homomorphism α #̂ β : R #̂H → S #̂K defined in Lemma 2.3.

Proof. The density obviously inherits. Further, write α #̂ β as the following composition:

R #̂H
α #̂ 1
−−−→ S #̂H

1 #̂β
−−−→ S #̂K.

It is easy to see that Property (UDE) is stable under composition. So it suffices to show

that α #̂ 1 and 1 #̂β have this property. Since it is preserved by pushouts according to

Proposition 3.2, the result follows from Propositions 2.6 and 2.7, which assert that α #̂ 1

and 1 #̂β are obtained by pushouts with α and β, respectively. �

4. Homological epimorphisms and relatively quasi-free algebras

Definitions and statement of main result. Our main reference on the homological
theory of topological algebras is Helemskii’s book [18] (the Russian edition is known as
‘first black book’). Additional facts regarding a more general relative theory can be found
in [28].

Suppose that R is a ⊗̂-algebra. Recall that an R-⊗̂-algebra is a pair (A, ηA), where
A is a ⊗̂-algebra and ηA : R → A is a ⊗̂-algebra homomorphism. Note that each A-⊗̂-
module is automatically an R-⊗̂-module via the restriction-of-scalars functor along ηA.
We denote by (A,R)-mod the category of left A-⊗̂-modules endowed with the split exact
structure. This means that the admissible sequences in (A,R)-mod are those that split
by R-⊗̂-module morphisms; cf. [28, Appendix, Example 10.1 and 10.3]. In particular,
when R = C, we recover the standard definition of an admissible (or C-split) sequence of
A-⊗̂-modules used in [18]. When considering ⊗̂-bimodules over an R-⊗̂-algebra A (from
the left) and an S-⊗̂-algebra B (from the right), we denote the corresponding category
by (A,R)-mod-(B, S). In the case when R = S = C, we write simply A-mod-B. When
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we talk on a projective resolution in (A,R)-mod-(B, S), we mean a complex consisting of
objects projective in the corresponding exact category and splitting in S-mod-R.

Let A be a ⊗̂-algebra and let X and Y be a right and left A-⊗̂-modules, respectively.
Then the projective A-module tensor product X ⊗̂A Y is defined as the completion of the
quotient space of X ⊗̂Y by the closure of the linear hull of all elements of the form
x · a⊗ y − x⊗ a · y (x ∈ X , y ∈ Y , a ∈ A); see [18].

Recall that an R-S-homomorphism from an R-⊗̂-algebra to an S-⊗̂-algebra is defined
as a pair (f, g), where f : A → B and g : R → S are ⊗̂-algebra homomorphisms, such
that the diagram

A
f // B

R
g //

ηA

OO

S

ηB

OO

is commutative. In the case when S = R, we obtain an R-homomorphism.

Definition 4.1. [28, Definition 6.2] An R-S-homomorphism f : A → B from an R-⊗̂-
algebra A to an S-⊗̂-algebra B is called a two-sided relative homological epimorphism if
f is an epimorphism of ⊗̂-algebras and A is acyclic relative to the functor

B ⊗̂
A
(−) ⊗̂

A
B : (A,R)-mod-(A,R)→ (B, S)-mod-(B, S),

i.e., it sends some (equivalently, each) projective resolution of A in (A,R)-mod-(A,R) to
a sequence that splits in S-mod-S.

We omit the definitions of left and right relative homological epimorphisms ; for details
see [28, Definition 6.1] with corrections in [29, 30]. The only fact that we need here is
that a two-sided relative homological epimorphism is also left and right [28, Proposition
6.5].

In the case when R = S = C, Definition 4.1 takes more simple form:

Definition 4.2. An epimorphism A→ B of ⊗̂-algebras is said to be homological if A is
acyclic relative to the functor

B ⊗̂
A
(−) ⊗̂

A
B : A-mod-A→ B-mod-B; (4.1)

see [34, Definition 1.3], [27, Definition 3.2] or [28, Definition 6.3].

Lemma 4.3. Every homological epimorphism from a finitely generated algebra to a Fréchet
algebra satisfies Property (UDE).

