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Abstract. In this paper we compare two numerical methods to inte-
grate Riemannian cubic polynomials on the Stiefel manifold Stn,k. The
first one is the adjusted de Casteljau algorithm, and the second one is
a symplectic integrator constructed through discretization maps. In par-
ticular, we choose the cases of n = 3 together with k = 1 and k = 2. The
first case is diffeomorphic to the sphere and the quasi-geodesics appear-
ing in the adjusted de Casteljau algorithm are actually geodesics. The
second case is an example where we have a pure quasi-geodesic different
from a geodesic. We provide a numerical comparison of both methods
and discuss the obtained results to highlight the benefits of each method.
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1 Introduction

Generating polynomial curves and polynomial splines on manifolds was mo-
tivated by problems related to path planning of certain mechanical systems,
such as spacecraft and underwater vehicles, whose configuration spaces are non-
Euclidean manifolds [15], [5], [4], but the impact of the results quickly expanded
to other areas of technology. A Riemannian cubic polynomial is a smooth curve
on a Riemannian manifold Q that minimizes the cost functional

J =

∫ 1

0

〈
Dċ

dt
,
Dċ

dt

〉
dt,

where ⟨·, ·⟩ denotes the Riemannian metric and Dċ
dt denotes the covariant accel-

eration of the curve c with respect to the Levi-Civita connection. In addition,
it satisfies a two-point boundary value problem (initial and final points and ve-
locities are prescribed). Without loss of generality, we parameterize the curves
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over the interval [0, 1]. It turns out that the corresponding Euler-Lagrange equa-
tions are hard to solve and to overcome such difficulty other methods to find
cubic polynomials on manifolds have been proposed, in particular geometric al-
gorithms that generate such curves from four distinct points x0, x1, x2, x3 on the
configuration manifold, the first and last being respectively the initial and final
prescribed points and the other two are only auxiliary points for the geometric
construction, but are also related to the specified velocities.

The Stiefel manifold, consisting of all n × k (1 ≤ k ≤ n) matrices with
orthonormal columns, is important in various applications, including computer
vision [16], neural networks [14], and statistics [6]. For instance, its relevance in
pattern recognition is due to the fact that features and patterns that describe vi-
sual objects may be represented as elements in those non-Euclidean spaces. These
geometric representations facilitate the analysis of the underlying geometry of
the data. Stiefel manifolds are related to Grassmannian manifolds, consisting of
all k-dimensional subspaces in Rn, since a point in the Stiefel manifold identifies
exactly what frame (basis of orthonormal vectors) is used to specify a particular
subspace.

In this paper, we will provide a comparison between a recently proposed
geometric method to approximate Riemannian cubic polynomials on a Stiefel
manifold with a symplectic integrator for the same variational problem. The
approach we propose consists of a symplectic integrator generated from a choice
of a retraction map [3], [2]. This formulation seems to be well suited for a wide
range of problems in geometric control theory, namely optimal control problems
involving higher-order derivatives whose state space is a Riemannian space with
additional structure such as that of a Lie group or that of a homogeneous space.

In particular, we choose the cases of n = 3 together with k = 1 and k = 2.
The first case is diffeomorphic to the sphere and the quasi-geodesics defined in
[12] are actually geodesics. The second case is an example where we have a pure
quasi-geodesic different from a geodesic. We provide a numerical comparison of
both methods and discuss the obtained results to highlight the benefits of each
method.

2 The Stiefel manifold

2.1 Background & notations

The Stiefel manifold of orthonormal k-frames in Rn has the following matrix
representation:

Stn,k = {S ∈ Rn×k | S⊤S = Ik}. (1)

We note that, if S ∈ Stn,k, then P = SS⊤ is a point in the Grassmann
manifold Grn,k consisting of all k-dimensional subspaces of Rn, when its matrix
representation Grn,k = {P ∈ Rn×n | P = P⊤, P 2 = P, rank(P ) = k} is
considered.

In what follows, so(n) denotes the set of n × n skew-symmetric matrices,
and for P ∈ Grn,k, the notation soP (n) is used for the vector subspace of so(n)
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defined by

soP (n) = {X ∈ so(n) | XP + PX = X}.