Proof. It follows from the definitions that every homological epimorphism is 1-pseudoflat
in the sense of [10]. The argument for the claim that a 1-pseudoflat epimorphism from
a finitely generated to a Fréchet algebra satisfies Property (UDE) is exactly the same as
for [10, Theorem 3.24] (in the corrected version of [11]), where the case of a 1-pseudoflat
epimorphism between Fréchet algebras is considered; see also details in [12]. �

The following theorem is our main result.

Theorem 4.4. Let g be a finite-dimensional complex Lie algebra. Then the Arens-Michael

envelope U(g)→ Û(g) is a homological epimorphism if and only if g is solvable.

For the proof we need a result on homological epimorphisms for analytic smash products
with the Hopf ⊗̂-algebra As defined in (2.7); see Theorem 4.6 below.
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Smash products with As. The following proposition is the first step.

Proposition 4.5. Let s ∈ [0,+∞]. Then β : C[z] → As in Lemma 2.4 is a homological
epimorphism.

Proof. Since As is a Hopf ⊗̂-algebra by Lemma 2.4, it follows from [27, Proposition 3.7]
that it suffices to check that C[z]→ As is a weak localization, i.e., the following conditions
hold:

(1) for some projective resolution 0← C← P• in C[z]-mod the complex 0← As ⊗̂C[z]C←

As ⊗̂C[z] P• is admissible;

(2) the natural map As ⊗̂C[z]C→ C is a topological isomorphism.
Condition (2) is clearly satisfied. To check Condition (1) note that

0← C
ε
←− C[z]

d0←− C[z]← 0,

where ε : z 7→ 0 and [δ0(a)](z) := az, is a projective resolution in C[z]-mod. Applying
As ⊗̂C[z](−) to this resolution we get

0← C←− As ←− As ← 0, (4.2)

where the differentials are defined by the same formulas.
Consider the map

σ : As → As : a 7→

∞∑

n=0

an+1z
n.

Suppose that s < ∞ and let C be a positive constant such that ns 6 C 2n for every
n ∈ Z+. Then for each r > 0 we have

‖σ(a)‖r,s =

∞∑

n=0

|an+1|
rn

n!s
6

∞∑

n=0

ns

r
|an|

rn

n!s
6
C

r
‖a‖2r,s.

Thus σ is well defined and continuous. It is easy to see that the sequence in (4.2) splits
by σ and hence it is admissible. The case when s =∞ is obvious.

Thus Condition (1) is also satisfied and therefore C[z] → As is a weak localization for
every s. �

Recall that when an algebra R is endowed with a derivation, the action induced by this
derivation turns R into a C[z]-module algebra and so one can consider the smash product
R#C[z].

Theorem 4.6. Let s ∈ [0,+∞], R be an associative algebra of countable dimension, S
be a ⊗̂-algebra, and α : R → S be a homological epimorphism with dense range. Suppose
that S is an As-⊗̂-module algebra, respectively and R is endowed with a derivation is a
such way that α becomes a C[z]-module morphism. Then

α #̂ β : R#C[z]→ S #̂As

is also a homological epimorphism.

To prove Theorem 4.6 we establish a generalization of Theorem 1.2 and next apply
Theorem 1.1.

Recall that an R-⊗̂-algebra A is said to be relatively quasi-free over R if any admissible
singular R-extension of A is split; see [28, Definition 7.1] and the discussion therein.
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Theorem 4.7. Let (f, g) be an R-S-homomorphism from an R-⊗̂-algebra A to a S-⊗̂-
algebra B. Suppose that

(1) g : R→ S has dense range;
(2) f : A→ B satisfies Property (UDE) and has dense range;
(3) A is relatively quasi-free over R.
Then f is a two-sided relative homological epimorphism.

For the proof we need a relative version of Property (UDE). If A is an R-⊗̂-algebra
and X is a B-⊗̂-bimodule, then a derivation D : A → X is called an R-derivation if
it is an R-bimodule morphism (or, equivalently, of left or right R-module morphism).
The subspace of Der(A,X) consisting of R-derivations is denoted by DerR(A,X). An
R-S-homomorphism (f, g) : (A,R)→ (B, S) induces the linear map

DerS(B,X)→ DerR(A,X) : D 7→ Df ;

see details in [28].