We also note that

TPGrn,k = {[X,P ] | X ∈ soP (n)},

where [·, ·] denotes the commutator of matrices.
The tangent space to the Stiefel manifold at a point S ∈ Stn,k is given by

TSStn,k = {V ∈ Rn×k | V ⊤S + S⊤V = 0}, (2)

but another useful representation of the tangent space appeared in [12, Propo-
sition 5] and is recalled here. Suppose S ∈ Stn,k and P := SS⊤ ∈ Grn,k. Then,

TSStn,k = {XS + SΩ | X ∈ soP (n), Ω ∈ so(k)}. (3)

Moreover, if V = XS + SΩ ∈ TSStn,k, then

X = V S⊤ − SV ⊤ + 2SV ⊤SS⊤, Ω = S⊤V. (4)

We will consider the Stiefel manifold equipped with the metric defined by

⟨V1, V2⟩ = tr
(
V ⊤
1 (In − 1

2SS
⊤)V2

)
, V1, V2 ∈ TSStn,k. (5)

In some literature, for instance in [9], this is called the canonical metric. Also,
among the family of α-metrics studied in [11], this corresponds to the value
α = 0.

The geometric de Casteljau algorithm to generate polynomials on Rieman-
nian manifolds is based on successive geodesic interpolation. To deal with situa-
tions for which an explicit expression for a geodesic that joins two points is not
available, the authors of [12] used quasi-geodesics, instead of geodesics, to mod-
ify the de Casteljau algorithm to generate quadratic polynomials and splines on
Stiefel manifolds. In [13], the adjusted de Casteljau algorithm is used to approx-
imate Riemannian cubic polynomials and solve related interpolation problems
numerically.

2.2 Retractions and quasi-geodesics on Stiefel manifolds

We first recall from [1] the notion of retraction map on a Riemannian manifold.

Definition 1. A retraction R on the Stiefel manifold Stn,k is a smooth mapping
from the tangent bundle TStn,k to Stn,k that, when restricted to each tangent
space at a point S ∈ Stn,k (restriction denoted by RS), satisfies the following
properties:

(i) RS(0) = S;
(ii) dRS(0) = I, where dRS(0) stands for the tangent map of RS at 0 ∈ TSStn,k.
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If V ∈ TSStn,k, one can define a smooth curve βV : t 7→ RS(tV ) associated to the

retraction R. The curve βV which satisfies βV (0) = S and β̇V (0) = V is called a
quasi-geodesic. Next, we define a particular retraction and corresponding quasi-
geodesic on the Stiefel manifold, and list some of their interesting properties.
Proofs and more details can be found in [12]. We may use indistinctly exp (A)
or eA to denote the matrix exponential of a matrix A and log will denote the
principal matrix logarithm.

If S, X and Ω are as in equation (4), then the mapping R : TStn,k → Stn,k
whose restriction to TSStn,k is defined by RS(V ) = eXSeΩ is a retraction on the
Stiefel manifold, with associated quasi-geodesic β : [0, 1] → Stn,k, t 7→ etXSetΩ ,
which satisfies

β(0) = S; β̇(t) = etX(XS + SΩ)etΩ ; β̈(t) = etX(X2S + 2XSΩ + SΩ2)etΩ .

In the next proposition, adapted from [13], the initial velocity of a quasi-
geodesic that joins two points S0 and S1 is explicitly written in terms of these
endpoints.

Proposition 1. Let S0 and S1 be two distinct points in Stn,k so that, for i =
0, 1, Pi = SiS

⊤
i ∈ Grn,k. Then, if

X =
1

2
log

(
(I − 2S1S

⊤
1 )(I − 2S0S

⊤
0 )

)
and Ω = log

(
S⊤
0 e

−XS1

)
, (6)

the quasi-geodesic β : [0, 1] 7→ Stn,k defined by

β(t) = etXS0e
tΩ (7)

is a smooth curve connecting S0 to S1.

Remark 1. Note that the matrices X and Ω in (6) are only well defined if the
logarithm exists. This is always guaranteed if the points S0 and S1 are sufficiently
close. In addition, the quasi-geodesic defined above is a true geodesic w.r.t. the
metric (5) only if X = 0 or Ω = 0. In particular, these two situations occur when
k = 1 or k = n, in which cases Stn,1 is the unit sphere Sn or the orthogonal
group On.