Proposition 4.8. Let (f, g) : (A,R) → (B, S) be an R-S-homomorphism from an R-
⊗̂-algebra A to an S-⊗̂-algebra B. Suppose that each of f and g has dense range and
f satisfies Property (UDE). Then the canonical map DerS(B,X) → DerR(A,X) is a
bijection for every B-⊗̂-bimodule X.

Proof. Since Der(B,X)→ Der(A,X) is injective, so is DerS(B,X)→ DerR(A,X).
To prove the surjectivity take D ∈ DerR(A,X). Since f satisfies Property (UDE), there

is D′ ∈ Der(B,X) such that D = D′f . To complete the proof we need to show that D′ is
an S-derivation, that is,

D′(ηB(s)b) = ηB(s) ·D
′(b) for every s ∈ S and b ∈ B. (4.3)

Since each of f and g has dense range, it suffices to verify (4.3) in the case when s = g(r)
and b = f(a) for some r ∈ R and a ∈ A. Then ηB(s)b = ηB(g(r))f(a) = f(ηA(r))f(a) =
f(ηA(r)a) and hence D′(ηB(s)b) = D(ηA(r)a). Since D is an R-derivation, we have
D(ηA(r)a) = ηA(r) ·D(a). On the other hand,

ηA(r) ·D(a) = f(ηA(r)) ·D(a) = ηB(g(r)) ·D
′f(a) = ηB(s) ·D

′(b).

Thus (4.3) holds. �

Remark 4.9. The conditions of Proposition 4.8 can be weakened by assuming that g is
an epimorphism of ⊗̂-algebras; cf. [28, Proposition 3.8]. But we do nit need this variant.

If A is an R-⊗̂-algebra, then a representing object of the functor DerR(A,−) from
A-mod-A to the category of sets exists and is denoted by Ω1

RA (it is called the bimodule
of relative differential 1-forms of A); for details see [28, p. 82].

Fix an R-S-homomorphism and a B-⊗̂-bimodule X . From the universal property of
Ω1 we have the commutative diagram

DerS(B,X) // DerR(A,X)

BhB(Ω
1
SB,X) //

AhA(Ω
1
RA,X),

(4.4)
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where hB(−,−) denotes the vector space of B-⊗̂-bimodule morphisms (and similarly for
A); see [28, eq. (7.3) and p. 83]. Also, consider the natural map

AhA(Ω
1
RA,X)→ BhB(B ⊗̂

A
Ω1
RA ⊗̂

A
B,X) (4.5)

and the composition

BhB(Ω
1
SB,X)→ BhB(B ⊗̂

A
Ω1
RA ⊗̂

A
B,X). (4.6)

Substituting Ω1
SB for X , we obtain the morphism

B ⊗̂
A
Ω1
RA ⊗̂

A
B → Ω1

SB

corresponding to the identity morphism of Ω1
SB.

Proposition 4.10. (cf. [28, Proposition 7.4]) Under the hypotheses of Proposition 4.8,
the morphism B ⊗̂AΩ

1
RA ⊗̂AB → Ω1

SB defined above is a B-⊗̂-bimodule isomorphism.

Proof. Let X be an arbitrary B-⊗̂-bimodule. Note that the map in (4.5) is always bijec-
tive. Also, under the hypotheses of Proposition 4.8, the top arrow in (4.4) is a bijection
and so is the bottom arrow.

Thus we have that the map in (4.6) is bijective for every X , which implies that
B ⊗̂A Ω1

RA ⊗̂AB → Ω1
SB is an isomorphism. �

Proof of Theorem 4.7. By [28, Proposition 7.3], A is relatively quasi-free over R if and
only if Ω1

RA is projective in (A,R)-mod-(A,R). Hence the sequence

0← A
m
←− A ⊗̂

R
A

j
←− Ω1

RA← 0 (4.7)

is a projective resolution in (A,R)-mod-(A,R). (Here m is the multiplication on A and j
is the bimodule morphism corresponding to the inner derivation − ad1⊗1 : A → A ⊗̂RA :
a 7→ [1⊗ 1, a].)