3 The adjusted de Casteljau Algorithm

We briefly describe the adjusted de Casteljau Algorithm to generate cubic poly-
nomials on Riemannian manifolds, assuming that they are geodesically complete
[7]. The next algorithm results from replacing geodesics by quasi-geodesics in the
generalized de Casteljau algorithm concisely described in [10] and adapting it to
the construction of cubic polynomials as in [13].

Problem 1. Find a smooth curve γ : [0, 1] → Stn,k satisfying the following
boundary conditions:

γ(0) = S0, γ(1) = S3, γ̇(0) = V0, γ̇(1) = V3, (8)
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where S0, S3 are given points in Stn,k, and V0 ∈ TS0
Stn,k and V3 ∈ TS3

Stn,k are
given tangent vectors.

The adjusted de Casteljau algorithm is used to generate a curve that solves
the previous problem. Following [13], we first define matrices Xi and Ωi, with i
an integer running from 0 to 5, not necessarily in this particular order. In the
way, we also find the control points S1, S2 from the given data.

X0 =
1

3

(
V0S

⊤
0 − S0V

⊤
0 + 2S0V

⊤
0 S0S

⊤
0

)
, Ω0 =

1

3
S⊤
0 V0. (9)

So, S1 = eX0S0e
Ω0 defines the first control point. Using

X2 = −1

3

(
V3S

⊤
3 − S3V

⊤
3 + 2S3V

⊤
3 S3S

⊤
3

)
, Ω2 = −1

3
S⊤
3 V3, (10)

the point S2 = eX2S3e
Ω2 is the second control point which enables to define

X1 =
1

2
log

(
(I − 2S2S

⊤
2 )(I − 2S1S

⊤
1 )

)
, Ω1 = log

(
S⊤
1 e

−X1S2

)
.

Finally, define

X3(t) =
1
2 log

(
(I − 2etX1S1S

⊤
1 e

−tX1)(I − 2etX0S0S
⊤
0 e

−tX0)
)
,

Ω3(t) = log
(
e−tΩ0S⊤

0 e
−tX0e−X3(t)etX1S1e

tΩ1
)
,

X4(t) =
1
2 log

(
(I − 2e−tX2S2S

⊤
2 e

tX2)(I − 2etX1S1S
⊤
1 e

−tX1)
)
,

Ω4(t) = log
(
e−tΩ1S⊤

1 e
−tX1e−X4(t)e−tX2S2e

−tΩ2
)
,

X5(t) =
1
2 log

(
(I − 2etX4(t)etX1S1S

⊤
1 e

−tX1e−tX4(t))
(I − 2etX3(t)etX0S0S

⊤
0 e

−tX0e−tX3(t))
)
,

Ω5(t) = log
(
e−tΩ3(t)e−tΩ0S⊤

0 e
−tX0e−tX3(t)e−X5(t)etX4(t)etX1S1e

tΩ1etΩ4(t)
)
.

Theorem 1. Let Xi and Ωi be given by the last formulas. Then, the geometric
cubic polynomial γ : [0, 1] → Stn,k defined by

γ(t) = etX5(t)etX3(t)etX0S0e
tΩ0etΩ3(t)etΩ5(t), (11)

solves Problem 1.

The proof of this theorem can be found in preprint [13].

4 Symplectic integrators arising from Discretization
maps

Next, we define a generalization of the retraction map that allows a discretization
of the tangent bundle of the configuration manifold leading to the construction
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of numerical integrators as described in [3]. Given a point and a velocity, we
obtain two nearby points that are not necessarily equal to the initial base point.

Definition 2. Let Q be a smooth manifold. A map Rd : U ⊂ TQ→ Q×Q given
by

Rd(q, v) = (R1(q, v), R2(q, v)),

where U is an open neighborhood of the zero section 0q of TQ, defines a dis-
cretization map on Q if it satisfies

1. Rd(q, 0) = (q, q),

2. T0qR
2
q − T0qR

1
q : T0qTqQ ≃ TqQ→ TqQ is equal to the identity map on TqQ

for any q in Q, where Raq denotes the restrictions of Ra, a = 1, 2, to TqQ.

Thus, the discretization map Rd is a local diffeomorphism from some neighbor-
hood of the zero section of TQ. If R1(q, v) = q, the two properties in Definition 2
guarantee that the both properties in Definition 1 are satisfied by R2.

The two following examples will be used later during the numerical integra-
tion of Riemannian cubic polynomials.

Example 1. The initial point rule on an Euclidean vector space is given by the
discretization map: Rd(q, v) = (q, q + v) .

Example 2. The mid-point rule on an Euclidean vector space can be recovered

from the following discretization map: Rd(q, v) =
(
q − v

2
, q +

v

2

)
.

Different discretizations might be used to produce different symplectic dis-
cretizations of Hamiltonian flows [3]. We briefly outline the construction of these
numerical methods. As the Hamiltonian vector field takes values on TT ∗Q, the
discretization map must be on T ∗Q. If one chooses the cotangent lift of the
discretization map Rd : TQ → Q × Q composed with additional canonical iso-
morphisms to place it in the correct spaces just as defined in [3], we obtain a
map denoted by RT

∗

d : TT ∗Q → T ∗Q× T ∗Q, which is not only a discretization
but also a symplectomorphism between (T (T ∗Q),dTωQ) and (T ∗Q×T ∗Q,Ω12),
where ωQ is the canonical symplectic form on T ∗Q, dTωQ is the symplectic form
on TT ∗Q obtained from lifting ωQ, and Ω12 is the canonical symplectic structure
on the product of two symplectic manifolds. These additional properties allow
to prove the following result defining a symplectic numerical scheme:

Proposition 2. If Rd is a discretization map on Q and H : T ∗Q → R is a
Hamiltonian function, then the equation

(RT
∗

d )−1(q0, p0, q1, p1) = hXH

[
τT∗Q ◦ (RT

∗

d )−1(q0, p0, q1, p1)
]

written for the cotangent lift of Rd is a symplectic integrator, where XH is the
associated Hamiltonian vector field on T ∗Q.
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Example 3. On Q = Rn the discretization map Rd(q, v) =
(
q − 1

2v, q +
1
2v

)
is

cotangently lifted to

RT
∗

d (q, p, q̇, ṗ) =

(
q − 1

2
q̇, p− ṗ

2
; q +

1

2
q̇, p+

ṗ

2

)
.

The initial point discretization map Rd(q, v) = (q, q + v) is cotangently lifted to

RT
∗

d (q, p, q̇, ṗ) = (q, p− ṗ, q + q̇, p) .

The previous proposition adapts perfectly to our case since Riemannian cubic
polynomials can be seen as the projection of an Hamiltonian flow on T ∗(TStn,k)
(see, e.g. [8]). As a result, we may use the previous proposition to construct a
symplectic integrator for the Hamiltonian version of Riemannian cubic polyno-
mials.

4.1 Hamiltonian in the Stiefel manifold

Getting a general expression for the Hamiltonian function associated with Rie-
mannian cubic polynomials might be a hard task. To reduce the difficulty of
the problem and give a comparison between different methods, we will focus
on just two cases: n = 3 together with k = 1 and k = 2. The first case is dif-
feomorphic to the sphere and the quasi-geodesics appearing in the adjusted de
Casteljau algorithm are actually geodesics. The second case is an example where
we have a pure quasi-geodesic different from a geodesic. Next, we will write the
Hamiltonian appearing in Proposition 2 in a coordinate chart.

The Stiefel manifold St3,1 is diffeomorhpic to the sphere. Thus, we may
choose as a chart the parametrization of the sphere using spherical coordinates

ψ :]0, π[×]0, 2π[ → S2

(θ, ϕ) 7→ (cosϕ sin θ, sinϕ sin θ, cos θ)

Riemannian cubic polynomials on the sphere are the projection to S2 of the
Hamiltonian flow with respect to the Hamiltonian function H : T ∗(TS2) → R
given in coordinates by:

H(θ, ϕ, θ̇, ϕ̇, pθ, pϕ, pθ̇, pϕ̇) =
1

2
ϕ̇2pθ̇ sin(2θ)+ϕ̇pϕ+θ̇pθ+

1

2
p2
θ̇
+
−ϕ̇θ̇pϕ̇ sin(2θ) +

1
2p

2
ϕ̇

sin2(θ)
.