Since f satisfies Property (UDE), it is an epimorphism. Then the canonical map
B ⊗̂AB → B is a topological isomorphism. Also, since g is an epimorphism, the canonical
map B ⊗̂RB → B ⊗̂S B is a topological isomorphism; for both properties of epimorphisms
see [28, Proposition 6.1]. Applying the functor B ⊗̂A(−) ⊗̂AB to the sequence in (4.7)
and using Proposition 4.10, we get the sequence

0← B ← B ⊗̂
S
B ← Ω1

SB ← 0,

which splits in B-mod-S by [28, Proposition 7.2]. Hence it also splits in S-mod-S. This
implies that f is a two-sided relative homological epimorphism; see Definition 4.1. �

A projective (A,R)-⊗̂-bimodule P satisfies the finiteness condition (f2) if it is a retract
of a bimodule A ⊗̂RM ⊗̂RA, whereM ∈ R-mod-R is isomorphic to the R-⊗̂-bimodule Rn

for some n [28, Definition 8.3]. (We do not need the alternative condition (f1) from [28].)
Also, an R-⊗̂-algebra A is called an algebra of (f2)-finite type if in (A,R)-mod-(A,R) it
has a finite projective resolution all of whose bimodules satisfy the finiteness condition
(f2) [28, Definition 8.4].

Now we can prove the main result of the section.
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Proof of Theorem 4.6. Recall that we denote by β the Hopf ⊗̂-algebra homomorphism

C[z] → As. Put A = R#C[z], B = S #̂As, g = α and f = α #̂ β (the latter is
well defined by Lemma 2.3 since α is a C[z]-module morphism). It suffices to check the
conditions in Theorem 1.1, i.e.,

(1) g is a homological epimorphism;
(2) f is a left or right relative homological epimorphism;
(3) A is projective in R-mod and B is projective in S-mod;
(4) A is an R-⊗̂-algebra of (f2)-finite type.
Condition (1) holds by the hypothesis.
Condition (2) follows from Theorem 4.7. Indeed, β is a homological epimorphisms

by Proposition 4.5. Hence α and β satisfy Property (UDE) (the first by the hypothesis
and the second by Lemma 4.3). Since the ranges are dense, Theorem 3.4 implies that f
also satisfies Property (UDE). Since R is a C[z]-module algebra, we have the action by a
derivation. Therefore R#C[z] is an Ore extension (see Remark 2.2) and hence it is rela-
tively quasi-free by [28, Proposition 7.9]. Thus all the conditions in Theorem 4.7 hold and
therefore f is a two-sided relative homological epimorphism. Finally, note that every two-
sided relative homological epimorphism is a one-sided relative homological epimorphism
[28, Proposition 6.5].

To verify Condition (3) note that S #̂As is isomorphic to S ⊗̂As as an S-⊗̂-module
and so it is projective being a free module (see, e.g., [18, Chapter III, Proposition 1.25]).
Similarly, R#C[z] is a projective R-module.

Since R has countable dimension, each Ore extension of R (without twisting) is a
relatively (f2)-quasi-free R-algebra [28, Proposition 7.9 and Example 8.1], which in par-
ticular implies that it is of (f2)-finite type [28, Definition 8.5 and Proposition 7.3.]. Thus
Condition (4) holds. �

The proof of the main theorem. Now we are in a position to prove the central result
of the paper.

Proof of Theorem 4.4. For the necessity see [26, Theorem 3.6].
To show the sufficiency consider the decomposition in (2.8). We claim that the trun-

cated homomorphism

(· · · (U(f1)#U(f2))# · · · )#U(fk) −→ (· · · (Ai1 #̂Ai2) #̂ · · · ) #̂Aik (4.8)

(which exists since the decompositions of U(g) and Û(g) are compatible) is a homological
epimorphism for every k = 1, . . . , n.

Proceeding by induction, note first that U(f1) ∼= C[z] for every k. If k = 1, then the
assertion is given by Lemma 4.3. Assume now that the claim holds for k − 1. Then the

homomorphism in (4.8) can be written as R#C[z]→ S #̂Aik , where R and S denote the
algebras obtained on the (k − 1)th step.

Note that R has countable dimension and g : R→ S has dense range. Since, in addition,
g is a homological epimorphism by the induction hypothesis, Theorem 4.6 implies that

R#C[z]→ S #̂Aik is also a homological epimorphism. The claim is proved.

Putting k = n we conclude that U(g)→ Û(g) is a homological epimorphism. �
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