In the second case, to choose a chart on St3,2 we should observe that this
manifold is diffeomorphic to the unitary bundle of the sphere, i.e., the set of
points in TS2 satisfying ∥vq∥ = 1 for each vq ∈ TqS

2 and the norm is the
euclidean norm obtained from the canonical inclusion of S2 on R3.

Under this identification, we proceed with the following choice of chart on
St3,2

Ψ :]0, π[×]0, 2π[×]0, 2π[ → St3,2

(θ, ϕ, ψ) 7→ A(θ, ϕ, ψ)
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with

A(θ, ϕ, ψ) =

cosϕ sin θ − sin(ϕ) sin(ψ) + cos(ϕ) cos(ψ) cos(θ)
sinϕ sin θ sin(ϕ) cos(ψ) cos(θ) + sin(ψ) cos(ϕ)

cos θ − sin(θ) cos(ψ)


Riemannian cubic polynomials are approximated as the projection to St3,2

of the Hamiltonian flow on T ∗(TSt3,2) with respect to the Hamiltonian function

H(q, q̇, pq, pq̇) =

 (1 − cos(2θ))3(− 1
8
ϕ̇θ̇p

ϕ̇
sin(2θ) + 1

4
ϕ̇θ̇p

ψ̇
sin(θ) + 1

4
ψ̇θ̇p

ϕ̇
sin(θ)

cos(2θ) + 1

+

− 1
8
ψ̇θ̇p

ψ̇
sin(2θ) + 1

4
p2
ϕ̇

− 1
2
p
ϕ̇
p
ψ̇

cos(θ) + 1
4
p2
ψ̇

)

cos(2θ) + 1

−
1

2
(−p

ϕ̇
+

p
ψ̇

cos θ
)
2

sin
4
(θ) −

1

2
(−

p
ϕ̇

cos θ
+ p

ψ̇
)
2

sin
4
θ + (p

2
ϕ̇

− p
ϕ̇
p
ψ̇

cos(θ) −
p
ϕ̇
p
ψ̇

cos θ
+ p

2
ψ̇

) sin
4
θ

+(ϕ̇pϕ + ψ̇pψ + θ̇pθ −
1

2
p
2
θ̇

− p
θ̇
(ϕ̇ψ̇ sin(θ) − p

θ̇
)) sin(θ)

6
tan(θ)

2
)

(sin(θ)
6

tan(θ)
2
)
−1

where (q, q̇, pq, pq̇) = (θ, ϕ, ψ, θ̇, ϕ̇, ψ̇, pθ, pϕ, pψ, pθ̇, pϕ̇, pψ̇) are the coordinates on
T ∗(TSt3,2).

4.2 The symplectic numerical methods

Using formula (11), one can evaluate points on the geometric cubic polynomial
at different values of the parameter t (only requires computing exponentials of
skew-symmetric matrices and logarithms of orthogonal matrices), in order to
compare the results with curves obtained using different approaches.

Our objective is to compare the curves obtained in Theorem 1 with the ap-
proximate Riemannian cubic polynomials obtained using geometric integrators
constructed upon Proposition 2.

In the following comparison of numerical methods, we have integrated a
higher-order Runge-Kutta method to approximate the Riemannian cubic poly-
nomials in a single chart for the sphere and for the Stiefel manifold St3,2 and
use it as the benchmark to compare different methods. In the sphere, departing
from initial conditions (θ0, ϕ0) = (π2 , π) with velocity (θ̇0, ϕ̇0) = (0.1, 0.2) and
acceleration and jerk equal to (1, 0.5) and (0.1, 0.2), respectively, we integrate
Riemannian cubic polynomials for 1 second, split into N evenly spaced time-
steps h > 0. This process generates a discrete flow on TTQ, that is, a sequence

of positions, velocities, accelerations and jerks denoted by {(qk, q̇k, q̈k, q(3)k )}Nk=0

approximating the Riemannian cubic polynomial.
Using this flow, we fix the endpoints q0 and qN in the sphere S2 as well as the

boundary velocities q̇0 and q̇N . We implemented adjusted de Casteljau algorithm
between these points. See Figure 1 for the plot of the trajectories.

Then we proceed to compare it with two different retraction based numer-
ical integrators: initial point and mid-point discretization maps from Example
1 and 2, respectively. Both these schemes were implemented in the single chart
described in the previous section and in conjunction with a shooting method to
enforce the desired boundary conditions.
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The strategy followed for St3,2 was very similar to the sphere. Departing from

initial conditions θ0 = π/4, ϕ0 = π, ψ0 = π, with velocity θ̇0 = 0.1, ϕ̇0 = 0.1
and ψ̇0 = 0.05 and acceleration and jerk equal to (1, 0.3, 0.5) and (0.1, 0.1, 0.05),
respectively, we integrated the Riemannian cubic polynomial for 1 second, split
into N evenly spaced time-steps h > 0.

Fig. 1: The trajectories on the sphere of the Runge-Kutta method, adjusted de
Casteljau algorithm (GCP) and retraction based numerical method.

4.3 Discussion

The first conclusion that we may draw is that the accuracy of the adjusted de
Casteljau algorithm on these manifolds is well below that of Casteljau algorithm
in Euclidean spaces. Despite this, the adjusted de Casteljau algorithm approx-
imates geometric cubic polynomials reasonably well having relative mean error
of around 0.080% in the sphere and 0.45% in the Stiefel manifold St3,2. The
relative error is computed taking the ratio between the average mean error in
Figures 2a and 2b, respectively, and the maximum distance between two points
in these manifolds.

On the other hand, the error of retraction-based numerical integrators is an
increasing function of the time-step. Ultimately, the mean error of these methods
approaches zero at the expense of an increase in computational effort. Still, this
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(a) In the sphere. (b) In the Stiefel manifold St3,2.

Fig. 2: Table showing the comparison of mean error of adjusted Casteljau algo-
rithm (GCP) with the mean error achieved by a retraction based method using
different discretization maps (Retraction and Mid-point Retraction)

(a) In the sphere. (b) In the Stiefel manifold St3,2.

Fig. 3: Comparison of mean error of adjusted Casteljau algorithm (GCP) with the
mean error achieved by a retraction based method using different discretization
maps (Retraction and Mid-point Retraction)

property makes retraction-based integrators ideal to simulate dynamics near the
initial point of the trajectories, at any desired error order. Notice also, that this
is not the case with the adjusted de Casteljau algorithm which is independent
of the choice of time-step h.

Using retraction maps that are better approximations of the Riemannian
exponential map on the configuration manifold, we conjecture that the associated
retraction map based integrators will possess a smaller mean error than the mid-
point retraction-based symplectic integrator. This trend can already be observed
in Figures 3a and 3b: the mid-point discretization map produced a significantly
lower error than the initial point discretization.

Finally, retraction-based symplectic integrators require much more compu-
tational effort than the adjusted de Casteljau algorithm which runs reasonably
fast. Moreover, it is especially suitable for solving boundary value problems while
retraction-based methods are initial value problems. Thus, using them to solve
boundary value problems requires the use of a shooting method that slows down
even further their time cost.
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The retraction map approach faces two challenges: the first one is that, for the
time being, they are only suitable to integrate Riemannian cubic polynomials on
a single chart. The second is that this approach involves solving several implicit
algebraic equations, which makes it very slow and subject to numerical errors.
To improve performance, one might use the intrinsic geometric structure of the
manifold, in the case that it is either a Lie group or a homogeneous manifold;
or by considering it as a submanifold of a higher dimensional Euclidean space,
which will be analyzed in a future work. In a cost-benefit analysis, the adjusted de
Casteljau algorithm revealed to be much faster approximating the Riemannian
cubic polynomial satisfying the boundary value problem, though in arbitrary
Riemannian manifolds this approximation is far from being as accurate as in the
Euclidean case, even in the case of the sphere, where the method relies upon
interpolating geodesics, suggesting that one possible direction of research is an
alternative choice of control points.
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